Date of Award
2020-01-01
Degree Name
Master of Science
Department
Electrical Engineering
Advisor(s)
David Zubia
Abstract
Over the recent years there has been an increasing demand of better performing electronics. However, as the semiconductor industry keeps on improving and scaling the technology to the nanometer regime, the passive power density has overcome the overall power consumption of transistors. The inability to reduce the power alongside the scaling of transistors has led the scientific community in the search for alternatives or different solutions to overcome this power crisis. The use of two-dimensional Transition-Metal Dichalcogenides (TMDCS) and Micro-Electro-Mechanical System (MEMS) actuators, in conjunction, has been proposed as an alternative solution [1]. Recent studies of TMDCS have shown a very promising potential for future use in electronics. One very interesting property in particular of TMDCs is that they are highly sensitive to strain [2, 3]. On the other side, MEMS offer excellent on/off ratios with very steep transitions as it has been demonstrated in [4, 5, 6, 7, 8]. Devices, which exploit the bandgap tunnability of the TMDCs to enhance their conductivity, have not been explored thoroughly. As a result, a MEMS device that takes full advantage of the TMDCS strain properties has been proposed, and shown a potential future for electronic devices [1]. Furthermore, such a device needs a reliable, reproducible, scalable, and ability to offer a promise for future research. In this Thesis, the effort to design, fabricate, and characterize a double anchor beam actuator will be discussed. This work is an important footstep to understand, analyze, and promote the simplification of the fabrication processes involved in a research environment, as well as, the use of Silicon On Insulator (SOI) for this type of application.
Language
en
Provenance
Received from ProQuest
Copyright Date
2020-05
File Size
70 pages
File Format
application/pdf
Rights Holder
Edgar Acosta
Recommended Citation
Acosta, Edgar, "Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides" (2020). Open Access Theses & Dissertations. 3076.
https://scholarworks.utep.edu/open_etd/3076