Publication Date
3-2019
Abstract
To adequately treat different types of lung dysfunctions in children, it is important to properly diagnose the corresponding dysfunction, and this is not an easy task. Neural networks have been trained to perform this diagnosis, but they are not perfect in diagnostics: their success rate is 60%. In this paper, we show that by selecting an appropriate invariance-based pre-processing, we can drastically improve the diagnostic success, to 100% for diagnosing the presence of a lung dysfunction.
Comments
Technical Report: UTEP-CS-19-19