Publication Date
7-2011
Abstract
In many applications of interval computations, it turned out to be beneficial to represent polynomials on a given interval [x-, x+] as linear combinations of Bernstein polynomials (x- x - )k * (x+ - x)n-k. In this paper, we provide a theoretical explanation for this empirical success: namely, we show that under reasonable optimality criteria, Bernstein polynomials can be uniquely determined from the requirement that they are optimal combinations of optimal polynomials corresponding to the interval's endpoints.
Comments
Technical Report: UTEP-CS-11-37