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Summary. Since the 1960s, many algorithms have been designed to deal with in-
terval uncertainty. In the last decade, there has been a lot of progress in extending
these algorithms to the case when we have a combination of interval, probabilistic,
and fuzzy uncertainty. We provide an overview of related algorithms, results, and
remaining open problems.

1 Main Problem

Why indirect measurements? In many real-life situations, we are inter-
ested in the value of a physical quantity y that is difficult or impossible to
measure directly. Examples of such quantities are the distance to a star and the
amount of oil in a given well. Since we cannot measure y directly, a natural idea
is to measure y indirectly. Specifically, we find some easier-to-measure quanti-
ties x1, . . . , xn which are related to y by a known relation y = f(x1, . . . , xn);
this relation may be a simple functional transformation, or complex algorithm
(e.g., for the amount of oil, numerical solution to an inverse problem). Then,
to estimate y, we first measure the values of the quantities x1, . . . , xn, and
then we use the results x̃1, . . . , x̃n of these measurements to to compute an
estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n).

For example, to find the resistance R, we measure current I and voltage V ,
and then use the known relation R = V/I to estimate resistance as R̃ = Ṽ /Ĩ.

Computing an estimate for y based on the results of direct measurements
is called data processing; data processing is the main reason why computers
were invented in the first place, and data processing is still one of the main
uses of computers as number crunching devices.
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Comment. In this paper, for simplicity, we consider the case when the relation
between xi and y is known exactly; in some practical situations, we only known
an approximate relation between xi and y.

Why interval computations? From computing to probabilities to
intervals. Measurement are never 100% accurate, so in reality, the actual
value xi of i-th measured quantity can differ from the measurement result
x̃i. Because of these measurement errors ∆xi

def= x̃i − xi, the result ỹ =
f(x̃1, . . . , x̃n) of data processing is, in general, different from the actual value
y = f(x1, . . . , xn) of the desired quantity y.

It is desirable to describe the error ∆y
def= ỹ − y of the result of data

processing. To do that, we must have some information about the errors of
direct measurements.

What do we know about the errors ∆xi of direct measurements? First,
the manufacturer of the measuring instrument must supply us with an up-
per bound ∆i on the measurement error. If no such upper bound is supplied,
this means that no accuracy is guaranteed, and the corresponding “measuring
instrument” is practically useless. In this case, once we performed a measure-
ment and got a measurement result x̃i, we know that the actual (unknown)
value xi of the measured quantity belongs to the interval xi = [xi, xi], where
xi = x̃i −∆i and xi = x̃i + ∆i.

In many practical situations, we not only know the interval [−∆i,∆i] of
possible values of the measurement error; we also know the probability of
different values ∆xi within this interval. This knowledge underlies the tradi-
tional engineering approach to estimating the error of indirect measurement,
in which we assume that we know the probability distributions for measure-
ment errors ∆xi.

In practice, we can determine the desired probabilities of different val-
ues of ∆xi by comparing the results of measuring with this instrument with
the results of measuring the same quantity by a standard (much more accu-
rate) measuring instrument. Since the standard measuring instrument is much
more accurate than the one use, the difference between these two measure-
ment results is practically equal to the measurement error; thus, the empirical
distribution of this difference is close to the desired probability distribution
for measurement error. There are two cases, however, when this determination
is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a distant
galaxy, there is no “standard” (much more accurate) telescope floating
nearby that we can use to calibrate the Hubble: the Hubble telescope is
the best we have.

• The second case is the case of measurements on the shop floor. In this
case, in principle, every sensor can be thoroughly calibrated, but sensor
calibration is so costly – usually costing ten times more than the sensor
itself – that manufacturers rarely do it.
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In both cases, we have no information about the probabilities of ∆xi; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement
result x̃i, the only information that we have about the actual value xi of the
measured quantity is that it belongs to the interval xi = [x̃i − ∆i, x̃i + ∆i].
In such situations, the only information that we have about the (unknown)
actual value of y = f(x1, . . . , xn) is that y belongs to the range y = [y, y] of
the function f over the box x1 × . . .× xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on the input intervals xi

is called interval computations; see, e.g., [6, 7].

Interval computations techniques: brief reminder. Historically the first method
for computing the enclosure for the range is the method which is sometimes
called “straightforward” interval computations. This method is based on the
fact that inside the computer, every algorithm consists of elementary opera-
tions (arithmetic operations, min, max, etc.). For each elementary operation
f(a, b), if we know the intervals a and b for a and b, we can compute the
exact range f(a,b). The corresponding formulas form the so-called interval
arithmetic. For example,

[a, a] + [b, b] = [a + b, a + b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)].
In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result,
we get an enclosure Y ⊇ y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples
below), the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclo-
sure, e.g., a centered form method. However, for each of these techniques, there
are cases when we get an excess width. Reason: as shown in [10], the problem
of computing the exact range is known to be NP-hard even for polynomial
functions f(x1, . . . , xn) (actually, even for quadratic functions f).

Practical problem. In some practical situations, in addition to the lower
and upper bounds on each random variable xi, we have some additional in-
formation about xi. So, we arrive at the following problem:

• we have a data processing algorithm f(x1, . . . , xn), and
• we have some information about the uncertainty with which we know xi

(e.g., measurement errors).
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We want to know the resulting uncertainty in the result y = f(x1, . . . , xn) of
data processing.

In interval computations, we assume that the uncertainty in xi can be
described by the interval of possible values. In real life, in addition to the
intervals, we often have some information about the probabilities of different
values within this interval. What can we then do?

2 What is the Best Way to Describe Probabilistic
Uncertainty?

How is the partial information about probabilities used in decision
making? One of the main objectives of data processing is to make decisions.
A standard way of making a decision is to select the action a for which the
expected utility (gain) is the largest possible. This is where probabilities are
used: in computing, for every possible action a, the corresponding expected
utility. To be more precise, we usually know, for each action a and for each
actual value of the (unknown) quantity x, the corresponding value of the
utility ua(x). We must use the probability distribution for x to compute the
expected value E[ua(x)] of this utility.

In view of this application, the most useful characteristics of a probability
distribution would be the ones which would enable us to compute the expected
value E[ua(x)] of different functions ua(x).

Which representations are the most useful for this intended usage?
General idea. Which characteristics of a probability distribution are the
most useful for computing mathematical expectations of different functions
ua(x)? The answer to this question depends on the type of the function, i.e.,
on how the utility value u depends on the value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case
is when the utility function ua(x) is smooth. We have already mentioned,
in Section I, that we usually know a (reasonably narrow) interval of possible
values of x. So, to compute the expected value of ua(x), all we need to know is
how the function ua(x) behaves on this narrow interval. Because the function
is smooth, we can expand it into Taylor series. Because the interval is narrow,
we can safely consider only linear and quadratic terms in this expansion and
ignore higher-order terms: ua(x) ≈ c0 + c1 · (x − x0) + c2 · (x − x0)2, where
x0 is a point inside the interval. Thus, we can approximate the expectation
of this function by the expectation of the corresponding quadratic expression:
E[ua(x)] ≈ E[c0 +c1 ·(x−x0)+c2 ·(x−x0)2], i.e., by the following expression:
E[ua(x)] ≈ c0+c1 ·E[x−x0]+c2 ·E[(x−x0)2]. So, to compute the expectations
of such utility functions, it is sufficient to know the first and second moments
of the probability distribution.
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In particular, if we use, as the point x0, the average E[x], the second
moment turns into the variance of the original probability distribution. So,
instead of the first and the second moments, we can use the mean E and the
variance V .

In decision making, non-smooth utility functions are common. In
decision making, not all dependencies are smooth. There is often a threshold
x0 after which, say, a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or phys-
ical analysis. In this case, when we increase the value of this parameter, we
see the drastic increase in effect and hence, the drastic change in utility value.
Sometimes, this threshold simply comes from regulations. In this case, when
we increase the value of this parameter past the threshold, there is no drastic
increase in effects, but there is a drastic decrease of utility due to the necessity
to pay fines, change technology, etc. In both cases, we have a utility function
which experiences an abrupt decrease at a certain threshold value x0.

Non-smooth utility functions naturally lead to CDFs. We want to be
able to compute the expected value E[ua(x)] of a function ua(x) which changes
smoothly until a certain value x0, then drops it value and continues smoothly
for x > x0. We usually know the (reasonably narrow) interval which contains
all possible values of x. Because the interval is narrow and the dependence
before and after the threshold is smooth, the resulting change in ua(x) before
x0 and after x0 is much smaller than the change at x0. Thus, with a reasonable
accuracy, we can ignore the small changes before and after x0, and assume
that the function ua(x) is equal to a constant u+ for x < x0, and to some
other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired
expected value E[u(0)

a (x)] coincides with the probability that x < x0, i.e.,
with the corresponding value F (x0) of the cumulative distribution function
(CDF). A generic function ua(x) of this type, with arbitrary values u− and u+,
can be easily reduced to this simplest case, because, as one can easily check,
ua(x) = u−+(u+−u−) ·u(0)(x) and hence, E[ua(x)] = u−+(u+−u−) ·F (x0).

Thus, to be able to easily compute the expected values of all possible non-
smooth utility functions, it is sufficient to know the values of the CDF F (x0)
for all possible x0.

3 How to Represent Partial Information about
Probabilities

General idea. In many cases, we have a complete information about the
probability distributions that describe the uncertainty of each of n inputs.

However, a practically interesting case is how to deal with situations when
we only have partial information about the probability distributions. How can
we represent this partial information?
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Case of cdf. If we use cdf F (x) to represent a distribution, then full informa-
tion corresponds to the case when we know the exact value of F (x) for every
x. Partial information means:

• either that we only know approximate values of F (x) for all x, i.e., that
for every x, we only know the interval that contains F (x); in this case, we
get a p-box;

• or that we only know the values of F (x) for some x, i.e, that we only know
the values F (x1), . . . , F (xn) for finitely many values x = x1, . . . , xn; in
this case, we have a histogram.

It is also possible that we know only approximate values of F (x) for some x;
in this case, we have an interval-valued histogram.

Case of moments. If we use moments to represent a distribution, then par-
tial information means that we either know the exact values of finitely many
moments, or that we know intervals of possible values of several moments.

Resulting problems. This discussion leads to a natural classification of
possible problems:

• If we have complete information about the distributions of xi, then, to get
validated estimates on uncertainty of y, we have to use Monte-Carlo-type
techniques; see, e.g., [12, 13].

• If we have p-boxes, we can use methods from [4].
• If we have histograms, we can use methods from [1, 2].
• If we have moments, then we can use methods from [9].

There are also additional issues, including:

• how we get these bounds for xi?
• specific practical applications, like the appearance of histogram-type dis-

tributions in problems related to privacy in statistical databases.

4 Case Study

Practical problem. In some practical situations, in addition to the lower and
upper bounds on each random variable xi, we know the bounds Ei = [Ei, Ei]
on its mean Ei. Indeed, in measurement practice (see, e.g., [11]), the overall
measurement error ∆x is usually represented as a sum of two components:

• a systematic error component ∆sx which is defined as the expected value
E[∆x], and

• a random error component ∆rx which is defined as the difference be-
tween the overall measurement error and the systematic error component:
∆rx

def= ∆x−∆sx.
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In addition to the bound ∆ on the overall measurement error, the manufac-
turers of the measuring instrument often provide an upper bound ∆s on the
systematic error component: |∆sx| ≤ ∆s.

This additional information is provided because, with this additional in-
formation, we not only get a bound on the accuracy of a single measure-
ment, but we also get an idea of what accuracy we can attain if we use
repeated measurements to increase the measurement accuracy. Indeed, the
very idea that repeated measurements can improve the measurement ac-
curacy is natural: we measure the same quantity by using the same mea-
surement instrument several (N) times, and then take, e.g., an arithmetic

average x̄ =
x̃(1) + . . . + x̃(N)

N
of the corresponding measurement results

x̃(1) = x + ∆x(1), . . . , x̃(N) = x + ∆x(N).

• If systematic error is the only error component, then all the measurements
lead to exactly the same value x̃(1) = . . . = x̃(N), and averaging does not
change the value – hence does not improve the accuracy.

• On the other hand, if we know that the systematic error component is 0,
i.e., E[∆x] = 0 and E[x̃] = x, then, as N → ∞, the arithmetic average
tends to the actual value x. In this case, by repeating the measurements
sufficiently many times, we can determine the actual value of x with an
arbitrary given accuracy.

In general, by repeating measurements sufficiently many times, we can ar-
bitrarily decrease the random error component and thus attain accuracy as
close to ∆s as we want.

When this additional information is given, then, after we performed a
measurement and got a measurement result x̃, then not only we get the in-
formation that the actual value x of the measured quantity belongs to the
interval x = [x̃−∆, x̃ + ∆], but we can also conclude that the expected value
of x = x̃ − ∆x (which is equal to E[x] = x̃ − E[∆x] = x̃ − ∆sx) belongs to
the interval E = [x̃−∆s, x̃ + ∆s].

If we have this information for every xi, then, in addition to the interval
y of possible value of y, we would also like to know the interval of possible
values of E[y]. This additional interval will hopefully provide us with the
information on how repeated measurements can improve the accuracy of this
indirect measurement. Thus, we arrive at the following problem:

Precise formulation of the problem. Given an algorithm computing a
function f(x1, . . . , xn) from Rn to R, and values x1, x1, . . . , xn, xn, E1, E1,
. . . , En, En, we want to find

E
def= min{E[f(x1, . . . , xn)] | all distributions of (x1, . . . , xn) for which

x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn], E[x1] ∈ [E1, E1], . . . E[xn] ∈ [En, En]};
and E which is the maximum of E[f(x1, . . . , xn)] for all such distributions.
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In addition to considering all possible distributions, we can also consider
the case when all the variables xi are independent.

How we solve this problem. The main idea behind straightforward in-
terval computations can be applied here as well. Namely, first, we find out
how to solve this problem for the case when n = 2 and f(x1, x2) is one of
the standard arithmetic operations. Then, once we have an arbitrary algo-
rithm f(x1, . . . , xn), we parse it and replace each elementary operation on
real numbers with the corresponding operation on quadruples (x,E,E, x).

To implement this idea, we must therefore know how to, solve the above
problem for elementary operations.

For addition, the answer is simple. Since E[x1 + x2] = E[x1] + E[x2],
if y = x1 + x2, there is only one possible value for E = E[y]: the value
E = E1 + E2. This value does not depend on whether we have correlation
or nor, and whether we have any information about the correlation. Thus,
E = E1 + E2.

Similarly, the answer is simple for subtraction: if y = x1−x2, there is only
one possible value for E = E[y]: the value E = E1 −E2. Thus, E = E1 −E2.

For multiplication, if the variables x1 and x2 are independent, then E[x1 ·
x2] = E[x1] · E[x2]. Hence, if y = x1 · x2 and x1 and x2 are independent,
there is only one possible value for E = E[y]: the value E = E1 · E2; hence
E = E1 ·E2.

The first non-trivial case is the case of multiplication in the presence of
possible correlation. When we know the exact values of E1 and E2, the solution
to the above problem is as follows:

Theorem 1. For multiplication y = x1 · x2, when we have no information
about the correlation,

E = max(p1 + p2 − 1, 0) · x1 · x2 + min(p1, 1− p2) · x1 · x2+

min(1− p1, p2) · x1 · x2 + max(1− p1 − p2, 0) · x1 · x2;

E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2+

max(p2 − p1, 0) · x1 · x2 + min(1− p1, 1− p2) · x1 · x2,

where pi
def= (Ei − xi)/(xi − xi).

Theorem 2. For multiplication under no information about dependence, to
find E, it is sufficient to consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1

and p2 = p2;
• p1 = max(p

1
, 1− p2) and p2 = 1− p1 (if 1 ∈ p1 + p2); and

• p1 = min(p1, 1− p
2
) and p2 = 1− p1 (if 1 ∈ p1 + p2).

The smallest value of E for all these cases is the desired lower bound E.

Theorem 3. For multiplication under no information about dependence, to
find E, it is sufficient to consider the following combinations of p1 and p2:
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• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1

and p2 = p2;
• p1 = p2 = max(p

1
, p

2
) (if p1 ∩ p2 6= ∅); and

• p1 = p2 = min(p1, p2) (if p1 ∩ p2 6= ∅).
The largest value of E for all these cases is the desired upper bound E.

For the inverse y = 1/x1, the finite range is possible only when 0 6∈ x1.
Without losing generality, we can consider the case when 0 < x1. In this case,
we get the following bound:

Theorem 4. For the inverse y = 1/x1, the range of possible values of E is
E = [1/E1, p1/x1 + (1− p1)/x1].

(Here p1 denotes the same value as in Theorem 1).

Similar formulas can be produced for max and min, and also for the cases
when there is a strong correlation between xi: namely, when x1 is (non-strictly)
increasing or decreasing in x2; see, e.g., [9].

Additional results. The above techniques assume that we already know
the moments etc., but how can we compute them based on the measurement
results? For example, when we have only interval ranges [xi, xi] of sample
values x1, . . . , xn, what is the interval [V , V ] of possible values for the variance
V of these values?

It turns out that most such problems are computationally difficult (to
be more precise, NP-hard), and we provide feasible algorithms that compute
these bounds under reasonable easily verifiable conditions [5, 11].

5 Fuzzy Uncertainty: In Brief

In the fuzzy case, for each value of measurement error ∆xi, we describe the
degree µi(∆xi) to which this value is possible.

For each degree of certainty α, we can determine the set of values of ∆xi

that are possible with at least this degree of certainty – the α-cut {x |µ(x) ≥
α} of the original fuzzy set. Vice versa, if we know α-cuts for every α, then,
for each object x, we can determine the degree of possibility that x belongs
to the original fuzzy set [3, 8, 13, 14, 15]. A fuzzy set can be thus viewed as
a nested family of its α-cuts.

If instead of a (crisp) interval xi of possible values of the measured quantity,
we have a fuzzy set µi(x) of possible values, then we can view this information
as a family of nested intervals xi(α) – α-cuts of the given fuzzy sets.

Our objective is then to compute the fuzzy number corresponding to this
the desired value y = f(x1, . . . , xn). In this case, for each level α, to compute
the α-cut of this fuzzy number, we can apply the interval algorithm to the
α-cuts xi(α) of the corresponding fuzzy sets. The resulting nested intervals
form the desired fuzzy set for y.
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