Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, White Sands, New Mexico, USA

Publication Date


Document Type



Langford RP, Gill TE, Jones SB. Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, white sands, new mexico, USA. Sedimentary Geology 2016 15 March 2016;333:184-97.


The White Sands Dune Field, New Mexico (USA), provides a unique opportunity to study sources and eolian transport of sand. End member mixing analysis provides unbiased correlation of the grain size distributions of populations that mix sands from four different local source surface types. Textural differences between sources allow local transport paths to be deduced. In total, 1214 surface samples from 10 dunes and 2 downwind-oriented transects were collected. Neither elevation on the dune, lee or stoss location nor distance downwind correlated with mean grain size, coarsest 10% (D90), or sorting. Instead, grain size distributions are controlled by mixing of locally sourced sand populations. Adjacent dunes can have different mean grain sizes, resulting from different local source populations. Local within-dune and between-dune variability resulting from different sand sources dominates any larger-scale trends across and within dunes.

Four sand populations are identified, based on microscopically observable differences in grain size, shape and angularity. Each correlates with high loading of a different statistical factor, derived from End Member Mixing Analysis. End Member 1 (EM1) correlates with well-sorted populations of finer-grained, equant, rounded sands. EM2 correlates with samples that contain moderately sorted populations containing angular blades and crystal aggregates associated with erosional interdunes. EM3 is associated with samples of moderately to poorly sorted fine-grained sand containing fine sand-sized gypsum needles collected from areas of vegetated interdunes, and EM4 is associated with moderately well sorted coarse- and very coarse-grained sands collected from granule ripples. These results suggest that downwind mixing of different populations and segregation by different depositional processes influence grain size distributions in the dune field, rather than by dune-scale or erg-scale transport and sorting.