Date of Award
2010-01-01
Degree Name
Master of Science
Department
Mathematical Sciences
Advisor(s)
Piotr Wojciechowski
Abstract
Dealing with matrices can give us a hard time, especially when their dimension is too big, but we also well know how valuable information a matrix may carry, and that is why we study them. When a matrix has a significant number of zeroes we realize how much easier all calculations are. For instance, the product will be simpler to calculate, the determinant, the inverse and even the eigenvalue problem. This thesis provides the description and behavior of a very special kind of matrices which we call signature matrices. A particular feature of these matrices lies in the fact that most of their elements are zeroes which makes significantly easier to work with them. The motivation that led us to analyze these matrices is that they play an important role in the study of partially-ordered algebras with the Multiplicative Decomposition Property.
Language
en
Provenance
Received from ProQuest
Copyright Date
2010
File Size
38 pages
File Format
application/pdf
Rights Holder
Valeria Aguirre Holguin
Recommended Citation
Aguirre Holguin, Valeria, "Signature Matrices: The Eigenvalue Problem" (2010). Open Access Theses & Dissertations. 2623.
https://scholarworks.utep.edu/open_etd/2623