Title

Single-Chain Atomic Crystals as Extracellular Matrix-Mimicking Material with Exceptional Biocompatibility and Bioactivity

Publication Date

12-12-2018

Publication Name

Nano Letters

Document Type

Article

Volume

18

Issue

12

First Page

7619

Last Page

7627

DOI

10.1021/acs.nanolett.8b03201

Abstract

© 2018 American Chemical Society. In this study, Mo 3 Se 3- single-chain atomic crystals (SCACs) with atomically small chain diameters of ∼0.6 nm, large surface areas, and mechanical flexibility were synthesized and investigated as an extracellular matrix (ECM)-mimicking scaffold material for tissue engineering applications. The proliferation of L-929 and MC3T3-E1 cell lines increased up to 268.4 ± 24.4% and 396.2 ± 8.1%, respectively, after 48 h of culturing with Mo 3 Se 3- SCACs. More importantly, this extremely high proliferation was observed when the cells were treated with 200 μg mL -1 of Mo 3 Se 3- SCACs, which is above the cytotoxic concentration of most nanomaterials reported earlier. An ECM-mimicking scaffold film prepared by coating Mo 3 Se 3- SCACs on a glass substrate enabled the cells to adhere to the surface in a highly stretched manner at the initial stage of cell adhesion. Most cells cultured on the ECM-mimicking scaffold film remained alive; in contrast, a substantial number of cells cultured on glass substrates without the Mo 3 Se 3- SCAC coating did not survive. This work not only proves the exceptional biocompatible and bioactive characteristics of the Mo 3 Se 3- SCACs but also suggests that, as an ECM-mimicking scaffold material, Mo 3 Se 3- SCACs can overcome several critical limitations of most other nanomaterials.

Share

COinS