Publication Date

1-2015

Comments

Technical Report: UTEP-CS-15-08

Abstract

In many practical situations, we would like to maximize (or minimize) several different criteria, and it is not clear how much weight to assign to each of these criteria. Such situations are ubiquitous and thus, it is important to be able to solve the corresponding multi-objective optimization problems. There exist many heuristic methods for solving such problems. In this paper, we reformulate multi-objective optimization as a constraint satisfaction problem, and we show that this reformulation explains two widely use multi-objective optimization techniques: optimizing a weighted sum of the objective functions and optimizing the product of normalized values of these functions.

Share

COinS