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Abstract

Expert knowledge consists of statements Sj (facts and rules). The
expert’s degree of confidence in each statement Sj can be described as
a (subjective) probability (some probabilities are known to be indepen-
dent). Examples: if we are interested in oil, we should look at seismic data
(confidence 90%); a bank A trusts a client B, so if we trust A, we should
trust B too (confidence 99%). If a query Q is deducible from facts and
rules, what is our confidence p(Q) in Q? We can describe Q as a propo-
sitional formula F in terms of Sj ; computing p(Q) exactly is NP-hard, so
heuristics are needed.

Traditionally, expert systems use technique similar to straightforward
interval computations: we parse F and replace each computation step with
corresponding probability operation. Problem: at each step, we ignore
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the dependence between the intermediate results Fj ; hence intervals are
too wide. Example: the estimate for P (A ∨ ¬A) is not 1. Solution:
similarly to affine arithmetic, besides P (Fj), we also compute P (Fj & Fi)
(or P (Fj1 & . . . & Fjk )), and on each step, use all combinations of l such
probabilities to get new estimates. Results: e.g., P (A ∨ ¬A) is estimated
as 1.

1 Formulation of the Problem

Expert knowledge usually consists of statements Sj : facts and rules. The main
objective is, given a query Q, to check whether Q follows from the expert knowl-
edge. For example, in the knowledge base

S1 : a ← b. S2 : b ← . S3 : a ← c. S4 : c ← .

S1 and S3 are rules, and S2 and S4 are facts. If we ask a query Q = a?, then the
answer is “yes”: e.g., Q follows from S1 and S2. Prolog-type inference engines
are tools that provide such inference; see, e.g., [9].

The problem with this approach is that experts are often not 100% confident
in their statements. One way to describe the expert’s degree of confidence in
each statement Sj is by a (subjective) probability p(Sj). A subjective probabil-
ity of a statement can be defined, e.g., as a value p for which, to the expert, a
lottery in which she gets $100 with probability p is equivalent to the lottery in
which she gets $100 if Sj is true. This value can be determined by using bisec-
tion: we start with an interval [p−, p+] = [0, 1] for which “$100 with probability
p−” is less preferable than “$100 if Sj”, which is, in its turn, less preferable
than “$100 with probability p+”. By definition of a subjective probability p,
this means that p ∈ [p−, p+].

Once we have such an interval, we compute its midpoint pm and compare
the corresponding lottery with “$100 if Sj”. Depending on the result of this
comparison, we get a half-size interval ([p−, pm] or [pm, p+]) that contains p.
Hence, in k steps, we can compute the interval of width 2−k containing p. The
midpoint of this interval is thus a 2−(k+1)-approximation to p.

The question is: if a query Q is deducible from facts and rules, what is
our confidence p(Q) in Q? For example, to find oil, we must look for certain
subterranean structures (confidence 80%); to find these structures, we must
analyze gravity data (confidence 90%). What is our confidence that to find oil,
we must analyze gravity data?

Let us describe this problem in precise terms. We can usually describe
deducibility of Q as a propositional formula F in terms of Sj . For example, for
the above knowledge base, for Q to be true, either S1 and S2 must be true, or
S3 and S4 must be true. In this case, F = (S1 &S2) ∨ (S3 &S4). The general
algorithm for describing such a propositional formula is given in [6].

As a result, we arrive at the following problem:
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• we have a propositional combination F of known statements Sj ;

• we know the probabilities p(Sj) of different statements;

• we must determine the probability p(F ).

Since the events Sj may be statistically dependent, we may get different values
for p(F ) depending on whether the values are independent or, say, positively
correlated. So, to be more precise:

• we must determine the interval p(F ) of possible values of p(F ).

How is this problem solved now?

2 Traditional Approach

It is known that in general, the problem of finding the exact bounds for p(F )
is NP-hard; see, e.g., [9]. This problem is NP-hard even if all the probabilities
p(Sj) are equal to 1 – because it is equivalent to the propositional satisfiability
problem, a known NP-hard problem.

Traditionally, expert systems use technique similar to straightforward inter-
val computations [5]. Namely, for simple formulas we know the corresponding
probability bounds [11]: if we know the bounds [a, a] for p(A) and [b, b] for p(B),
then:

• p(¬A) is in the interval [1− a, 1− a];

• p(A & B) is in the interval [max(a + b− 1, 0), min(a, b)];

• p(A ∨B) is in the interval [max(a, b), min(a + b, 1)].

In the general case, we parse F and replace each computation step with the
corresponding probability operation.

For example, let F = (A & B) ∨ (A&¬B) and p(A) = p(B) = 0.6. The
compiler would start with F1 = A and F2 = B, then it would compute F3 = ¬B,
F4 = F1 & F2, F5 = F1 & F3, and finally F = F4 ∨ F5. Thus, according to
the above procedure, we first find the bounds for p(F3) = p(¬B), then for
p(F4) = p(A & B) and p(F5) = p(A &¬B), and finally, the bounds for p(F ). As
a result, we get p(¬B) = 1− 0.6 = 0.4,

p(A & B) = [max(0.6 + 0.6− 1, 0), min(0.6, 0.6)] = [0.2, 0.6],

p(A &¬B) = [max(0.6 + 0.4− 1, 0),min(0.6, 0.4)] = [0, 0.4],

p(F ) = [max(0, 0.2), min(0.4 + 0.6, 1)] = [0.2, 1.0].

In this problem, F is equivalent to A, so p(F ) = 0.6. Thus, similarly to interval
computations, we can see that the resulting interval contained excess width.
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3 Main Idea

In interval computations, one way to decrease the excess width is to use affine
or Taylor arithmetic; see, e.g., [2, 3, 7]. For example, for affine arithmetic, the
main idea is that for each intermediate result yj , we not only keep the interval of
its possible values, we also keep the relation between this value and the original
inputs – in the form of a linear dependence yj = a0j + a1j · x1 + . . . + anj · xn.

For quadratic Taylor models, we also keep the relation between yj and pairs
of inputs (as terms ajkl · xk · xl), etc.

Our main idea is that, similarly to affine and Taylor arithmetic, for each
intermediate result Fj , besides an interval of possible values for p(Fj), we also
compute intervals of possible values for pairs: p(Fj &Fi), p(Fj ∨Fi) for all pre-
vious expressions Fi and for all possible propositional functions of two variables.
On each step, we use all such probabilities to get new estimates.

If this is not enough, we use an analog of k-th order Taylor methods –
estimate intervals for propositional combinations p(Fj1 & . . . & Fjk+1) of k + 1
variables. The higher the order k, the more accurate the results, but the longer
the computations (since we must compute more terms).

4 Technical Details

A (minor) problem with the above idea is that it is not clear how, when we
know, say, the probabilities for all triples of Fi for i ≤ j, we can estimate the
new probabilities involving Fj+1. To transform this idea into a computation-
ally efficient approach, we introduce, in addition to the parameter k, another
parameter l such that, when estimating interval for p(Fi & . . .), we take into
account only ≤ l known probability bounds, and then take the intersection of
the resulting intervals corresponding to all sets of l probability bounds.

One we have such a restriction, we can estimate the new probabilities as
follows. For each new result Fj+1 = Fi1⊕Fi2 , we must estimate the probabilities
of all combinations f(Fj+1, Fj1 , . . . , Fjk−1), i.e., combinations

f(Fi1 ⊕ Fi2 , Fj1 , . . . , Fjk−1)

involving k + 1 formulas Fi. We assume that we know the probability intervals
for l such combinations of ≤ k values Fi. Between these l + 1 propositional
combinations, we involve m ≤ (k + 1) + l · k variables Fk1 , . . . , Fkm . We can
describe both known and estimated probabilities as sums of probabilities of
atomic statements F ε1

i1
& . . . & F εm

im
, where ε ∈ {−, +}, F+ means F , and F−

means ¬F . Then, we use linear programming (LP) to get desired bounds on
the unknown probability.

What is the running time of this algorithm? A propositional function
f(x1, . . . , xk) of k propositional variables can be described as a function from
the set {0, 1}k of 2k possible combinations xi to the set {0, 1} of possible truth
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values. Thus, there are exactly 22k

such functions. For fixed k and l, this means
that we have O(1) such functions.

One the j-th step, we have j intermediate results F1, . . . , Fj . We have O(jk)
possible combinations of ≤ k such values, so we have O(jk) probability bounds.
To compute each of O(jk) new bounds, we consider all possible subsets of l
probabilities. There are O((jk)l) = O(jk·l) such subsets. For each subset, for
fixed k and l, the value m is bounded by a constant: m = O(1). There are
2m = O(1) possible combinations, so each LP requires O(1) time. So, overall,
on step j, we need O(jk) · O(jk·l) ≤ M · jk·(l+1) steps for some constant M .
Overall, we need ≤ M(1k·(l+1) + . . . + nk·(l+1)) steps, where the number n of
parsing steps is bounded by the length of the formula F . It is known that
1a + 2a + . . . + na = O(na+1), so overall, this algorithm requires O(nk·(l+1)+1)
steps. In other words, the running time grows polynomially with the length of
the formula F – so this algorithm is feasible.

It is worth mentioning that when k → ∞ and l → ∞, we get exact results;
however, computation time grows exponentially with k and l, so we cannot
realistically use too large values k and l.

5 Examples

Let us first illustrate the above algorithm on the example when we already know
the analytical solution: we know p(A) = a = 0.6 and p(B) = b = 0.6 and we
want to estimate p(A ∨ B). Here, we describe the following probabilities of
atomic statements: p++ = p(A & B), p+− = p(A &¬B), p−+ = p(¬A & B),
p−− = p(¬A &¬B). In this problem, p(A ∨ B) = p(A & B) + p(A &¬B) +
p(¬A & B), so the corresponding LP problem takes the following form: p++ +
p+− + p−+ → min(max) under the conditions:

p++ + p+− = a; p++ + p−+ = b; p++ + p+− + p−+ + p−− = 1;

p++ ≥ 0; p+− ≥ 0; p−+ ≥ 0; p−− ≥ 0.

It is known that in general, the solution of a LP problem is attained at one of
the vertices of the corresponding set, i.e., when the largest possible number of
inequalities become equalities. In this particular case, p(A ∨ B) is the smallest
when p−+ = 0, and p(A ∨ B) is the largest when p−− = 0. In both cases, we
get the desired bounds max(a + b− 1, 0) = 0.2 and min(a, b) = 0.6.

The second example shows that we indeed get narrowed intervals. The
problem is to estimate p(A ∨ ¬A) for p(A) = 0.6. The desired answer is, of
course, p(A ∨ ¬A) = 1. However, when parsing, we get F1 = A, F2 = ¬A,
and F = F1 ∨ F2. So, in the traditional approach, we estimate p(F1) = 0.6,
p(F2) = 1− p(F1) = 1− 0.6 = 0.4, and

p(F1 ∨ F2) = [max(0.4, 0.6), min(0.4 + 0.6, 1)] = [0.4, 1]
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– excess width. In the new approach, in addition to estimating p(F2) = 0.4,
we also use the relation F2 = ¬F1 to estimate probabilities of other binary
combinations, in particular, p(F1 & F2) = 0, p(F1 &¬F2) = 0.6, p(¬F1 & F2) =
0.4, p(F1∨F2) = 1, p(F1∨¬F2) = 0.6, p(¬F1∨F2) = 0.4, and p(¬F1∨¬F2) = 1.
Based on these estimates, for F = F1∨F2, we get p(F1∨F2) = 1.0. As a result,
we get the exact desired probability, with no excess width.

Third example: for (A & B) ∨ (A &¬B), the traditional method leads to
excess width in comparison with A; however, if we use triples (analogue of
quadratic Taylor approximations), then we can estimate the probability of
(A & B) ∨ (A &¬B) as p(A).

Similarly, for (A & B)∨(A & C), the traditional method leads to excess width
in comparison with A∨(B & C); if we use higher-order methods, we get the exact
interval for p((A & B) ∨ (A &C)) – i.e., we get distributivity.

Comment. A general argument against expert systems and fuzzy logic (see,
e.g., [8]) is that, e.g., p(A ∨ ¬A) is estimated as f(p(A), p(¬A)) – e.g., as
max(p(A), p(¬A)), while the correct value of p(A ∨ ¬A) is 1. Our solution:
in addition to probabilities of individual intermediate statements, keep proba-
bilities of pairs, triples, etc.

6 Case Study: Computer Security

In the traditional approach to trust, we either trust an agent or not. If we
trust an agent, we allow this agent full access to a particular task. For exam-
ple, I trust my bank to handle my account; the bank (my agent) outsources
money operations to another company (sub-agent), etc. The problem with this
approach is that I may have only 99.9% trust in bank, bank in its contractor,
etc. As a result, for long chains, the probability of a security leak may increase
beyond any give threshold. To resolve this problem, we must keep track of trust
probabilities.

Let us describe this idea in precise terms. We have a finite set A; its elements
are called agents. For some pairs (a, b) of agents, we know the probability p0(a, b)
with which a directly trusts b. Our objective is to describe, for given two agents
f and s, the probability pt(f, s) with which the agent f trusts the agent s.

In graph terms, we have each edge (a, b) with probability p0(a, b). We must
find the probability pt(f, s) that there is a path from f to s: f

E→ s. Since we
usually have no information on the dependence between different direct trust
links, we should find the interval of possible values of pt(f, s). Specifically, it is
sufficient to estimate the worst-case (smallest) probability of trust p

t
(f, s).

In precise terms, we know a graph (A,E), and we know the values p0(a, b)
for all (a, b) ∈ E. We consider all possible probability distributions p(E′) on
the set of all subgraphs E′ ⊆ E for which, for every (a, b) ∈ E, we have
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∑
E′:(a,b)∈E′

p(E′) = p0(a, b). For every two edges f and s, pt(f, s) def=
∑

E′:f
E′→s

p(E′).

We define p
t
(f, s) as the exact lower bound of all such values pt(f, s). Our ob-

jective is to compute p
t
(f, s).

For this problem, we have an explicit solution. Namely, let us define the
length (distrust) of an edge is defined as d0(a, b) def= 1 − p0(a, b). The length

`(γ) of a path γ = (a0, . . . , an) is defined as usual: `(γ) def=
n−1∑
i=0

d0(ai, ai+1). The

length of the shortest path from f to s is defined as follows:

dt(f, s) def= min{`(γ) | γ is a path from f to s}.
Proposition. p

t
(f, s) = max(1− dt(f, s), 0).

So, we can use Dijkstra’s algorithm (see, e.g., [1]) to find the shortest path in a
graph, and then compute p

t
(f, s).

Proof. Let p(E′) be consistent with the given information. We want to prove
that dt(f, s) ≤ dt(f, s), where dt(f, s) def= 1− pt(f, s).

Let γ0 = (a0, a1, . . . , an) be the shortest path from a0 = f to an = s; then,
dt(f, s) = d0(a0, a1)+. . .+d0(an−1, an). If there is no path from f to s (Nt(f, s)),
then at least one of the connections (ai, ai+1) is not present in E′ (N0(ai, ai+1)):

Nt(f, s) ⊃ (N0(a0, a1) ∨ . . . ∨N0(an−1, an)).

Hence, dt(f, s) ≤ P (N0(a0, a1) ∨ . . . ∨N0(an−1, an)). So, dt(f, s) ≤ d0(a0, a1) +
. . . + d0(an−1, an) = dt(f, s).

To complete the proof, we produce a distribution p(E′) for which pt(f, s) ≤
max(1 − dt(f, s), 0). Let π(x) def= x − bxc. We define E(ω) for ω = U([0, 1]) as
follows: For every (a, b) ∈ E, this edge is in E(ω) if and only if ω 6∈ π(I(a, b)),
where I(a, b) def= [dt(f, a), dt(f, a) + d0(a, b)]. Since π(I(a, b)) has width p0(a, b),
the distribution p(E′) is consistent with p0(a, b).

Induction proves (see [4] for details) that for every path starting at a0 = f ,
if all its edges (ai, ai+1) are in E(ω), then ω ≥ dt(a0, an). Hence,

pt(f, s) ≤ max(1− dt(f, s), 0).

The statement is proven, so the above algorithm has been justified.
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