Date of Award
2021-05-01
Degree Name
Doctor of Philosophy
Department
Material Sciences And Engineering
Advisor(s)
Namsoo Peter Kim
Abstract
The advancement in technology has brought forward non-conventional manufacturing methods that are efficient and advantageous for specific applications. 3D printing is one such outcome, whose applications stretch from biomedical applications to daily products. 3D printing is a rapidly growing technology, and innovative research developments have proven versatility in creating physical objects. Simplification and constant improvement in Fused Deposition Modeling (FDM) operation result from decades of research. However, 3D printing is material-specific and contributes to shortcomings in the technology. The build-material dictates the extrusion parameters, including the material discharge rate and head speed for a continuous flow. Customization being the prime focus of this research, demands precise control of material flow. The current study emphasizes the research involved in attaining constant material flow by applying the Hagen-Poiseuille equation for a constant discharge of non-Newtonian-high viscous fluids through a piston-type extruder. The precise control over discharge rate is achieved by controlling the tip (nozzle) size, head speed, and the pressure applied to the piston. Integration of the Internet of Things (IoT) enabled long-distance 3D printing between two continents, successfully printing Single Line Designs (SLD) and 3D structures. A similar principle is applied to the printing of human prosthetic teeth using hydroxyapatite as a potential replacement for the traditional titanium screws.
Language
en
Provenance
Received from ProQuest
Copyright Date
2021-05
File Size
78 p.
File Format
application/pdf
Rights Holder
Abhilash Aditya
Recommended Citation
Aditya, Abhilash, "3D Printing Of High Viscosity Fluids And Its Application In 3D
Printing Of Prosthetic Teeth." (2021). Open Access Theses & Dissertations. 3210.
https://scholarworks.utep.edu/open_etd/3210