Date of Award

2022-05-01

Degree Name

Master of Science

Department

Mathematical Sciences

Advisor(s)

Natasha S. Sharma

Abstract

In this thesis we study the well-known first-order Eyre's convex splitting numerical scheme for solving the Cahn-Hilliard equation and theoretically prove and numerically demonstrate the key properties of the scheme namely: mass conservation, unique solvability and unconditional stability. While the convex splitting scheme has been around for over two decades, explicit proofs for these important properties for the fourth order Cahn-Hillard equation are not directly available in the existing literature. This thesis aims to bridge this gap by providing the complete proofs of the aforementioned key properties of the scheme and numerically demonstrating the performance of the scheme.

Language

en

Provenance

Received from ProQuest

File Size

38 p.

File Format

application/pdf

Rights Holder

Oula Khouzam

Included in

Mathematics Commons

Share

COinS