Optimum conditions for prebiotic evolution in extraterrestrial environments

Ousama H Abbas, University of Texas at El Paso

Abstract

The overall goal of the dissertation was to devise synthetic pathways leading to the production of peptides and amino acids from smaller organic precursors. To this end, eight different zeolites were tested in order to determine their catalytic potential in the conversion of amino acids to peptides. The zeolites tested were either synthetic or naturally occurring. Acidic solutions of amino acids were prepared with or without zeolites and their reactivity was monitored over a four-week time interval. The kinetics and feasibility of peptide synthesis from selected amino acid combinations was investigated via the paper chromatography technique. Nine different amino acids were tested. The nature and extent of product were measured at constant time intervals. It was found that two ZSM-5 synthetic zeolites as well as the Fisher Scientific zeolite mix without alumina salts may have a catalytic potential in the conversion of amino acids to peptides. The conversion was verified by matching the paper chromatogram of the experimental product with that of a known peptide. The experimental results demonstrate that the optimum solvent system for paper chromatographic analysis of the zeolite-catalyzed self-assembly of the amino acids L-aspartic acid, L-asparagine, L-histidine, and L-serine is a 50:50 mixture of 1-butanol and acetone by volume. For the amino acids L-alanine, L-glycine, and L-valine, the optimum solvent was found to be a 30:70 mixture of ammonia and propanol by volume. A mathematical model describing the distance traveled (spot position) versus reaction time was constructed for the zeolite-catalyzed conversion of L-leucine and L-tyrosine and was found to approximately follow the function f(t) = 25 ln t. Two case studies for prebiotic synthesis leading to the production of amino acids or peptides in extraterrestrial environments were discussed: one involving Saturn's moon Titan, and the other involving Jupiter's moon Europa. In the Titan study, it was determined that organic synthesis, based on simple precursors, may lead in the Titan environment to the production of biologically important molecules such as amino acids. In the Europa study, three synthetic schemes using hydrogen peroxide, sulfuric acid, and hydrocyanic acid, and leading to the production of larger biologically important molecules such as amino acids were presented. (Abstract shortened by UMI.)

Subject Area

Chemistry|Biogeochemistry|Astrophysics

Recommended Citation

Abbas, Ousama H, "Optimum conditions for prebiotic evolution in extraterrestrial environments" (2004). ETD Collection for University of Texas, El Paso. AAI3138517.
https://scholarworks.utep.edu/dissertations/AAI3138517

Share

COinS