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Abstract

In practice, there is often a need to describe the relation y = f(x)
between two quantities in algorithmic form: e.g., we want to describe the
control value y corresponding to the given input x, or we want to predict
the future value y based on the current value x. In many such cases,
we have expert knowledge about the desired dependence, but experts can
only describe their knowledge by using imprecise (“fuzzy”) words from a
natural language. Methodologies for transforming such knowledge into an
algorithm y = f(x) are known as fuzzy methodologies. There exist several
fuzzy methodologies, a natural question is: which of them is the most
adequate? In this paper, we formulate the natural notion of adequacy:
that if the expert rules are formulated based on some function y = f(x),
then the methodology should reconstruct this function as accurately as
possible. We show that none of the existing fuzzy methodologies is the
most adequate in this sense, and we describe a new fuzzy methodology
that is the most adequate.

1 Outline

Question. In many practical control situations, we do not have the exact model
of a system that we need to control but we have the experience of successful
expert human controllers. Human controllers often formulate their experience
by using imprecise (“fuzzy”) words from natural language like “small”. How
can we translate this expert knowledge into a precise control strategy for an
automatic controller?

A similar problem emerges when we want to use expert rules to predict the
future state of the worlds.

To translate imprecise expert statements into precise form, Lotfi Zadeh in-
vented a special methodology that he called fuzzy; see, e.g., [1, 2, 4, 5, 6, 8].
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In this methodology, we start by describing each natural-language term A (e.g.,
“small”) by a function that assigns:

� to each possible value x of the corresponding quantity,

� a degree µA(x) from the interval [0, 1] to which, in the controller’s opinion,
this value satisfies the corresponding property (e.g., the degree to which
the value x is small).

This function is known as a membership function or, alternatively, as a fuzzy
set.

Once we have fuzzy sets corresponding to all relevant natural-language terms,
and we have all natural-language if-then rules provided by the human controllers,
we need to transform this information into a precise control strategy. There are
several different methods for generating such a strategy. A natural question
is: which method should we select? In other words, which method is the most
adequate?

What we do in this paper. To answer the above question, a natural re-
quirement is that if the expert’s if-then rules describe – in fuzzy terms – an
actual control strategy y = f(x), then the fuzzy methodology should return ex-
actly this strategy. Somewhat surprisingly, it turns out that the existing fuzzy
methodologies – including the very popular Mamdani approach – do not satisfy
this requirement. In this paper, we show that this requirement actually leads
to a new methodology, a methodology that we describe and analyze.

Structure of this paper. In Section 2, we briefly recall what is a fuzzy
methodology and which fuzzy methodologies are typically used in practical ap-
plications. In Section 3, we describe a natural criterion for deciding which fuzzy
methodology is the most adequate, and we show that from the viewpoint of
this criterion, none of the current methodologies are perfect. In Section 4, we
describe a methodology which is the most adequate according to our natural
criterion – and analyze some properties of this methodology.

2 What Is Fuzzy Methodology: A Brief Re-
minder

Need for expert knowledge. In many practical situations, we want to make
a decision; for example:

� we want to decide what control to apply to a system,

� we want to decide what is the patient’s disease and what dose of what
medicine should be the best for this patient,

� we want to predict tomorrow’s weather, etc.
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In many such situations, we do not have an accurate model of the system and
thus, we cannot formulate this problem in precise terms. What we usually do
have is the experience of experts:

� we have the experience of human expert controllers who control a plant,

� we have the experience of expert medical doctors who are good in diag-
nosing and treating the patient,

� we have the experience of expert meteorologists who can predict tomor-
row’s weather in their region with high accuracy, etc.

It is therefore desirable to use this expert knowledge to design an automatic
controller and/or an automatic expert system.

Using expert knowledge is not easy. Most experts are willing to share their
expertise, but the problem is that experts often cannot describe their knowledge
in precise terms. Instead, they formulate this knowledge in terms of if-then rules
that use imprecise (“fuzzy”) words from natural language.

For example, many people know how to drive. So, at first glance, it may
seem to be an easy task to design a self-driving car: just use the experience
of good human drivers. However, this is not so easy. An automatic controller
would need to know what control to apply in each situation. For example, if
a car is going on a freeway with the speed of 100 km per hour, and car car in
front – which is 10 meters ahead – slows down to 95 km per hour, what should
we do? A natural human answer is “break a little bit”, but what the automatic
controller needs is with how many Newtons of force to push the break pedal
and for how many milliseconds – and most human drivers cannot provide these
numbers.

Fuzzy methodology: first step. To perform this challenging task, i.e., to
extract precise knowledge from the imprecise expert knowledge, Lotfi Zadeh
invented a new methodology that he called fuzzy. This methodology starts with
providing a precise description of all natural-language words used by experts.

For this purpose:

� for each such word A and for each possible value x of the corresponding
quantity,

� we ask the expert to mark, on a scale from 0 to 1, to what extent the
value x has the corresponding property (e.g., to what extent x is small).

The intent is that:

� mark 1 correspond to the case when the expert is absolutely sure that x
satisfies this property,

� mark 0 means that the expert is absolutely sure that x does not satisfy
this property, and

� marks between 0 and 1 correspond to intermediate cases.
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The resulting function A(x) that assigns the degree to each value x is called a
membership function or a fuzzy set.

Comment. Of course, there are infinitely many real numbers x, and we can only
ask finitely many questions to the expert. So, in practice:

� we ask the expert a finite number of questions, about finitely many values
x1, . . . , xn, and then

� we use interpolation/extrapolation to estimate the values A(x) for all other
values x.

In particular, if we ask the expert to provide:

� the value M for which this user is absolutely sure that this property is
satisfied (i.e., that A(M) = 1), and

� the values m and m such that outside the interval [m,m], the property is
not satisfied (i.e., A(x) = 0),

and use linear interpolation, then we get a frequently used triangular member-
ship function.

If instead of a single value M , we get the whole interval
[
M,M

]
on which

the property A is satisfied, i.e., for which A(M) = 1 for all values M from this
interval, and we use linear interpolation, then we get trapezoid membership
functions.

Fuzzy methodology beyond the first step: what we have. After the first
step, to determine the desired dependence y = f(x), we have several expert
if-then rules

If x is A1 then y is B1.
If x is A2 than y is B2.

. . .
If x is Ak then y is Bk.

where Ai and Bi are natural-language terms that are described by membership
functions Ai(x) and Bi(y). Based on this information, we want to generate a
function y = f(x) that adequately describes these rules.

Example. To illustrate our ideas, let us consider a simple example of controlling
a thermostat by turning a knob.

� If we turn the knob to the right, the temperature increases.

� If we turn it to the left, the temperature decreases.

In this example:

� the desired control variable y is the angle on which we turn the knob, and

� the input x is the difference x
def
= T − T0 between the actual temperature

T and the desired temperature T0.
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If the temperature is close to the desired one, i.e., if the difference x is close
to 0, then we should not change anything, i.e., the control y should be negligible.
So, we arrive at the first rule:

If x is negligible, then y should be negligible.

If the temperature is slightly higher than desired, then we should turn the knob
to the left a little bit. So, we arrive at the second tule:

If x is small positive, then y should be small negative.

Similarly, if the temperature is slightly lower than desired, then we should turn
the knob to the right a little bit. So, we arrive at the second tule:

If x is small negative, then y should be small positive.

We can add more rules, but for simplicity, let us only consider these three rules.
The restriction to these three rules makes sense in situations when the control
is almost perfect, and we experience only small deviations from the desired
temperature.

Also, for simplicity, let us consider simple triangular membership functions
corresponding to “negligible”, “small positive”, and “small negative”. We will
denote them, correspondingly, by N(x), SP (x), and SN(x). Based on our
experience, we assume that:

� for “negligible”: the value M = 0 is definitely negligible, and values out-
side the interval [−5, 5] are definitely not negligible;

� for “small positive”: the value M = 5 is definitely small positive, and
values outside the interval [0, 10] are definitely not small positive: value
smaller than 0 are not positive, and values larger than 10 are not small;

� for “small negative”: the value M = −5 is definitely small negative, and
values outside the interval [−10, 0] are definitely not small negative: value
smaller than −10 are not small, and values larger than 0 are not negative.

In this case, linear interpolation leads to the following triangular membership
functions:

-
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Fuzzy methodologies beyond the first step: examples. Let us list the
most frequently used fuzzy methodologies, i.e., methodologies of transforming
fuzzy rules into a precise function y = f(x).

Fuzzy methodology beyond the first step: Mamdani approach. One of
the most widely used approaches was originally proposed by Mamdani and is,
thus, known as Mamdani approach. In this approach, we first take into account
that for a given value x, the value y is reasonable (R) if:

� either the first rule is applicable, i.e., x is A1 and y is B1,

� or the second rule is applicable, i.e., x is A2 and y is B2, etc.

We can symbolically describe it as follows:

R(y) ⇔ (A1(x)&B1(y)) ∨ (A2(x)&B2(y)) ∨ . . .

To give this formula a numerical meaning, we need to provide the numerical
meaning to the “and”- and “or”-operations, i.e., in effect, to extend the “and”-
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and “or”-operations of the usual 2-valued logic (with the values “false” (0) and
“true” (1)) to the whole interval [0, 1]. From the computational viewpoint, the
simplest such extensions and min and max. Thus, we arrive at the following
membership function for “reasonable”:

R(y) = max(min(A1(x), B1(y)),min(A2(x), B2(y)), . . .)

Our ultimate objective is to come up with a single value y. A reasonable way to
come up with this value is to minimize the weighted squared difference between
this value and possible values y, weighted by the degree to which y is possible,
i.e., to minimize the following expression:∫

R(y) · (y − y)2 dy.

To find the minimizing value y, we can differentiate this expression with respect
to y and equate the derivative to 0. As a result, we get the following expression:

y =

∫
y ·R(y) dy∫
R(y) dy

.

This expression is known as centroid defuzzification.

Fuzzy methodology beyond the first step: Takagi-Sugeno approach.
An alternative approach is that we replace each y-membership function Bi(y)
by the result of its defuzzification, for example, by the centroid value

yi =

∫
y ·Bi(y) dy∫
Bi(y) dy

.

In effect, we ignore the fuzziness of y in the rules and consider the following
simplified rules:

If x is A1 then y = y1.
If x is A2 than y = y2.

. . .
If x is Ak then y = yk.

These rules can be treated the same way as in the previous approach, the only
difference is that now the conclusions of each rule are not fuzzy. In this case,
the value R(y) is only different from 0 when y coincides with each of the points
yi, and for each of these values, we have R(yi) = Ai(x). Thus, the centroid
formula leads to

y =

k∑
i=1

Ai(x) · yi
k∑

i=1

Ai(x)

.
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3 How to Decide Which Fuzzy Methodology Is
the Most Adequate

Idea. Fuzzy methodology transforms rules and membership functions into an
exact control strategy f(x):

rules,
membership
functions

-
y = f(x)

Suppose now that we start with the actual function y = f(x). As we have
mentioned, fuzzy techniques deal with situations when the experts cannot ex-
plicitly describe this function. Instead, they formulate rules based on this func-
tion. In this case, a natural requirement is that once we process these rules, we
should get back the original function y = f(x). This is what we should have in
the ideal case:

y = f(x)
rules,

membership
functions

- -
y = f(x)

The closer the reconstructed function to the original function, the more
adequate the fuzzy methodology – this is a natural idea of gauging adequacy of
different methodologies.

What do we mean by rules generated by a function? Suppose that
we know the function y = f(x), and that we have fuzzy information about x:
namely, that x is Ai for some property Ai which is described by a membership
function Ai(x). What can we then say about y? How can we describe the
corresponding membership function Bi(y)?

The answer to this question is well-known in fuzzy research: it is provided by
the so-called Zadeh’s extension principle. This answer can be easily explained.
Indeed, in this case, a real number Y is a possible value of the quantity y
is there exists a value X which is a possible value of the quantity x and for
which f(X) = Y . The degree to which X is a possible value of the quantity
X is determined by the corresponding membership function Ai(x) and is, thus,
equal to Ai(X). If there is only one X for which f(X) = Y – this value X is
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then denoted by X = f−1(Y ) – then Ai(X) = Ai(f
−1(Y )) is exactly the degree

Bi(Y ) to which Y is a possible value of y. So, in this case, we have

Bi(y) = Ai(f
−1(x)). (1)

What if there are several different values X for which f(X) = Y ? This
happens, e.g., when f(x) = x2, then for each Y , there are two such values X:
X =

√
Y and X = −

√
Y . In this case, Y is possible if either we have the first of

these values X or the second of these values X. The simplest way to estimate
the degree to which an “or”-statement A∨B is true based in the degrees a and b
to which individual statements A and B are true is to use maximum max(a, b).
Thus, we get

Bi(y) = max{Ai(x) : f(x) = y}. (2)

This is exactly the formula that was first produced by Zadeh himself and is, thus,
called Zadeh’s extension principle. This membership function will be denoted
as Bi = f(Ai).

In these terms, the fuzzy methodology is most adequate if, based on the
rules

if x is Ai then y is Bi, where Bi = f(Ai),

we should be able to reconstruct the original function f(x).

Important comment. In the following text, we will use the known fact that
for reasonable membership functions Ai(x) – namely, for all the functions that
first continuously increase from 0 to 1 and then continuously decrease from 1
to 0 – Zadeh’s extension principle can be reformulated in terms of α-cuts, i.e.,

sets Ai(α)
def
= {x : Ai(x) ≥ α} and Bi(α)

def
= {y : Bi(x) ≥ α} for all α ∈ (0, 1].

Namely, we have
Bi(α) = f(Ai(α)),

where for each set S, by f(S), we mean

f(S)
def
= {f(x) : x ∈ S}.

Are existing fuzzy methodologies most adequate? A natural question
is: are the existing fuzzy methodologies – e.g., the ones described above – most
adequate in this natural sense? Our answer is No. Let us explain this answer.

Mamdani methodology is not the most adequate (in the above sense).
Let us explain, on a simple example, that Mamdani methodology is not the most
adequate, i.e., that it does not reconstruct the original function y = f(x).

Let us consider the above membership functions N(x), SP (x), and SN(x),
and a simple function f(x) = −x. In this case, as one can easily check, we have
f(N) = N , f(SP ) = SN , and f(SN) = SP . Thus, the rules generates by this
function take exactly the form described in the previous section:
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If x is N then y is N .
If x is SP then y is SN .
If x is SN , then y is SP .

Let us consider a small negattve value x = −ε, where ε > 0. In this case,

N(x) = 1− ε

5
, P (x) =

ε

5
, and SN(x) = 0.

Thus, the reasonable value R(y) is described by the formula

R(y) = max
(
min

(
N(y), 1− ε

5

)
,min

(
SP (y),

ε

5

))
.

The functions min(N(y), 1− ε) and min(SP (y), ε/5) can be represented as fol-
lows:
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Thus, the desired function R(y) – which is the maximum of these functions
– takes the following form
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The result of the centroid defuzzification is the ratio of two integrals, so let

us estimate these integrals. Let us first estimate the denominator
∫
R(y) dy.

When ε tends to 0, the function R(y) tends to N(y), for which
∫
N(y) dy is the

area of the corresponding triangle with height 1 and base 5− (−5) = 10, i.e.,

1

2
· 10 · 1 = 5.

Thus, the denominator is equal to 5 +O(ε).
The integral in the numerator can be represented as the sum of the parts: the

symmetric part Rsym(y) = Rsym(−y) corresponding to values from y = −5 to

y = 5, and the remaining part r(y)
def
= R(y)−Rsym(y). For the symmetric part

Rsym(y), the integral
∫
y ·Rsym(y) dy is 0 – since for each y > 0, contributions of

the terms corresponding to y and to −y cancel each other. Thus, the numerator
is equal to

∫
y · r(y) dy. For almost all the values y from y = 5 to y = 10, we

have r(y) = ε/5, thus in the first approximation∫
y · r(y) dy =

∫ 10

5

y · ε
5
dy + o(ε) =

ε

5
· 1
2
· y2

∣∣∣∣10
5

+ o(ε) =

ε

5
· 1
2
· (102 − 52) + o(ε) = 7.5 · ε+ o(ε).

Thus, the desired ratio is equal to

y =

∫
y ·R(y) dy∫
R(y) dy

=
7.5 · ε+ o(ε)

5 +O(ε)
= 1.5 · ε+ o(ε).

This is clearly different from the original value

f(x) = f(−ε) = ε.

Takago-Sugeno approach is not the most adequate. It so happens that
for the above example when f(x) = −x and we have N(x), SP (x), and SN(x),
Takagi-Sugeno approach reconstructs the original function. However, for any
nonlinear function f(x), e.g., for f(x) = −x + x3, this approach won’t recon-
struct the original function.
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Indeed, the function reconstructed by this methodology is a linear combina-
tion of the membership functions corresponding to x. On the interval [0, 5], all
the membership functions are linear, so their linear combination is also linear –
and thus, cannot be equal to any nonlinear function.

Remaining problem. Since none of the existing methodologies is the most
adequate, we need to come up with a new most adequate fuzzy methodology.

4 Towards the Most Adequate Fuzzy Method-
ology

What is given: reminder. We are given fuzzy rules of the type

If x is Ai then y is Bi,

for i = 1, . . . , k, and we know the membership functions Ai(x) and Bi(y) de-
scribing these rules.

What we want: reminder. We want to make sure that when, for some
function f(x), we have Bi = f(Ai) for all i, i.e., we have Bi(α) = f(Ai(α)) for
all i and for all α, then this methodology should reconstruct the function f(x).
This prompts the following seemingly natural definition.

A seemingly natural idea. Let us return a function f(x) for which, for all i
and for all α, we have

Bi(α) = f(Ai(α)).

A problem with this idea. Expert knowledge is usually approximate. As
a result, the membership function Bi may be slightly different from f(Ai). In
this case, we may not have a function f(x) for which, in the above equation, we
have exact equality.

A natural solution to this problem and the resulting description of
the new fuzzy methodology. In view of the approximate character of expert
knowledge, let us look for a function f(x) for which

Bi(α) ≈ f(Ai(α)).

We can interpret these approximate equalities, e.g., by using the usual least
squares approach (see, e.g., [7]):∑

i,α

d2(Bi(α), f(Ai(α))) → min,

where the distance between the two intervals [a, a] and [b, b] can be defined,
e.g., as the Euclidean distance between the corresponding 2-D points (a, a) and
(b, b):

d2([a, a], [b, b]) = (a− b)2 + (a− b)2.
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Case of monotonicity. In the control situation that we used as an example,
the desired function f(x) is decreasing. In general, situations in which the
function f(x) is increasing or decreasing are ubiquitous. In such situation, the
above minimization problem can be simplified.

To describe this simplification, let us denote the endpoint of the interval
Ai(α) by Ai(α) and Ai(α), so that

Ai(α) = [Ai(α), Ai(α)].

Similarly, let us denote the endpoint of the interval Bi(α) by Bi(α) and Bi(α),
so that

Bi(α) = [Bi(α), Bi(α)].

In these terms, we can explicitly describe the expression for the range f(Ai(α)):

� If the function f(x) is increasing, then

f(Ai(α)) = f([Ai(α), Ai(α)]) = [f(Ai(α)), f(Ai(α))].

� If the function f(x) is decreasing, then

f(Ai(α)) = f([Ai(α), Ai(α)]) = [f(Ai(α)), f(Ai(α))].

In this case, the minimized expression becomes simpler:

� If we know that the function f(x) is increasing, then, according to the
proposed methodology, we should select the function f(x) that minimizes
the expression

k∑
i=1

(Bi(α)− f(Ai(α)))
2 +

k∑
i=1

(Bi(α)− f(Ai(α)))
2.

� If we know that the function f(x) is decreasing, then, according to the
proposed methodology, we should select the function f(x) that minimizes
the expression

k∑
i=1

(Bi(α)− f(Ai(α)))
2 +

k∑
i=1

(Bi(α)− f(Ai(α)))
2.

Often, we look for a function f(x) as a linear combination of functions from the
given basis, i.e., as an expression

f(x) = C1 · e1(x) + . . .+ Cm · em(x),

where the functions ej(x) are given and the coefficients Cj need to be deter-
mined. For example, we cna take e1(x) = 1, e2(x) = x, and ej(x) = xj−1; in
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this case, we are looking for a polynomial function f(x). In this case, the above
minimized expression become quadratic in terms of the unknown coefficients Cj .
Thus, differentiating with respect to each of these coefficient and equating the
derivatives to 0, we get an easy-to-solve system of linear equations for finding
Cj .

Case of several inputs. Sometimes, we have rules whose conditions involve
several inputs x1, . . . , xn, i.e., rules of the type

If x1 is Ai1 and . . . and xn is Ain then y is Bi.

Based on these rules, we need to find an appropriate function y = f(x1, . . . , xn).
In this case, Zadeh’s extension principle takes the following form:

Bi(α) = f(Ai1(α), . . . ,Ain(α)),

where for every tuple of sets S1, . . . , Sn, the range f(S1, . . . , Sn) means

f(S1, . . . , Sn)
def
= {f(x1, . . . , xn) : x1 ∈ S1, . . . , and xn ∈ Sn}.

In this case, according to the proposed methodology, we should select the func-
tion f(x1, . . . , xn) for which

Bi(α) ≈ f(Ai1(α), . . . ,Ain(α))

for all i and for all α, i.e., for example, for which the following expression attains
the smallest possible value:∑

i,α

d2(Bi(α), f(Ai1(α), . . . ,Ain(α))) → min .

Is this new methodology indeed the most adequate? Of course, by
definition, if f(Ai) = Bi for all i, then f(x) is one of the functions satisfying
the above condition.

Is this the only function with this property? Not necessarily: if all member-
ship functions are constant on some interval [x, x] – e.g., if we consider trapezoid
functions – then all we can extract from the given information is the range of the
function f(x) on this interval, but we cannot uniquely determine how exactly
the function f(x) behaves on this interval:

� this function can be linear on this interval,

� it can be non-linear on this interval,

the membership functions Bi(x) will be the same.
However, if take into account that in control situations similar to the one

described above, the function f(x) is either strictly increasing or strictly de-
creasing, then we can prove that the above exception is the only case when we
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cannot uniquely reconstruct the original function f(x): in all other cases, the
function f(x) can be uniquely reconstructed.

Proposition 1. Let A1(x), . . . , An(x) be continuous membership functions
on an interval [X,X] such that for every value x – except maybe a finite set
of values – one of these membership functions is either strictly increasing or
strictly decreasing in some neighborhood of this point. If for some increasing
continuous functions f(x) and g(x), we have f(Ai) = g(Ai) for all i, then for
all x ∈ [X,X], we have f(x) = g(x).

Proposition 2. Let A1(x), . . . , An(x) be continuous membership functions
on an interval [X,X] such that for every value x – except maybe a finite set
of values – one of these membership functions is either strictly increasing or
strictly decreasing in some neighborhood of this point. If for some decreasing
continuous functions f(x) and g(x), we have f(Ai) = g(Ai) for all i, then for
all x ∈ [X,X], we have f(x) = g(x).

Proof. Let us show how to prove Proposition 1; the proof of Proposition 2 is
similar. Let us take a point x from the given interval, and let us prove that
f(x) = g(x). Let Ai(x) be the membership function which is either strictly
increasing or strictly decreasing in the vicinity of the point x. As before, let us
denote the endpoints of the interval Ai(α) by Ai(α) and Ai(α), so that

Ai(α) = [Ai(α), Ai(α)].

Since the function f(x) is increasing, we have

f(Ai(α)) = f([Ai(α), Ai(α)]) = [f(Ai(α)), f(Ai(α))].

Again, without losing generality, we can assume that x belongs to the increasing
part of Ai(x). In this case, the values f(Ai(α)) strictly increase with α, so there
exists a value α for which Ai(α)) = x. For this value α, we have

f(Ai(α)) = [f(x), f(Ai(α))].

Similarly, we have
g(Ai(α)) = [g(x), g(Ai(α))].

Since we have f(Ai) = g(Ai), we thus have

f(Ai(α)) = g(Ai(α))

for all α, therefore

[f(x), f(Ai(α))] = [g(x), g(Ai(α))]

and hence, f(x) = g(x).
The equality f(x) = g(x) is thus proven for all points x with the exception

of finite many points. For each remaining point, this equality can be proved by
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continuity – since each of these points is a limit of nearby points which are not
in this finite list. The proposition is proven.

Discussion. For analytical functions – i.e., functions that can be expanded in
Taylor series in the neighborhood of each point – we can have even stronger
results.

Proposition 3. Let A1(x), . . . , An(x) be continuous membership functions
such that on an interval [x, x] one of these membership functions is either strictly
increasing or strictly decreasing. If for some increasing analytical functions f(x)
and g(x), we have f(Ai) = g(Ai) for all i, then we have f(x) = g(x) for all x.

Proposition 4. Let A1(x), . . . , An(x) be continuous membership functions
such that on an interval [x, x] one of these membership functions is either strictly
increasing or strictly decreasing. If for some decreasing analytical functions f(x)
and g(x), we have f(Ai) = g(Ai) for all i, then we have f(x) = g(x) for all x.

Proof. Similarly to the proof of Propositions 1 and 2, we can conclude that the
functions f(x) and g(x) coincide on the interval [x, x]. It is known that if two
analytical functions coincide on some interval, then they are equal everywhere.
The proposition is proven.

Discussion: we should be cautious when trying to extend this result
to functions of several variables. For functions of two or more variables,
the new methodology leads to reasonable results if we restrict ourselves to a
finite-parametric family of functions – e.g., to linear combinations of known
functions

f(x1, . . . , xn) = C1 · e1(x1, . . . , xn) + . . .+ Cm · em(x1, . . . , xn),

where
e1(x1, . . . , xn), . . . , e1(x1, . . . , xn)

are given functions and C1, . . . , C)m are the coefficients that need to be deter-
mined.

However, it should be mentioned that, in contrast to the 1-D case, if we do
not impose any such restriction, then, in general. the proposed minimization
does not determine a unique function f(x1, . . . , xn). Indeed, the desired criterion
only described the ranges [y

i
(α), yi(α)] of the function f(x1, x2, . . .) on all α-

cuts for all rules i = 1, . . . , k. So, all we have is 2k functions of one variable
y
i
(α) and yi(α), and this information is not sufficient to uniquely determine a

function of two or more variables.

What about type-2? Up to now, we only considered what is usually called
type-1 fuzzy sets, when for each property A and for each value x, the degree
to which the value x satisfies this property is described by a real number. In
practice, just like experts cannot describe the exact values of the corresponding
physical quantities, they cannot meaningfully describe their degree of confidence
by a single number. It is more realistic to ask the experts to express each of
their degrees of confidence by an interval of possible values, or even by a fuzzy
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subset of the interval [0, 1]. the function assigning an interval or a fuzzy set
to each value x are known as, correspondingly, interval-valued fuzzy sets and
type-2 fuzzy sets; see, e.g., [4].

For rules in which properties Ai and Bi are described by such sets, it is also
possible to formulate a similar criterion – since both Zadeh’s extension principle
and its α-cut reformulation can also be naturally extended to the interval-valued
and type-2 fuzzy cases; see, e.g., [3].
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