Date of Award

2017-01-01

Degree Name

Master of Science

Department

Physics

Advisor(s)

Felicia S. Manciu

Abstract

As a two-dimensional material, graphene shows very good thermal and electrical conductivities, which, with its unique optical properties, makes it suitable for a variety of applications. In this study, we present detailed investigations by confocal Raman and Drude model analysis of the material's changes and improvements, as it transitioned from 3D graphite to 2D graphene. Besides Raman spectral recording, which can detect single, a few, and multi-layers of graphene, confocal Raman mapping allows distinction of such domains and direct visualization of material inhomogeneity. Moreover, far-infrared transmittance measurements, which are related to electrical conductivity, demonstrate a distinct increase of conductivity with dimensionality reduction. These measurements are particularly suited to determining important material characteristics, including time constant (the inverse of the average time between two carrier-core collisions), carrier concentration, and conductivity by using a Drude-like model. Such information is valuable for developing bio-medical sensors, which is the main application envisioned for this work.

Language

en

Provenance

Received from ProQuest

File Size

61 pages

File Format

application/pdf

Rights Holder

Tamanna Tasneem Khan

Included in

Physics Commons

Share

COinS