Spatially Adaptive Estimation of Spectrum

Yi Xie, University of Texas at El Paso

Abstract

When analyzing a stationary time series, one of the questions we are often interested in is how to estimate its spectrum. Many approaches have been proposed to this end. Most are focused on smoothing the periodogram using a single smoothing parameter across all Fourier frequencies. In this paper, we smooth the log periodogram by placing a spatially adaptive prior called the dynamic shrinkage prior, so that varying degrees of smoothing may be applied to different intervals of Fourier frequencies, resulting in less biased estimates of the spectrum. Further research will extend this approach to spectral estimation for nonstationary time series.

Subject Area

Statistics

Recommended Citation

Xie, Yi, "Spatially Adaptive Estimation of Spectrum" (2020). ETD Collection for University of Texas, El Paso. AAI28261130.
https://scholarworks.utep.edu/dissertations/AAI28261130

Share

COinS