Date of Award
2011-01-01
Degree Name
Doctor of Philosophy
Department
Chemistry
Advisor(s)
James M. Salvador
Abstract
The reaction of &alpha-cumylpotassium and cyclohexene oxide produces trans-cumylcyclohexanol in high yield in the presence of excess cumene. Reactions of 1.1 and 2.0 equivalents of cumene with one equivalent of n-butylpotassium to make &alpha-cumylpotassium were shown to take several days to reach a maximum yield in the subsequent reaction of &alpha-cumylpotassium and cyclohexene oxide. Although it was initially hypothesized that the high yield was attributed to the interaction of the potassium with the aromatic rings of the &alpha-cumyl anion and the excess cumene, which was confirmed by molecular modeling studies, these reactions demonstrated that no large excess of aromatic solvents were needed. Substituting benzene and tert-butylbenzene for cumene in this reaction gave lower yields of product.
Cyclohexene oxide reacted with n-butylpotassium to unexpectedly produce 2-butylcyclohexanone in a 2 % isolated yield or in a 10 % isolated yield of its semi-carbazone derivative. Based on the literature, we hypothesized that we produced 2-butylcyclohexanone by first opening the epoxide ring of cyclohexene oxide by SN2 substitution with n-butylpotassium to give the alkoxide of trans-2-butylcyclohexan-1-ol as observed in the reaction of cyclohexene oxide and &alpha-cumylpotassium. Next, a second equivalent of n-butylpotassium reacted with cyclohexene oxide to produce a carbene alkoxide. Finally, the carbene alkoxide oxidized the alkoxide of trans-2-butylcyclohexan-1-ol to 2-butylcyclohexanone. This mechanism implies that a greater than 33 % yield is not possible.
The reaction of 2-methyl-1,2-epoxycyclohexane with n-butylpotassium and the reaction of cyclohexene oxide with sec-butyllithium did not lead to any ring opening products.
Language
en
Provenance
Received from ProQuest
Copyright Date
2011
File Size
64 pages
File Format
application/pdf
Rights Holder
Christina Dorado
Recommended Citation
Dorado, Christina, "The Reactivity of Potassium Carbanions with Epoxides" (2011). Open Access Theses & Dissertations. 2272.
https://scholarworks.utep.edu/open_etd/2272