Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure
Abstract
Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification using visual feedback method led to an increase in UTS of 16% in XYZ, 7% in XZY, and 22% in ZXY. The FDM fabricated parts using PC were tested under thermal cycling of -30° C to 85° C. A series of experiments were performed (e.g., tensile test, deformation of fabricated part, glass transition measurement) to evaluate the possibility of FDM fabricated parts in the harsh environment (embedded electronics, wiring in automotive industry, etc.). The UTS results showed that the results were not significantly different using statistical analysis after 150 thermal cycles while average Young's modulus increased from 1389 MPa to 1469 MPa after 150 thermal cycles. The highest warping of the specimen was found to be 78 µm which was the result of continuous thermal expansion and contraction. A sealing algorithm was developed using LabVIEW and MATLAB programming. The LabVIEW program was developed to obtain the edge information of each layer of a 3D model part. The MATLAB programming was used to gather the output information from LabVIEW and calculate the suggested RW providing least amount of gap in between rasters and contours. As a result, each layer became sealed and was able to withstand air pressure within a pressure vessel. A test specimen was fabricated according to the developed sealing algorithm parameters and used to show entirely sealed walls capable of withstanding up to 138 kPa air pressure.
Subject Area
Mechanical engineering|Materials science
Recommended Citation
Hossain, Mohammad Shojib, "Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure" (2014). ETD Collection for University of Texas, El Paso. AAI1564676.
https://scholarworks.utep.edu/dissertations/AAI1564676