Date of Award

2018-01-01

Degree Name

Master of Science

Department

Engineering

Advisor(s)

Jwala Renukuntla

Abstract

Antibiotic-resistant strains of bacteria may result in serious infections which are difficult to treat. In addition, the poor antibiotic pipeline has also contributed to the crisis. Recently, the complex of furosemide and silver (Ag-FSE) has been reported as a potential antibacterial agent. However, its poor aqueous solubility is limiting its activity as an effective antibacterial agent. The purpose of this study was to encapsulate Ag-FSE into chitosan nanoparticles (CSNPs) and evaluate antibacterial efficacy. Ag-FSE CSNPs were prepared using ionic gelation technique. The particle size, polydispersity index and zeta potential of Ag-FSE CSNPs were determined using dynamic light scattering (DLS) technique. Encapsulation efficiency and drug release studies were also performed and evaluated with the formulated Ag-FSE loaded CSNPs. To gain an insight into the formulation's effectiveness, in vitro antibacterial activity studies were also performed. Stability studies with the Ag-FSE loaded CSNPs were executed to understand the most optimal storage conditions for an extended storage life of the formulation to be appropriate. Based upon results and interpretations, it could be determined that the study is viable to continue forward for further studies.

Language

en

Provenance

Received from ProQuest

File Size

45 pages

File Format

application/pdf

Rights Holder

Victor Alfredo Rodriguez

Included in

Biomedical Commons

Share

COinS