Publication Date
11-2014
Abstract
Fuzzy methodology has been invented to describe imprecise ("fuzzy") human statements about the world, statements that use imprecise words from natural language like "small" or "large". Usual applications of fuzzy techniques assume that the world itself is ``crisp'', that there are exact equations describing the world, and fuzziness of our statements is caused by the incompleteness of our knowledge. But what if the world itself is fuzzy? What if there is no perfect system of equations describing the physical world -- in the sense that no matter what system of equations we try, there will always be cases when this system will lead to wrong predictions? This is not just a speculation: this idea is actually supported by many physicists. At first glance, this is a pessimistic idea: no matter how much we try, we will never be able to find the the Ultimate Theory of Everything. But it turns out that this idea also has its optimistic aspects: namely, in this chapter, we show (somewhat unexpectedly), that if such a no-perfect-theory principle is true, then the use of physical data can drastically enhance computations.
Original file
Comments
Technical Report: UTEP-CS-14-64a
To appear in: Dan E. Tamir, David Rishe, and Abraham Kandel (eds.), Fifty Years of Fuzzy Logic and Its Applications, Springer-Verlag, Berlin, Heidelberg, 2015.