Date of Award
2014-01-01
Degree Name
Master of Science
Department
Mechanical Engineering
Advisor(s)
Shaolin Mao
Abstract
During the summer, high inlet temperatures affect the power output of gas turbine systems. Evaporative coolers have gained popularity as an inlet cooling method for these systems. Wet compression has been one of the common evaporative cooling methods implemented to increase power output of gas turbine systems due to its simple installation and low cost. This process involves injection of water droplets into the continuous phase of compressor to reduce the temperature of the flow entering the compressor and in turn increase the power output of the whole gas turbine system. This study focused on a single stage rotor-stator compressor model with varying inlet temperature between 300K and 320K, as well as relative humidity between 0% and 100%. The simulations are carried out using the commercial CFD tool ANSYS: FLUENT. The study modeled the interaction between the two phases including mass and heat transfer, given different inlet relative humidity (RH) and temperature conditions. The Reynolds Averaged Navier-Stokes (RANS) equations with k-epsilon turbulence model were applied as well as the droplet coalescence and droplet breakup model considered in the simulation. Sliding mesh theory was implemented to simulate the compressor movement in 2-D. The interaction between the blade and droplets were modeled to address all possible interactions; which include: stick spread, splash, or rebound and compared to an interaction of only reflect. The goal of this study is to quantify the relation between RH, inlet temperature, overall heat transfer coefficient, and the heat transferred from the droplets to the blades surface. The result of this study lead to further proof that wet compression yields higher pressure ratios and lower temperatures in the domain under all of the cases. Additionally, droplet-wall interaction has an interesting effect on the heat transfer coefficient at the compressor blades.
Language
en
Provenance
Received from ProQuest
Copyright Date
2014
File Size
102 pages
File Format
application/pdf
Rights Holder
Luz Irene Bugarin
Recommended Citation
Bugarin, Luz Irene, "Numerical Investigation Of Impact Of Relative Humidity On Droplet Accumulation And Film Cooling" (2014). Open Access Theses & Dissertations. 1208.
https://scholarworks.utep.edu/open_etd/1208