Date of Award
2020-01-01
Degree Name
Master of Science
Department
Mathematical Sciences
Advisor(s)
Piotr J. Wojciechowski
Abstract
Classification of the subalgebras of the familiar algebra of all $n\times n$ real matrices over the real numbers can get quite unwieldy as all subalgebras are of dimension ranging from $1$ to $n^2$. Classification of the subalgebras of the algebra of all $2\times 2$ real matrices over the real numbers is an interesting first start.
Since $\2$ is of dimension $4$ then its possible subalgebras are of dimension $1, 2, 3,$ or $4$. The one-dimensional subalgebra and four-dimensional subalgebra need little to no attention. The two-dimensional and three-dimensional subalgebras however turn out to be of significance.
It turns out there is only one one-dimensional subalgebra and one four-dimensional subalgebra of $\2$. The former being fairly simple and the latter being trivial. The investigation of the two-dimensional and three-dimensional subalgebras is not as brief. Therefore, the goal of this Thesis is to answer the following question:
Up to an isomorphism, how many distinct two-dimensional and three-dimensional subalgebras of $\2$ are there?
We show here that up to an isomorphism there are three distinct two-dimensional subalgebras and one distinct three-dimensional subalgebra.
Language
en
Provenance
Received from ProQuest
Copyright Date
2020-05
File Size
50 pages
File Format
application/pdf
Rights Holder
Justin Luis Bernal
Recommended Citation
Bernal, Justin Luis, "Classification Of The Subalgebras Of The Algebra Of All 2 By 2 Matrices" (2020). Open Access Theses & Dissertations. 2933.
https://scholarworks.utep.edu/open_etd/2933