Publication Date
3-2001
Abstract
Traditionally, in logic, only unary and binary operations are used as basic ones - e.g., "not", "and", "or" - while the only ternary (and higher order) operations are the operations which come from a combination of unary and binary ones. For the classical logic, with the binary set of truth values {0,1}, the possibility to express an arbitrary operation in terms of unary and binary ones is well known: it follows, e.g., from the well known possibility to express an arbitrary operation in DNF form. A similar representation result for [0,1]-based logic was proven in our previous paper. In this paper, we expand this result to finite logics (more general than classical logic) and to multi-D analogues of the fuzzy logic - both motivated by interval-valued fuzzy logics.
Comments
UTEP-CS-01-07.
Published in the Proceedings of the Joint 9th World Congress of the International Fuzzy Systems Association and 20th International Conference of the North American Fuzzy Information Processing Society IFSA/NAFIPS 2001, Vancouver, Canada, July 25-28, 2001, pp. 1991-1996.