Date of Award

2016-01-01

Degree Name

Master of Science

Department

Physics

Advisor(s)

Tunna Baruah

Abstract

Density functional theory, a quantum mechanical based electronic structure method with GGA-PBE and MGG-SCAN functionals, are used to investigate the structure and energies of singlet, triplet, and quintet spin states of FeP (iron Porphyrin), FePIm (imidazole iron porphyrin), and FePImO2 (dioxygen imidazole iron porphyrin) systems. The binding and release of dioxygen to and from hemoglobin (Hb) are the most crucial reaction takes place in human body to sustain the existence of life. FePImO2 is used to model this phenomenon. When O2 binds to FePIm, the system undergoes a conformational change. i.e. from domed structure of FePIm in which the Fe atom moves away from the porphyrin plane to a planar structure of singlet FePImO2 in which the Fe atom lies on the porphyrin plane. Quintet FePImO2 resembles FePIm due to the pronounced movement of Fe atom above the porphyrin plane. GGA-PBE functional correctly predict the ground states of FeP (S=1) and FePImO2 (S=0) that agrees with experimental data but failed to predict the ground state of FePIm (S=2). On the other hand, MGGA-SCAN functional correctly predict the ground states of FeP (S=1) and FePIm (S=2) that are agreed with experimental results but failed to predict the ground state of FePImO2 (S=0).

Language

en

Provenance

Received from ProQuest

File Size

64 pages

File Format

application/pdf

Rights Holder

Zegnet Yimer Muhammed

Share

COinS