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Abstract. For a numerical physical quantity v, because of the mea-
surement imprecision, the measurement result ṽ is, in general, different
from the actual value v of this quantity. Depending on what we know

about the measurement uncertainty ∆v
def
= ṽ − v, we can use different

techniques for dealing with this imprecision: probabilistic, interval, etc.

When we measure the values v(x) of physical fields at different lo-
cations x (and/or different moments of time), then, in addition to the
same measurement uncertainty, we also encounter another type of local-
ization uncertainty: that the measured value may come not only from
the desired location x, but also from the nearby locations.

In this paper, we discuss how to handle this additional uncertainty.

1 Need for Data Processing

Idea. In many real-life situations, we are interested in the value of a quantity
which is difficult (or even impossible) to measure directly. For example, we may
be interested:

– in the distance to a faraway star, or
– in the amount of water in an underground water layer.

Since we cannot measure the corresponding quantity y directly, we measure it
indirectly. Specifically,

– we find easier-to-measure quantities x1, . . . , xn which are related to the de-
sired quantity y by a known dependence y = f(x1, . . . , xn);

– we measure the values of the auxiliary quantities x1, . . . , xn; and
– we use the results x̃1, . . . , x̃n of measuring the auxiliary quantity to compute

the estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.
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-ỹ = f(x̃1, . . . , x̃n)f

Example. To find the distance y to a faraway star, we can use the following
parallax method:

– we measure the orientations x1 and x2 to this star at two different seasons,
– we measure the the distance x3 between the spatial locations of the corre-

sponding telescopes at these two seasons (i.e., in effect, the diameter of the
earth orbit);

– then, reasonably simply trigonometric computations enable us to describe
the desired distance y as a function of the easier-to-measure quantities x1,
x2, and x3.

General case. In general, computations related to such indirect measurements
form an important particular case of data processing.

2 Need to Take Uncertainty Into Account

Measurements are never absolutely accurate. As a result, the measurement re-
sults x̃i are, in general, different from the actual (unknown) values xi of the mea-
sured quantities: ∆xi

def= x̃i−xi 6= 0. Because of this, the result ỹ = f(x̃1, . . . , x̃n)
of data processing is, in general, different from the actual (unknown) value
y = f(x1, . . . , xn): ∆y

def= ỹ − y 6= 0.
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Thus, in practical applications, we need to take this uncertainty into account.



3 Interval Uncertainty

In practice, we often only know the upper bound ∆i on the measurement errors
∆xi

def= x̃i−xi: |∆xi| ≤ ∆i. In this case, the only information that we have about
the actual values xi is that xi belongs to the interval xi

def= [x̃i −∆i, x̃i + ∆i].
Under such interval uncertainty, we need to find the range of possible values

of y:
y = {f(x1, . . . , xn) : xi ∈ xi}.

The problem of computing this range is known as interval computations; see,
e.g., [1].
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4 Need to Measure Physical Fields

In practice, the situation is often more complex: the values that we measure can
be:

– values v(t) of a certain dynamic quantity v at a certain moment of time t
– or, more generally, the values v(x, t) of a certain physical field v at a certain

location x and at a certain moment of time t.

For example, in geophysics, we are interested in the values of the density at
different locations and at different depth.

5 Need to Take Uncertainty Into Account When
Measuring Physical Fields

When we measure physical fields,

– not only we get the measured value ṽ ≈ v with some inaccuracy, but
– also the location x is not exactly known.

Moreover, the sensor picks up the “averaged” value of v at locations close to the
approximately known location x̃.

In other words,

– in addition to inaccuracy ṽ 6= v,
– we also have a finite resolution x̃ 6= x.



6 Estimating Uncertainty Related to Measuring Physical
Fields: Challenging Problems

In general, the measured value ṽi differs from the averaged value vi by the
measurement imprecision ∆vi = ṽi− vi. In the interval case, we know the upper
bound ∆i on this measurement error |∆vi| ≤ ∆i. Thus, the averaged quantity vi

can take any value from the interval [vi, vi], where vi
def= ṽi−∆i and vi

def= ṽi+∆i.
Based on these bounds on vi, what can we learn about the original field v(x)?

The answer to this questions depends on what we know about the averaging,
i.e., on the dependence of vi on v(x).

In principle, there are three possible situations:

– sometimes, we know exactly how the averaged values vi are related to v(x);
– sometimes, we only know the upper bound δ on the location error x̃−x (this

is similar to the interval case);
– sometimes, we do not even know δ.

In the following sections, we describe how to process all these types of uncer-
tainty.

7 Possibility of Linearization

Sometimes, the signal v(x) that we are measuring is large, i.e., the values of the
signal are much larger than the noise (and the measurement errors in general).
In such situations, the measured values well represent the actual signal, and for
many applications, the measurement errors can be safely ignored.

The need to take into account measurement errors becomes important only
when the signal v(x) is relatively weak. In this case, we can expand the depen-
dence of vi on v(x) in Taylor series and ignore quadratic and higher order terms
in this dependence. As a result, we get a linear expression for vi in terms of v(x):

vi =
∫

wi(x) · v(x) dx.

8 Case of Full Information about the Resolution

Description. In this section, we consider the case when we know the exact ex-
pression for this dependence, i.e., when we know the weights wi(x).

The notion of fuzzy transform. Intuitively, each “averaged” value vi can be
viewed as the value of the field v(x) at a “fuzzy” point characterized by uncer-
tainty wi(x). Because of this interpretation, the transformation from the original
function v(x) to the set of values v1, . . . , vn is also known as a fuzzy transform;
see, e.g., [5, 6].



What we want to predict. Based on the measurement results ṽ1, . . . , ṽn, we would
like to reconstruct the field v(x). From the pragmatic viewpoint, knowing the
field means being able to predict the results of all other measurements of this
field.

Each such measurement can be characterized by its own averaging function
w(x). Thus, predicting the result of the measurement means predicting the cor-
responding averaged value y =

∫
w(x) · v(x) dx.

Of course, the space of functions is infinite-dimensional, which means that
to uniquely reconstruct a function, we need to know infinitely many parameters.
Thus, based on n numbers ṽ1, . . . , ṽn, we cannot uniquely reconstruct the func-
tion v(x) – and thus, we cannot uniquely reconstruct the desired averaged value
y. So, the problem is to find the range [y, y] of this value y.

Prediction problem as a particular case of linear programming (LP). The lower
endpoint y is the smallest possible value of y, the upper endpoint y is the largest
possible value of y. Thus, the problems of finding the desired endpoints y and
y can be formulated in the following optimization form: minimize (maximize)
y − ∫

w(x) · v(x) dx under the constraints

vi ≤
∫

wi(x) · v(x) dx ≤ vi, 1 ≤ i ≤ n.

In both problems, we optimize the value of a linear functional under linear
constraints, so from the mathematical viewpoint, these problems are (infinite-
dimensional) linear programming (LP) problems.

Without prior restrictions on the field v(x), we cannot predict anything. In gen-
eral, if we do not impose any conditions on the function v(x), then both bounds
are infinite – unless w(x) is a linear combination of wi(x). Indeed, it is known
that every vector w which is orthogonal to all the vectors t, which are orthog-
onal to all the vectors w1, . . . , wn, belongs to the linear space generated by the
vectors w1, . . . , wn – i.e., is a linear combination of w1, . . . , wn. Thus, if a vector
w cannot be represented as a linear combination of the vectors w1, . . . , wn, then
there exists a vector t which is orthogonal to all wi but not to w. With respect
to the space of all the functions, this means that if w(x) cannot be represented
as a linear combination of the functions wi(x), then there exists a function t(x)
which is orthogonal to all wi(x) (in the sense that 〈wi, t〉 def=

∫
wi(x) ·t(x) dx = 0)

but not to w(x) (〈w, t〉 6= 0).
For an arbitrary real number λ, instead of the actual field v(x), we can now

consider a new field vλ(x) def= v(x) + λ · t(x). For this new field vλ(x), the values
of vi are the same as for the original field v(x) – and hence, satisfy the same
inequalities. However, the new value y is equal to yλ = 〈w, v〉+ λ · 〈w, t〉. Since
〈w, t〉 6= 0, for appropriate λ, we can get this value yλ equal to any given real
number. Thus, indeed, the smallest possible value of y is y = −∞, and the
largest possible value of y is y = +∞.



Non-negative fields. In many practical problems, the field v(x) can only have
non-negative values v(x) ≥ 0. For example, in geophysics, the density v(x) can-
not be negative. Under this additional restrictions, we already have non-trivial
bounds y and y.

Dual LP techniques. For solving these problems, we can use the experience of im-
precise probabilities [4, 8] where in similar LP problems, v(x) is the non-negative
probability density function (and the weights are, e.g., functions x2 correspond-
ing to moments). According to this experience, many efficient algorithms come
from considering dual LP problems, i.e., by computing the range [v, v], where

v = sup
{∑

yi · vi :
∑

yi · wi(x) ≤ w(x)
}

;

v = inf
{∑

yi · vi : w(x) ≤
∑

yi · wi(x)
}

.

Indeed, if
∑

yi · wi(x) ≤ w(x), then, by multiplying both sides of this in-
equality by v(x) ≥ 0 and integrating over x, we conclude that

∑
yi · vi ≤ y.

Since we know that vi ≥ vi, we thus get a lower bound for y: y ≥ ∑
yi ·vi. Thus,

y is larger than the largest of these bounds, i.e., y ≥ v. So, we can conclude that
y ≥ v. Similarly, we can conclude that y ≤ v, i.e., that the dual LP interval [v, v]
is the enclosure for the desired range [y, y].

Comments.

– For discrete LP problems, the dual interval is exactly equal to the original
one.

– Our problems are easier than the imprecise probability ones, since the func-
tions wi(x) are usually localized and thus, for each x, usually at most a few
functions wi(x) differ from 0. This makes checking the sums easier.

– Checking the inequalities like
∑

yi · wi(x) ≤ w(x) is even easier in a prac-
tically important case of piece-wise linear functions wi(x) and w(x). In this
case, it is sufficient to check this inequality at endpoints of linearity intervals
– then, due to linearity, it will be automatically true for all internal points
as well.

9 Situations in Which We Only Know Upper Bounds

General idea. In other cases – similarly to the interval setting – we do not only
know the upper bounds δ on the location error x̃ − x. A natural question is:
when is a model v(x) consistent with the given observation (ṽ, x̃)?

In this case, the measured value ṽ is ∆-close to a convex combination of
values v(x) for x s.t. ‖x− x̃‖ ≤ ∆x. Thus, vδ(x̃)−∆ ≤ ṽ ≤ vδ(x̃) + ∆, where:

vδ(x̃) def= inf{v(x) : ‖x− x̃‖ ≤ δ}, and vδ(x̃) def= sup{v(x) : ‖x− x̃‖ ≤ δ}.



Case of interval models. In real life, we rarely have an exact model v(x). Usually,
we have bounds on v(x), i.e., an interval-valued model v(x) = [v−(x), v+(x)]. An
observation (ṽ, x̃) consistent with this “interval-valued” model if these exists a
model v(x) ∈ v(x) which is consistent with this

Since the values vδ and vδ monotonically depend on v(x), this consistency
leads to

v−δ (x̃)−∆ ≤ ṽ ≤ v+
δ (x̃) + ∆.

Relation to Hausdorff metric. In many practical problems, the field v(x) contin-
uously depends on x. For continuous functions, inf and sup on a bounded closed
set {x : ‖x − x̃‖ ≤ δ} are attained at some value. Thus, the above criterion for
consistency between a model and observations can be simplified.

Namely, in this case, the set m̃ of all measurement results (ṽ, x̃) is consistent
with the model v(x) if and only if

∀(ṽ, x̃) ∈ m̃ ∃(v(x), x) ∈ v ((ṽ, x̃) is (∆, δ)-close to (v(x), x)),

i.e., |ṽ − v| ≤ ∆ and ‖x− x̃‖ ≤ δ.
This definition is similar to the standard definition of the Hausdorff metric

dH : dH(A, B) ≤ ε means that

∀a ∈ A∃b ∈ B (d(a, b) ≤ ε) and ∀b ∈ B ∃a ∈ A (d(a, b) ≤ ε).

(This similarity was noticed in [1].)
Specifically, the above definition is an asymmetric version of Hausdorff met-

ric. Let us show, on a simple example, that our “distance” is indeed asymmetric.

Case 1: -¾

r

In this example,

– the actual field has the form v(0) = 1 and v(x) = 0 for x 6= 0, and
– the measurements results are all zeros, i.e., ṽ = 0 for all x̃.

In this case, all the measurements are consistent with the model:

– the values ṽ = 0 for x̃ 6= 0 are consistent with v = 0 for x = x̃, and
– the value ṽ = 0 for x̃ = 0 is consistent with v(x) = 0 for x = δ s.t. |x̃−x| ≤ δ.

Case 2: -¾

r

In this example,

– the actual field is all zeros, i.e., v(x) = 0 for all x, and
– the measurement results are ṽ = 1 for x̃ = 0, and ṽ = 0 for all x̃ 6= 0.

Here, when ∆ < 1, the measurement (1, 0) is inconsistent with the model, be-
cause for all x which are δ-close to x̃ = 0, we have v(x) = 0 hence we should
have |x̃− v(x)| = |x̃| ≤ ∆.



10 Case of Minimal Knowledge About Uncertainty

Idea. Yet another case is when we do not even know δ. It happened, e.g., when
we solve the seismic inverse problem to find the velocity distribution.

In this case, a natural heuristic idea is:

– to add a perturbation of size δ0 (e.g., sinusoidal) to the reconstructed field
ṽ(x),

– to simulate the new measurement results,
– to apply the same algorithm to the simulated results, and
– to reconstruct the new field ṽnew(x).

If the perturbations are not visible in ṽnew(x) − ṽ(x), this means that details
of size δ0 cannot be reconstructed and so, the actual resolution is δ > δ0. This
approach was partially described in [2, 7].

Linearization and its consequences. Which perturbations should we choose? To
select the optimal perturbations, we will take into account the fact that since
perturbations are usually small, we can safely linearize their effects. Thus, if we
know the results ∆v1(x), . . . , ∆vk(x) of applying perturbations e1(x), . . . , ek(x),
we can predict the result ∆v(x) of applying an linear combination

e(x) = c1 · e1(x) + . . . + ck · ek(x),

as
∆v(x) = c1 ·∆v1(x) + . . . + ck ·∆vk(x).

In other words, once we know the results of applying k different perturbations
e1(x), . . . , ek(x), we thus also know the results of applying an arbitrary pertur-
bation from the linear space

L = {c1 · e1(x) + . . . + ck · ek(x)}.
From this viewpoint, it does not matter what exactly perturbations ei(x) we
select as long as they are within the same space L.

Thus, the question of optimally selecting a given number k of perturbations
can be formulated as the question of optimally selecting a k-dimensional linear
subspace L in the space of all functions.

Shift-invariance: a natural requirement. To select the space L space, let us use
the fact that in most physical problems, there is no preferred spatial location.
Thus, in principle, we can choose different locations as origins (x = 0) of the
coordinate system.

It is reasonable to require that the optimal family of perturbations do not
change if we simply change the origin x = 0. For example, if we select a point
with the original coordinates x0 as the origin of a new coordinate system, then
the new coordinates will have the form xnew = x−x0. In the original coordinates,
the optimal family of perturbations has the form

{c1 · e1(x) + . . . + ck · ek(x)}.



In the new coordinates xnew, we should expect the exact same family of pertur-
bations

{c1 · e1(xnew) + . . . + ck · ek(xnew)}.
In terms of the original coordinates, this new family has the form

{c1 · e1(x− x0) + . . . + ck · ek(x− x0)}.

This “shifted” family must coincide with the original one. In particular, every
basis function ei(x−x0) from the shifted basis must belong to the original family,
i.e., must have the form

ei(x + x0) =
k∑

j=1

cij(x0) · ej(x)

for some coefficients cij which are, in general, depending on the shift x0.

Smoothness: an additional requirement. In many physical problems, it is reason-
able to consider smooth perturbations, i.e., perturbations for which the functions
ei(x) are differentiable. In this case, by considering different values x, we get a
system of linear equations for determining cij(x0) in terms of the smooth func-
tions ei(x + x0) and ej(x). The solution of a system of linear equations is – due
to Cramer’s rule – a smooth function of the coefficients and of the right-hand
sides. Thus, the solutions cij(x0) are also smooth.

From the requirements to the description of the desired family L. Let us fix one of
the spatial coordinates, e.g., the coordinate x1. For shifts w.r.t. this coordinate,

we have ei(x1 + x0, x2, . . .) =
k∑

j=1

cij(x0) · ej(x1, x2, . . .)

Since the functions ei(x1+x0, . . .) and cij(x0) are smooth, we can differentiate
both sides of the above equation with respect to x0 and take x0 = 0. For each
components of x0, we get a system of linear differential equations e′i =

∑
c′ij(0)·ej

with constant coefficients. A general solution to such a system is well known: it
is a linear combination of expressions x

k1j

1 · exp(a1j ·x1) with complex values a1j

(eigenvalues of the matrix c′ij(0)) and integers k1j ≥ 0 (multiplicities of these
eigenvalues).

Some of these solutions tend to infinity exponentially fast. Such solutions are
not useful as perturbations, since perturbations must be uniformly small. So, it
is reasonable to restrict ourselves to bounded perturbations.

This boundedness eliminates the terms with Re(a1j) 6= 0. Thus, the only
remaining terms correspond to imaginary values a1j – i.e., to sinusoids. For
these terms, boundedness also eliminates terms with k1j > 0, so we only get
pure sinusoids:

ei(x1, x2, . . .) =
∑

j

Cj(x2, . . .) · sin(ω1j · x1).



The functions Cj(x2, . . .) can be computed as linear combinations of the values
ei(x1, x2, . . .) corresponding to different values x1. On the other hand, the de-
pendence of ei on x2 is also a linear combination of sinusoids. Thus, the functions
Cj(x2, . . .) are linear combinations of sinusoids in x2. Substituting these linear
combinations instead of Cj(x2, . . .) into the above formula, and taking into ac-
count that sin(a) · sin(b) is a linear combination of cos(a + b) and cos(a− b), we
conclude that the dependence of ei on x1 and x2 takes the form

ei(x1, x2, x3, . . .) =
∑

k

Ck(x3, . . .) · sin(ω1k · x1 + ω2k · x2).

Similarly, we can add x3, etc., and conclude that each function ei(x) is a linear
combination of the sinusoids sin(

∑
ωj · xj + ϕ).

Conclusion. We conclude that the optimal perturbations are linear combinations
of sinusoids. We thus arrive at the following recommendation: use sinusoidal
perturbations.
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