Multi-state Multi-objective Reliability Analysis of Renewable Energy Systems

Luis Ernesto Ramirez, University of Texas at El Paso


This work presents a new multi-objective evolutionary algorithm (MOEA), capable of obtaining a system’s reliability while considering other objectives that concurrently need to be optimized. The algorithm is applied in two different case studies. One of the problems considers a multi-state, multi-objective renewable energy system which tries to find a configuration between solar panels and wind turbines that maximizes the system’s reliability of achieving specific energy demand, while also minimizes the purchasing cost of the system. The second case study analyzes a flexible manufacturing system that contains different machines that can perform different functions. The primary objective is to obtain an optimal arrangement of a multi-state, flexible manufacturing system, considering the maximization of the overall system’s availability and minimization of the CO2 emissions. These case studies use the Universal Generating Function to determine the system’s reliability and the other objectives deliberated by each problem. Since the problems studied are multi-objective optimization problems, a single solution is not expected to be obtained, rather, a strong set of solutions called Pareto optimal solutions will be retrieved.

Subject Area

Environmental engineering

Recommended Citation

Ramirez, Luis Ernesto, "Multi-state Multi-objective Reliability Analysis of Renewable Energy Systems" (2018). ETD Collection for University of Texas, El Paso. AAI10930471.