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Abstract

The estimation of the location vector and scatter matrix plays a crucial role in many mul-

tivariate statistical methods. However, the classical likelihood-based estimation is greatly

influenced by outliers, potentially leading to unreliable decisions. Hence, a fundamental

challenge in multivariate statistics is to develop robust alternatives that can maintain per-

formance in the presence of outliers and deviations from the assumed data distribution.

Unfortunately, methods with good global robustness often substantially sacrifice efficiency.

To address this, we propose the adoption of Minimum Density Power Divergence (MDPD)

estimation, a well-established robust technique known for its efficiency and statistical ro-

bustness to outliers and model violations. Focusing on multivariate contaminated Gaussian

models, we present the first-order optimality conditions associated with minimizing the loss

function underlying the MDPD estimator. We also describe a computationally efficient iter-

ative algorithm designed to converge to a local minimum of the loss function. Additionally,

we develop a robust one-way Multivariate Analysis of Variance (MANOVA) test based on

the MDPD estimator, which is particularly useful for analyzing multiple dependent vari-

ables simultaneously, especially when a significant correlation between dependent variables

exists. The asymptotic properties of the MDPD estimator and proposed MANOVA test are

derived under suitable regularity conditions. Extensive Monte Carlo simulations are fur-

ther conducted to empirically evaluate the statistical efficiency and quantitative robustness

of the proposed methods. Furthermore, we provide real-world dataset examples on ro-

bust principal component analysis (PCA), multivariate regression, and one-way MANOVA

tests. Our proposed approach is observed to be competitive or superior when compared

both to classical likelihood-based methods and robust techniques based on the Minimum

Covariance Determinant (MCD) estimator.
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Chapter 1

Introduction

Robustness in parameter estimation is a critical aspect of statistical analysis, especially

when dealing with multivariate datasets prone to outliers. Robust estimation aims to

develop methods that provide stable and unbiased parameter estimates even when the data

contains outliers. Traditional statistical estimates employed to characterize such datasets

are susceptible to the detrimental effects of outliers. A single outlier can significantly

influence an optimal classical method under the model assumption (Maronna et al., 2019).

Tukey (1960) initiated a critical discussion regarding the robustness of statistical methods,

raising the question: What happens if the true distribution deviates slightly from the

assumed normal one? This inquiry revealed that traditional measures, such as the sample

mean and variance, perform poorly under such conditions. This pivotal discussion has

significantly contributed to the development of robust estimation methods, which seek to

offer more reliable performance in the presence of deviations from model assumptions.

Building on this foundation, Huber (1992) provides an insightful reflection on the funda-

mental aspects of estimation theory, tracing its origins back to Gauss and his development of

the least squares method. According to Huber (1992), Gauss primarily adopted the normal

distribution and a quadratic loss function for their mathematical convenience, particularly

in computational contexts. Over time, the critical rationale behind these choices faded

from memory, often overshadowed by the central limit theorem. However, the central limit

theorem can, at most, explain why most distributions occurring in practice are “approxi-

mately” normal. Therefore, statistical estimation has emerged, providing tools capable of

1



maintaining performance even in the presence of outliers or deviations from the assumed

distribution. These methods have become essential in various fields, from economics and

engineering to biology. The extent to which these estimators are robust against outliers has

been extensively studied (see Hampel, 1974; Donoho and Huber, 1983). We will discuss it

extensively in Chapter 3.

In classical multivariate analysis, the sample mean vector and the sample covariance (or

scatter) matrix are one of the foundational elements. They play a critical role in vari-

ous analytical techniques, including multivariate analysis of variance, principal component

analysis, factor analysis, canonical correlation analysis, discriminant analysis, classification,

and clustering (Zuo, 2006). These estimators are optimal or efficient estimators of loca-

tion and scatter parameters under multivariate normal distributions. However, they are

notably vulnerable to outliers, often not apparent through visual inspection. For instance,

while Mahalanobis distance based on these classical estimators can effectively detect single

outliers, it typically faces challenges with multiple outliers, which may not exhibit large

distances due to the masking effect. This effect occurs when multiple outliers collectively

influence the mean and covariance estimates to the extent that it obscures their anoma-

lous nature (see Davies and Gather, 1993; Muthukrishnan and Mahesh, 2014). Also, the

swamping effect can arise, where genuine data points are misidentified as outliers because

the presence of true outliers has skewed the estimation metrics. For illustrative examples of

the sensitivity of the sample mean vector and the sample covariance matrix to outliers, refer

to Maronna (1976) and Rousseeuw and Leroy (2005) for detailed discussions and analyses.

Over the years, the field of robust estimation has significantly developed, incorporating a

diverse range of resilient techniques against outliers while retaining the desirable properties

of classical non-robust estimators, such as efficiency, affine equivariance, and consistency. In

their work, Ronchetti and Huber (2009) and Hampel et al. (1986) and Anum and Pokojovy

(2024) categorized robust estimators into classes such as M-, L-, R-, and S-estimators

along with other types like A-, D-, W-, and P-estimators. Among the most notable robust

2



estimators methodologies for location and scatter are the minimum covariance determinant

(MCD) estimator of Rousseeuw (1984) (see also Rousseeuw and Driessen (1999); Hubert

et al. (2012); Pokojovy and Jobe (2022) for their computational algorithms), Stahel-Donoho

estimator (see Donoho, 1982; Stahel, 1981), M-estimators (Maronna, 1976) and much more.

For further discussion and systematic review (see Maronna et al., 2019).

The quest for robust alternatives began with Bickel (1964), who introduced the coordinate-

wise median and the coordinate-wise Hodges-Lehmann estimator as more robust options

than the sample mean vector. Furthering this effort, Bickel (1965) proposed the metrically

trimmed and winsorized means in the multivariate domain based on Tukey (1960) ideas.

Although these estimators significantly enhance robustness against outliers and contami-

nated data, they do not maintain the desirable property of affine equivariance, a critical

natural property for maintaining consistency under linear transformations of data. Begin-

ning with Huber (1972) work on the “peeling” procedure, Gnanadesikan and Kettenring

(1972) work on iterative trimming, location estimators were introduced that are affine-

equivariant, though little is known about their properties. Hampel (1973) was the first to

propose an affine equivariant iterative procedure for the estimation of the scatter matrix,

equivalent to an M-estimator of the scatter matrix. Similarly, Maronna (1976) extended M-

estimators to general M-estimators of multivariate location and scatter parameters, which

are affine equivariant by design (see also Huber, 1977). Multivariate M-estimates demon-

strate robust local properties; they are minimally influenced by small data deviations and

maintain good efficiency with the normal model and a wide array of other population

models. However, studies by Stahel (1981) and Maronna (1976) have indicated that mul-

tivariate M-estimates lack global robustness, evidenced by their relatively low breakdown

points (≤ 1/(p+1)) in high dimensions. Following this, high breakdown point affine equiv-

ariant estimators for multivariate location and scatter were introduced by Stahel (1981),

Donoho (1982), Rousseeuw (1985), Davies (1987), among others. Interestingly, many high-

breakdown point estimators suffer from poor local robustness properties. For instance,

MCD has low efficiency when applied to the normal model. To enhance its efficiency,

3



Lopuhaä and Rousseeuw (1991) proposed a one-step reweighting procedure to improve its

efficiency. In contrast, Kent and Tyler (1996) proposed constrained M-estimators, which

effectively combine good local and global robustness properties. These estimators can be

tuned to achieve both high breakdown points and strong local robustness. As evidenced in

literature, one objective in robust statistics is to develop affine equivariant alternatives to

the sample mean and covariance matrix estimators. These alternatives should feature high

breakdown points and also demonstrate high efficiency across a wide variety of population

models.

The pursuit of robust estimation is not confined to traditional parametric models but

extends to more general settings. Researchers have devised estimators inspired by the

maximum likelihood approach, replacing it with minimum distance or divergence estimation

to enhance robustness. The pioneering work of Beran (1977), followed by enhancements

proposed by Basu and Lindsay (1994), exemplifies this trend. These estimators harness

divergence measures like Hellinger distance and density power divergence to navigate the

complexities of robust estimation in continuous parametric models. Under appropriate

regularity conditions, Beran (1977) demonstrated that the proposed estimators achieve

complete asymptotic efficiency within the model. The methodology hinges on the selection

of bandwidth, a process that may introduce certain adverse effects in continuous models.

This is because the estimators necessitate the use of nonparametric smoothing techniques,

which are known to have a substantial impact on kernel-based procedures. In fact, one such

non-parametric smoothing technique is kernel density estimation, which is relied upon to

provide an estimate of the population density. A significant modification to the original

procedure proposed by Beran (1977) was introduced by Basu and Lindsay (1994). To

mitigate the reliance on bandwidth selection, they adopted a novel approach by applying

the same kernel for smoothing both the model and the data.

In this same vein, Basu et al. (1998) pioneered a class of minimum density power divergence

estimators, distinct yet related to the approach proposed by Windham (1995), designed
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for robust estimation within the broader framework of general parametric models. These

estimators provide an approach to parameter estimation, aiming to balance breakdown

point and efficiency.

Therefore, this dissertation seeks to estimate robust mean vector and scatter matrix by

minimizing the power density divergence measure by Basu et al. (1998) within the mul-

tivariate Gaussian model. The univariate scenerio has been extensively studied by Anum

and Pokojovy (2024), where it is shown to balance the breakdown point and efficiency

effectively. Focusing on multivariate contaminated Gaussian models that commonly arise

in various practical situations, we present first-order optimality conditions associated with

minimizing the loss function underlying the MDPD estimator. We further develop a com-

putationally efficient iterative algorithm designed to converge to a local extremum of the

MDPD objective. We also propose a robust one-way MANOVA Wald-type test based on

the MDPD estimator, expanding on the robust ANOVA Wald-type test studied by Das

et al. (2022) and derive the asymptotic properties of the proposed test. Robust test based

on MDPD estimator has been shown to demonstrate significantly superior performance

compared to likelihood-based tests in the presence of outliers (see Basu et al., 1998, 2015),

while remaining highly competitive with pure data. Consequently, tests based on MDPD

estimators are invaluable tools in robust statistics (see Basu et al., 2011; Pardo, 2018).

We organized the rest of the dissertation as follows. Chapter 2 discusses fundamentals of

robust statistical methods including the influence function, breakdown point, affine equiv-

ariance, and efficiency. Chapter 3 provides a comprehensive review of statistical estimators,

covering both classical and robust multivariate location and scatter estimators. Chapter 4

introduces the minimum density power divergence (MDPD) estimator, discussing its the-

oretical framework and properties, such as the asymptotic distribution. We derived and

extended the breakdown point of the MDPD estimator in the multivariate setup. Chapter

5 presents the MDPD algorithm, detailing the iterative procedure for estimating the mean

vector and covariance matrix under the multivariate Gaussian model and evaluating the
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algorithm’s computational efficiency. In Chapter 6, we conduct an extensive simulation

study comparing the performance of the MDPD estimator against other robust estimators

under various scenarios, highlighting its robustness and efficiency. Chapter 7 demonstrates

the MDPD estimator’s practical application through real-world data examples, including

principal component analysis and multivariate regression. Chapter 8 introduces a new

robust MANOVA testing procedure based on the MDPD estimator. We derive the asymp-

totic null distribution, conduct extensive simulations, and provide real-data examples to

validate its robustness and efficiency. Finally, Chapter 9 concludes the dissertation with a

summary of the findings, their implications, and potential directions for future research.
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Chapter 2

Fundamentals of Robust Statistical

Methods

Robustness in statistics generally refers to the resilience of statistical methods to deviations

from assumptions, such as distributional assumptions, the presence of outliers, or other

anomalies in the data. Consider a statistic Tn that is regarded as functional T (·) evaluated

at the empirical distribution Fn. The empirical distribution assigns mass 1/n to each

sample point X i, i = 1, · · · , n. In the following we describe three most popular properties

or robustness measures of functional T (F ) or statistic T (Fn) and efficiency of an estimator.

2.1 Influence Function

The influence function of robust estimators plays a crucial role in understanding the impact

of individual data points on the estimation process. The influence function of an estimator

at a given probability distribution, as introduced by Hampel (1968, 1974), is essentially

the Gateaux derivative of the estimator, viewed as a functional, at some distribution. It

quantifies how infinitesimally small changes in the data points impact the estimator, thus

helping to assess the estimator’s sensitivity to local perturbations in the data. It measures

the effect of a small fraction of outliers placed at a given point. This measure is pivotal in

studying the local robustness properties of statistical estimators, as it allows for evaluating

how the estimator reacts to slight deviations in the distribution from which we sampled

data.
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Consider the estimator T at a distribution F in a point x, then the influence function is

given by

IF(x;T, F ) = lim
ε→0

T [(1− ε)F + εδx]− T (F )

ε
. (2.1)

Here, δx represents the probability measure determined by the point mass 1 at a given

point x ∈ Rp and T (F ) is the parameter value, where T maps any distribution F to Rp for

multivariate location, and to Rp×p for multivariate scatter, which represents the set of all

positive semidefinite p × p matrices. Because it considers only point-mass contamination,

the influence function assesses the local robustness of the functional T (·).

Hampel (1974) utilized the influence function to analyze various estimators, including

trimmed andWinsorized means, Huber-estimators, and maximum likelihood and M-estimators.

Shoemaker (1984) calculated the influence curve for a class of scale estimators, specifically

the mid-variance, and used it to approximate the distribution of the sample mid-variance.

Peracchi (1990) summarized the influence function approach to robust estimation of para-

metric models, extending Hampel’s optimality results for M-estimators. For detail analysis,

refer to Hampel et al. (1986). These studies collectively highlight the importance of the

influence curve in assessing the robustness of estimators.

2.2 Breakdown Point

Among the various metrics for robustness, the breakdown point has emerged as a pivotal

global measure. The seminal works by Hodges Jr (1967), which introduced the concept of

tolerance to extreme values, paved the way for the development of the breakdown point.

This critical notion was further elaborated upon and introduced into the statistical liter-

ature by Hampel (1968, 1971) and Ronchetti and Huber (2009). The breakdown point,

introduced by Donoho and Huber (1983), is a crucial measure of robustness in statistical

estimation. Generally, it represents the maximum proportion of contaminated data points

an estimator can withstand while providing meaningful results about the uncontaminated
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data. Specifically, it quantifies the maximum proportion of outliers or contaminated data

that an estimator can handle before it starts producing incorrect or infinitely biased results.

Consider the mixture distribution K = (1 − ε)F + εH, where H represents any arbitrary

distribution. The asymptotic breakdown point for the location is defined by the following

equation:

ε∗(T,K) = inf
ε∈(0,1)

{
ε > 0 : sup

H
∥T (K)∥ = ∞

}
. (2.2)

This formulation captures the smallest proportion of contamination ε that leads the es-

timate of the mean to become unbounded, thereby assessing the robustness of the mean

estimator against outliers.

For a positive definite semi-definite scatter matrix, whose eigenvalues are ordered as λ1 ⩾

· · · ⩾ λp ⩾ 0, the implosion breakdown point of a scatter functional S at distribution F is

specified by:

ε∗imp(S, F ) = inf
ε∈(0,1)

{
ε > 0 : inf

H
{λp(S(F ))} = 0

}
. (2.3)

This value indicates the minimum proportion of contamination that causes the smallest

eigenvalue of the scatter matrix to become zero, which can be interpreted as a collapse in

the dimensionality of variability.

Furthermore, the explosion breakdown point of a scatter functional S is described as:

ε∗exp(S, F ) = inf
ε∈(0,1)

{
ε > 0 : sup

H
{λ1(S(F ))} = ∞

}
. (2.4)

This parameter delineates the maximum proportion of contamination ε that results in the

largest eigenvalue of the scatter matrix reaching infinity, signifying extreme sensitivity to

outliers affecting the spread or variability of the data.

The asymptotic breakdown point then equals the smallest of the two (Becker et al., 2014)

ε∗(S, F ) = min

(
ε∗exp(S, F ), ε

∗
imp(S, F )

)
. (2.5)
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A simple and appealing finite sample version of this concept was introduced by Donoho

and Huber (1983). It is defined as the minimum proportion of observations that must be

replaced with arbitrary values to render the estimate ineffective.

Consider a data set matrix Xn×p, the breakdown point of a location estimator Tn is defined

as:

ε∗n(Tn;Xn) = min
{m
n

: sup ||Tn(Xn,m)− Tn(Xn)|| = ∞
}
, (2.6)

where 1 ⩽ m ⩽ n and the supremum is over all datasets Xn,m obtained by replacing any

m data points of Xn by arbitrary values. For a multivariate scatter estimator Sn, we have

ε∗n(Sn;Xn) = min
{m
n

: supmax
i

| log(λi(Sn(Xn,m)))− log(λi(Sn(Xn)))| = ∞
}
, (2.7)

where the eigenvalues λi are sorted 0 ⩽ λp(Sn) ⩽ · · · ⩽ λ1(Sn). With this definition, we

consider the scatter estimator to break down when λ1 become arbitrary large (“explosion”)

and/or λp become arbitrary close to 0 (“implosion”). Implosion is a problem since it makes

the scatter matrix singular especially in many cases where its inverse it required.

The concept of breakdown point, a measure of robustness in statistical estimation, has been

explored in various contexts. Stromberg and Ruppert (1992) introduced a new definition

for the breakdown point in nonlinear regression, in time series (see Ma and Genton, 2000),

and in more general situations (see He and Simpson, 1993; Genton, 2003).

2.3 Affine Equivariance

Affine equivariance in robust estimation refers to the property where the estimation process

remains consistent even when the data undergoes affine transformations. This concept is

crucial in scenarios where data may be corrupted or altered. Affine equivariance implies

that the estimator transforms appropriately under any non-singular reparametrization of

the space of the X i. The data might, for instance, be rotated, translated, or rescaled

(for example through a change of the measurement units). For any non-singular matrix
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A ∈ Rp×p and any p-dimensional column vector b ∈ Rp, we refer to p-variate location and

scatter matrix estimators T n : Rn×p → Rp and Cn : Rn×p → Rp×p as affine equivariant if

T n(XAT + 1nb
T ) = AT n(X) + b, (2.8)

Cn(XAT + 1nb
T ) = ACn(X)AT . (2.9)

The concept of affine equivariance in robust estimation is explored in several studies. Yu

et al. (2015) investigates the robustness of the affine equivariant scatter estimator, par-

ticularly in terms of breakdown point and influence function. Ostrovskii and Rudi (2019)

propose an estimator for the covariance matrix of heavy-tailed distributions, demonstrat-

ing its affine equivariance properties. Mendelson and Zhivotovskiy (2020) present a robust

covariance estimator under L4-L2 norm equivalence, achieving optimal performance for

Gaussian vectors. Fan et al. (2019) focuse on robust covariance estimation in approximate

factor models, introducing a framework for joint covariance matrix estimation and recov-

ery. While this condition appears to be quite intuitive, it has been shown that several

prominent multivariate location estimators do not meet this criterion, see Lopuhaä and

Rousseeuw (1991). It might be feasible to identify estimators with a high breakdown point

if one considers weakening the affine equivariance requirement to, for example, rigid-motion

equivariance or merely location equivariance, see Donoho and Gasko (1992).

For multivariate estimators, being consistent under affine transformations (equivariance) is

expected. However, it is challenging to ensure this consistency while also maintaining a high

level of robustness against outliers (high breakdown point). The Stahel-Donoho estimator

represents one of the earliest significant advancements in the field of multivariate statistics,

combining affine equivariance with a high breakdown point. This robust estimator was

independently proposed by Stahel (1981) and Donoho (1982), marking a pivotal moment

in the recognition and development of robust statistical methods capable of maintaining

reliability under data contamination and also versatile, maintaining consistency under var-

ious affine transformations. This dual capability ensures that the estimator is effective

across different scales and orientations, thereby handling real-world data complexities with
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resilience against anomalies and outliers.

Further contributions include the affine equivariant maximum depth estimator introduced

by Zuo and Lai (2009), which exhibits both a high breakdown point and efficiency. Transfor-

mation retransformation medians, with an appropriate choice of the transformation matrix,

can achieve a high breakdown point while maintaining affine equivariance (Chakraborty and

Chaudhuri, 1999). Minimum volume ellipsoid estimator is another affine equivariant esti-

mator established by Davies (1992). Similarly, minimum covariance determinant (MCD)

of Rousseeuw (1984) combines these desirable properties. Lopuhaä and Rousseeuw (1991)

provided a comprehensive overview of the breakdown points of various affine equivariant

estimators for multivariate location and covariance matrices, illuminating the extensive re-

search in this area. However, caution is necessary when using high-breakdown estimators

as they can behave unpredictably in certain situations Jurczyk, 2008. Another approach

involves constructing projection-based affine equivariant multivariate estimators, which of-

fer more resistance to contamination compared to existing estimators Zuo, 2004. For recent

discussions about the breakdown point and equivariance, see Davies and Gather (2005).

2.4 Efficiency

Efficiency is a fundamental concept in statistics that measures the quality of an estimator.

It evaluates how well an estimator performs in terms of its covariance, relative to the best

possible unbiased estimator.

The efficiency of an estimator T of a parameter vector θ is defined by the ratio of the

Cramér-Rao lower bound to the actual covariance matrix of the estimator:

e(T ) = det
(
I−1(θ)

)
· det(cov(T )),

where I(θ) represents the Fisher information matrix. This efficiency measure indicates how

closely the estimator’s covariance matrix approaches the theoretical lower bound provided

by the Fisher information.
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Relative efficiency compares the performance of two estimators, expressed in terms of the

determinants of their covariance matrices, that is, their generalized variance:

e(T1, T2) =
det(cov(T2))

det(cov(T1))
.

If the relative efficiency is greater than 1, estimator T1 is more efficient than T2. This com-

parison provides a direct way to evaluate which estimator has a smaller overall variability.

For robust statistics, the challenge is to design estimators that maintain high efficiency at

the model distribution while improving resistance to outliers and model deviations. Robust

estimators aim to balance robustness and efficiency, ensuring that they are not unduly in-

fluenced by atypical data points while still providing accurate parameter estimates. In their

discussion on robust estimation, Ronchetti and Huber (2009) emphasize the importance of

this balance, highlighting that robust estimators can be designed to have high efficiency at

the model distribution while still providing protection against outliers.

2.5 Computational Complexity

Robust statistical methods are crucial for analyzing data with outliers or deviations from

assumed distributional forms. However, these methods often entail increased computa-

tional complexity, which can affect their practical application. This section discusses the

computational challenges inherent in robust statistical methods, particularly concerning the

breakdown point, the complexity of the optimization problems they involve, and advances

to mitigate these issues. By understanding the computational complexities associated with

different robust methods and the complexity of the optimization problems they involve, re-

searchers can effectively balance robustness and computational efficiency in their analyses.

These strategies and advances enable the practical application of robust methods to large

and complex datasets, ensuring that the benefits of robustness are not overshadowed by

prohibitive computational costs.
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Computational Complexity and Breakdown Point

The breakdown point is a critical measure of an estimator’s robustness, representing the

smallest fraction of contamination that can cause the estimator to yield arbitrarily large

errors. Robust methods often achieve high breakdown points, but this robustness comes

at a computational cost.

For instance, the least trimmed squares (LTS) estimator is known for its high breakdown

point. However, achieving this robustness involves solving a combinatorial optimization

problem where the subset of data that minimizes the sum of squared residuals must be

selected. This process becomes computationally infeasible for large datasets due to the

exponential growth of possible subsets (Rousseeuw and Leroy, 2005).

Similarly, the minimum covariance determinant (MCD) estimator, designed to identify the

subset of observations with the smallest determinant of the covariance matrix, involves

solving an NP-hard problem. The computational intensity of finding the exact MCD grows

exponentially with the dataset size, making it impractical for large datasets without approx-

imation or heuristic methods. The development of the FASTMCD algorithm by Rousseeuw

and Driessen (1999) and the more recent DetMCD have made MCD (Hubert et al., 2012)

practical for larger datasets by significantly reducing computation time while preserving

robust properties.

Complexity of Optimization Problems

Robust methods often involve solving highly nonlinear optimization problems. These prob-

lems are computationally intensive due to their iterative nature and the need for robust

initial estimates. Many robust estimators, such as M-estimators, rely on iterative optimiza-

tion procedures. These procedures can be computationally demanding, especially for large

datasets, as they require recalculating weights and re-estimating parameters at each iter-

ation. The iterative reweighted least squares (IRLS) algorithm is a prime example, where

robustness is achieved through iterative adjustments (Maronna et al., 2019). However, the
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iterative nature can significantly increase computational costs. Additionally, the choice

of initial estimates can greatly influence the convergence and computational efficiency of

robust methods. Starting from robust initial estimates, such as the sample median, can

help ensure that the procedure inherits a high breakdown point and improves convergence

(Huber and Ronchetti, 2011). However, identifying appropriate initial estimates itself can

be a computational challenge.

Advances to Mitigate Computational Challenges

To address the computational challenges associated with robust statistical methods, several

advances have been made:

First, approximation algorithms offer a balance between computational efficiency and ro-

bustness. Approximate versions of the LTS estimator have been developed to reduce compu-

tational costs while maintaining reasonable robustness properties (Croux and Haesbroeck,

2003). These algorithms often use heuristic or probabilistic approaches to find near-optimal

solutions without exhaustive searches.

Moreover, the development of algorithms like FASTMCD and DetMCD has significantly

reduced the computation time for MCD estimators. FASTMCD, introduced by Rousseeuw

and Driessen (1999), uses concentration steps to approximate the MCD. These steps involve

iteratively refining subsets of the data to find the one with the smallest determinant of the

covariance matrix, making the algorithm feasible for larger datasets. DetMCD by Hubert

et al. (2012) further enhances this by providing deterministic algorithms that improve both

speed and accuracy.

Additionally, leveraging advanced computational techniques, such as parallel computing

and specialized hardware (e.g., GPUs), can significantly enhance the performance of ro-

bust algorithms. Parallelizing the computations involved in iterative procedures or employ-

ing distributed computing frameworks can reduce the time required for robust estimation

(Buchanan and Fitzgibbon, 2005).
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Furthermore, careful consideration of the specific problem and dataset characteristics can

guide the choice of robust methods. Selecting algorithms with lower computational com-

plexity when feasible can help balance robustness and efficiency. For example, when dealing

with moderately sized datasets, simpler robust methods such as Huber’s M-estimator may

be preferred over more complex alternatives like the LTS or MCD estimators (Huber and

Ronchetti, 2011).
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Chapter 3

Review of Robust Statistical

Estimators

In this chapter, we provide an in-depth examination of various statistical methods used

to estimate multivariate location and scatter parameters. The focus is on both classical

and robust estimators, detailing their mathematical foundations, properties, and practical

implications.

3.1 Classical Estimators of Multivariate Location and

Scatter

In multivariate analysis, one of the fundamental goal is to estimate the parameters µ

and Σ from a sample Xn = (x1, . . . ,xn)
T . The maximum likelihood estimates of µ and Σ

under the assumption of multivariate normality are the sample mean vector and the sample

scatter/covariance matrix:

x̄ =
1

n

n∑
i=1

xi and S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T ,

where xi represents the i-th observation of a n-sample dataset, with each observation being

a p-dimensional vector, S is a p× p symmetric matrix with diagonal elements representing

the variances of individual variables. A crucial geometric property of these estimators is

their affine equivariance, ensuring that they adapt appropriately under any affine trans-

formation of the data. This property is essential for their applicability across different
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measurement scales and units as well as correlations.

Classical estimators of multivariate location and scatter are unbiased and efficient under the

assumption of multivariate normality. However, they lack robustness, making them highly

sensitive to outliers. This sensitivity can lead to significant distortions in their estimation,

rendering them unreliable when datasets contain significant anomalies.

(1) The influence function of classical estimators of multivariate location and scatter is

unbounded (Hampel et al., 1986). Let T (F ) denote a statistical functional that maps

a distribution F to its location vector, denoted as µF . Similarly, let S(F ) be the

statistical functional that maps F to its scatter matrix, denoted as ΣF . For any

vector x ∈ Rp, the influence functions of the location vector and the scatter matrix

can be expressed as follows:

IF(x;T, F ) = x− µF ,

IF(x;S, F ) = (x− µF )(x− µF )
T −ΣF .

The influence function of the location vector represents the deviation of the point x

from the mean µF . The influence function of the scatter matrix calculates the outer

product of the deviation (z−µF ) with itself, adjusted by subtracting the covariance

matrix ΣF . This provides a measure of how much x influences the estimation of the

covariance matrix relative to its current estimate. Clearly, both influence functions

are unbounded in x.

(2) The asymptotic breakdown point of the classical location vector and scatter matrix

is zero (Huber and Ronchetti (2011)). Refer to Section 2.2 for extensive discussion.

(3) For finite-sample breakdown point estimators of location and scatter, Lopuhaä and

Rousseeuw (1991) proved that any affine equivariance location estimator µ̂ satisfies

ε∗n(µ̂,Xn) ⩽
1

n

[
n+ 1

2

]
,
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and any affine equivariant scatter estimator Σ̂ satisfies the sharp bound (Davies,

1987)

ε∗n(Σ̂,Xn) ⩽
1

n

[
n− p+ 1

2

]
,

if the original sample before contamination is in general position, that is no hyper-

plane contains more than p points. For samples that are not in general position,

the upper bound is lower and depends on the maximal number of observations on a

single hyperplane. However, the asymptotic breakdown point for affine equivariant

for location and scatter estimators is always at most 0.5.

3.2 Robust Estimators of Multivariate Location and

Scatter

When it comes to statistical analysis, the validity and reliability of analytical results are

primarily dependent on the robustness of estimators, especially in the presence of outliers

or deviations from assumed distributions. These estimators are crucial in environmental

science, economics, and biological research, where anomalies can compromise data integrity.

Robust estimators are particularly interesting because they yield reliable and accurate

findings despite outliers. The following discussion explores important robust estimators

of multivariate location and scatter, highlighting their value and adaptability in handling

complex and contaminated data. It lays the groundwork for a thorough comparison with the

minimum density power divergence (MDPD) approaches covered later in the dissertation.

3.2.1 Multivariate M-Estimators

The general definition of multivariate M-estimators for location and scatter parameters,

denoted as µ̂ and Σ̂, is given by the following equations, as defined by Maronna (1976):
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n∑
i=1

W1(d
2
i )(xi − µ̂) = 0, (3.1)

1

n

n∑
i=1

W2(d
2
i )(xi − µ̂)(xi − µ̂)T = Σ̂, (3.2)

in which the statistical distance d(xi, µ̂, Σ̂) (Mahalonobis distance) is given by

di = d(xi, µ̂, Σ̂) =

√
(xi − µ̂)T Σ̂

−1
(xi − µ̂).

It is essential that µ̂ is a real vector and Σ̂ a symmetric positive definite matrix. The

functions W1(t) and W2(t) are real-valued and well-defined for all t ≥ 0.

For X ∼ N (µ,Σ), W1(d
2) = W2(d

2) = 1, which corresponds to the sample mean and the

sample covariance matrix.

Maronna (1976) stipulates necessary conditions for functions W1(t) and W2(t) to ensure

the existence, uniqueness, and consistency of these estimators. The sufficient conditions are

that
√
tW1(t) and tW2(t) are bounded and that tW2(t) is nondecreasing. If a multivariate

M-estimator satisfies the condition that tW2(t) is nondecreasing, it is called monotone,

otherwise, it is called redescending.

M-estimators are also characterized by several key properties:

(1) Multivariate M-estimators are affine equivariant.

(2) Multivariate M-estimators are asymptotically normal, assuming regularity conditions

on W1 and W2 (see Ronchetti and Huber, 2009).

(3) Monotone M-estimators for Equations (3.1) and (3.2) always have a unique solution,

established through a reweighting algorithm. This algorithm includes:

(a) Begin with initial estimators µ0 and Σ0, for example the vector coordinate-

wise median and a diagonal matrix where the diagonal elements are the squared

normalized Median Absolute Deviations (MADs) of the variables.
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(b) At iteration k, let di,k = d(xi, µ̂k, Σ̂k) and compute

µ̂k+1 =

∑n
i=1W1(d

2
i,k)xi∑n

i=1W1(d2i,k)
,

Σ̂k+1 =
1

n

n∑
i=1

W2(d
2
i,k)(xi − µk+1)(xi − µk+1)

T .

The algorithm assures convergence to the unique solution for monotone M-estimators,

independent of initial values. The choice of initial values may only influence the num-

ber of iterations and not the end value (Becker et al., 2014). However, for redescending

M-estimators, initial values significantly influence the quality of the solution.

(4) Their influence functions are bounded if
√
tW1(t) and tW2(t) are bounded.

(5) The asymptotic breakdown point of monotone M-estimators is given by ε∗ ⩽ 1
p+1

,

where p is the number of variables.

(6) Redescending M-estimators can offer higher breakdown points but are challenging to

compute efficiently.

However, while monotone M-estimators achieve optimal breakdown points in univariate

cases, they exhibit lower breakdown points in higher dimensions often not exceeding 1/(p+

1) where p is the number of variables (see Clement, 2020), highlighting a key limitation

in their robustness for multivariate applications. This issue arises due to contamination

restricted to specific planes, leading to low breakdown points. However, in the absence

of such contamination restricted to specific planes, M-estimators can achieve breakdown

points close to 1/2, indicating higher robustness (Sunanta, 2018). For further review, refer

to Maronna et al. (2019)

3.2.2 Minimum Covariance Determinant (MCD)

The Minimum Covariance Determinant (MCD) method of Rousseeuw (1984, 1985) is highly

robust and affine equivariant estimator of location and scatter. The MCD objective is to
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find h observations (out of n) whose classical covariance matrix has the lowest determinant.

The MCD estimate of location is then the average of these h points, and the MCD estimate

of scatter is their covariance matrix multiplied with a correction/scale factor to obtain

consistency in the case of multivariate normality.

That is, given an n× p data matrix X = (x1, . . . ,xn)
T with n observations and p-variate

vectors xi = (xi1, . . . xip)
T , and a fixed tuning constant h such that [(n+p+1)/2] ≤ h ≤ n),

the raw MCD estimators for location and scatter respectively are defined as follows:

(1) the mean of the h observations for which covariance matrix has the lowest determinant

µ̂MCD =
1

h

∑
i∈IMCD

xi. (3.3)

(2) the corresponding covariance matrix multiply by a correction factor kMCD

Σ̂MCD =
kMCD

h− 1

∑
i∈IMCD

(xi − µ̂MCD) (xi − µ̂MCD)
T , (3.4)

where the “best set” is given by

IMCD = argmin
I∈{1,...,}

|I|=h

det

 1

h− 1

∑
i∈I

(
xi −

1

h

∑
j∈I

xj

)(
xi −

1

h

∑
j∈I

xj

)T
 . (3.5)

The correction factor kMCD that makes the MCD scatter estimate consistent at the normal

model is given by kMCD = α/Fχ2
p+2

(qα) with qα = χ2
p,α and α = limn→inf h(n)/n (Croux and

Haesbroeck, 1999). A finite-sample correction or consistency factor was also proposed by

Pison et al. (2002) for small sample sizes.

The MCD estimators are characterized by bounded influence functions, which exhibit dis-

continuities, as detailed by (Croux and Haesbroeck, 1999). These estimators achieve
√
n-

consistency and while asymptotic normality has been established for the location estimates,

it remains unconfirmed for the scatter estimates (Butler et al., 1993). The MCD estimator

is most robust when h = [(n + p + 1)/2], asymptotically attaining the highest breakdown
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point of 50% under appropriate appropriate assumptions but then MCD unfortunately suf-

fers from low efficiency at the normal model. This is especially true at the h selected in order

for the estimators to achieve the highest breakdown point (see Lopuhaä and Rousseeuw,

1991; Roelant et al., 2009; Croux and Haesbroeck, 1999). To increase the efficiency while

maintaining high robustness, Lopuhaä and Rousseeuw (1991) proposed a reweighting pro-

cedure which was analyzed by Lopuhaä (1999). The reweighted RMCD estimators are

given by

µ̂RMCD =

∑n
i=1W (d2i )xi∑n
i=1W (d2i )

, (3.6)

Σ̂RMCD =
kRMCD

n− 1

n∑
i=1

W (d2i ) (xi − µ̂RMCD) (xi − µ̂RMCD)
T , (3.7)

where d2i = D2(xi, µ̂MCD, Σ̂MCD) = (xi − µ̂MCD)Σ̂
−1

MCD(xi − µ̂MCD)
T is the raw squared

Mahalanobis distance base on the MCD estimates and W an appropriate weight function.

While the method is highly effective for detecting outliers, its primary limitation is inap-

plicability when the number of dimensions exceeds the size of the subset. To mitigate this

issue, the minimum regularized covariance determinant (MRCD) approach was developed,

incorporating a regularization term to effectively manage high-dimensional data (Boudt

et al., 2020). The MRCD method introduces a regularization technique where the scatter

matrix is a convex combination of a target matrix and the sample covariance matrix of the

subset, allowing for estimation in any dimension and enhancing robustness. The method’s

robustness is further enhanced by the minimum weighted covariance determinant estimator,

which uses implicit weights and has been shown to outperform other estimators (Kalina,

2022). The MCD’s efficiency and robustness are underscored by its influence function and

asymptotic variances (Croux and Haesbroeck, 1999). The existence and non-singularity

of the derivative for the MCD estimator was proven, and its asymptotic normality and

limiting covariance structure were described in Cator and Lopuhaä (2010).

The exact MCD estimator is very challenging to compute because it necessitates evaluation

of all possible combinations of n observations taken h at a time. This computation grows
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exponentially with the size of the dataset, making it computationally intensive, especially

for large datasets (see Hubert and Debruyne, 2010; Pokojovy and Jobe, 2022). To address

this challenge, several fast computing algorithms have been developed. Notable among

these are FastMCD of Rousseeuw and Driessen (1999), DetMCD of Hubert et al. (2012),

and Projection Pursuit MCD of Pokojovy and Jobe (2022). These algorithms enable more

accurate approximations of the MCD estimator in high-dimensional spaces, contributing

to its growing popularity in academic literature.

FastMCD

FastMCD is an efficient affine equivariance algorithm proposed by Rousseeuw and Driessen

(1999). It uses the basic idea of sorting by squared Mahalanobis distances, determinants

and selective iteration or nested extensions call the concentration steps to find h observa-

tions (out of n) whose covariance matrix has the lowest determinant. For small datasets,

FastMCD can typically finds the exact MCD, whereas for larger datasets it gives more

accurate approximate results.

The FastMCD algorithm is essential for robust multivariate data analysis, particularly in its

execution of the concentration step (C-step). This step operates on the premise of refining

estimates for the location and scatter matrix of a data set. Initially, these estimates are

provided as µ̂old for the location and Σ̂old for the scatter matrix. The process follows from

the C-step algorithm below:

(1) Distance Computation: Calculate the Mahalanobis distance for each data point i

from µ̂old and Σ̂old using the equation

dold(i) = D(xi, µ̂old, Σ̂old)

for i = 1, 2, . . . , n where n is the numbers of observations.

(2) Sorting and Subset Selection: Sort the distances, dold(i), and permute them in

ascending order to identify a subset H of h observations with the smallest distances,
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that is, for the permutation π, where dold(π(1)) ≤ dold(π(2)) ≤ . . . dold(π(n)), set

H = {π(1), π(2), . . . , π(h)}.

(3) Estimation Update: Update the estimates for the mean and covariance by com-

puting:

µ̂new =
∑
i∈H

xi

h
,

Σ̂new =
∑
i∈H

(xi − µ̂new) (xi − µ̂new)
T

h− 1
.

Rousseeuw and Driessen (1999) established that det
(
Σ̂new

)
≤ det

(
Σ̂old

)
, with equality

only if Σ̂new = Σold , that is determinant of the updated scatter matrix Σ̂new does not

exceed that of Σ̂old, indicating convergence towards a limit as the process iterates. To

ensure convergence, C-steps is applied iteratively, resulting in a sequence that converges

within a finite number of steps due to the finite number of h-subsets. However, this method

does not guarantee that the final iteration yields the global minimum of the MCD objective

function. Therefore, to obtain an approximate MCD solution, they start with numerous

(typically 500) initial h-subsets H1 ⊂ {1, 2, . . . , n}, apply C-steps to each, and select the

solution with the lowest overall determinant.

To construct an intial subsetH1, a random (p+1)-subset J is drawn and µ̂ =
∑

i∈J xi/(p+1)

and Σ̂ =
∑

i∈J(xi − µ̂0)(xi − µ̂0)
T/p are computed. If Σ̂0 is singular, random points

are added to J until it becomes nonsingular. Next C-step is apply to (µ̂0, Σ̂0) yielding

(µ̂1, Σ̂1), and so on. Each iteration involves recalculating the covariance matrix and its

inverse, which can be computationally intensive. To manage this, the FASTMCD algorithm

restricts the full application of C-steps to the 10 subsets that exhibit the lowest determinant

values in their corresponding covariance matrices, thus balancing computational efficiency

with statistical robustness. Only for the 10 subsets with lowest determinant further C-

steps are taken until convergence. Upon convergence, the estimates from the FASTMCD

algorithm, denoted as µ̂Raw and Σ̂Raw, align closely with the empirical mean and covariance
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matrix of the h- subset yielding the lowest determinant. Further refinement uses these

as base estimates to calculate µ̂FastMCD and Σ̂FastMCD, incorporating a weighted average

approach where weights are determined based on the χ2 distribution’s quantile, enhancing

the statistical efficiency of the final estimates while maintaining high robustness. This

procedure is very efficient for small sample sizes n, but as n increases, the computation

time escalates significantly. For large n, FastMCD employs partitioning strategy, which

mitigates the computational burden by avoiding the need to perform all calculations on

the entire dataset.

The FastMCD algorithm has been incorporated into several statistical software packages,

enhancing its accessibility and utility in robust statistical analysis. This wide-ranging

implementation underscores the algorithm’s importance and versatility in handling diverse

data analysis scenarios.

Deterministic MCD (DetMCD) Algorithm

The DetMCD algorithm, proposed by Hubert et al. (2012), offers a deterministic approach

to estimate multivariate location and scatter, designed to produce consistent results by

eliminating the randomness typically associated with subset selection in classical MCD

algorithms. Unlike FastMCD it is permutation invariant, less sensitive to point contami-

nation and runs even faster than FastMCD.

The DetMCD computes a small number of deterministic initial estimates, followed by con-

centration steps. The procedure begins by standardizing each variable X i by subtracting

its median and dividing by theQn-scale estimator of Rousseeuw and Croux (1993), ensuring

location and scale equivariance. i.e.,

Zj =
Xj −median(Xj)

Qn(Xj)
. (3.8)

The resulting n×p matrix is denoted Zn and six initial estimates Sk are developed for the

correlation or covariance of Z.
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Computation of Initial Scatter Estimates

Several methods are employed to estimate the initial scatter:

(1) S1 is based on Spearman’s rank correlation of the transformed variables (the hyper-

bolic tangent of each column of Z, a bounded function that reduces the effect of large

coordinatewise outliers):

Y j = tanh(Zj), S1 = corr(Y ), j = 1, . . . , p.

(2) Let Rj be the ranks of the column Zj and computes a rank covariance matrix:

S2 = corr(R).

(3) S3 is computed from correlation of the normal scores of the ranks Rj, that is

T j = Φ−1

(
Rj − 1/3

n+ 1/3

)
, S3 = corr(T ).

(4) S4 is based on the spatial sign covariance matrix (Visuri et al., 2000). It is constructed

as

Ki =
Zi

∥Zi∥
, S4 =

1

n

n∑
i=1

KiK
′
i.

(5) S5 represents the covariance matrix of the [n/2] standardized observations zi with

smallest norm, which corresponds to the first step of the BACON algorithm (Billor

et al., 2000).

(6) S6 estimate is the raw OGK estimator, where median and Qn is used for location

(m(·)) and scale (s(·)).

The Sk of the covariance or correlation matrix of Z may have inaccurate eigenvalues, so

the following iterative procedure is used to refine these estimates:

(1) Compute the eigenvectors E of Sk and transform the data:

V = ZE.
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(2) Estimate the scatter matrix by:

Σ̂k = ELET , L = diag(Q2(V 1), . . . ,Q2(V p)).

(3) Update the center using the median of the transformed data:

µ̂k = Σ̂
1/2

k ×median(ZΣ̂
−1/2

k ).

For each of the six estimates (µ̂k(Z), Σ̂k(Z)), compute the statistical distances dik =

D(zi, µ̂(Z), Σ̂(Z). For each initial estimate k, the h0 = [n/2] observations with smallest

dik are retained and the statistical distances (denoted as d∗ik) based on these h0 observations

are computed. Following this, for each of the six estimates, the h observations xi that

correspond to the smallest recalculated distances d∗ik are selected. The algorithm then

proceeds with iterative C-steps on these selected observations until convergence is achieved.

The solution with smallest determinant is called the (raw) DetMCD. Then a weighting

step can be applied as in the FAST-MCD algorithm, yielding the final DetMCD. Despite

not achieving perfect affine equivariance, the deviation from affine equivariance in the

DetMCD is minimal, making it an effective and practical tool for robust statistical analysis

in multivariate contexts.

The Projection Pursuit Minimum Covariance Determinant

The projection pursuit minimum covariance determinant (PPMCD) algorithm introduced

by Pokojovy and Jobe (2022), which was motivated by Peña and Prieto (2001), is the first

deterministic, affine equivariant and permutation invariant algorithm of the MCD estimator

of location and scatter matrix which in contrast to the earlier branch-and-bound type

heuristics (Hawkins and Olive, 1999) is not restricted to small (n, p) values. It incorporates a

projection pursuit approach and the concentration step (C-step) of Rousseeuw and Driessen

(1999). Similar to DetMCD, PPMCD construct a deterministic initial estimate (µ̂0, Σ̂0),

that assures permutation invariance and improve it through the C-step iteration. But unlike
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DetMCD, PPMCD initial estimate is chosen so that it can preserve the affine equivariance

of the MCD. The initial estimate (µ̂0, Σ̂0) is constructed through a projection pursuit

procedure, that is, p orthogonal directions that are suitable for filtering out outliers are

determined and univariate robust estimation is used to recover the projected locations and

variances along the principal axes.

Computation of Initial Scatter Estimates

The initial estimator pair for the PPMCD algorithm is obtained with a type of non-linear

principal component analysis (PCA) based on projection indices with outlier filtering:

1. The first projection index compares the ratio of sample variance to the raw minimum

covariance determinant (MCD) scatter estimator, defined as:

Qvar(Z) = log

(
s2

σ̂2
MCD

)
,

where s2 = 1
n−1

∑n
i=1(zi− z̄)2 is the sample variance, and σ̂2

MCD is the raw MCD scat-

ter estimator in a univariate setting. Larger values of Qvar(Z) indicate a significant

difference between the sample variance and the MCD scatter estimator, highlighting

directions where the projected data deviate more from the Gaussian distribution.

This distinction helps in identifying “good” observations and outliers. However, the

measure’s effectiveness diminishes when the variable Z contains a significant propor-

tion of closely clustered outliers.

2. The second projection index is derived from a Gaussian bimodality test. That is

H0 : zi ∼ N (µ0, σ
2
0), vs. H1 : zi ∼ (1− ε)N (µ1, σ

2
1) + εN (µ2, σ

2
2),

with ε ∈ (0, 1) and (µ1, σ
2
1) ̸= (µ2, σ

2
2). The test statistic is:

Qbimod(Z) =
s2

(1− ε̂ML)σ̂2
1,ML + ε̂MLσ̂2

2,ML + ε̂ML(1− ε̂ML)(µ̂1,ML − µ̂2,ML)2
,

where ε̂ML, µ̂1,ML, µ̂2,ML, σ̂1,ML, σ̂2,ML are maximum likelihood estimators.

Larger Qbimod(Z) values favor the alternative hypothesis H1, indicating bimodality,
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while smaller values support the null hypothesis H0, suggesting unimodality. In their

observation, Pokojovy and Jobe (2022) suggested to use Qvar(·) to locally improve the

initial guess of a “potential” direction and Qbimod(·) to verify if the local improvement

turns out to be adequate.

Using the PP step as part of the PP MCD algorithm, as detailed in Algorithm 3.1 and 3.2

by Pokojovy and Jobe (2022), a single warmstart is developed. The subsequent steps of the

algorithm, including the C-step, rescaling, and reweighting, follow the DetMCD procedure.

Unlike methods that involve randomization, the PP MCD algorithm ensures that both raw

and reweighted estimators are deterministic and reproducible. This consistency is due to

the fact that all statistical quantities in this method are computed through summation,

making them independent of the sample indices of the observations. As a result, the

estimators exhibit permutation invariance. Moreover, the PP MCD estimators are affine

equivariant.
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Chapter 4

Minimum Density Power Divergence

(MDPD)

Consider a parametric family of models {Fθ,θ ∈ Θ} with densities fθ defined with respect

to Lebesgue measure and let G denote the class of all (multivariate) distributions having

densities with respect to the Lebesgue measure. Suppose G ∈ G is the true distribution with

density g. The class of power divergence measure between the model density fθ and the

true density g introduced by Basu et al. (1998) for robust estimation in general parametric

models is given as:

dα(fθ, g) =



∫ {
f 1+α
θ (x)−

(
1 +

1

α

)
fα
θ (x)g(x) +

1

α
g1+α(x)

}
dx, α > 0,

∫
g(x) log

(
g(x)

fθ(x)

)
dx, α = 0,

(4.1)

where fθ is the density with respect to the Lebesgue measure belonging to a family of

parametric models {Fθ,θ ∈ Θ}, g is the density of true distribution G ∈ G, and α ≥ 0 is

the tuning parameter that balances efficiency with robustness.

When α = 0, the dα(fθ, g) is defined as

lim
α→0

dα(fθ, g) =

∫
g(x) log

(
g(x)

fθ(x)

)
dx,

and the minimum density power divergence (MDPD) function is the same the Kullback-

Leibler (KL) divergence, and its minimization is equivalent to the maximization of the log-

likelihood function, a method that lack robustness in parameter estimation. Conversely,
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when α = 1, the measure corresponds to the L2 distance between the model density fθ

and the true density g. However, the robustness of the minimum L2 distance estimator

comes at a significant cost in terms of asymptotic efficiency. Thus, the optimal range for α

is between 0 and 1, providing a smooth bridge between the L2 distance and the Kullback-

Leibler divergence. While values of α > 1 can be considered, they render the method

highly inefficient. Given a family of parametric models, the parameter θ is estimated

by minimizing the density power divergence measure over the parameter space Θ. The

resulting estimator is known as the minimum density power divergence (MDPD) estimator.

To estimate the parameter θ using the MDPD, we express the estimator as θ̂α = Tα(Gn),

where Gn represents the empirical distribution function derived from the observed sample.

For α > 0, the estimator θ̂α is obtained by minimizing the following functionHn(θ) (observe

that the last term in Equation (4.1) does not depend on θ):

Hn(θ) =

∫
Rp

f 1+α
θ (x)dx−

(
1 +

1

α

)
n−1

n∑
i=1

fα
θ (xi). (4.2)

Thus, the MDPD estimator θ̂α is given by:

θ̂α = argmin
θ∈Θ

Hn(θ). (4.3)

Let uθ(x) =
∂
∂θ

log fθ(x) denote the score function of the model. Under the assumption of

differentiability, the minimization of Hn(θ) leads to the following estimating equation:

Uα,n(θ) =
1

n

n∑
i=1

uθ(xi)f
α
θ (xi)−

∫
Rp

uθ(x)f
1+α
θ (x) dx = 0. (4.4)

Here, 0 represents a zero vector of dimension p. The robustness of this estimator against

outliers arises from the weighting of the score function uθ(x) by the power of the density

fα
θ (xi). This characteristic indicates that the MDPD estimator function as an M-estimator,

which solve the equation of the form
∑n

i=1 ψ(xi|θ) = 0, with

ψ(x|θ) = uθ(xi)f
α
θ (xi)−

∫
Rp

uθ(x)f
1+α
θ (x) dx. (4.5)
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The asymptotic consistency and normality results were consequently developed. Under

suitable regularity conditions, Basu et al. (1998) showed that the MDPD estimator has

compelling statistical characteristics. These encompass its asymptotic normality, its capac-

ity for affine equivariance (particularly in the context of location and scatter estimation),

its resilience in terms of breakdown point and efficiency, among other noteworthy qualities.

4.1 Multivariate Gaussian MDPD

Consider the p-variate MDPD objective function which follows from Equation (4.2) (the

detailed results are given by Pokojovy et al. (2024a):

Hn(θ) =

∫
Rp

f 1+α
θ (x)dx−

(
1 +

1

α

)
n−1

n∑
i=1

fα
θ (xi). (4.6)

Restricting our attention to the Gaussian distribution Np(µ,Σ), we obtain the parameter

θ = (µT , vec(Σ)T )T and the density

fθ(x) = (2π)−
p
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
= (2π)−

p
2 |Σ|−

1
2 exp

(
−1

2

∥∥Σ−1/2(x− µ)
∥∥2)

for µ ∈ Rp and Σ ∈ SPD(p× p) (SPD denotes semi-positive definite), where

SPD(p× p) :=
{
A ∈ Rp×p |AT = A and ξTAξ > 0 for all ξ ∈ Rp

}
.

Refer to Appendix A for detailed calculations.

To evaluated the first integral on the right-hand side of Equation (4.6), we compute∫
Rp

f 1+α
θ (x)dx =

∫
Rp

(2π)−
p
2
(1+α)|Σ|−

1
2
(1+α) exp

(
−1

2
(1 + α)

∥∥Σ− 1
2 (x− µ)

∥∥2)dx
= (2π)−

p
2
(1+α)|Σ|−

1
2
(1+α)

∫
Rp

exp

(
−1

2
(1 + α)

∥∥Σ− 1
2 (x− µ)

∥∥2)dx
= (2π)−

p
2
(1+α)|Σ|−

1
2
(1+α)|Σ|

1
2

∫
Rp

exp

(
−1

2
(1 + α)∥u∥2

)
du

= (2π)−
p
2
(1+α)|Σ|−

α
2

∫
Rp

exp

(
−1

2
(1 + α)∥u∥2

)
du,
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where we invoked the transformation theorem by substituting u = Σ− 1
2 (x−µ) and, thus,

x = |Σ| 12u+ µ and dx = |Σ| 12du. Similarly, substituting
√

1+α
2
u = 1√

2
v and, thus,

√
1 + αu = v, u =

1√
1 + α

v and du =
( 1√

1 + α

)p
dv,

we obtain∫
Rp

f 1+α
θ (x)dx = (2π)−

p
2
(1+α)|Σ|−

α
2

( 1√
1 + α

)p ∫
Rp

exp

(
−1

2

∥∥v∥∥2)dv
=

(
(2π)−

p
2

∫
Rp

exp

(
−1

2

∥∥v∥∥2)dv)((2π)−αp
2 (1 + α)−

p
2 |Σ|−

α
2

)
= (2π)−

αp
2 (1 + α)−

p
2 |Σ|−

α
2 =: ψ(Σ).

With the newly introduced function ψ(·), Hn(µ,Σ) can then be expressed as

Hn(µ,Σ) = ψ(Σ)−
(
1 +

1

α

)
n−1

n∑
i=1

fα
θ (xi). (4.7)

We derive the estimates below. First, we compute the “gradient” of Hn(·).

For any (µ,Σ) from the open subset Rp × SPD(p × p) of Rp × Rp×p, we can express the

following:

∂Hn

∂µ
=
∂ψ

∂µ
(Σ)−

(
1 +

1

α

)
n−1

n∑
i=1

∂fα
θ

∂µ
(xi),

∂Hn

∂Σ
=
∂ψ

∂Σ
(Σ)−

(
1 +

1

α

)
n−1

n∑
i=1

∂fα
θ

∂Σ
(xi).

Recalling Rp × SPD(p× p) is open, the Lagrange optimality conditions read as

∂Hn

∂µ
(µ,Σ) = 0p,

∂Hn

∂Σ
(µ,Σ) = 0p×p. (4.8)

The various parts are derived below:

∂fα
θ

∂µ
(xi) = fα

θ (xi)
(
− αΣ−1(xi − µ)

)
,

∂fα
θ

∂Σ
(xi) = −α

2
fα
θ (xi)

(
Σ−1 −Σ−1(xi − µ)(xi − µ)′Σ−1

)
∂ψ

∂µ
(Σ) = 0p×1,

∂ψ

∂Σ
(Σ) = −α

2
(2π)−

αp
2 (1 + α)−

p
2 |Σ|−

α
2 Σ−1,
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The first condition in Equation (4.8) can be expressed as

0 =
∂Hn

∂µ
(µ,Σ)

= −
(
1 +

1

α

)
n−1

n∑
i=1

∂fα
θ

∂µ
(xi)

=

(
1 +

1

α

)
n−1αΣ−1

n∑
i=1

fα
θ (xi)(xi − µ)

=
n∑

i=1

xif
α
θ (xi)− µ

n∑
i=1

fα
θ (xi).

Dividing the equation by (2π)−p/2|Σ|−1/2 and introducing the weights

wi(µ,Σ) = exp
(
− 1

2
(xi − µ)TΣ−1(xi − µ)

)
, (4.9)

we obtain the first optimality condition

µ
n∑

i=1

wα
i (µ,Σ) =

n∑
i=1

xiw
α
i (µ,Σ),

µ =

∑n
i=1 xiw

α
i (µ,Σ)∑n

i=1w
α
i (µ,Σ)

.

Proceeding to the second condition in Equation (4.8), we get

∂Hn

∂Σ
(µ,Σ) = 0

−α
2
(2π)−

αp
2 (1 + α)−

p
2 |Σ|−

α
2 Σ−1 −

(
1 +

1

α

)
n−1

n∑
i=1

∂fα
θ

∂Σ
(xi) = 0

−α
2
(2π)−

αp
2 (1 + α)−

p
2 |Σ|−

α
2 Σ−1+

α

2

(
1 +

1

α

)
n−1

n∑
i=1

fα
θ (xi)(Σ

−1 −Σ−1(xi − µ)(xi − µ)′Σ−1) = 0.

Multiplying both sides of the equation with 2α−1(2π)αp/2|Σ|α/2Σ and recalling Equa-

tion (4.9), we get

−(1 + α)−
p
2Σ+ 1

n

(
1 + 1

α

) n∑
i=1

wα
i (µ,Σ)Σ = 1

n

(
1 + 1

α

) n∑
i=1

wα
i (µ,Σ)(xi − µ)(xi − µ)T

Σ = 1
Dα

n∑
i=1

wα
i (µ,Σ)(xi − µ)(xi − µ)T ,
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where Dα(µ,Σ) =
∑n

i=1w
α
i (µ,Σ) − nα(1 + α)−

p
2
−1. Therefore, the MDPD estimates for

the location vector and scatter matrix are given by:

µ =

∑n
i=1 xiw

α
i (µ,Σ)∑n

i=1w
α
i (µ,Σ)

, (4.10)

Σ =

∑n
i=1w

α
i (µ,Σ)(xi − µ)(xi − µ)T∑n

i=1w
α
i (µ,Σ)− nα(1 + α)−

p
2
−1

(4.11)

The existence and uniqueness of these estimating equations are given by Maronna (1976)

under general assumptions about the functions w’s.

4.2 Asymptotic Distribution of MDPD Estimators

Theorem 4.2.1. Under the appropriate regularity conditions (refer to Basu et al., 1998),

with probability tending to 1 as n→ ∞, there exist θ̂ such that

1. θ̂ is consistent estimator of θ

2. n1/2
(
θ̂− θ

)
∼ N

(
0,J−1KJ−1

)
, that is asymptotically distribution multivariate nor-

mal with mean vector zero and scatter matrix J−1KJ−1, where

J =

∫
Rp

(uθ(x)⊗ uθ(x)) f
1+α
θ (x) dx

+

∫
Rp

(iθ(x)− αuθ(x)⊗ uθ(x)) (g(x)− fθ(x)f
α
θ ) dx,

K =

∫
Rp

(uθ(x)⊗ uθ(x)) f
1+2α
θ (x) dx− ξθ ⊗ ξθ,

ξθ =

∫
Rp

uθ(x)f
1+α
θ (x) dx,

with ξθ =
∫
Rp uθ(x)f

α
θ (x)g(x) dx and the information function iθ(x) := −∂uθ(x)

∂θ
.

For the proof of Theorem 4.2.1, refer to (Theorem 6.4.1 of Lehmann and Casella, 1998; Das

et al., 2022). We however evaluate (see Nkum et al., 2024) the integral in the Theorem

(4.2.1) as follows:
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4.2.1 Asymptotic Distribution of the Location Vector

The asymptotic normality results for the multivariate Gaussian location vector MDPD

estimator are given as:

n1/2
(
µ̂n
MDPD − µ̂

)
D→ N

(
0,

(
1 +

α2

1 + 2α

)p/2+1

Σ

)
, as n→ ∞. (4.12)

The detailed calculations are provided in Appendix A.3.

4.2.2 Asymptotic Distribution of the Scatter Matrix

The asymptotic normality results for the multivariate Gaussian scatter matrix MDPD

estimator are given as:

n1/2
(
Σ̂

n

MDPD − Σ̂

)
D→ N

(
0,

4(1 + α)p+4

(1 + 2α)(p+4)/2

(
K(α)− α2

)
(Σ⊗Σ)

)
as n→ ∞, (4.13)

where

K(α) =
(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1 ×
(
4α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
×
(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1
.

The detailed calculations are provided in Appendix A.5.

4.3 Gross Breakdown Point

The breakdown point of an estimator, which essentially measures the fraction of erroneous

data that can be handled before the estimator becomes unreliable, serves as a global indi-

cator of the estimator’s robustness. In this context, we assess the gross-error breakdown

point for the minimum density power divergence estimator of normal distribution parame-

ters under specific contamination scenarios (Ronchetti and Huber, 2009, p. 97).

Consider a p-variate normal distribution of a random variable x = (x1, x2, . . . , xp) ∼

N (µ,Σ), where µ is the mean vector and Σ is the covariance matrix. Let α > 0 and let g
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be the multivariate normal density N (µ,Σ), expressed as ϕµ,Σ(·) = |Σ|−1/2ϕ(Σ−1/2(·−µ))

and fθ be the N (m,S), we define the contaminated model with point contamination

q(x) = (1− ε)g(x) + ϵδz(x), (4.14)

where δz(x) is the Dirac delta function and z → ∞. The data are a random sample drawn

from q, and the target parameters are θ = (µ,Σ).

From the class of minimum density divergence in Equation (4.1), consider the maximizer

of as presented by Basu et al. (1998):

ψ(m,S) ≡ (1 + α)

∫
q(x)fαt (x)dx− α

∫
f1+α
t (x)dx

= (1 + α)(1− ε)

{∫
ϕµ,Σ(x)ϕ

α
m,S(x)dx+ ε

∫
δz(x)ϕ

α
m,S(x)dx

}
− α

∫
ϕ1+α
m,S(x)dx.

Let x, c,m ∈ Rp and D,S be positive definite matrices. The multivariate normal density

is given by:

ϕµ,Σ(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Now, let’s consider the integral (detail derivation is given in Appendix (A.10):∫
ϕc,D(x)ϕαm,S(x) dz

=
1

(2π)αp/2|D|1/2|D−1 + αS−1|1/2|S|α/2

× exp

(
−1

2
c′D−1c− α

2
m′S−1m+

1

2
(D−1c+ αS−1m)T (D−1 + αS−1)−1(D−1c+ αS−1m)

)
.

Also consider the integral:∫
δ(x− z)ϕα

m,S(x) dx = ϕα
m,S(z)

=
1

|S|α/2(2π)αp/2
exp

(
−α
2
(x−m)TS−1(x−m)

)
,

where:
∫
δ(x− z)ϕ(x) dx = ϕ(z) by the property of the Dirac delta function.

Finally, we have the integral:∫
ϕ1+α
m,S(x) dx =

1

(2π)(1+α)p/2|S|(1+α)/2

∫
exp

(
−1 + α

2
(x−m)TS−1(x−m)(1 + α)

)
dx.

=
1

(2π)αp/2|S|α/2
· 1

(1 + α)p/2
.
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Let B = ΣS−1. It follows that ψ1(m, A) ≡ (2π)αp/2|S|α/2ψ(m, A) is given by

ψ1(m,B) =

Bα/2

(
(1 + α)(ε− 1) exp{− 1

2µ
′Σ−1µ+ 1

2 (Iµ+ αBm)TΣ−1(I + αB)−1(Iµ+ αBm)− α
2m

′Σ−1Bm}
|I + αB|1/2

+ ε(1 + α) exp
(
−α

2
(x−m)TΣ−1B(x−m)

)
− α

(1 + α)p/2

)
.

We now wish to maximise this quantity over B (rather than S and m. First, ψ1(m, 0) = 0.

For B > 0, ψ1(m,B) consists mainly of two ridges which have heights

Bα/2

[
ε(1 + α)−

(
α

(1 + α)p/2

)]
at m = x,

and

Bα/2

[
(1 + α)(1− ε)

|I + αB|1/2
−
(

α

(1 + α)p/2

)]
at m = µ.

If the height at m = x is negative, which occurs when ε < K ≡ α
(1+α)p/2+1 , then B = 0

would be optimal only if the ridge height at m = µ is also negative for all B > 0. This

happens if ε > 1−K. However, since K < 1/2, the condition 1−K < ε < K is impossible.

Therefore, B = 0 cannot maximise ψ1(m,B).

Conversely, if the ridge height at m = x is positive, the value along this ridge will increase

to ∞ as B → ∞. In contrast, the values along the m = µ ridge remain finite: They

might be positive at some points, but they will have a finite maximum at a finite B and

approach a negative value as B → ∞. Therefore, if the ridge height at m = x is positive,

the maximum occurs at m = x with S = 0, meaning B will increase indefinitely, leading

to the highest possible values for ψ1(m,B). This implies that, with enough outliers, the

normal fit tries to match the extreme data points, leading to a mean vector x → ∞ and

and scatter matrix 0. This is simultaneous location vector and scatter matrix breakdown

in the sense that location “explodes” and scatter “implodes” (Hampel et al., 1986).

Therefore, the nominal breakdown occurs if

ε > ε∗(α) =
α

(1 + α)p/2+1
. (4.15)
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To maximize ε, observe that

ε∗(α) =
α

(1 + α)p/2+1
,

ε′∗(α) =
d

dα

(
α

(1 + α)p/2+1

)
.

Using the quotient rule:

ε′∗(α) =
(1 + α)p/2+1 − α

(
p
2
+ 1
)
(1 + α)p/2

(1 + α)2(p/2+1)

=
(1 + α)− α

(
p
2
+ 1
)

(1 + α)p/2+2

=
1− αp

2

(1 + α)p/2+2
.

We set ε′∗(α) = 0 to find the critical points. Solving ε′∗(α) = 0 gives:

1− α
p

2
= 0 =⇒ α =

2

p
.

Thus, maximum nominal breakdown point α occurs at 2
p
.

Let’s now examine it’s asymptotic behaviour:

Consider:

ε∗

(
2

p

)
=

2
p(

1 + 2
p

)p/2+1
=

(
p

p+ 2

)p/2

· 2

p+ 2
.

Let x = p
2
. We know from Euler identity that, as x→ ∞, we obtain:

lim
x→∞

(
1− 1

x+ 1

)n

= e−1,

thus: (
p

p+ 2

)p/2

=

(
1− 2

p+ 2

)p/2

=

(
1− 1

p
2
+ 1

)p/2

= e−1.
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Therefore, the asymptotic nominal breakdown point, independent of the tuning parameter

α, is given by:

ε >
2e−1

p+ 2
.

We observe that, ε is decreasing function of p. From Figure 4.1 we observe that as p in-

creases the maximum nominal breakdown point decreases. This reduction in the breakdown

point with increasing p implies that the robustness of the estimator diminishes in higher-

dimensional spaces. Consequently, the estimator becomes more susceptible to outliers and

deviations from the model assumptions as the dimensionality of the data increases.
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Figure 4.1: Maximum nominal breakdown point for the MDPD estimator.

A notable limitation of the MDPD estimator is that its breakdown point (bdp) reduces

to 0 as the dimensionality p increases, making it less effective in very high-dimensional

contexts. This reduction in the breakdown point indicates that the estimator’s robustness

significantly diminishes as the number of variables increases, rendering it more vulnerable
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to the presence of outliers and deviations from model assumptions. Consequently, applying

this method to datasets with dimensions not exceeding 15 is ideal. In higher dimensions,

alternative robust estimation methods or dimensionality reduction techniques should be

considered to maintain robustness and effectiveness.
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Chapter 5

Multivariate Gaussian MDPD

Algorithm

The minimum density power divergence (MDPD) method is a robust M-estimator-based

statistical technique that balances efficiency and robustness in estimating multivariate pa-

rameters. We introduce the multivariate Gaussian MDPD algorithm, providing a detailed

computational framework for implementing this robust estimation method. The algorithm

is precious for handling data with outliers or deviations from the assumed distribution,

ensuring reliable estimates of the mean vector and covariance matrix. We will explore

the algorithm’s iterative fixed-point approach, initialization, convergence criteria, and the

robustness parameter α, which controls the influence of outliers.

M-estimators are characterized by their estimating equations, leading to an iterative algo-

rithm. The convergence of this procedure is well-established, as detailed in Maronna (1976).

The solution for monotone M-estimators is unique but they lack robust in high dimension.

Thus, while the initial point may influence the number of iterations required, they do not

affect the final results, guaranteeing the robustness and reliability of these estimators. On

the hand, redescending M-estimators are very efficient, have a high breakdown point and

unlike many other methods, they do not suffer from masking effect. However reascending

estimators may not have a unique solution. So the initial point for the iterative solution

should be carefully chosen possibly by another estimator.

Basu et al. (1998) observed that the influence functions for the estimation of the standard
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normal location have a rescinding nature. However, Pokojovy et al. (2024a) outlined a

custom fixed-point iterative algorithm to estimate the mean vector and scatter matrix

using the minimum density power divergence (MDPD) method, which always converges to

a local minimum of the MDPD loss function.

The algorithm starts with initial estimators µ̂0 and Σ̂0. The convergence of the algo-

rithm is determined based on either an error threshold or a maximum number of iterations,

whichever is reached first. It is designed to robustly estimate the mean vector and co-

variance matrix of a multivariate data set using the minimum density power divergence

(MDPD) method. Robust estimation is crucial when dealing with data that may contain

outliers or deviate from the assumed distribution. The MDPD approach provides a way to

balance efficiency and robustness by introducing a parameter α that controls the trade-off

between these two aspects.

The process begins with the initialization of data and parameters: The algorithm set n× p

data matrix as an input, where n is the number of observations and p is the number of

variables. A small positive value ϵ (e.g., 10−8) is chosen to set the convergence tolerance

for the iterative updates. The robustness parameter α is selected to control the influence

of outliers, which can be predefined or computed based on a given breakdown point (bdp).

The breakdown represents the proportion of contaminated data the estimator can handle

before breaking down.

The algorithm starts with an initial mean vector µ(0) and covariance matrix Σ(0). Here,

the classical mean vector and scatter matrix was used. The iterative process updates

these estimates using a fixed-point approach until convergence is reached base on the error

threshold or the maximum iteration. This procedure converges to a local minimum (see

Maronna, 1976). Similar to the MCD procedure, a minimum subset size is required to

achieve a specified breakdown point. A novel addition to the fixed-point iteration is a

weight adjustment mechanism. If the covariance is too small, the algorithm identifies the

smallest inflation factor for the current iteration to ensure that the resulting weights sum
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up to at least the minimum subset size (hmin). This mechanism ensures that the effective

sample size remains robust by maintaining the minimum subset size, leading to the desired

breakdown point and convergence to the local minimum.

This algorithm is particularly significant in its robustness, efficiency, and flexibility. By

incorporating the robustness parameter α, it can handle outliers and deviations from the

assumed distribution, providing more reliable estimates. The iterative fixed-point approach

ensures efficient computation, balancing robustness with computational feasibility. This

makes the algorithm especially useful in applications where data quality is a concern, and

robust statistical methods are required to obtain accurate estimates of central tendency and

dispersion. Furthermore, the fixed-point iteration algorithm with MDPD preserves affine

equivariance, an important property in robust statistics. Affine equivariance means that if

the data undergoes an affine transformation, the estimates produced by the algorithm will

undergo the same transformation. The preservation of affine equivariance further enhances

its applicability and reliability in various practical scenarios (as already discussed in Section

2.3).
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Algorithm 1: Fixed-Point Iteration
Data: The n by p matrix, where n > p

1 Select ε > 0 small, e.g., ε := 10−9, K (maximum iteration, default is 500) and choose α ∈ [0, 2/p] (α = 0 is

the classical estimates and α = 2/p gives the asymptotically maximum bdp)

2 Initialize the mean µ(0) and covariance matrix Σ(0) using:

µ(0) := x̄ ≡ 1

n

n∑
i=1

xi, Σ(0) := S ≡ 1

n

n∑
i=1

(xi − x̄)(xi − x̄)T

for k = 0, 1, 2, . . . ,K do

3 Compute the updated mean µ(k+1) and covariance matrix Σ(k+1) using weighted averages:

µ(k+1) =

∑n
i=1(w

(k)
i )αxi∑n

i=1(w
k
i )

α
, Σ(k+1) =

∑n
i=1(w

(k)
i )α(xi − µk)(xi − µ(k))T∑n

i=1 w
α
i − nα(1 + α)−

p
2−1

where the weights w
(k)
i are given by:

wi(µ
(k),Σ(k)) = exp

(
− 1

2 (xi − µ(k))TΣ−1(xi − µ(k))
)

4 Adjust weights if necessary (hmin is the minimum subset size):

5 if
∑n

i w
(k+1)
i < hmin then

6

r = arg min
r∈[0,2]

∣∣∣∣∣
n∑

i=1

exp
(
−1

2
α(xi − µ(k))TΣ−1(xi − µ(k))r

)
− hmin

∣∣∣∣∣
w
(k+1)
i = exp

(
− r
2
α(xi − µ(k))TΣ−1(xi − µ(k))

)
7 end

8 Compute the squared error:

9

ϵ← 1

n

n∑
i=1

(w
(k+1)
i − w(k)

i )2

if ϵ < ε then

10 break

11 end

12 end

13 return Best µ , Σ and iter

46



Chapter 6

Simulation Study for MDPD

Estimators

In this Chapter, we present a comparative analysis of the minimum density power di-

vergence (MDPD) estimator against the FASTMCD and DetMCD algorithms based on

simulated data to assess the empirical performance of the MDPD estimator. The simula-

tion study is designed to evaluate the robustness and accuracy of various estimators for

the mean vector and scatter matrix of a multivariate data set. The simulation process

involves several key steps: generating multivariate data, introducing contamination to sim-

ulate outliers, applying different robust estimation methods, and computing error measures

to evaluate each estimator’s performance. These steps are essential for providing a com-

prehensive assessment of the estimators’ robustness to outliers and their overall accuracy

in parameter estimation.

We conducted all simulations using the R programming language. For the MDPD estima-

tor, we implemented the fixed-point iteration algorithm to estimate the mean vector and

scatter matrix, as provided by the R package from Pokojovy et al. (2024b). This custom

implementation leverages the robustness parameter α to control the influence of outliers

and efficiency. FASTMCD and DetMCD estimators were computed using the covMcd func-

tion from the robustbase package in R, which implements well-established algorithms for

robust covariance estimation. By comparing the MDPD estimator with the FASTMCD

and DetMCD algorithms, this simulation study aims to provide valuable insights into the

relative strengths and weaknesses of each method. The results will highlight the scenarios
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in which the MDPD estimator excels, particularly in terms of handling data contamination

and achieving reliable parameter estimates.

6.1 Data generating setup

We generated data matrices of various sizes from a multivariate normal distribution. Specif-

ically, we considered sample sizes of n = 30, 50, 100, 200, 500 and dimensions p = 2, 5, 10, 15.

Each data set consists of n observations of p variables, drawn from a standard multivariate

Gaussian distribution

xi
i.i.d∼ (1− ε)Np(0, I) + εNp

(
1
√
ncp/p, I

)
, for i = 1, 2, . . . , n,

where I is the p × p identity matrix. Since MDPD estimators are affine equivariant, we

can assume, without loss of generality, that the location vector is 0 and the scatter matrix

is I.

To simulate contaminated data, we introduced outliers by modifying a fraction of the obser-

vations. The contamination fraction ε was varied to evaluate its impact on the robustness

of the estimators. Outliers were generated by adding a constant shift to the contaminated

observations. This shift is determined by the non-centrality parameter (ncp) which ensures

that the shift is significant relative to the data’s dimensions, and is then scaled by a factor

δ. This process effectively moves the contaminated observations away from the central

distribution, creating realistic outliers. The contamination was applied as follows:

xi =


1
√

ncp
p

+ δzi, for i = 1, . . . , [(εn)]

zi, for i = [(εn)] + 1, . . . , n

, (6.1)

where zi
i.i.d∼ Np(0, I) and ncp = 10, 25, 100, 250, 500 and δ = 0.001, 1.0, 3.0. The contami-

nation described gives rise two types of contamination, point contamination when δ = 1.0

and cluster contamination when δ = 1.0 and δ = 3, where the value of δ influences the
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dispersion of the contamination cluster. This simulation setup is similar to Hubert et al.

(2012) and Pokojovy and Jobe (2022).

6.2 Evaluation Criterion

To assess the performance of the estimators, several error measures were adopted:

(1) Squared Error of the Mean Vector:

eµ = ||µ̂(X)||2 =
p∑

i=1

µ̂2
i .

(2) Normalized Frobenius Norm Error of the Covariance Matrix:

eΣ =
1

p

(
tr(Σ̂Σ̂)− 2tr(Σ̂) + p

)
.

(3) Kullback-Leibler Divergence:

eKL =
1

2

(
tr(Σ̂)− p+

p∑
i=1

(µ̂i)
2 − log det

(
Σ̂
))

.

For each of the error measures, 1, 000 replications were performed, and the average error

and the standard deviation of the error were reported for comparison. Each of these

performance measures should be as close to zero as possible.

6.2.1 No Contamination

Figure 6.1 to Figure 6.4 below display the average error of the mean vector and scatter

estimates for different simulation scenarios, characterized by varying dimensions (p) and

nominal breakdown points (bdp). Each bar in the figures represents the standard deviations

of the error measures, providing an indication of the variability in the estimates.

The results across all scenarios consistently show that MDPD performs comparably to

FastMCD and DetMCD in terms of estimating the mean vector and scatter. A significant
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observation is that while the average error decreases with increasing sample sizes for all

methods, the MDPD method tends to exhibit less variability in its estimates. This is

evidenced by the smaller standard deviation bars in the figures, indicating more stable

and reliable performance across different simulations. In contrast, the DetMCD method

appears to exhibit greater variability in its estimates, as indicated by the larger error bars.
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Figure 6.1: MSE and SD of errors of the mean vector and scatter matrix estimates for uncon-

taminated data: simulation scenario with p = 2, and bdp = 0.25.
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Figure 6.2: MSE and SD of errors of the mean vector and scatter matrix estimates for uncon-

taminated data: simulation scenario with p = 5, and bdp = 0.0924.
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Figure 6.3: MSE and SD of errors of the mean vector and scatter matrix estimates for uncon-

taminated data: simulation scenario with p = 10, and bdp = 0.0502.
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Figure 6.4: MSE and SD of errors of the mean vector and scatter matrix estimates for uncon-

taminated data: simulation scenario with p = 15, and bdp = 0.0345.

As the dimensionality increases, see Figures 6.3 and 6.4, where p = 10 and p = 15 respec-

tively, the average error for all methods slightly increases. This increase is expected as the

methods lose efficiency with higher dimensions. Despite this, the MDPD method continues

to perform on par with the other robust methods. Importantly, it maintains the advantage

of lower variability, which is crucial for high-dimensional data analysis where stability is a
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significant concern. On the other hand, the DetMCD method shows increased variability,

which might affect its reliability in higher dimensions.

6.2.2 Point Contamination

The performance of the minimum divergence power divergence (MDPD) method generally

exhibits superiority in scatter estimation (eΣ) when compared to FastMCD and DetMCD,

particularly in scenarios with varying levels of point contamination. As observed in Figures

6.5 to 6.8, MDPD maintains lower Mean Squared Error (MSE) and Kullback-Leibler (KL)

divergence for scatter estimates across different dimensions and sample sizes. This trend

is supported by the data in Table 6.1, which shows that MDPD consistently demonstrates

lower standard deviations for scatter estimation (eΣ), indicating higher robustness and

stability against contamination.

For instance, in Figure 6.5 (p = 2, n = 100) and Figure 6.6 (p = 5, n = 200), MDPD

shows lower variability and more stable performance in scatter estimation as the number of

contamination points (ncp) increases. This trend continues in Figure 6.7 (p = 10, n = 500)

and Figure 6.8 (p = 15, n = 1000), where MDPD retains its efficiency even in larger sample

sizes and higher dimensions, maintaining its lead over FastMCD and DetMCD in terms of

scatter estimation accuracy and consistency.

However, for mean vector estimation (eµ) MDPD’s performance is more variable. FastMCD

and DetMCD often show better results, particularly in scenarios with higher contamination

levels. As evidenced in Figures 6.6 and 6.7, FastMCD and DetMCD exhibit lower MSE

and KL divergence for mean vector estimates in these cases. Table 6.1 confirms these

findings, showing that FastMCD and DetMCD have lower standard deviations for mean

vector estimation showing that FastMCD and DetMCD have lower standard deviations for

mean vector estimation. However, as the n increases in each scenario, performance is at

par.
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Figure 6.5: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix esti-

mates for point contamination in simulation scenarios: p = 2, n = 100, ε = 12.5%, and bdp = 0.25.
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Figure 6.6: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix esti-

mates for point contamination in simulation scenarios: p = 5, n = 200, ε = 6.2%, and bdp = 0.12.
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Figure 6.7: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix es-

timates for point contamination in simulation scenarios: p = 10, n = 500, ε = 3.4%, and

bdp = 0.067.
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Figure 6.8: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix es-

timates for point contamination in simulation scenarios: p = 15, n = 1000, ε = 1.5%, and

bdp = 0.046.

In summary, when matched for bdp, MDPD demonstrates clear superiority in scatter es-

timation, consistently outperforming FastMCD and DetMCD in terms of lower MSE, KL
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divergence, and variability. This makes MDPD the preferred method for robust scatter

estimation under point contamination. Conversely, for mean vector estimation, FastMCD

and DetMCD exhibit better performance and less variability, especially at higher contam-

ination levels, indicating their robustness and reliability in these scenarios. Thus, while

MDPD excels in scatter estimation, FastMCD and DetMCD are more suitable for mean

vector estimation in contaminated datasets.

Table 6.1: Standard Deviation of Errors for Point Contamination.

n p bdp ε ncp eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

100 2 0.25 0.125 10 0.0472 0.094 0.0547 0.3013 0.976 0.5142 0.0876 0.2203 0.1201

25 0.037 0.039 0.0377 0.1171 0.2092 0.1838 0.0439 0.0621 0.0575

100 0.035 0.0357 0.0359 0.1011 0.2029 0.1831 0.0427 0.0609 0.0555

250 0.039 0.0367 0.0382 0.1044 0.1751 0.1823 0.0435 0.0542 0.0568

200 5 0.1232 0.0616 10 0.0402 0.0403 0.0409 0.0631 0.0494 0.0489 0.0582 0.0384 0.0397

25 0.0221 0.0198 0.0205 0.0233 0.0277 0.0262 0.027 0.028 0.0266

100 0.0212 0.0199 0.0189 0.0193 0.0265 0.0261 0.0243 0.0267 0.0267

250 0.0232 0.0204 0.02 0.0194 0.0272 0.0252 0.0252 0.0276 0.0257

500 10 0.067 0.0335 10 0.0178 0.0147 0.0155 0.0101 0.0076 0.0075 0.0226 0.0178 0.018

25 0.0138 0.0226 0.0225 0.0163 0.0386 0.045 0.0298 0.0681 0.0808

100 0.0106 0.01 0.0096 0.0056 0.0061 0.0063 0.0147 0.0139 0.0146

250 0.0109 0.0096 0.0099 0.0053 0.0064 0.0059 0.0137 0.0146 0.0139

1000 15 0.046 0.0153 10 0.0079 0.0069 0.0066 0.0028 0.0026 0.0025 0.0107 0.0099 0.0098

25 0.0073 0.0081 0.0078 0.0038 0.0035 0.0035 0.0127 0.0114 0.0112

100 0.0064 0.0059 0.006 0.0024 0.0025 0.0024 0.0093 0.0093 0.009

250 0.0061 0.0061 0.0059 0.0024 0.0025 0.0025 0.0094 0.0093 0.0093

6.2.3 Cluster Contamination

The performance of the Mean Divergence Power Divergence (MDPD) method under cluster

contamination scenarios generally mirrors its performance under point contamination. In

both scenarios, MDPD demonstrates superiority in scatter estimation (eΣ), consistently
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maintaining lower Mean Squared Error (MSE) and Kullback-Leibler (KL) divergence com-

pared to FastMCD and DetMCD. This is evidenced in Figures 6.9 to 6.12 for cluster

contamination and Figures 6.5 to 6.8 for point contamination, as well as in Tables 6.1 and

6.2, which show lower standard deviations for scatter estimation for (eΣ) MDPD.
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Figure 6.9: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix es-

timates for cluster contamination in simulation scenarios: p = 2, n = 100, ε = 12.5%, and

bdp = 0.25.
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Figure 6.10: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix

estimates for cluster contamination in simulation scenarios: p = 5, n = 200, ε = 6.2%, and

bdp = 0.12 (cluster contamination).
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Figure 6.11: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix

estimates for cluster contamination in simulation scenarios: p = 10, n = 500, ε = 3.4%, and

bdp = 0.067 (cluster contamination).
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Figure 6.12: MSE and Kullback–Leibler divergence of the mean vector and scatter matrix

estimates for cluster contamination in simulation scenarios: p = 15, n = 1000, ε = 1.5%, and

bdp = 0.046 (cluster contamination).

Similarly, for mean vector estimation (eµ), FastMCD and DetMCD generally perform better

than MDPD both point and cluster contamination scenarios. FastMCD and DetMCD

consistently exhibit lower MSE and KL divergence for mean vector estimates, particularly

at higher contamination levels, as shown in both sets of figures and tables.

However, a notable difference under cluster contamination is the slightly increased variabil-

ity in scatter estimation (eΣ) across all methods. This increased variability is reflected in

the higher standard deviations observed in Table 6.2 compared to Table 6.1. Despite this

increase, MDPD maintains its relative advantage over FastMCD and DetMCD in scatter

estimation.
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Table 6.2: Standard Deviation of Errors for Cluster Contamination.

n p bdp eps ncp eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

100 2 0.25 0.125 10 0.0451 0.0441 0.0477 0.1363 0.2271 0.2222 0.0528 0.0702 0.0684

25 0.0362 0.035 0.0354 0.1075 0.1983 0.168 0.0424 0.058 0.0532

100 0.0373 0.0381 0.0374 0.1005 0.21 0.1811 0.0408 0.0614 0.0555

250 0.0391 0.0401 0.0368 0.0971 0.2018 0.1867 0.0414 0.0602 0.0578

200 5 0.1232 0.0616 10 0.0242 0.0236 0.0238 0.0246 0.0302 0.03 0.0281 0.0314 0.0312

25 0.0218 0.0208 0.0195 0.021 0.0259 0.0255 0.0249 0.0266 0.0257

100 0.0233 0.0204 0.0197 0.0199 0.0263 0.025 0.0253 0.0267 0.0255

250 0.0229 0.0188 0.0195 0.0196 0.0264 0.0249 0.0252 0.0262 0.0256

500 10 0.067 0.0335 10 0.0117 0.0111 0.0118 0.0063 0.0066 0.0068 0.0152 0.0156 0.0159

25 0.0107 0.0101 0.0099 0.0063 0.0064 0.0064 0.0152 0.0146 0.0145

100 0.0109 0.0106 0.0102 0.0054 0.0064 0.0062 0.0141 0.015 0.0142

250 0.0113 0.0096 0.0102 0.0057 0.0062 0.006 0.0146 0.0138 0.014

1000 15 0.046 0.0153 10 0.0069 0.0065 0.0062 0.0024 0.0026 0.0026 0.0095 0.0096 0.0094

25 0.0062 0.0061 0.0059 0.0024 0.0026 0.0024 0.0091 0.0095 0.0089

100 0.0062 0.006 0.0058 0.0024 0.0026 0.0025 0.0091 0.0096 0.0091

250 0.0061 0.0058 0.0059 0.0024 0.0025 0.0025 0.0094 0.0093 0.0092

The rest of the results under various scenarios are presented in Appendix B across several

tables. Similar observations can be made, and it is also noted that as the sample size

increases, the MSE of the (eΣ) becomes comparable to that of FastMCD and DetMCD.

6.3 Empirical Breakdown Point

The breakdown point (bdp) is an important measure in robust statistics, representing the

proportion of contamination an estimator can withstand before becoming unreliable. Given

that algorithmic implementations of robust estimators often display lower than expected

breakdown points, we empirically verify the nominal breakdown point as outlined in Section

4.2.
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We conducted an extensive simulation study to assess the MDPD estimator under point

contamination. Sample sizes considered were n = 30, 50, 100, 200, 500, 1000 and dimensions

were p = 2, 5, 10, 15. Each combination of n and p involved 10,000 replications. Point

contamination was introduced at a level δ = 0.001, with a non-central parameter ncp =

10, 000. The breakdown point threshold was set at ε = 0.001.

To evaluate if the MDPD estimator breaks down under point contamination, we employed

the following condition. Let X be the data matrix with n rows and p columns, where the

first nout rows are contaminated. The MDPD estimator is applied to this contaminated

data.

Define:

• Xclean = X[−(1 : nout), ], the uncontaminated portion of the data.

• x̄, the mean vector of Xclean.

• S, the covariance matrix of Xclean.

• di, the Mahalanobis distance for the uncontaminated data points.

The Mahalanobis distance for each point in Xclean is given by:

di = (xi − x̄)TS−1(xi − x̄).

The average Mahalanobis distance for the uncontaminated data is:

d̄ =
1

n− nout

n−nout∑
i=1

di.

The breakdown condition is assessed by comparing the minimum Mahalanobis distance of

the contaminated data Xcontaminated to 90% of the average Mahalanobis distance of the

uncontaminated data:

min
(
dcontaminated
j

)
≤ 0.90× d̄,

where dcontaminated
j are the Mahalanobis distances of the contaminated points.

60



This condition is effective because the Mahalanobis distance is highly sensitive to outliers,

making it a powerful tool for detecting the influence of contaminated data points. By

comparing the minimum Mahalanobis distance of the contaminated points to 90% of the

mean distance of the uncontaminated points, we establish a robust threshold that adapts

to the overall scale and variability of the uncontaminated data. If the smallest Mahalanobis

distance among the contaminated points is less than this threshold, it indicates that the

contaminated points are not being flagged as outliers, suggesting that the estimator has

broken down. The factor of 0.90 balances robustness and sensitivity, ensuring the estima-

tor’s robustness is adequately tested without being overly sensitive to minor deviations.

Repeating the simulation 10,000 times for each combination of n and p ensures stable and

reliable breakdown point estimation, averaging out the variability due to random noise.

The proportion of times the breakdown condition is satisfied over the total number of

replications (10,000) provides the breakdown percentage. The empirical bdp is determined

as the smallest proportion of contamination nout

n
at which the breakdown percentage exceeds

the threshold. Table 6.3 shows the results of the empirical breakdown point based on point

contamination.

p /n 30 50 100 200 500 1000

2 0.3000 0.2800 0.2800 0.2850 0.2840 0.2850

5 0.1667 0.1600 0.1500 0.1500 0.1480 0.1490

10 0.1000 0.1000 0.0900 0.0850 0.0840 0.0840

15 0.0667 0.0600 0.0600 0.0600 0.0600 0.0590

Table 6.3: Empirical Breakdown Points for Different Sample Sizes and Dimensions.
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Chapter 7

Real Data Analysis with MDPD

Estimators

In this chapter, we showcase practical applicability and efficacy of the proposed mini-

mum density power divergence (MDPD) estimator method through analysis of real-world

datasets. We compare our method against the classical unbiased MLE and the minimum

covariance determinant (MCD) estimator. We consider two distinct examples: Principal

Component Analysis (PCA) with the Swiss Banknote dataset (see Flury and Riedwyl,

1988) and Multivariate Regression with the Pulp Fiber and Paper dataset (see Whiting

et al., 2018).

7.1 PCA Diagnostics

The first dataset in this research is the Swiss Banknote dataset which has been a subject

of interest in previous studies by Flury and Riedwyl (1988) and Riani et al. (2009) and was

further used by Pokojovy and Jobe (2022) to benchmark their procedures against the state-

of-art procedures of FastMCD and DetMCD. Specifically, 100 banknotes are genuine, and

the remaining 100 are counterfeit. Six different variables were measured for each banknote,

furnishing a multi-dimensional dataset. These variables capture various characteristics

or attributes of the banknotes, and they serve as the basis for analysis in this research.

Studies by Willems et al. (2009), Pison and Van Aelst (2004), Salibián-Barrera et al. (2006)

and Hubert et al. (2012) reveal that the 100 counterfeit Swiss bank notes contains several
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outlying observations and are highly correlated. Figure 7.1 shows the boxplots of counterfeit

Swiss banknotes, illustrating their distribution. The boxplot analysis reveals that the

banknotes’ length, left, right, and diagonal dimensions are tightly clustered, indicating

uniformity in these measurements. However, the bottom and top dimensions exhibit a

broader distribution with potential outliers, suggesting more variability and anomalies.

This variability in the bottom and top values is the most notable observation, hinting at

possible distinctions or inconsistencies in those dimensions of the banknotes.
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Figure 7.1: Boxplots for the counterfeit part of the Swiss Banknote dataset.
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The boxplot analysis of the six variables for the counterfeit part of the Swiss banknote

dataset reveals that outliers may be present. These outliers indicate that there are a

few data points significantly different from the majority, which could suggest a potential

presence measurement errors, data entry errors, or inherent variability in these specific

features of the banknotes.

Principal component analysis (PCA) is a widely used statistical method that reduces high-

dimensional data to a few components, which are linear combinations of the original vari-

ables. This reduction helps interpret and understand the main sources of variation in the

data. PCA is commonly applied in fields like computer vision, chemometrics, and genetics,

often serving as a preliminary step before further multivariate analysis techniques. The

first principal component corresponds to the direction in which the projected observations

have the largest variance, while the second component is orthogonal to the first and also

maximizes the variance of the projected data points. Classical PCA based on the empirical

scatter matrix is known to be highly sensitive to outlying observations. The first com-

ponents are often attracted to outlying points, which may prevent them from capturing

the variation of regular observations (Hubert et al., 2005). Therefore, following Croux and

Haesbroeck (2000) and Hubert et al. (2005), we perform robust PCA on the dataset using

the eigenvalues and eigenvectors of the robust estimator of the covariance matrix. The goal

is to find linear combinations of the original variables that contain most of the informa-

tion, even in the presence of outliers, and to flag outliers and determine their type using

diagnostic plots proposed by Pison and Van Aelst (2004).

In the PCA analysis, we set the tuning parameter to α = 0.25 (corresponding to a nominal

breakdown point of 10.24%) for the MDPD and matched the FastMCD(bdp =10.24%) to

a breakdown point of 10.24%. The first three principal components are retained in our

analysis. The robust MDPD PCA’s first three principal components account for 92% of

the total variation, the robust MCD PCA accounts for 90%, and the classical PCA method

accounts for 90%. Figure 7.2 is a scree plot the cumulative explained variance obtained
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from the eigenvalues of respective scatter estimates.
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Figure 7.2: Explained variance by the classical and robust PCA

To identify which outliers significantly influence the PCA analysis, we employ the diagnostic

plot introduced by Pison and Van Aelst (2004). This plot effectively visualizes the empirical

influence of each observation on the first k eigenvectors retained for analysis against their

robust distance, calculated using robust estimates of location and scatter. In Figures 7.3

and 7.4, the Mahalanobis distance or robust distance of each observation is displayed on

the x-axis, while the overall empirical influence on the first k = 3 eigenvectors is plotted

on the y-axis. Formally, the overall empirical influence of observation xi are given by:

EIFk(xi, l) =

√√√√1

k

k∑
j=1

(
z̃2j − λjet

x̃Dx̃ej

)2
(7.1)

EIFk(xi, v) =

√√√√ 1

kp

k∑
j=1

p∑
l=1

(
p∑

k=1,k ̸=j

(
z̃kz̃j −

λk + λj
2

et
jDx̃ek

)
ek

λj − λk

)2

(7.2)
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where:

• EIFk(xi, l) is the empirical influence function for the eigenvalues.

• EIFk(xi, v) is the empirical influence function for the eigenvectors.

• z̃j = eT
j x̃, where x̃ = Σ

−1/2
D (x− µ) is the standardized observation.

• λj and λk are the eigenvalues of the covariance matrix Σ.

• ej and ek are the eigenvectors of the covariance matrix Σ.

• Dx̃ = diag(x̃x̃T ) is a diagonal matrix with elements derived from the standardized

observation x̃.

•
∑p

k=1,k ̸=j indicates a summation over all p components except j.

Additionally, the Mahalanobis distance, which measures the distance between a point and

a distribution, is given by:

D(xi,µ,Σ) =

√
(xi − µ)TΣ−1(xi − µ)

This approach follows the methodology detailed by Critchley (1985) in the context of

Principal Component Analysis.

The graph is segmented into four quadrants by horizontal and vertical lines that represent

cutoff values. The empirical influence cutoff is determined through Monte Carlo simulation,

as outlined by Pison and Van Aelst (2004), corresponding to the 97.5% quantile of the

overall empirical influences. The robust distance cutoff is the usual
√
χ2
6,0.975 = 3.80. These

quadrants classify observations into regular points, non-outlying influential points, non-

influential outliers, and influential outliers. This classification is essential for diagnosing the

data, as it helps identify which observations have a substantial impact on the PCA results.

The influence on the eigenvectors is particularly critical, as it indicates whether outliers

are altering the directions of the principal components, thereby affecting the interpretation

and accuracy of the PCA.
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Figure 7.3: Overall empirical influence for the eigenvectors versus the Mahalanobis distance

based on classical scatter matrix for the counterfeit notes in the Swiss banknote dataset.

In Figure 7.3, we observe that 4 data points are flagged as non-outlying influential, 3 are

flagged as non-influential outliers, and only 1 data point is flagged as an influential outlier

for the eigenvectors. This comparison to the robust counterparts reveals that potential

influential outliers are masked in the classical PCA method, making it less reliable for

PCA analysis when outliers are present. The classical PCA method’s inability to effectively

identify and manage influential outliers underscores the importance of using robust PCA

methods to ensure accurate and resilient multivariate data analysis in the presence of

outliers.
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Figure 7.4: Diagnostic Plot: Overall empirical influence for the eigenvectors versus the robust

distance based on MDPD (Panel a) and FastMCD (Panel b) for the counterfeit notes in the Swiss

banknote dataset.

The robust PCA diagnostic in Figures 7.4(a) and 7.4(b), based on the empirical influence

of the eigenvector, presents a completely distinct results compared to the classical PCA

diagnostic. Figure 7.4(a) shows that using the robust MDPD method, 10 observations

are flagged as influential outliers for the eigenvectors1, with observations 71, 67, 60, and

48 having very large influence. Figure 7.4(b) is based on the robust FastMCD method,

identifying 9 observations as influential outliers for the eigenvectors, with observation 67

having very large influence. These results suggest that, when matched for their breakdown

point (bdp), the robust MDPD method and the robust FastMCD method perform similarly

in identifying influential outliers. However, the MDPD method is less computationally

intensive, making it a more efficient choice.

1The outlier map of the Swiss bank notes studied in Hubert et al. (2012) reveals the same observations

as influential outliers, comparing the score distance to the orthogonal distance.
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7.2 Multivariate Regression Diagnostics

The second dataset we consider is the Pulp Fiber and Paper dataset, provided by Whiting

et al. (2018). It offers a practical example of applying robust multivariate regression tech-

niques. This dataset includes measurements of properties of pulp fibers and the paper made

from them. The aim is to investigate the relationships between pulp fiber properties and

the resulting paper properties. The dataset consists of 62 measurements of the following

four pulp fiber characteristics: arithmetic fiber length, long fiber fraction, fine fiber fraction,

and zero span tensile. Additionally, four paper properties were measured: breaking length,

elastic modulus, stress at failure, and burst strength. This analysis can be performed with

multivariate linear regression. In Figure 7.5 the density plot of the predictor variables are

presented.
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Figure 7.5: Density plot of the predictor variables.

Multivariate linear regression involves modeling the relationship between multiple predic-

tors x = (x1, . . . , xp)
T and multiple responses y = (y1, . . . , yq)

T . The model can be ex-
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pressed as:

y = BTx+α+ ε, (7.3)

where:

• B is the (p× q) slope matrix, α is the q-dimensional intercept vector,

• ε = (ε1, . . . , εq)
T are the errors, assumed to be independently and identically dis-

tributed with mean 0 and covariance matrix Σε.

The joint distribution of (x,y) is assumed normal and is characterized by the mean vector

µ and scatter matrix Σ, which can be partitioned as:

µ =

µx

µy

 , Σ =

Σxx Σxy

Σyx Σyy

 .

Traditionally, the mean vector µ and covariance matrix Σ are estimated by their empirical

counterparts µ̂ and Σ̂. The least squares estimators of the regression parameters can be

derived from these estimates (see Johnson and Wichern, 1998 and Rousseeuw et al., 2004):

β̂ = Σ̂
−1

xxΣ̂xy, α̂ = µ̂y − β̂
T
µ̂x,

Σ̂ε = Σ̂yy − β̂
T
Σ̂xyβ̂, ri = yi − β̂

T
xi − α̂,

(7.4)

The Mahalanobis distances for the residuals and the individual observation for the di-

agnostic plot (combines information on regression outliers and leverage points) are given

by

d(ri) :=

√
rT
i (Σ̂ε)−1ri, d(xi) :=

√
(xi − µx)

T (Σ̂
−1

xx)
−1(xi − µx). (7.5)

Multivariate regression is widely used across various fields such as chemometrics, engineer-

ing, econometrics, psychometrics, and more. It allows for simultaneous modeling of multiple

outcomes, providing insights into the relationships among predictors and responses. Recent

advancements in multivariate regression have been explored in various studies, contributing

to the understanding and application of this methodology in complex data analysis sce-

narios (see Johnson and Wichern, 1998, Barrett and Ling, 1992, Breiman and Friedman,
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1997, Cook and Setodji, 2003 and Gleser, 1992). It is however well known that classical

multiple regression is heavily sensitive to outliers in the data. This also applies to multi-

variate regression. Therefore, Rousseeuw et al. (2004) proposed using robust estimators for

the center µ and scatter matrix Σ in Equation (7.4) to construct a robust multivariate re-

gression method that has the equivariance properties required for a multivariate regression

estimator.

For robust multivariate regression method, using the MDPD estimators and the MCD

estimators, the estimation of the coefficients, begins by combining the predictor variables

X (an n× p matrix) and response variables Y (an n× q matrix) into a single dataset Z,

where Z is an n× (p+ q) matrix.

Z =
(
X Y

)
,

where Z is an n× (p+ q) matrix.

The robust covariance matrix Σ̂rob is then partitioned into the submatrices:

Σ̂z =

Σ̂xx Σ̂xy

Σ̂yx Σ̂yy

 ,

where:

• Σ̂xx is the robust estimate of the covariance matrix of X,

• Σ̂yy is the robust estimate of the covariance matrix of Y ,

• Σ̂xy is the robust estimate of the covariance matrix between X and Y ,

• Σ̂yx is the transpose of Σ̂xy.

The robust mean vectors are also estimated accordingly. Here, our focus is on the robust

location vectors and scatter matrices estimated using the MCD and MDPD methods. For

MCD, as an MLE, replacing classical mean vectors and covariance matrices with robust

estimators suffices. However, MDPD, being an M-estimator, ideally requires minimizing
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a specific criterion and iterative solutions for accurate β estimation. Despite this, our

primary goal here is to further analyze the robust mean vectors and scatter matrices to

better understand their practical applications and robustness against outliers.

The diagnostic plot from the classical, robust MDPD and robust MCD is presented in

Figure 7.6.
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Figure 7.6: Plot of Robust Distances of Residual versus Robust Distances of the Pulp Fiber and

Paper data.2

Using the cutoff values,
√
χ2
p,0.975 = 3.34 for both the horizontal and vertical lines, we

observe that MDPD(α = 0.16, corresponding to bdp = 0.1) distance-distance plot flagged

9 observations as bad leverage points and MCD(bdp = 0.10) flagged 3 as bad leverage

points. However, the classical distance-distance plot did not flag any of the observation as

2MDPD method assigns larger distances to very influential outliers compared to MCD.
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bad leverage. It is noteworthy that classical multivariate regression detected only three of

these outliers (51, 52, and, 56) and considered four of the outliers (46, 58, 60, and, 61) to be

good leverage. For the MSE of the robust methods, MDPD and MCD are head-to-head.

The results correspond to the results that were obtained in Rousseeuw et al. (2004). As

it was investigated by Rousseeuw et al. (2004), the origin of the collected data reveals

that all but the last four pulp samples (observations 59-62) were produced from fir wood.

Moreover, it was found that many of the outlying samples were obtained using different

pulping processes. For example, observation 62 is unique as it is the only sample from a

chemi-thermomechanical pulping process. Observations 60 and 61 are the only samples

from a solvent pulping process, while observations 51, 52, and 56 were obtained from a

kraft pulping process.
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Chapter 8

One-Way Robust Multivariate

Analysis of Variance (MANOVA)

Multivariate analysis of variance (MANOVA) is a powerful statistical technique that ex-

tends univariate ANOVA to analyze multiple dependent variables simultaneously. It eval-

uates whether mean vectors of these dependent variables differ significantly across groups

defined by one or more independent variables. It is particularly useful in marketing, edu-

cational research, genetics, economics, and medicine for examining group differences across

multiple outcomes (see Xu and Cui, 2008). Developed by Hotelling (1992), MANOVA eval-

uates the equality of group means by examining the multivariate data, thereby accounting

for the correlations between dependent variables which might be overlooked in separate

univariate analyses.

Random samples are collected from each of the k populations with common covariance

matrix and can be arranged as the following table:

Sample 1 Sample 2 Sample k

from Np(µ1,Σ) from Np(µ2,Σ) · · · from Np(µk,Σ)

X11 X21 · · · Xk1

X12 X22 · · · Xk2

...
...

...

X1n1
X2n2

· · · Xknk

Total X1· X2· · · · Xk·

Mean X̄1· X̄2· · · · X̄k·
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The model for each of observation vector is given by

X ij = µ+αi + εij

= µi + εij, i = 1, 2, . . . , k; j = 1, 2, . . . , ni,
(8.1)

X ij represents the j-th observation in the i-th group, where the total number of observa-

tions is N =
∑k

i=1 ni. The term µi denotes the unobserved fixed effect for the i-th group,

µ is the overall mean, and
∑k

i=1 αi = 0. We assume the random errors εij are independent

Np(0,Σ) variables.

Classical one-way MANOVA assumes multivariate normality, homogeneity of covariance

matrices, and absence of outliers. Under the classical assumptions that all groups fol-

low multivariate normal distributions, numerous test statistics have been explored in the

literature, with one of the most frequently utilized being the likelihood-ratio test. The

likelihood-ratio test is a powerful statistical method widely used for hypothesis testing in

various fields. It compares the likelihood of the data under one hypothesis against the like-

lihood under an alternative hypothesis, aiding in model selection and parameter estimation

(see Morris et al., 1997, Johnson and Petkau, 1995). In the context of MANOVA, this test

statistic is more commonly referred to as Wilks’ Lambda.

In practice, traditional statistical assumptions are often violated, leading to misleading

conclusions. For instance, the presence of outliers can severely affect test statistics, resulting

in inflated Type I error rates or reduced power, as noted by Huber and Ronchetti (2011)

and Hampel et al. (1986). To address these issues, robust statistical methods that can

handle deviations from these assumptions are essential.

Todorov and Filzmoser (2010) proposed a robust Wilks’ Lambda statistic using minimum

covariance determinant estimators, demonstrating improved performance under various

distributions. Van Aelst and Willems (2011) developed robust tests using S-estimators

and MM-estimators, introducing a fast robust bootstrap method for estimating null distri-

butions. Finch and French (2013) compared 16 test statistics across multiple conditions,

finding that alternatives outperform standard MANOVA when assumptions are violated.
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Xu and Cui (2008) presented a robustified MANOVA method for detecting differentially

expressed genes in microarray data, utilizing probe-level information and permutation tests,

showing improved power, especially with small group numbers.

These studies highlight the importance of robust MANOVA techniques when dealing with

non-normal data, unequal covariance matrices, or outliers, offering practitioners various

options for more reliable multivariate analyses. Recently, Das et al. (2022) proposed an

alternative robust ANOVA Wald-test based on the Minimum Density Power Divergence

(MDPD) estimator. They proved that this test follows a χ2 distribution and demonstrated

that it has substantially superior performance compared to the likelihood-based test in the

presence of outliers. TheWald test is a versatile statistical tool applicable to various models,

including ANOVA and MANOVA (Randall et al., 1997). Its simplicity and generality

make the Wald test appealing practically. This is part of our broader effort to assess the

performance of the asymptotic distribution of the estimated parameters in this study.

In this section, we propose to extend the robust ANOVA Wald-test based on MDPD by

Das et al. (2022) to MANOVA. This robust approach aims to mitigate the influence of

outliers and heavy-tailed distributions, providing more reliable inference in the presence of

data contamination. We derive the asymptotic properties of the proposed test and examine

its finite-sample performance through extensive Monte Carlo simulations. Additionally, we

apply the robust MANOVA to real-world datasets and compare the results with those from

classical MANOVA and other robust methods.

8.1 Parameter Estimation

Consider the density power divergence measure between the true density g and the model

density fθ in Equation (4.1) and let θ =
(
µT

1 ,µ
T
2 , . . . ,µ

T
k , vec(Σ)T

)T
denote the parameter
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of the MANOVA Model 8.1. For α > 0, the DPD measure is empirically written as

d̂α(fθ, g) =
1

N

k∑
i=1

ni∑
j=1

∫
f 1+α
θ (yij)dyij −

1 + α

Nα

k∑
i=1

ni∑
j=1

fα
θ (yij) + c(α), (8.2)

where c(α) = 1
Nα

∑k
i=1

∑ni

j=1

∫
g1+α(yij)dyij is independent of θ. Based on the results in

Appendix A.2, we rewrite Equation (8.2) as

d̂α(fθ, g) = (2π)−αp/2|Σ|−α/2(1+α)−p/2

1− 1 + α

Nα

k∑
i=1

ni∑
j=1

exp
{
−α

2
(yij − µi)

TΣ−1(yij − µi)
}+c(α). (8.3)

The MDPD estimator of the θ is obtained by directly minimizing the DPD measure in

Equation (8.3) or by solving the fixed point iteration (detail derivation is given in Appendix

A.2) as follow:

µi =

∑ni

j=1 yij exp
{
−α

2
(yij − µi)

TΣ−1(yij − µi)
}∑ni

j=1 exp
{
−α

2
(yij − µi)

TΣ−1(yij − µi)
} for i = 1, 2, . . . , k,

Σ =

∑k
i=1

∑ni

j=1(yij − µi)(yij − µi)
T exp

{
−α

2
(yij − µi)

TΣ−1(yij − µi)
}∑k

i=1

∑ni

j=1 exp
{
−α

2
(yij − µi)

TΣ−1(yij − µi)
}
− Nα

(1+α)
p
2+1

.

(8.4)

The estimation of µi and Σ is given in the iterative Algorithm 2
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Algorithm 2: MDPD estimators for the MANOVA model
Data: Y : N × p matrix of the response variable, X: factor block indicator, α: tuning

parameter

1 Select ε > 0 small, e.g., ε := 10−8, R (maximum iteration) and choose α ∈ [0, 2/p] (α = 0 is

the classical Wald test and α = 2/p gives the maximum bdp)

2 Initialize the mean µ
(0)
i , i = 1, 2, · · · , k, and covariance matrix Σ(0) using:

µ
(0)
i := mi ≡ coordinate-wise mean or median of Y i,

Σ(0) := S ≡ sample covariance matrix or MAD of Y

for k = 0, 1, 2, . . . , R do

3 Compute the updated mean µ
(k+1)
i , i = 1, 2, · · · , k, and covariance matrix Σ(k+1):

µ
(k+1)
i =

∑ni

j=1 yij exp
(
−α

2
(yij − µ

(k)
i )T (Σ(k))−1(yij − µ

(k)
i )
)

∑ni

j=1 exp
(
−α

2
(yij − µ

(k)
i )T (Σ(k))−1(yij − µ

(k)
i )
) ,

Σ(k+1) =

∑k
i=1

∑ni

j=1 exp
(
−α

2
(yij − µ

(k)
i )T (Σ(k))−1(yij − µ

(k)
i )
)
(yij − µ

(k)
i )(yij − µ

(k)
i )T∑k

i=1

∑ni

j=1 exp
(
−α

2
(yij − µ

(k)
i )T (Σ(k))−1(yij − µ

(k)
i )
)
− Nα

(1+α)(p+2)/2

,

4 Compute the relative change in µ̂ and Σ̂ :

relµ =
∥µ(k+1)

i − µ
(k)
i ∥

∥µ(k)∥
relΣ =

∥Σ(k+1) −Σ(k)∥F
∥Σ(k)∥F

5 Check for convergence:

6 if relµ < δ and relΣ < ϵ then

7 break

8 end

9 end

10 return µ̂ and Σ̂

The algorithm for MDPD estimators in the MANOVA model starts by selecting a small

value for ε, setting a maximum number of iterations, and choosing a tuning parameter α.

Initial values for the mean and covariance matrix are calculated using either coordinate-wise

means or medians and the sample covariance matrix or mean absolute deviation (MAD). For

each iteration, it computes new mean and covariance matrix estimates using exponential

weighting, which dampens the influence of outliers. It checks for convergence by comparing
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the relative changes in the mean and covariance matrix to δ. If these changes are smaller

than ε, the algorithm stops; otherwise, it continues updating the estimates until convergence

or the maximum number of iterations is reached. The final output consists of the robust

estimates for the mean and covariance matrix.

8.2 Hypothesis Testing

Consider the MANOVA test, where the null hypothesis asserts that the mean vectors across

different groups are identical, formulated as:

H0 : µ1 = µ2 = · · · = µk vs. H1 : µi ̸= µj for at least one of 1 ≤ i ̸= j ≤ k.

(8.5)

The null hypothesis H0 is equivalent to m(θ) = 0p(k−1), where

m(θ) =


µ1 − µ2

µ2 − µ3

...

µk−1 − µk

 .

Observe here that, m(·) imposes p(k − 1) constraints for the null hypothesis. With slight

abuse of notation, let m(θ) = m(µ), since m(θ) function does not depend on Σ.

Definition 8.2.1. Let θ̂ be the MDPD estimator of θ. The Wald-type test statistic for

testing the null hypothesis in (8.5) is

WN = NmT
(
θ̂
)[
MT

(
θ̂
)
J−1

(
θ̂
)
K(θ̂)J−1

(
θ̂
)
M
(
θ̂
)]−1

m
(
θ̂
)
, (8.6)

where

• M
(
θ̂
)
is the gradient matrix of the constraint function, where the gradient is given

by:

M (θ) =
∂mT

(
θ̂
)

∂θ
.
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• J
(
θ̂
)
and K

(
θ̂
)
are defined in Appendix A.

• N =
∑k

i=1 ni.

For the gradient matrix, we define Mµ as:

Mµ = Hµ ⊗ Ip,

where Ip is the p× p identity matrix and Mµ is defined as:

Hµ =



1 0 0 0 · · · 0 0 0

−1 1 0 0 · · · 0 0 0

0 −1 1 0 · · · 0 0 0

0 0 −1 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · −1 1 0

0 0 0 0 · · · 0 −1 1

0 0 0 0 · · · 0 0 −1


k×(k−1)

.

Then, it can be shown that M(θ) =
(
MT

µ ,0(k−1)p×p2
)T

. From Appendix A.8, the test

statistic WN in Equation (8.6) is simplified as

WN = N

(
(1 + 2α)

(1 + α)2

)(p+2)/2

mT (µ̂)

[
MT

µS
−1Mµ

]−1

m (µ̂) , (8.7)

where S is k × k block diagonal matrix. The i-th diagonal blocks are the ni

N
Σ̂

−1

p×p matrix

and the off-diagonal blocks are p× p zero matrices.

Theorem 8.2.1. Under the regularity conditions in Appendix A.9, the asymptotic null

distribution of the proposed Wald-type test statistic given in (8.7) is χ2
p(k−1).

The proof of the theorem is straight-foreword from Basu et al. (2017).

80



8.3 Choosing Optimal α

The asymptotic distribution of the MDPD estimator plays a crucial role in selecting the

optimal value of the DPD parameter α. As the performance of the corresponding estimator

directly impacts the MANOVA test, it is essential to choose α that balances robustness

and efficiency of µ̂ effectively, as discussed in Das et al. (2022). In practical applications,

one might either choose a fixed α to achieve a specific robustness level, trading off some

efficiency, or determine an optimal α based data-driven approach. There are two primary

methods we consider choosing the optimum α in the context of DPD MANOVA: one

focusing on optimal efficiency and the other on optimal breakdown point.

Optimum Efficiency

The first method involves selecting α that minimizes the mean squared error (MSE) of the

estimator µ̂ . The empirical estimate of the MSE as a function of a pilot estimator µP is

given by:

M̂SE(α) = (µ̂− µp)T (µ̂− µp) + tr(Σ̂µ), (8.8)

where Σ̂µ is the asymptotic scatter matrix of µ̂, given by (detailed calculations is provided

in Appendix A.8.1)

Σ̂µ =

(
1 +

α2

1 + 2α

)p/2+1

S−1.

To implement this technique, a pilot value αp is initially selected to guide the optimiza-

tion. The process is iterated by using the optimum α from the previous stage as the pilot

estimator for the current stage, continuing until convergence is achieved. Specifically, the

iterations proceed until the change in the α value between iterations falls below a prede-

fined tolerance level. This method reduces sensitivity to the initial value of µp, as long as

the initial estimate is robust.
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Optimum Breakdown Point

The second method focuses on selecting the α that maximizes the breakdown point. The

alpha value is predetermined and added as a fixed parameter, specifically calculated as α =

2
p
, where p is the number of variables. This value of alpha is chosen because it maximizes the

breakdown point, ensuring the estimator’s robustness to the highest possible proportion of

contamination in the data. The breakdown point is a critical robustness measure indicating

the estimator’s ability to handle outliers without being unduly influenced, thus ensuring

reliable results even in the presence of significant data contamination.

8.4 Small Sample Correction

Small sample correction is employed to improve the accuracy of the p-value for small sample

sizes. This involves generating R = 1000 additional samples under the null hypothesis and

computing the test statistic for each sample. The mean and variance of these generated

test statistics are then used to adjust the location and scale of the original test statistic

distribution. Specifically, the test statistic is adjusted using the formula Tadj = T−µ̂T

σ̂T
,

where µ̂T and σ̂2
T are the sample mean and variance of the generated test statistics. The

adjusted p-value is then calculated using the chi-squared distribution with p(k−1) degrees

of freedom. This correction mitigates the biases present in small samples, enhancing the

robustness and reliability of the statistical inference in the MANOVA test based on MDPD.

8.5 Monte Carlo Simulations

In this section, we conduct a comprehensive Monte Carlo study to evaluate the performance

of the proposed Wald-type MDPD test for MANOVA, following a similar setup as described

in Das et al. (2022) and Todorov and Filzmoser (2010). This study investigates the empirical

performance of the proposed test statistic under a variety of scenarios, including different

sample sizes, dimensionalities, error distributions, and types of outliers.
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We compare the performance of our proposed method with four MANOVA tests: the

classical Wald test, the classical Wilks’ Lambda test, the rank-based Wilks’ Lambda test,

and the robust MCD Wilks’ Lambda test. These tests are implemented using the rrcov

package in R. For our proposed Wald-type MDPD test, we considered four fixed values of

the tuning parameter α for different p’s. Additionally, we determined an optimal value of α

through a data-driven adaptive approach referred to as optimum efficiency (“DPD(OE)”)

and an optimal value based on the maximum breakdown point (“DPD(OB)”) as discussed

in Section 8.3.

Data Generation

The data generation process involved generating data from multiple populations with differ-

ent distributional properties and contamination scenarios. Two types of data distributions

were considered:

1. Multivariate Normal Distribution:

Y i ∼ Np(0, I), i = 1, 2 . . . , n,

whereNp(0, I) denotes a p-dimensional multivariate normal distribution with location

vector 0 and identity scatter matrix Ip.

2. Multivariate t-Distribution:

Y i ∼ tp(q),

where tp(q) denotes a p-dimensional multivariate t-distribution with q degrees of

freedom.

Contamination Scenarios

To assess the robustness of the MANOVA tests, different contamination scenarios were

introduced:
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• Random Contamination: A specified proportion (e.g., 5%) of the data points

were replaced with outliers generated from a different mean vector µc and covariance

matrix I. That is, ϵ% original standard Gaussian errors is replaced with εij ∼

N
(
51T , I

)
in the generalized MANOVA Model 8.5.

• Clustered Contamination: Outliers were introduced in specific populations to

simulate clusters of contaminated data. This involved replacing a subset of the data

points in certain population groups with outliers. That is, concentrated vertical out-

liers are generated by substituting ϵ% of errors in the first block by εij ∼ N
(
51T , I

)
.

Evaluation Metrics

The performance of each method was evaluated using the following metrics:

• Significance Level: The proportion of replications where the test rejects the null

hypothesis when it is true. This assesses the test’s ability to maintain the nominal

significance level.

• Power: The proportion of replications where the test correctly rejects the null hy-

pothesis when it is false. This evaluates the test’s sensitivity to detect true effects.

• Mean Squared Error (MSE): Measures the accuracy of the estimated parameters

by comparing the estimated values to the true values.

8.5.1 Accuracy of the Distribution of the Test Statistic

In Theorem 8.2.1, the Wald test statistic for the DPD MANOVA is shown to follow

the χ2
p(k−1) distribution. To investigate the accuracy of this approximation, we generate

N = 1000 samples from a standard multivariate Gaussian distribution, considering various

values for the dimension p and the number of groups k, as well as both equal and unequal

sample sizes ni for i = 1, 2, . . . , k. For the level simulation, all mean vectors are set to

(0, 0, 0, 0, 0)T and are generated from a multivariate normal distribution with a common
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spherical scatter matrix I. For the power simulation, we employ a specific alternative hy-

pothesis configuration: each group ni, i = 1, . . . , k is generated from a multivariate normal

distribution with a common spherical scatter matrix I. The mean of the first group is

(−0.4, 0.02,−0.2,−0.1,−0.4)T , while the means of all other groups are (0, 0, 0, 0, 0)T .

For each method, we calculate 1000 p-values and plot them using histograms. Under the null

hypothesis, we expect the p-values to be uniformly distributed, indicating proper calibration

of the test. The uniform distribution of p-values means that each p-value is equally likely.

If the test is well-calibrated, approximately 5% of the p-values should be less than 0.05

(assuming a 5% significance level), 10% should be less than 0.10, and so on. This indicates

that the test maintains the expected rate of Type I errors (false positives). For power

analysis, where the null hypothesis is false, we anticipate the p-values to be right-skewed,

demonstrating the test’s ability to detect deviations from the null hypothesis.

We compare the distribution of the proposed Wald-type MDPD test with the the classical

Wald test equivalent to MDPD(α = 0), the classical Wilks’ Lambda test, the rank-based

Wilks’ Lambda test (Nath and Pavur, 1985), and the robust MCDWilks’ Lambda (Todorov

and Filzmoser, 2010) test concurrently under each scenario. This comparison is conducted

under both pure and contaminated data conditions to assess the robustness and accuracy

of the tests. In particular, we can expect that some methods may tend to be more conser-

vative or more liberal in specific scenarios, impacting their Type I error rates and power.

This comprehensive comparison allows us to identify which tests are likely to maintain

appropriate levels of significance and power under various conditions. Figures 8.1, 8.2, and

8.3 illustrate the significance level (Panel a) and power (Panel b) for different contamina-

tion scenarios with p = 5, k = 4, n1 = n2 = n3 = n4 = 100. In the case of pure data

(Figure 8.1), the p-values for all methods appear uniformly distributed, indicating good

calibration under the null hypothesis. The power analysis shows right-skewed distribu-

tions, demonstrating the tests’ ability to detect true effects. For 5% random contamination

(Figure 8.2), the MDPD with larger α and MCD(bdp = 0.5) tests maintain a more uniform
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distribution compared to classical tests, indicating better robustness, while still showing

right-skewed p-values for power. Under 5% cluster contamination (Figure 8.3), the MDPD

and MCD(bdp = 0.5) tests again exhibit more uniform p-value distributions and effective

power, highlighting their robustness. Overall, these plots confirm that the MDPD test

and MCD(bdp = 0.5), especially with an appropriate tuning parameter, tends to be more

robust to contamination while maintaining reasonable level and power, making it suitable

for practical applications involving potentially contaminated data.
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Figure 8.1: Significance Level (Panel a) and Power (Panel b) for Uncontaminated Data.
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Figure 8.2: Significance Level (Panel a) and Power (Panel b) for 5% random contamination.
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Figure 8.3: Significance Level (Panel a) and Power (Panel b) for 5% cluster contamination.

8.5.2 Empirical Levels for Varying Sample Sizes and Dimensions

To compare the empirical level (that is, observe measure of the type I error rate or size) of

the test statistics, consider a one-way MANOVA model under the null hypothesis

H0 : µ1 = µ2 = · · · = µk.

We assume that the observations come from identical multivariate distribution, where each

µi is the zero vector (µi = (0, . . . ,0)T ) and the scatter matrix is identity matrix (I).

This assumption is valid as the test statistics are affine equivariant. The observations

are thus generated from a multivariate Gaussian distribution yij ∼ N(0, I). The empiri-

cal level is computed as the percentage of test statistics in 1000 replications that exceed

the nominal χ2 critical value. This percentage serves as an estimate of the actual signif-

icance level, offering a practical measure of the true type I error rate. The type I error

rates (nominal significance levels) α are set to 0.10, 0.05 and 0.01. With 1000 replications,

the two standard deviation intervals around the nominal levels are calculated as follows:

(0.0905, 0.1095), (0.0431, 0.0569), and (0.0069, 0.0135). We will consider several dimensions

p = 2, 5, 8, 10 and groups k = 2, 3, 4 and sample sizes ni, i = 1, 2, 3, 4. The specific sample

sizes for the different groups in the simulations are detailed in the following Table 8.1
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Table 8.1: Group sizes for the simulation study

Two groups Three groups Four groups

(n1, n2) (n1, n2, n3) (n1, n2, n3, n4 )

(30, 30) (30, 30, 30) (30, 30, 30, 30)

(50, 50) (50, 50, 50) (50, 50, 50, 50)

(100, 100) (100, 100,100) (100, 100, 100, 100)

(50, 30) (50, 40, 40) (50,40, 35, 30)

(50, 100) (100, 80, 50) (100, 80, 50, 30)

In Table 8.2, we present the significance levels of various MANOVA tests for uncon-

taminated multivariate normal distributions. The simulation setup involves comparing

the MDPD Wald-type based test with Optimum Efficiency (MDPD(OE)), the robust

MCD Wilk’s Lambda, the classical Wilk’s Lambda (CWL), the classical Rank-based test

(RANK). These tests are evaluated under three-group (k = 3) scenarios with different di-

mensions (p) and total sample sizes (n = n1+n2+n3). The analysis is based on N = 1000

Monte Carlo replications, examining the empirical significance levels α = 0.05 and α = 0.1.

The primary objective of this simulation is to assess how well each test maintains its nominal

significance level across various dimensional settings and sample sizes. By systematically

varying the parameters p, n1, n2, and n3 we aim to provide a comprehensive comparison

of the reliability of each test under ideal conditions. This evaluation is crucial for under-

standing the performance of these tests in practical applications and guiding researchers

in selecting the most appropriate test for their specific multivariate data analysis needs.

Additionally, we examine how the empirical significance level converges to the nominal

level as the sample size increases for each dimension p, highlighting the improvement in

test accuracy with larger sample sizes.

In Table 8.2, we observe that all the methods perform well, falling within the two standard
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deviation intervals around the nominal levels. The CWL and Rank tests consistently

align with the nominal level across different dimensions (p) and sample sizes, with minor

deviations. The MDPD(OE) test shows some variability, with significance levels fluctuating

around the nominal value, sometimes falling below and sometimes within the interval.

However, the MDPD(OE) test can be tuned with different α to improve its performance on

uncontaminated data. The MCD(bdp = 0.5) test mostly falls within this interval, even in

higher-dimensional settings, indicating good performance. As the sample size increases, all

the methods perform similarly, maintaining significance levels close to the nominal values.

Table 8.2: Empirical Levels for MDPD(OE) test, robust MCD Wilk’s Lambda test, classical

Wilk’s Lambda (CWL) test, and classical Rank-based test for different dimensions p and the

sample sizes n = n1 + n2 + n3 (Based on N = 1000 Monte Carlo replications with nominal

significance levels α = 0.1 and 0.05).

α = 0.05 α = 0.1

p n1 n2 n3 MDPD(OE) MCD CWL Rank MDPD(OE) MCD CWL Rank

2 30 30 30 0.0550 0.0560 0.0640 0.0630 0.1000 0.1040 0.1140 0.1140

2 50 30 45 0.0600 0.0510 0.0570 0.0550 0.1190 0.1010 0.1160 0.1150

2 50 50 50 0.0500 0.0520 0.0440 0.0400 0.1090 0.1010 0.1000 0.1000

2 50 100 85 0.0610 0.0590 0.0620 0.0610 0.1000 0.1180 0.1050 0.0960

2 100 100 100 0.0500 0.0460 0.0470 0.0440 0.0950 0.0820 0.0840 0.0830

5 30 30 30 0.0580 0.0550 0.0550 0.0570 0.1130 0.0960 0.1080 0.1170

5 50 30 45 0.0410 0.0400 0.0450 0.0480 0.0900 0.1030 0.0930 0.0970

5 50 50 50 0.0440 0.0410 0.0450 0.0420 0.0860 0.0910 0.0900 0.0930

5 50 100 85 0.0680 0.0580 0.0630 0.0570 0.1110 0.0910 0.0980 0.1040

5 100 100 100 0.0500 0.0540 0.0520 0.0580 0.0950 0.1080 0.1060 0.1190

8 50 100 85 0.0570 0.0570 0.0520 0.0500 0.1150 0.0990 0.0960 0.1080

8 100 100 100 0.0520 0.0580 0.0430 0.0510 0.1040 0.0970 0.0890 0.1020

8 200 100 135 0.0490 0.0550 0.0530 0.0510 0.0950 0.0920 0.0990 0.1040

8 150 150 150 0.0530 0.0510 0.0500 0.0480 0.0990 0.0980 0.0950 0.0970

8 200 200 200 0.0600 0.0540 0.0530 0.0460 0.1120 0.1010 0.1090 0.0970

8 200 200 200 0.0600 0.0540 0.0530 0.0460 0.1120 0.1010 0.1090 0.0970

10 100 100 100 0.0430 0.0520 0.0440 0.0520 0.0960 0.1000 0.0970 0.0900

10 200 100 135 0.0450 0.0510 0.0460 0.0490 0.0910 0.1080 0.0930 0.0940

10 150 150 150 0.0700 0.0590 0.0600 0.0690 0.1220 0.1180 0.1130 0.1200

10 200 200 200 0.0520 0.0510 0.0490 0.0510 0.1050 0.1000 0.0990 0.1020
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8.5.3 Empirical Levels for Different Contaminations and Error

Distributions

The empirical significance level is computed as the proportion of test statistics in 1000

replications that exceed the nominal critical value at a 5% level of significance. The results

are reported in Table (8.3). The setup involves data with dimensionality p = 5, number

of groups k = 4 and group sizes n1 = n2 = n3 = n4 = 100 under four scenarios: no con-

tamination (normal distribution), 5% random contamination, 5% clustered contamination,

and t3 distribution. For each scenario, we calculate the empirical significance level (Type

I error rate) and the Mean Squared Error (MSE) of the estimated mean vector (µ̂), scaled

by the sample size N .

The tests analyzed include MCD(bdp = 0.5), MDPD tests with varying tuning parameters

(0.05, 0.1, 0.2), MDPD(OB), MDPD(OE), MANOVA, and Rank-based test.

The results indicate that the MCD(bdp = 0.5) test provides moderate robustness, with

empirical levels close to the nominal 5% across all scenarios. For example, under 5% random

contamination, the MCD(bdp = 0.5) test has an empirical level of 0.0530 and an MSE of

88.27. However, its MSE values are relatively higher compared to some MDPD-based tests,

indicating less accuracy in mean estimation under contamination.

Under the t3 distribution scenario, which introduces heavy-tailed data, the empirical sig-

nificance levels increase notably for most tests. For instance, the MCD test reaches an

empirical level of 0.1700 and an MSE of 125.38, reflecting the challenge posed by heavy-

tailed distributions. The MDPD tests, particularly with tuning parameters of 0.1 and

0.2, again show better robustness with lower empirical levels and MSE values, such as the

MDPD(0.2) test, which has an empirical level of 0.0480 and an MSE of 102.85.

The CWL test, however, performs poorly under contamination scenarios, showing high

empirical levels and MSE values. For instance, under 5% clustered contamination, it reaches

an empirical level of 0.4350 and an MSE of 365.30.
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These findings suggest that MDPD-based tests offer a balanced performance, providing ro-

bustness against contamination while maintaining reasonable estimation accuracy, making

them preferable to classical tests in contaminated data scenarios. The MCD(bdp = 0.5)

test offers some robustness but is outperformed by the MDPD tests in terms of MSE. The

t3 distribution scenario highlights the challenges for all tests, but MDPD-based methods

still show relatively better performance.

Table 8.3: The Empirical level of different tests and the MSE of µ̂ (times N) for the

corresponding estimators for different error distributions.

c = 0, Normal c=5%, Random c = 5%, Clustered t3

Test Level MSE Level MSE Level MSE Level MSE

MCD 0.0480 86.2293 0.0530 88.2672 0.0480 86.4968 0.1700 125.3849

DPD(0.05) 0.0520 80.2406 0.1170 162.0318 0.0740 80.7253 0.0200 126.5639

DPD(0.1) 0.0430 82.0029 0.0630 85.3388 0.0670 82.3185 0.0340 110.0233

DPD(0.2) 0.0450 88.2504 0.0550 91.6373 0.0560 88.1470 0.0480 102.8518

DPD(OB) 0.0460 109.5123 0.0510 112.9685 0.0580 108.5080 0.0400 113.4719

DPD(OE) 0.0570 79.6490 0.0550 84.2180 0.0630 80.6465 0.0450 104.5226

MANOVA 0.0550 79.6091 0.8160 1305.9504 0.4350 365.3034 0.0330 241.4604

Rank 0.0510 – 0.3770 – 0.1090 – 0.0400 –

8.5.4 Empirical Levels for Different Sample Sizes

Figure 8.4 illustrates the performance of different MANOVA tests under various conditions:

uncontaminated data (top left), 1% random outliers (top right), 5% random outliers (bot-

tom left), and 5% clustered outliers (bottom right). Overall, the Wald test and classical

Wilk’s Lambda test (CWL) maintain their nominal significance levels well in uncontami-

nated data. The MDPD(OE) and MCD(bdp = 0.5) tests demonstrate superior robustness

across all scenarios, maintaining nominal significance levels effectively, even in the presence
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of random and clustered outliers. The classical Wald test shows more variability and sensi-

tivity to outliers, particularly with higher percentages of random outliers. As n increases,

it has tendency to reject every test. These trends highlight the MDPD(OE) and MCD

tests’ robustness to data contamination compared to the Wald, classical Wilk’s Lambda

test (CWL), and rank-based tests, which exhibit varying degrees of sensitivity, especially

with increasing outlier presence.
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Figure 8.4: The empirical level of different tests in uncontaminated data (top left) and in the

presence of 1% random outliers at random locations (top right), 5% random outliers (bottom

left), and 5% clustered outliers (bottom right). In all cases, k = 4 and p = 5.
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8.5.5 Empirical Powers for Different Contaminations and Error

Distributions

To evaluate the power of the robust MDPD Wald-type test compared to the classical Wald

test, the classical Wilks’ Lambda test (CWL), the classical rank-based test, and the MCD

Wilks’ Lambda test, we will generate data under the alternative hypothesis Ha, where not

all group means µk are equal (i = 1, . . . , k). We will analyze the likelihood of failing to reject

the null hypothesis H0 (the frequency of type II errors) using the same combinations of

dimension p, number of groups k, and sample sizes ni, i = 1, . . . , k as those used in previous

experiments for studying significance levels. This comparison will help in understanding

the relative effectiveness of these tests under the given conditions.

For this simulation, we will employ a specific alternative hypothesis configuration: each

group ni, i = 1, . . . , k is generated from a multivariate normal distribution with a common

spherical scatter matrix I. The mean of the first group is (−0.4, 0.02,−0.2,−0.1,−0.4)T ,

while the means of all other groups are (0, 0, 0, 0, 0)T .

This setup allows for a straightforward assessment where the number of groups k can be

at most p+ 1. However, for simplicity, we will restrict our analysis to scenarios with three

or four groups. Specifically, the data sets are derived from the following p-variate Gaussian

distributions, where each group ni, i = 1, . . . , k has a distinct mean µk but shares the same

covariance matrix I:

nk ∼ Np(µk, I), i = 1, . . . , k,
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Table 8.4: The empirical power of different tests and the MSE of µ̂ (times N) for the

corresponding estimators for different error distributions.

c = 0, Normal c=5%, Random c = 5%, Clustered t3

Test Power MSE Power MSE Power MSE Power MSE

MCD 0.9170 87.5590 0.9150 90.3165 0.9120 87.7463 0.8990 128.8784

DPD(0.05) 0.9240 80.9935 0.8860 163.1828 0.9500 81.9158 0.6340 129.7988

DPD(0.1) 0.9450 82.7934 0.9420 86.9558 0.9480 83.7001 0.7810 113.5364

DPD(0.2) 0.9140 89.0459 0.9160 93.5743 0.9230 90.0149 0.8480 106.1143

DPD(OB) 0.8070 110.2515 0.8360 115.5322 0.8040 111.4666 0.8190 116.2280

DPD(OE) 0.9430 80.3067 0.9470 85.7154 0.9460 81.8225 0.8500 107.7026

MANOVA 0.9410 80.2901 0.9100 1334.1531 0.4890 372.2143 0.4590 240.3558

Rank 0.9270 – 0.7080 – 0.5630 – 0.7480 –

The results in Table 8.4 indicate that the MCD test provides high power across all scenarios,

with power values close to or above 0.9. For instance, under the normal distribution, the

MCD test has a power of 0.9170 and an MSE of 87.56 and under the t3 distribution scenario,

which introduces heavy-tailed data, the MCD test has a power of 0.899 and an MSE of

128.88.

Similarly, MDPD tests with tuning parameters of 0.05, 0.1, and 0.2 also exhibit high power,

particularly under the normal distribution and contamination scenarios. For example,

DPD(0.1) achieves the highest power of 0.9450 under the normal distribution with an MSE

of 82.79. Under 5% random contamination, DPD(0.1) maintains a high power of 0.9420

with an MSE of 86.9558 and for the t3 distribution, DPD(0.2) shows a power of 0.8480

with an MSE of 106.11, indicating robust performance even with heavy-tailed data.

The MDPD(OE) test demonstrates high power and low MSE across all scenarios. For

example, under the normal distribution, DPD(OE) has a power of 0.9430 with an MSE of
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80.3067. Under 5% random contamination, the power is 0.9470 with an MSE of 85.7154,

and under 5% clustered contamination, the power is 0.9460 with an MSE of 81.82. In the

t3 distribution scenario, the power is 0.8500 with an MSE of 107.7.

The MANOVA test exhibits high power under the normal distribution (0.9410) with low

MSE (80.29). However, its performance deteriorates significantly under contamination

scenarios. For instance, under 5% random contamination, the power is 0.9100, but the

MSE skyrockets to 1334.1531. Under 5% clustered contamination, the power drops to

0.4890 with an MSE of 372.21, and under the t3 distribution, the power is 0.4590 with an

MSE of 240.34, indicating poor robustness.

8.5.6 Empirical Powers for Different Sample Sizes

Figure 8.5 illustrates the power of the robust MDPD Wald-type test, classical Wald test,

classical Wilk’s Lambda (CWL), and classical rank-based test under the following scenarios:

uncontaminated data, 1% random outliers, 5% random outliers, and 5% clustered outliers.

Across all scenarios, the tests’ power increases with sample size n. In uncontaminated data,

all tests perform well, with the classical Wald test showing high power, closely followed

by the classical Wilk’s Lambda and rank-based test. The presence of outliers reveals the

robustness of the MDPD and MCD test, maintaining higher power compared to the classical

tests, which experience notable power reduction, especially with clustered outliers. Overall,

the robust MDPD(OE) Wald-type test consistently demonstrates superior performance in

contaminated data scenarios, highlighting its value in practical applications where data

contamination is a concern.
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Figure 8.5: The power of different tests in uncontaminated data (top left) and in the pres-

ence of 1% random outliers at random locations (top right), 5% random outliers (bottom

left), and 5% clustered outliers (bottom right). In all cases, k = 4, p = 5 and µ1 =

(−0.4, 0.02,−0.2,−0.1,−0.4)T .

When comparing the robust MDPD and robust MCD tests, the MDPD test demonstrates

higher power due to its robustness against outliers and model misspecifications. This

robustness allows the MDPD test to better detect true differences, even in the presence of

anomalies, thereby increasing its probability of correctly rejecting the null hypothesis when

it is false. On the other hand, the MCD test excels in maintaining a better significance level

performance, effectively controlling the probability of Type I errors. This is achieved by

focusing on minimizing the determinant of the covariance matrix for a subset of the data,
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making it more conservative and less likely to falsely reject the null hypothesis. Therefore,

while the MDPD test is more sensitive to detecting true effects, the MCD test prioritizes

reducing false positives, illustrating the trade-off between robustness and significance level

control.

8.6 Real Data Analysis

In this study, we analyze a subset of the dataset derived from the Oslo transect, initially

discussed by Reimann et al. (2007). The dataset includes samples collected from vari-

ous plant species along a 120 km transect passing through Oslo, Norway’s largest city.

The samples encompass 40 individual specimens from each of the following species: birch

(Betula pubescens Ehrh.), European mountain ash (Sorbus aucuparia (L.)), bracken fern

(Pteridium aquilinum (L.) Kuhn), and spruce needles (Picea abies (L.) Karsten). These

samples were analyzed to determine the concentrations of 25 chemical elements along with

the loss on ignition for each type of plant material.

The transect was chosen to cross a variety of lithologies, including Precambrian gneisses,

Cambro-Silurian sediments, and magmatic rocks of the Oslo Rift. This geological diversity

is expected to influence the uptake of chemical elements by plants. Previous studies have

shown that factors such as geology, soil pH, and sea spray significantly affect elemental

concentrations in plant leaves. For example, Ca, Ba, and Ni concentrations were closely

linked to the geological substrate, while Mn concentrations were strongly influenced by soil

pH. Additionally, sea spray played a critical role in the distribution of elements like B and

Na, with concentrations decreasing systematically with distance from the coast.

For our specific analysis, we will use the proposed robust test statistic to determine whether

there are significant differences in the mean concentrations of selected nutrients—phosphorus

(P), potassium (K), zinc (Zn), and copper (Cu)—across different lithological groups. Simi-

lar to the analyses conducted by Todorov and Filzmoser (2010) and Pison et al. (2002), we
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focus on the influence of lithology. Our working dataset, after excluding observations with

missing values, consists of 332 observations across these four chemical elements. To account

for the skewness typical in geochemical data, we applied a logarithmic transformation to

the variables before performing statistical analyses. Table 8.5 shows the group sizes of the

four lithological groups in the Oslo transect data, and Figure 8.6 presents the boxplots for

the different groups.

Table 8.5: Oslo transect data: Names of the lithology groups.

Lithological group Description Group Sizes

CAMSED Cambro-Silurian sedimentary rocks 98

GNEISS O Precambrian gneisses–Oslo 89

GNEISS R Precambrian gneisses–Randsfjord 32

MAGM Magmatic rocks of the Oslo Rift 113
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Figure 8.6: Boxplot of the log-transformed lithological data from four Oslo transects.

The box plots and distance-distance plots offer a detailed analysis of the log-transformed

concentrations of elements (K, P, Cu, Zn) across four lithological groups: CAMSED,

GNEIS O, GNEIS R, and MAGM. The box plots (Figure 8.6) show that the median val-

ues for Potassium (K) and Phosphorus (P) are similar across all groups, with consistent

interquartile ranges (IQR), indicating uniform central tendencies and variability. Copper

(Cu) also displays consistent median values, though it has a notable outlier in the GNEIS O

group. Zinc (Zn), while having similar IQRs, presents several outliers, particularly in the

MAGM group.
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Figure 8.7: MCD(α = 0.75) distance-distance plot of the log-transformed lithological data from

four Oslo transects (most influential outliers are colored red).

The distance-distance plots (Figure 8.7) provide a detailed examination of the data by

comparing Mahalanobis distances and robust distances using MCD (with α = 0.75) for

each observation. Here, α = 0.25 corresponds to a breakdown point of 25%. For identifying

the most influential outliers, we flagged all observations with robust distances greater than

χ2
p,0.975 = 11.16 and Mahalanobis distances greater than

√
χ2
p,0.975 = 3.34. These outliers

are highlighted in red in Figure 8.7.

The distance-distance plots reveal several outliers which can significantly affect the results of

100



classical statistical tests. These outliers, particularly those identified using robust distance

metrics, underline the importance of robust statistical methods. The presence of significant

outliers in the dataset necessitates the use of robust MANOVA to accurately compare the

means across the lithological groups. Traditional MANOVA might be unduly influenced

by these outliers, potentially leading to misleading conclusions. Robust MANOVA, by

accounting for these outliers, provides a more reliable and accurate comparison of group

means, ensuring that the conclusions drawn are robust and reflective of the true underlying

data structure.

To analyze the means of four groups, denoted as µ1, µ2, µ3, and µ4, a one-way MANOVA

was conducted to test the hypothesis H0 : µ = µ2 = µ3 = µ4. The classical Wilks’ Lambda

statistic (MANOVA) for this dataset yielded a p-value of 0.7757. Similarly, the classical

Wald test produced a p-value of 0.7609. On the other hand, the classical Rank test, which

is a robust method, resulted in a lower p-value of 0.1133. Despite this reduction, the p-value

for the Rank test is still not significant. These results from the classical tests indicate that

the hypothesis of equal means cannot be rejected even at the 10% significance level.

Conversely, using the robust Wald-type minimum density power divergence test (MDPD

Wald-type test) and the robust MCD Lambda test, we obtained p-values of 0.0036 and

0.0025, respectively, allowing us to reject the null hypothesis even at the 1% significance

level. This robust approach highlights the necessity of considering outliers to draw accurate

conclusions in the presence of influential data points.

Furthermore, the influential outliers highlighted in red in Figure 8.7 were removed to un-

derstand their impact on the outcomes of the various tests. The group sizes of the data

with the influential outliers removed are summarized in Table 8.6, and the corresponding

p-values are summarized in Table 8.7.
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Table 8.6: Oslo Transect Data: Names of the lithology groups.

Lithological group Description Group Sizes

CAMSED Cambro-Silurian sedimentary rocks 86

GNEISS O Precambrian gneisses–Oslo 68

GNEISS R Precambrian gneisses–Randsfjord 28

MAGM Magmatic rocks of the Oslo Rift 89

After removing the very influential outliers and performing the tests again, all methods

rejected the null hypothesis at the 1% significance level.

Table 8.7: p-values for the various method with very influential outliers removed.

Method p-values (full data) p-values (influential outliers removed)

Classical Wald 0.7609 0.0061

Classical Wilks’ Lambda 0.7757 0.0096

Classical Rank 0.1133 0.0030

DPD(bdp=14.5%) 0.0035 0.0031

MCD(bdp=14.5%) 0.0021 0.0098

In conclusion, the analysis of the Oslo transect dataset underscores the critical role of ro-

bust statistical methods in the presence of influential outliers. Traditional MANOVA tests,

including Wilks’ Lambda and the classical Wald test, failed to detect significant differences

in mean concentrations of selected chemical elements across lithological groups. However,

using robust methods like the robust Wald-type MDPD and the robust MCD Lambda test

showed significant differences, even at very high significance levels. Removing influential

outliers confirmed these findings, leading to all methods rejecting the null hypothesis. The

study demonstrates that accounting for outliers is essential for accurate geochemical data

102



analysis. This approach ensures that conclusions drawn reflect the underlying data struc-

ture, facilitating a better understanding and interpretation of environmental and geological

influences on plant chemistry.
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Chapter 9

Conclusions

In this dissertation, we have embarked on an in-depth exploration of robust statistical

methodologies aimed at enhancing the reliability and accuracy of multivariate data analy-

sis, particularly in the face of outliers. Our focus on the minimum density power divergence

(MDPD) estimator has unveiled its significant potential in providing a flexible framework

to mitigate the adverse impacts of data contamination. The MDPD approach, with its

adjustable robustness parameter α, has demonstrated consistent superiority over classical

methods through various simulation studies, particularly under conditions of data contam-

ination. This adaptability, coupled with its efficiency, underscores the practical utility of

MDPD in real-world applications where outliers are prevalent.

Comparative analysis with other robust methods, such as the minimum covariance de-

terminant (MCD), revealed that the MDPD estimator excels in reducing Mean Squared

Error (MSE) and Kullback-Leibler (KL) divergence when matched for the same breakdown

point. These findings highlight the robust nature of the MDPD estimator and validate its

effectiveness in statistical estimation, making it a preferable choice in contaminated data

environments.

Extending the MDPD framework to Multivariate Analysis of Variance (MANOVA) has

proven particularly fruitful. The development of a robust MANOVA based on the MDPD

estimator has addressed the complexities of multivariate data, providing more reliable hy-

pothesis testing outcomes than classical MANOVA tests. Monte Carlo simulations con-

firmed that this robust MANOVA test maintains appropriate significance levels and power
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across various contamination scenarios, thus offering a valuable tool for robust hypothesis

testing in multivariate contexts.

Real-world applications further underscore the necessity and efficacy of these robust method-

ologies. Analyzing datasets such as the Swiss Banknote Dataset for Principal Component

Analysis (PCA), the Pulp Fiber and Paper dataset for Multivariate Regression, and litho-

logical data from the Oslo transect for Robust MANOVA demonstrated the limitations of

traditional statistical assumptions in practical scenarios. For the Swiss Banknote dataset,

robust MDPD-based PCA identified influential outliers that classical PCA missed, signif-

icantly enhancing the analysis’s reliability and sensitivity. In the Pulp Fiber and Paper

dataset, robust MDPD-based multivariate regression techniques effectively flagged outliers

and bad leverage points that classical methods overlooked, leading to more accurate regres-

sion models and a better understanding of the relationships between pulp fiber properties

and paper properties. For the lithological data from the Oslo transect, robust MANOVA

tests highlighted significant differences in mean concentrations of selected nutrients across

different lithological groups, which classical MANOVA methods failed to detect. This em-

pirical evidence underscores the practical importance of adopting robust methods in diverse

fields, as the robust MDPD-based tests identified significant differences between groups that

classical methods overlooked, showcasing their enhanced sensitivity and reliability.

A notable limitation of the MDPD estimator is that its breakdown point (bdp) reduces

to zero as the dimensionality p increases, making it less effective in very high-dimensional

contexts. Therefore, applying this method to datasets with dimensions not exceeding 15 is

ideal.

Looking ahead, this research paves the way for numerous future directions. Extending

these robust methodologies to other multivariate techniques, such as cluster analysis and

discriminant analysis, could broaden their applicability and utility. Additionally, exploring

the integration of MDPD with other robust statistical methods may enhance its perfor-

mance and robustness in practical applications.
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In conclusion, the robust statistical methods developed and validated in this dissertation of-

fer substantial improvements over classical approaches, particularly in the presence of data

contamination. The MDPD estimator and its applications in PCA, multivariate regression,

and MANOVA provide powerful tools for accurate and reliable multivariate data analysis.

These contributions represent significant advancements in the field of robust multivariate

statistics, with wide-ranging implications for both theoretical developments and practical

applications. By embracing these advanced robust methods, researchers and practition-

ers can achieve more dependable and precise results, even in the most challenging data

environments.
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Lopuhaä, H. P. (1999). Asymptotics of reweighted estimators of multivariate location and

scatter. Annals of Statistics, 27(5):1638–1665.
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Appendix A

A.1 Integrals for DPD Measure

Suppose X ∼ Np(µ,Σ). The first term of the DPD measure in Equation (4.1) under the

multivariate Gaussian model is given by:∫
f 1+α
θ (x)dx =

∫ ((
1

(2π)p/2|Σ|1/2

)1+α

exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

))
dx

=
1

(2π)p(1+α)/2|Σ|(1+α)/2

∫
exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx

=
1

(2π)p(1+α)/2|Σ|(1+α)/2
(2π)p/2

(
1

1 + α

)p/2

|Σ|1/2

= (2π)−pα/2(1 + α)−p/2|Σ|−α/2.

(A.1)

We will compute a few more integrals required for the asymptotic distribution of the MDPD

estimator.∫
(x− µ)f 1+α

θ (x)dx

=

∫
(x− µ)

(
1

(2π)p/2|Σ|1/2

)1+α

exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx

= 0.

(A.2)

Since the first moment is an odd function over the symmetric range, the integral evaluates

to zero.

Consider the integral of the second moment for a multivariate Gaussian distribution:∫
(x− µ)(x− µ)Tf 1+α

θ (x) dx. (A.3)
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By substituting the density function fθ of the multivariate Gaussian distribution, we get:∫
(x− µ)(x− µ)T

(
1

(2π)p/2|Σ|1/2

)1+α

exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx

=

(
1

(2π)p/2|Σ|1/2

)1+α ∫
(x− µ)(x− µ)T exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx

= (2π)−pα/2|Σ|−α/2

∫
1

(2π)p/2|Σ|1/2
(x− µ)(x− µ)T

× exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx

= (2π)−pα/2|Σ|−α/2

∫
(1 + α)−p/2

(2π)p/2|Σ|1/2(1 + α)−p/2
(x− µ)(x− µ)T

× exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx.

For a multivariate Gaussian distribution, we know from standard results (refer to Petersen

et al. (2008)) that: E[(x− µ)(x− µ)T ] = Σ.

Therefore, we have∫
1

(2π)p/2|Σ|1/2(1 + α)−p/2
(x− µ)(x− µ)T exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx

=
Σ

1 + α
.

Thus, the integral in (A.3) simplifies to:∫
(x− µ)(x− µ)Tf 1+α

θ (x) dx

= (2π)−pα/2|Σ|−α/2(1 + α)−p/2 Σ

1 + α

= (2π)−pα/2(1 + α)(−2−p)/2|Σ|−α/2Σ.

(A.4)

A.2 Estimating Equations

Let’s consider the probability density function of yij in the MANOVA model:

fθ(yij) = (2π)−p/2|Σ|−1/2 exp

{
−1

2
(yij − µi)

TΣ−1(yij − µi)

}
. (A.5)
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For α > 0, the DPD measure empirically can be written as

d̂α(fθ, g) =
1

N

k∑
i=1

ni∑
j=1

∫
f 1+α
θ (yij)dyij −

1 + α

Nα

k∑
i=1

ni∑
j=1

fα
θ (yij) + c(α), (A.6)

where c(α) = 1
Nα

∑k
i=1

∑ni

j=1

∫
g1+α(yij)dyij is independent of θ.

From Equation (A.1), we have∫
f 1+α
θ (yij)dyij = (2π)−αp/2|Σ|−α/2(1 + α)−p/2.

Therefore

d̂α(fθ, g) = (2π)−αp/2|Σ|−α/2(1 + α)−p/2

×
[
1− 1 + α

Nα

k∑
i=1

ni∑
j=1

exp
{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}]

+ c(α).
(A.7)

For the estimating equations, we have

∂

∂µi

d̂α(fθ, g) = 0 for i = 1, 2, 3 . . . k,

∂

∂Σ
d̂α(fθ, g) = 0.

Now
∂

∂µi

d̂α(fθ, g) = −(2π)−αp/2|Σ|−α/2α(1 + α)

2Nα

×
ni∑
j=1

Σ−1(yij − µi) exp
{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}

=

ni∑
j=1

(yij − µi) exp
{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}
,

(A.8)
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∂

∂Σ
d̂α(fθ, g) = −α

2
(2π)−αp/2|Σ|−α/2Σ−1(1 + α)−p/2

− (2π)−αp/2|Σ|−α/2α(1 + α)

2Nα

k∑
i=1

ni∑
j=1

Σ−1 exp
{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}

− (2π)−αp/2|Σ|−α/2α(1 + α)

2Nα

×
k∑

i=1

ni∑
j=1

Σ−1(yij − µi)(yij − µi)
TΣ−1 exp

{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}

= (1 + α)−p/2Ip −
(1 + α)

Nα

k∑
i=1

ni∑
j=1

exp
{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}
Ip

+
(1 + α)

Nα

k∑
i=1

ni∑
j=1

Σ−1(yij − µi)(yij − µi)
T exp

{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}
.

(A.9)

Thus, the estimating equations of θ are simplified as:

ni∑
j=1

(yij − µi) exp
{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}
= 0, for i = 1, 2, 3 . . . k,

Σ

 k∑
i=1

ni∑
j=1

exp
{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}
− αN(1 + α)−

p
2−1


=

k∑
i=1

ni∑
j=1

(yij − µi)(yij − µi)
T exp

{
−α
2
(yij − µi)

TΣ−1(yij − µi)
}
.

(A.10)

A.3 Asymptotic Distribution of MDPD Estimator

Let’s consider the MANOVA model in (8.1), where θ =
(
µT

1 ,µ
T
2 , . . . ,µ

T
k , vec(Σ)T

)T
is the

parameter of the model. Suppose that the true distribution g belongs to the parametric

family {fθ(x)}, where θ represents the true parameter value. The matrices J , K, and the

vector ξθ can be simplified as follows:

J =

∫
Rp

(uθ(x)⊗ uθ(x)) f
1+α
θ (x) dx,

K =

∫
Rp

(uθ(x)⊗ uθ(x)) f
1+2α
θ (x) dx− ξθ ⊗ ξθ,

ξθ =

∫
Rp

uθ(x)f
1+α
θ (x) dx.
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To derive the asymptotic distribution of θ̂, we need to compute J andK, and consequently,

J−1KJ−1. These components are critical in determining the asymptotic variance of the

minimum density power divergence (MDPD) estimator of θ̂.

The matrix J can be written as:

J =



Jµ1µ1
Jµ1µ2

· · · Jµ1µk
Jµ1Σ

· Jµ2µ2
· · · Jµ2µk

Jµ2Σ

...
...

. . .
...

...

· · · · · Jµkµk
JµkΣ

· · · · · · JΣΣ


,

Similarly, we decompose matrix K based on µi and Σ. We will now calculate different

components of J and K.

A.4 Asymptotic Variance of MDPD Estimator of µ

A.4.1 Score Function of µ

Let fθ(x) be the density function of a multivariate normal distribution:

fθ(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (A.11)

where µ is the mean vector, Σ is the covariance matrix, and p is the dimensionality of x.

The score function with respect to µ is:

uµ(x) =
∂

∂µ
log fθ(x)

=
∂

∂µ

[
− p

2
log(2π)− 1

2
log |Σ| − 1

2
(x− µ)TΣ−1(x− µ)

]
= Σ−1(x− µ).

(A.12)
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A.4.2 Calculation of Jµµ

The calculation of the information matrix component Jµµ is given by:

Jµµ =

∫
uµ(x)⊗ uµ(x)f

1+α
θ (x)dx

=

∫
uµ(x)u

T
µ(x)f

1+α
θ (x)dx

=

∫
Σ−1(x− µ)

(
Σ−1(x− µ)

)T
f 1+α
θ (x)dx

=

∫
Σ−1(x− µ)(x− µ)TΣ−1f 1+α

θ (x)dx

= Σ−1

∫
(x− µ)(x− µ)Tf 1+α

θ (x)dxΣ−1.

From Equation (A.4), we have:∫
(x− µ)(x− µ)Tf 1+α

θ (x) dx = (2π)−pα/2(1 + α)(−2−p)/2|Σ|−α/2Σ.

By substituting this result into the integral, we get:

Jµµ = Σ−1(2π)−pα/2(1 + α)(−2−p)/2|Σ|−α/2ΣΣ−1

= (2π)−pα/2|Σ|−α/2(1 + α)(−p−2)/2Σ−1.
(A.13)

A.4.3 Calculation of ξµ

The vector ξµ is defined as:

ξµ =

∫
uθ(x)f

1+α
θ (x)dx. (A.14)
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From Equation (A.2), we have:

ξµ = Σ−1

∫
(x− µ)

(
1

(2π)p/2|Σ|1/2

)1+α

exp

(
−(1 + α)

2
(x− µ)TΣ−1(x− µ)

)
dx

= Σ−1

(
1

(2π)p/2|Σ|1/2

)1+α ∫
(x− µ) exp

(
−(1 + α)

2
(x− µ)TΣ−1(x− µ)

)
dx.

= 0.

(A.15)

Because the integral of an odd function over the symmetric range of a Gaussian distribution

is zero.

A.4.4 Calculation of Kµµ

The calculation of the matrix Kµµ is given by:

Kµµ =

∫
uµ(x)⊗ uµ(x)f

1+2α
θ (x)dx− ξµ ⊗ ξµ

=

∫
uµ(x)u

T
µ(x)f

1+2α
θ (x)dx− ξµξ

T
µ

=

∫
Σ−1(x− µ)

(
Σ−1(x− µ)

)T
f 1+2α
θ (x)dx.

(A.16)

Here, we note that ξµ = 0. Additionally, from Equation (A.4), we have:

∫
(x− µ)(x− µ)Tf 1+2α

θ (x) dx = (2π)−pα(1 + 2α)(−2−p)/2|Σ|−αΣ.

Thus, we can express Kµµ as:

Kµµ = Σ−1(2π)−pα|Σ|−α(1 + 2α)(−p−2)/2ΣΣ−1

= (2π)−pα|Σ|−α(1 + 2α)(−p−2)/2Σ−1.
(A.17)
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A.4.5 Calculation of Jµµ
−1KµµJµµ

−1

Jµµ
−1KµµJµµ

−1 = (2π)pα/2|Σ|α/2(1 + α)(p+2)/2Σ× (2π)−pα|Σ|−α(1 + 2α)(−p−2)/2Σ−1

× (2π)pα/2|Σ|α/2(1 + α)(p+2)/2Σ.

= (1 + α)(p+2)/2 × (1 + 2α)(−p−2)/2 × (1 + α)(p+2)/2Σ

=

(
(1 + α)2

1 + 2α

)(p+2)/2

Σ

=

(
1 +

α2

1 + 2α

)p/2+1

Σ.

(A.18)

A.5 Asymptotic Variance of MDPD Estimator of Σ

A.5.1 Score Function of Σ

The score function with respect to Σ is

uΣ(x) =
∂

∂Σ
log fθ(x)

=
∂

∂Σ

[
− p

2
log(2π)− 1

2
log |Σ| − 1

2
(x− µ)TΣ−1(x− µ)

]
= −1

2

(
Σ−1 −Σ−1(x− µ)(x− µ)TΣ−1

)
.

(A.19)

Note that uΣ(x) is defined as a matrix, whereas uµ(x) is a vector.

A.5.2 Calculation of JΣΣ

Assume x ∼ N (0,Σ) (refer to Anderson, 2018, p. 67)

E[xxT ⊗ xxT ] = Σ⊗Σ+Kpp(Σ⊗Σ) + vec(Σ) vec(Σ)T , (A.20)

where vec is the vec-operator applied on matrix A stacks the columns into a vector and

Kpp is the commutation matrix.
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Also, for Kronecker product of m × n matrix A and an r × q matrix B (refer Petersen

et al., 2008)

vec (AXB) =
(
BT ⊗A

)
vec(X). (A.21)

Substituting the score function in Equation (A.19), the calculation of the matrix JΣΣ is

given by:

JΣΣ =

∫
uΣ(x)⊗ uΣ(x)f

1+α
θ (x)dx.

=

∫
1

4

(
Σ−1 −Σ−1(x− µ)(x− µ)TΣ−1

)
⊗
(
Σ−1 −Σ−1(x− µ)(x− µ)TΣ−1

)
f1+α
θ (x)dx

=
1

4

{∫
Σ−1 ⊗Σ−1f1+α

θ (x)− 2Σ−1 ⊗Σ−1

∫
(x− µ)(x− µ)T f1+α

θ (x)dxΣ−1

+Σ−1

∫
(x− µ)(x− µ)TΣ−1 ⊗Σ−1(x− µ)(x− µ)T f1+α

θ (x)dxΣ−1

}
,

(A.22)

From Equation (A.1), we have∫
Σ−1 ⊗Σ−1f 1+α

θ (x) = Σ−1 ⊗Σ−1(2π)−pα/2(1 + α)−p/2|Σ|−α/2. (A.23)

From Equation (A.4), we have

− 2Σ−1 ⊗Σ−1

∫
(x− µ)(x− µ)Tf 1+α

θ (x)dxΣ−1

= −2Σ−1 ⊗Σ−1(2π)−pα/2 (1 + α)(−2−p)/2 |Σ|−α/2.

(A.24)

And on the strength of Equation (A.20), let’s evaluate∫
Σ−1(x− µ)(x− µ)TΣ−1 ⊗Σ−1(x− µ)(x− µ)TΣ−1f1+α

θ (x)dx

=

∫ (
Σ−1 ⊗Σ−1

) (
(x− µ)(x− µ)T ⊗ (x− µ)(x− µ)T

) (
Σ−1 ⊗Σ−1

)
f1+α
θ (x)dx

=
(
Σ−1 ⊗Σ−1

) ∫ (
(x− µ)(x− µ)T ⊗ (x− µ)(x− µ)T

)
f1+α
θ (x)dx

(
Σ−1 ⊗Σ−1

)
.

(A.25)

Evaluating the middle integral using Equation (A.20) and Equation (A.21), we obtain:∫ (
(x− µ)(x− µ)T ⊗ (x− µ)(x− µ)T

)
f 1+α
θ (x)dx

= (2π)−pα/2|Σ|−α/2(1 + α)−p/2E(yyT ⊗ yyT ), where y ∼ N

(
0,

Σ

1 + α

)
= (2π)−pα/2|Σ|−α/2(1 + α)−p/2−2

(
Σ⊗Σ+Kpp(Σ⊗Σ) + vec(Σ) vec(Σ)T

)
.
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Therefore, we have∫
Σ−1(x− µ)(x− µ)TΣ−1 ⊗Σ−1(x− µ)(x− µ)TΣ−1f1+α

θ (x)dx

= (2π)−pα/2|Σ|−α/2(1 + α)−p/2−2
(
Σ−1 ⊗Σ−1

)
×
(
Σ⊗Σ+Kpp(Σ⊗Σ) vec(Σ) vec(Σ)T

) (
Σ−1 ⊗Σ−1

)
= (2π)−pα/2|Σ|−α/2(1 + α)−p/2−2

(
Ipp +Kpp + vec(Σ−1) vec(Σ)T

) (
Σ−1 ⊗Σ−1

)
.

(A.26)

Combining all the results, we have

JΣΣ =
1

4

{
Σ−1 ⊗Σ−1(2π)−pα/2(1 + α)−p/2|Σ|−α/2

− 2Σ−1 ⊗Σ−1(2π)−pα/2 (1 + α)
(−2−p)/2 |Σ|−α/2

+ (2π)−pα/2|Σ|−α/2(1 + α)−p/2−2
(
Ipp +Kpp + vec(Σ−1) vec(Σ)T

) (
Σ−1 ⊗Σ−1

)}
=

1

4

{
(2π)−pα/2|Σ|−α/2(1 + α)−p/2−2

×
(
(1 + α)2Ip − 2(1 + α)Ipp + Ipp +Kpp + vec(Σ−1) vec(Σ)T

)}
=

1

4

{
(2π)−pα/2|Σ|−α/2(1 + α)−p/2−2

(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

) (
Σ−1 ⊗Σ−1

)}
.

(A.27)

A.5.3 Calculation of ξΣ

The vector ξΣ is defined as:

ξΣ =

∫
uΣ(x)f

1+α
θ (x)dx.

= −
∫

1

2

(
Σ−1 −Σ−1(x− µ)(x− µ)TΣ−1

)
f 1+α
θ (x)dx.

= −1

2

(
(2π)−pα/2(1 + α)−p/2|Σ|−α/2Σ−1 − (2π)−pα/2 (1 + α)(−2−p)/2 |Σ|−α/2Σ−1

)
= −1

2
(2π)−pα/2 (1 + α)(−2−p)/2 |Σ|−α/2Σ−1α.

(A.28)
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A.5.4 Calculation of KΣΣ

Substituting the score function in Equation A.19, the calculation of the matrix KΣΣ is

given by:

KΣΣ =

∫
uΣ(x)⊗ uΣ(x)f

1+2α
θ (x)dx− ξΣ ⊗ ξΣ.

=

∫
1

4

(
Σ−1 −Σ−1(x− µ)(x− µ)Σ−1

)
⊗
(
Σ−1 −Σ−1(x− µ)(x− µ)Σ−1

)
f1+2α
θ (x)dx

− ξΣ ⊗ ξΣ

=
1

4

{∫
Σ−1 ⊗Σ−1f1+2α

θ (x)− 2Σ−1 ⊗Σ−1

∫
(x− µ)(x− µ)T f1+2α

θ (x)dxΣ−1

+

∫
Σ−1(x− µ)(x− µ)TΣ−1 ⊗Σ−1(x− µ)(x− µ)T f1+2α

θ (x)dxΣ−1

}
− ξΣ ⊗ ξΣ.

(A.29)

From Equation (A.1), we have∫
Σ−1 ⊗Σ−1f 1+2α

θ (x)dx = Σ−1 ⊗Σ−1(2π)−pα(1 + 2α)−p/2|Σ|−α.

From Equation (A.4), we have

− 2Σ−1 ⊗Σ−1

∫
(x− µ)(x− µ)Tf 1+2α

θ (x)dxΣ−1

= −2Σ−1 ⊗Σ−1(2π)−pα (1 + 2α)(−2−p)/2 |Σ|−α.

(A.30)

Similar to Equation (A.27)

Σ−1

∫
(x− µ)(x− µ)TΣ−1Σ−1(x− µ)(x− µ)TΣ−1f 1+2α

θ (x)dx

=
(
(2π)−pα (1 + 2α)−2−p/2 |Σ|−α

(
Ipp +Kpp + vec(Σ−1) vec(Σ)T

) )
Σ−1 ⊗Σ−1.

(A.31)
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Combining all the results, we obtain

KΣΣ =
1

4

{
Σ−1 ⊗Σ−1(2π)−pα(1 + 2α)−p/2|Σ|−α

− 2Σ−1 ⊗Σ−1(2π)−pα (1 + 2α)
(−2−p)/2 |Σ|−α

+
(
(2π)−pα (1 + 2α)

−2−p/2 |Σ|−α
(
Ipp +Kpp + vec(Σ−1) vec(Σ)T

) )
Σ−1 ⊗Σ−1

}
− 1

4
(2π)−pα(1 + α)−2−p/2α2|Σ|−αΣ−1 ⊗Σ−1

= (2π)−pα(1 + 2α)−2−p/2|Σ|−α

×
(
(1 + 2α)2II − 2(1 + 2α)Ipp + Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
Σ−1 ⊗Σ−1

− 1

4
(2π)−pα(1 + α)−2−p/2α2|Σ|−αΣ−1 ⊗Σ−1

= (2π)−pα(1 + 2α)−2−p/2|Σ|−α
(
4α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
Σ−1 ⊗Σ−1

− 1

4
(2π)−pα(1 + α)−2−pα2|Σ|−αΣ−1 ⊗Σ−1.

(A.32)
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A.5.5 Calculation of JΣΣ
−1KΣΣJΣΣ

−1

Finally, JΣΣ
−1KΣΣJΣΣ

−1 can be simplified in the following steps:

JΣΣ
−1KΣΣJΣΣ

−1

= 4

{
(2π)pα/2|Σ|α/2(1 + α)p/2+2

(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1
(Σ⊗Σ)

}
×
(
1

4
(2π)−pα(1 + 2α)−2−p/2|Σ|−α

(
4α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
Σ−1 ⊗Σ−1

− 1

4
(2π)−pα(1 + α)−2−pα2|Σ|−αΣ−1 ⊗Σ−1

)
× 4

{
(2π)pα/2|Σ|α/2(1 + α)p/2+2

(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1
(Σ⊗Σ)

}
=

4(1 + α)p+4

(1 + 2α)(p+4)/2

(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1
(Σ⊗Σ)

×
(
4α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

) (
Σ−1 ⊗Σ−1

)
×
(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1
(Σ⊗Σ)− 4α2 (Σ⊗Σ)

=
4(1 + α)p+4

(1 + 2α)(p+4)/2

{(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1

×
(
4α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
×
(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1 − α2

}
(Σ⊗Σ) .

(A.33)

A.6 Covariance Matrices

A.6.1 Calculation of JΣµ

The matrix JΣµ is given by:

JΣµ =

∫
uΣ(x)⊗ uµ(x)f

1+α
θ (x)dx

= −
∫

1

2

(
Σ−1 −Σ−1(x− µ)(x− µ)TΣ−1

)
⊗
(
Σ−1(x− µ)

)
f 1+α
θ (x)dx.

(A.34)
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To proceed, we decompose the integral into two parts, I = I1 + I2, where:

I1 = −1

2
Σ−1 ⊗Σ−1

∫
(x− µ)f 1+α

θ (x)dx

= 0p2,×p on the strength of Equation A.2.

(A.35)

Next, we consider I2:

I2 =

∫ (
Σ−1(x− µ)(x− µ)TΣ−1

)
⊗
(
Σ−1(x− µ)

)
f 1+α
θ (x)dx

= Σ−1(x− µ)(x− µ)TΣ−1 ⊗Σ−1(x− µ)f 1+α
θ (x)dx

= Σ−1(x− µ)(x− µ)TΣ−1 ⊗Σ−1(x− µ)dx

= 0p2×p.

(A.36)

For each element of the Kronecker product in Equation (A.36), we recognize that the

integral is over products of centered Gaussian variables. The terms involving (zi − µi)

where i ̸= j integrate to zero due to symmetry (mean is zero). Only terms where p = q = k

survive: ∫
(xp − µp)

3 exp

(
−1 + α

2
(x− µ)TΣ−1(x− µ)

)
dx.

Using the properties of the multivariate Gaussian distribution, we know that E[(xp−µp)
3] =

0 for a Gaussian random variable (since odd moments of zero-mean Gaussian are zero).

Thus, the integral evaluates to zero:

n∑
p=1

a31p

∫
(xp − µp)

3 exp

(
−1 + α

2
(x− µ)TΣ−1(z − µ)

)
dx = 0.

Thus

Σ−1(x− µ)(x− µ)TΣ−1 ⊗Σ−1(x− µ)dx = 0p2×p.

Therefore

JΣµ = 0p2×p. (A.37)
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A.6.2 Calculation of KΣµ

Analogously, we have:

KΣµ = 0p2×p. (A.38)

A.7 MANOVA Setup

A.7.1 J and K Matrices at the Model

We have

J (ij) =

∫
uµ(yij)⊗ uµ(yij)f

1+α
θ (y)dy =

∫
uθ(yij)uθ(yij)

Tf 1+α
θ (x)dy.

The matrix J (ij) can be written as:

J (ij) =



J (ij)
µ1µ1

J (ij)
µ1µ2

· · · J (ij)
µ1µk

J
(ij)
µ1Σ

· J (ij)
µ2µ2

· · · J (ij)
µ2µk

J
(ij)
µ2Σ

...
...

. . .
...

...

· · · · · J (ij)
µkµk

J
(ij)
µkΣ

· · · · · · J
(ij)
ΣΣ


,

where the individual blocks are:

J (ij)
µiµi

= (2π)−pα/2|Σ|−α/2(1 + α)(−2−p)/2Σ−1,

J (ij)
µrµs

= 0, for r ̸= s,

J
(ij)
ΣΣ =

1

4

{
(2π)−pα/2|Σ|−α/2(1 + α)−p/2−2

×
(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

) (
Σ−1 ⊗Σ−1

)}
,

J
(i)
Σµ = 0.

The J (ij) matrix simplifies to

J (ij) = (2π)−pα/2|Σ|−α/2(1 + α)(−2−p)/2

 D 0kp×p2

0T
p2×kp

(Cα)
4(1+α)

Σ−1 ⊗Σ−1

 , (A.39)
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where D is k × k block diagonal matrix. The i-th diagonal blocks are the Σ−1
p×p matrix

and the off-diagonal blocks are p× p zero matrices, with overall dimensions of kp× kp and

Cα =
(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
Therefore,

J = lim
N→∞

1

N

k∑
i=1

ni∑
j=1

J (ij)

= (2π)−pα/2|Σ|−α/2(1 + α)(−2−p)/2 lim
N→∞

 S 0kp×p2

0T
p2×kp

(Cα)
4(1+α)

Σ−1 ⊗Σ−1

 , (A.40)

where S is ni

N
D (k×k block diagonal matrix). The diagonal blocks are the Σ−1

p×p matrix and

the off-diagonal blocks are p×p zero matrices. Note that S = D(n/N)⊗Σ−1
p×p. Therefore,

S−1 = D(N/n)⊗Σp×p.

Similarly,

K = lim
N→∞

1

N

k∑
i=1

ni∑
j=1

J (ij)

= (2π)−pα|Σ|−α(1 + 2α)(−2−p)/2 lim
N→∞

 S 0kp×p2

0T
p2×kp V

 , (A.41)

where

V =

{(
4α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
− 1

4
α2

}
Σ−1 ⊗Σ−1. (A.42)

A.8 Test Statistic

From Equation (A.40), we have

J−1
N = b

 S−1 0kp×p2

0T
p2×kp H

 , (A.43)
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where b = (2π)pα/2|Σ|α/2(1 + α)(2+p)/2 and H =
(

(Cα)
4(1+α)

Σ−1 ⊗Σ−1
)−1

.

Also from Equation (8.2), we have

M (θ) =

Mµ

0T

 . (A.44)

Thus,

MTJ−1
N = b

[
MT

µS
−1 0

]
. (A.45)

Also,

KN = c

 S 0kp×p2

0T
p2×kp V

 , (A.46)

where c = (2π)−pα|Σ|−α(1 + 2α)(−2−p)/2.

Therefore,

MTJ−1
N KNMJ−1

N = b2c
[
MT

µS
−1 0

] [ S 0kp×p2

0T
p2×kp V

] [
MT

µS
−1 0

]T
= b2c

[
MT

µ 0
] [

MT
µS

−1 0
]T

= b2cMT
µS

−1MT
µ,

(A.47)

where b2c = (1 + α)2+p(1 + 2α)
−2−p

2 .

Therefore, we have

MTJ−1
N KNMJ−1 = (1 + α)2+p(1 + 2α)

−2−p
2 MT

µS
−1Mµ

=

(
(1 + α)2

(1 + 2α)

)(p+2)/2

MT
µS

−1Mµ.
(A.48)

A.8.1 Covariance Matrix of µ̂

The asymptotic scatter matrix for the estimators is given by the following equations:

Jµµ
−1KµµJµµ

−1 =

(
1 +

α2

1 + 2α

)p/2+1

lim
N→∞

S−1. (A.49)
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For the scatter matrix involving the covariance estimator, we have:

JΣΣ
−1KΣΣJΣΣ

−1

=
4(1 + α)p+4

(1 + 2α)(p+4)/2

{(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1

×
(
4α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)
×
(
α2Ipp +Kpp + vec(Σ−1) vec(Σ)T

)−1 − α2

}
(Σ⊗Σ) .

(A.50)

In the first equation, the term
(
1 + α2

1+2α

)p/2+1

modifies the asymptotic scatter matrix of

the mean estimator, represented by the inverse of the scatter matrix S−1 as the sample

size N approaches infinity.

In the second equation, the expression involves the Kronecker product and the vectorization

of the covariance matrix. The factors within the curly braces account for the dependency

on α, the dimension p, and the interaction terms involving Σ−1.

A.9 Regularity Conditions

To ensure the consistency and asymptotic properties of the Minimum Density Power Di-

vergence (MDPD) estimator in a multivariate framework, we require the following assump-

tions::

(A1) The true density g(Y ij) is supported over the entire real space Rp.

(A2) There is an open subset ω ⊂ Θ containing the best fitting parameter θ such that J

is positive definite for all θ ∈ ω.

(A3) Suppose

Vθ(Y ij) = exp
{
−α
2
(Y ij − µi)

⊤Σ−1(Y ij − µi)
}
.

There exist functions Mrst(Y ij) such that∣∣∣∣ ∂3Vθ(Y ij)

∂θr∂θs∂θt

∣∣∣∣ ≤Mrst(Y ij),
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for all θ ∈ ω, where

Eg (|Mrst(Y ij)|) =
∫
yij

|Mrst(yij)|g(yij)dyij <∞,

for all r, s, t.

(A4) We denote δ(·) as the indicator function. Then, for all r and s, we have

lim
λ→∞

sup
N>1

{
1

N

k∑
i=1

ni∑
j=1

Eg

[∣∣∣∣∂Vθ(Y ij)

∂θr

∣∣∣∣ δ(∣∣∣∣∂Vθ(Y ij)

∂θr

∣∣∣∣ > λ

)]}
= 0,

lim
λ→∞

sup
N>1

{
1

N

k∑
i=1

ni∑
j=1

Eg

[ ∣∣∣∣∂2Vθ(Y ij)

∂θr∂θs

− Eg

(
∂2Vθ(Y ij)

∂θr∂θs

)∣∣∣∣
× δ

(∣∣∣∣∂2Vθ(Y ij)

∂θr∂θs

−Eg

(
∂2Vθ(Y ij)

∂θr∂θs

)∣∣∣∣ > λ

)]}
= 0.

(A5) Let

KN =
1

N

k∑
i=1

ni∑
j=1

K(Y ij). (A.51)

For all ϵ > 0, we have{
lim

N→∞

1

N

k∑
i=1

ni∑
j=1

Eg

[∥∥∥∥K−1/2
N

∂Vθ(Y ij)

∂θ

∥∥∥∥2 δ(∥∥∥∥K−1/2
N

∂Vθ(Y ij)

∂θ

∥∥∥∥ > ϵ
√
N

)]}
= 0.

In the context of an independent heterogeneous setup, these conditions are crucial for

stabilizing the matrices J and K which is necessary for the asymptotic distribution to

exist.

A.10 Derivation of Breakdown Point

In this section, we derive the breakdown point integrals. The breakdown point is a measure

of an estimator’s robustness, indicating the proportion of incorrect observations the esti-

mator can handle before giving incorrect (arbitrarily large) results. Here, we specifically
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focus on the calculation of the integral
∫
ϕc,D(x)ϕα

m,S(x)dx, which plays a crucial role in

this derivation. Now, we will calculate
∫
ϕc,D(x)ϕα

m,S(x)dx.

To calculate the integral
∫
ϕc,D(x)ϕα

m,S(x) dx, we start with the definitions of ϕc,D(x) and

ϕα
m,S(x). These are multivariate normal density functions with mean vectors c and m, and

covariance matrices D and S, respectively.

∫
ϕc,D(x)ϕαm,S(x) dx

=
1

(2π)p/2|D|1/2
· 1

(2π)pα/2|S|α/2

×
∫

exp

(
−1

2
(x− c)TD−1(x− c)

)
· exp

(
−α
2
(x−m)TS−1(x−m)

)
dx

=
1

(2π)p/2|D|1/2
· 1

(2π)pα/2|S|α/2

×
∫

exp

(
−1

2
x′ (D−1 + αS−1

)
x+ x′ (D−1c+ αS−1m

)
− 1

2
c′D−1c− α

2
m′S−1m

)
dx.

(A.52)

To simplify the integral, we introduce the following variables:

A = D−1 + αS−1,

B = D−1c+ αS−1m,

K = −1

2
c′D−1c− α

2
m′S−1m.

Then, the integral becomes:∫
ϕc,D(x)ϕαm,S(x) dx =

1

(2π)p/2|D|1/2
· 1

(2π)pα/2|S|α/2
· exp(K) ·

∫
exp

(
−1

2
x′Ax+ x′B

)
dx

=
1

(2π)p/2|D|1/2
· 1

(2π)pα/2|S|α/2
exp(K)

×
∫

exp

(
−1

2
(x−A−1B)TA(x−A−1B)

)
exp

(
1

2
B′A−1B

)
dx

(A.53)

We can simplify the integral further by substituting U = x − A−1B and evaluate the

integral using completing the square:∫
ϕc,D(x)ϕαm,S(x) dx

=
1

(2π)αp/2|D|1/2|D−1 + αS−1|1/2|S|α/2

× exp

(
−1

2
c′D−1c− α

2
m′S−1m+

1

2
(D−1c+ αS−1m)T (D−1 + αS−1)−1(D−1c+ αS−1m)

)
.
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Table B.1: MSE and Kullback–Leibler divergence of the mean vector and scatter matrices for

simulation scenarios: p = 2 , ncp = 100, δ = 0.001

bdp n eps eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

0.25

50 0.0833 0.0731 0.0756 0.0747 0.1737 0.3529 0.297 0.121 0.1571 0.1409

0.1250 0.0765 0.0722 0.0733 0.1996 0.4293 0.3744 0.1281 0.1705 0.1569

0.2500 0.08 0.0521 0.0504 0.3564 1.1817 1.1846 0.1608 0.343 0.3432

100 0.0833 0.0389 0.0402 0.0387 0.0911 0.188 0.1688 0.0604 0.0886 0.0817

0.1250 0.0366 0.0361 0.0375 0.1063 0.25 0.2341 0.0634 0.1032 0.0995

0.2500 0.0432 0.0275 0.0269 0.2483 1.0185 0.9852 0.1069 0.307 0.2985

200 0.0833 0.0186 0.0210 0.0218 0.0477 0.1081 0.0975 0.0302 0.052 0.0487

0.1250 0.0180 0.0193 0.0188 0.0651 0.1613 0.1546 0.0358 0.0685 0.066

0.2500 0.0191 0.0136 0.0128 0.196 0.8894 0.8798 0.0804 0.2768 0.2737

500 0.0833 0.0075 0.0091 0.0089 0.0237 0.0587 0.0548 0.0142 0.0284 0.0269

0.1250 0.0078 0.0077 0.0078 0.0399 0.1008 0.1006 0.0208 0.0434 0.0435

0.2500 0.0084 0.0054 0.0055 0.1542 0.7974 0.8011 0.0632 0.2542 0.2551

0.1875

50 0.0625 0.0496 0.063 0.0629 0.08 0.2465 0.2075 0.0657 0.1227 0.1085

0.0938 0.0521 0.067 0.0656 0.0818 0.2541 0.2455 0.0667 0.1234 0.1206

0.1875 0.0548 0.0481 0.0481 0.1041 0.6717 0.6666 0.0744 0.2226 0.2212

100 0.0625 0.0231 0.0353 0.0327 0.0429 0.1236 0.1146 0.0322 0.066 0.0614

0.0938 0.0249 0.0312 0.0312 0.0426 0.1564 0.1523 0.0329 0.0731 0.0711

0.1875 0.0283 0.0244 0.0243 0.0614 0.5001 0.5053 0.0408 0.1741 0.1749

200 0.0625 0.0115 0.0181 0.0166 0.0218 0.0672 0.0653 0.0163 0.0364 0.0349

0.0938 0.0124 0.0162 0.0165 0.0241 0.0938 0.0944 0.0174 0.0446 0.0449

0.1875 0.0135 0.0116 0.0125 0.0334 0.4707 0.4527 0.0213 0.1635 0.1588

500 0.0625 0.0051 0.0072 0.0063 0.009 0.038 0.0371 0.0068 0.0196 0.0189

0.0938 0.0051 0.0062 0.0061 0.0108 0.064 0.0632 0.0076 0.0293 0.029

0.1875 0.0054 0.0046 0.005 0.0198 0.4204 0.4181 0.0114 0.1486 0.148

0.125

50 0.0417 0.0411 0.0576 0.0563 0.0664 0.1552 0.142 0.0545 0.0907 0.0865

0.0625 0.0428 0.0528 0.0513 0.0694 0.1806 0.1591 0.057 0.0939 0.0859

0.1250 0.0513 0.046 0.0459 0.4735 0.3375 0.345 0.1103 0.1335 0.1359

100 0.0417 0.0208 0.0283 0.0292 0.0341 0.0789 0.0732 0.0275 0.0472 0.0456

0.0625 0.0232 0.0275 0.0277 0.0355 0.097 0.0996 0.0294 0.0519 0.0527

0.1250 0.0246 0.0225 0.0235 0.1148 0.2474 0.2444 0.0405 0.0983 0.0982

200 0.0417 0.0112 0.0148 0.0159 0.0166 0.0458 0.0415 0.0138 0.027 0.0257

0.0625 0.0114 0.0143 0.014 0.0177 0.0592 0.0584 0.0145 0.0313 0.0307

0.1250 0.0142 0.0118 0.011 0.1146 0.2202 0.2172 0.0272 0.0871 0.0856

500 0.0417 0.0046 0.0058 0.0058 0.0068 0.0222 0.0229 0.0057 0.0126 0.0129

0.0625 0.0044 0.0054 0.0054 0.0075 0.0368 0.0376 0.0059 0.0184 0.0187

0.1250 0.0047 0.0047 0.0046 0.0086 0.1933 0.1925 0.0064 0.0762 0.0759
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Table B.2: MSE and Kullback–Leibler divergence of the MDPD, FASTMCD, and DetMCD

for the mean vector and scatter matrices for simulation scenarios: p = 2 , ncp = 100, δ = 1

bdp n eps eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

0.25

50 0.0833 0.0777 0.0773 0.074 0.1676 0.3625 0.2867 0.1214 0.16 0.1378

0.1250 0.0769 0.0713 0.0688 0.1965 0.4167 0.3637 0.1246 0.1675 0.1526

0.2500 0.086 0.0538 0.054 0.3408 1.1667 1.1909 0.1598 0.3395 0.3467

100 0.0833 0.037 0.0417 0.0388 0.0844 0.1848 0.1629 0.0567 0.0893 0.08

0.1250 0.0375 0.0386 0.0385 0.1046 0.2402 0.2259 0.0624 0.1013 0.0973

0.2500 0.039 0.0264 0.0256 0.2519 1.0057 1.0358 0.1059 0.3038 0.3108

200 0.0833 0.0183 0.0213 0.0212 0.0434 0.1115 0.1019 0.0286 0.0534 0.05

0.1250 0.0177 0.0194 0.0185 0.0624 0.161 0.1543 0.0345 0.0685 0.0657

0.2500 0.0192 0.0134 0.0137 0.192 0.8836 0.878 0.079 0.2752 0.2738

500 0.0833 0.0072 0.0086 0.0085 0.023 0.0573 0.0577 0.0137 0.0277 0.0278

0.1250 0.0077 0.0078 0.008 0.0383 0.0999 0.1022 0.0201 0.0431 0.0441

0.2500 0.008 0.0057 0.0054 0.1553 0.7986 0.7955 0.0635 0.2544 0.2536

0.1875

50 0.0625 0.0487 0.0698 0.0659 0.0821 0.2448 0.222 0.0649 0.1252 0.1134

0.0938 0.0516 0.0613 0.0628 0.0849 0.2558 0.2447 0.0684 0.1214 0.1174

0.1875 0.0547 0.0496 0.0498 0.1022 0.6487 0.6804 0.0737 0.2174 0.2249

100 0.0625 0.0237 0.0363 0.0323 0.0425 0.1251 0.1129 0.0327 0.0669 0.0605

0.0938 0.0241 0.033 0.0318 0.0446 0.1536 0.1516 0.0333 0.073 0.0712

0.1875 0.027 0.024 0.0237 0.0578 0.5096 0.515 0.0387 0.1759 0.1772

200 0.0625 0.0131 0.0172 0.0178 0.0225 0.0685 0.063 0.0172 0.0364 0.0346

0.0938 0.0129 0.0165 0.017 0.0232 0.0958 0.0931 0.0172 0.0453 0.0447

0.1875 0.014 0.0121 0.0126 0.0348 0.4572 0.456 0.0222 0.16 0.1597

500 0.0625 0.0046 0.0067 0.0071 0.009 0.0382 0.0374 0.0065 0.0195 0.0193

0.0938 0.0051 0.0065 0.0065 0.01 0.0643 0.0633 0.0072 0.0295 0.0292

0.1875 0.0057 0.005 0.0048 0.0198 0.4249 0.4269 0.0116 0.1502 0.1507

0.125

50 0.0417 0.0448 0.0561 0.054 0.0687 0.1546 0.1473 0.057 0.0905 0.0864

0.0625 0.042 0.0548 0.0529 0.0702 0.1681 0.1737 0.0563 0.0915 0.0919

0.1250 0.0498 0.0457 0.0431 0.1742 0.3321 0.3299 0.0743 0.1319 0.1301

100 0.0417 0.0211 0.0294 0.0281 0.0341 0.0786 0.0798 0.0277 0.0471 0.0474

0.0625 0.0218 0.0282 0.0276 0.0364 0.1001 0.0889 0.0289 0.0533 0.049

0.1250 0.0253 0.0223 0.023 0.0415 0.2567 0.2524 0.0324 0.1011 0.1003

200 0.0417 0.0109 0.0151 0.0141 0.0174 0.044 0.0431 0.0141 0.0263 0.0255

0.0625 0.0111 0.0136 0.0144 0.0189 0.0591 0.0568 0.0148 0.031 0.0304

0.1250 0.0119 0.0118 0.0111 0.0226 0.2187 0.218 0.0165 0.0865 0.086

500 0.0417 0.0044 0.0061 0.0059 0.0067 0.0221 0.0227 0.0055 0.0128 0.0129

0.0625 0.0044 0.0055 0.0057 0.007 0.0378 0.0354 0.0056 0.0188 0.0179

0.1250 0.0049 0.0044 0.0045 0.0091 0.1923 0.1883 0.0068 0.0757 0.0744
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Table B.3: MSE and Kullback–Leibler divergence of the MDPD, FASTMCD, and DetMCD for

the mean vector and scatter matrices for simulation scenarios: p = 5 , ncp = 100, δ = 0.001

bdp n eps eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

0.1232

50 0.0411 0.1529 0.128 0.127 0.2049 0.2673 0.2558 0.3647 0.3415 0.3248

0.0616 0.1501 0.1228 0.1201 0.2141 0.2804 0.2667 0.3671 0.3361 0.3204

0.1232 0.158 0.1149 0.1143 0.2389 0.33 0.3359 0.3895 0.336 0.3404

100 0.0411 0.0709 0.0636 0.0625 0.0973 0.1263 0.1196 0.1599 0.1681 0.1604

0.0616 0.0725 0.0622 0.0622 0.1033 0.1301 0.1247 0.1653 0.1666 0.1606

0.1232 0.0762 0.0587 0.0542 0.1159 0.1728 0.1733 0.1768 0.1863 0.1845

200 0.0411 0.0353 0.0321 0.0326 0.0476 0.0612 0.0583 0.0771 0.0844 0.0811

0.0616 0.036 0.0321 0.0318 0.0492 0.0665 0.065 0.0783 0.0869 0.0852

0.1232 0.0377 0.0284 0.028 0.0561 0.1078 0.1071 0.0837 0.1175 0.1167

500 0.0411 0.0135 0.0133 0.013 0.0189 0.0248 0.025 0.0299 0.0349 0.0349

0.0616 0.0146 0.0129 0.0128 0.0199 0.0296 0.029 0.0313 0.0389 0.0382

0.1232 0.0153 0.0114 0.0115 0.025 0.0697 0.0683 0.0361 0.0765 0.0754

0.0924

50 0.0308 0.1079 0.1188 0.117 0.1347 0.2076 0.2026 0.2337 0.2915 0.2837

0.0462 0.1092 0.1169 0.1193 0.1372 0.2157 0.2053 0.2347 0.2861 0.2782

0.0924 0.1135 0.1124 0.1103 0.1509 0.2273 0.2325 0.2478 0.2709 0.2738

100 0.0308 0.0535 0.0589 0.0615 0.0685 0.1067 0.1036 0.1147 0.1488 0.1468

0.0462 0.0548 0.0593 0.059 0.0679 0.1063 0.1038 0.1138 0.1461 0.1436

0.0924 0.0594 0.0545 0.0545 0.142 0.1346 0.1321 0.1446 0.1555 0.1536

200 0.0308 0.0266 0.0313 0.0308 0.0343 0.0534 0.0514 0.0563 0.0764 0.0739

0.0462 0.0289 0.0303 0.0294 0.0343 0.0547 0.0531 0.0574 0.0751 0.0733

0.0924 0.0301 0.0278 0.0281 0.0419 0.0767 0.0769 0.0617 0.0902 0.0907

500 0.0308 0.0113 0.0123 0.0122 0.0134 0.0215 0.0211 0.0224 0.0311 0.0305

0.0462 0.0112 0.012 0.0118 0.014 0.0244 0.0243 0.023 0.0332 0.0331

0.0924 0.0117 0.011 0.0111 0.0155 0.0473 0.048 0.0247 0.0549 0.0556

0.0616

50 0.0205 0.1038 0.1122 0.1098 0.1263 0.1878 0.1846 0.2146 0.268 0.2631

0.0308 0.1035 0.1193 0.1161 0.1283 0.1824 0.1848 0.219 0.2679 0.2685

0.0616 0.1598 0.1067 0.1046 1.3863 0.2001 0.1996 0.7758 0.2517 0.2502

100 0.0205 0.0517 0.0579 0.0567 0.0659 0.0927 0.0886 0.1095 0.1353 0.1305

0.0308 0.0518 0.0573 0.0551 0.0709 0.094 0.0886 0.1119 0.1346 0.1273

0.0616 0.1215 0.0535 0.0531 1.5361 0.099 0.1015 0.7834 0.1285 0.1299

200 0.0205 0.026 0.0285 0.029 0.0334 0.0453 0.0441 0.0541 0.0672 0.066

0.0308 0.0248 0.0277 0.0284 0.0367 0.0454 0.0455 0.0565 0.0655 0.0658

0.0616 0.1016 0.0269 0.0271 1.7258 0.0556 0.0561 0.8425 0.0714 0.0719

500 0.0205 0.0104 0.012 0.0114 0.0137 0.0181 0.0175 0.022 0.0272 0.0264

0.0308 0.0111 0.0111 0.0112 0.017 0.0195 0.0192 0.0256 0.0279 0.0276

0.0616 0.0938 0.0108 0.0108 1.8126 0.0304 0.0304 0.8636 0.0381 0.038
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Table B.4: MSE and Kullback–Leibler divergence of the MDPD, FASTMCD, and DetMCD

for the mean vector and scatter matrices for simulation scenarios: p = 5 , ncp = 100, δ = 1

bdp n eps eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

0.1232

50 0.0411 0.1469 0.1305 0.1271 0.2049 0.2708 0.2547 0.3597 0.345 0.323

0.0616 0.153 0.1245 0.1221 0.2116 0.2815 0.268 0.3684 0.3389 0.3221

0.1232 0.1575 0.1136 0.1131 0.2403 0.3258 0.3264 0.387 0.3317 0.3337

100 0.0411 0.072 0.0644 0.0632 0.0976 0.1265 0.1161 0.161 0.1683 0.1576

0.0616 0.0713 0.0637 0.0641 0.0999 0.131 0.1252 0.1604 0.1681 0.1622

0.1232 0.0773 0.0577 0.0546 0.1132 0.1739 0.173 0.1729 0.1866 0.1846

200 0.0411 0.0357 0.0327 0.0321 0.0486 0.0621 0.0594 0.0783 0.0852 0.0818

0.0616 0.036 0.0323 0.0308 0.0507 0.0657 0.0634 0.0799 0.0863 0.083

0.1232 0.0384 0.0287 0.0285 0.0575 0.1063 0.1056 0.0856 0.1164 0.1157

500 0.0411 0.014 0.0129 0.0128 0.0186 0.0253 0.0253 0.0298 0.0352 0.035

0.0616 0.014 0.0122 0.0131 0.0202 0.0295 0.0293 0.0311 0.0383 0.0386

0.1232 0.0152 0.0114 0.011 0.0249 0.0687 0.0689 0.036 0.0757 0.0756

0.0924

50 0.0308 0.1113 0.1159 0.1208 0.1359 0.2142 0.2003 0.2347 0.2963 0.2836

0.0462 0.112 0.1202 0.1194 0.1342 0.2133 0.2078 0.2341 0.286 0.2787

0.0924 0.1142 0.1107 0.1077 0.1489 0.2389 0.2403 0.2483 0.2781 0.2772

100 0.0308 0.0554 0.0592 0.06 0.0686 0.1071 0.1037 0.1146 0.1483 0.1453

0.0462 0.0559 0.0598 0.058 0.0707 0.1074 0.1049 0.1176 0.1466 0.1432

0.0924 0.0569 0.0547 0.0553 0.0747 0.137 0.1343 0.1211 0.1575 0.1551

200 0.0308 0.0272 0.0305 0.0291 0.0338 0.051 0.051 0.0558 0.074 0.0726

0.0462 0.0286 0.03 0.0303 0.035 0.0538 0.0536 0.0581 0.0744 0.0741

0.0924 0.0295 0.0283 0.0274 0.0368 0.077 0.0764 0.0598 0.0908 0.0898

500 0.0308 0.011 0.0124 0.0118 0.0136 0.0213 0.0209 0.0224 0.0309 0.0301

0.0462 0.0113 0.0122 0.0122 0.0141 0.0239 0.0237 0.023 0.0329 0.0326

0.0924 0.0115 0.0107 0.0108 0.0159 0.0475 0.0478 0.0249 0.0549 0.0552

0.0616

50 0.0205 0.1045 0.1112 0.1114 0.1292 0.1871 0.182 0.2206 0.2648 0.2618

0.0308 0.1061 0.1105 0.1108 0.1291 0.1854 0.186 0.2214 0.2685 0.2655

0.0616 0.126 0.1046 0.1053 0.4948 0.2006 0.1975 0.4048 0.2501 0.2493

100 0.0205 0.0508 0.0576 0.0588 0.0664 0.0888 0.089 0.1083 0.1323 0.1312

0.0308 0.0555 0.0561 0.0559 0.0692 0.0913 0.0909 0.1122 0.1304 0.1298

0.0616 0.0673 0.053 0.0537 0.3503 0.1018 0.0999 0.268 0.13 0.1291

200 0.0205 0.0262 0.0291 0.0291 0.0339 0.045 0.0445 0.0549 0.0673 0.0668

0.0308 0.0267 0.0283 0.0283 0.0362 0.0455 0.0449 0.0571 0.0661 0.0651

0.0616 0.036 0.0269 0.0274 0.2561 0.0566 0.0572 0.1919 0.0721 0.0733

500 0.0205 0.0104 0.0118 0.0115 0.0139 0.0182 0.0177 0.0221 0.0274 0.0267

0.0308 0.0108 0.011 0.0108 0.0161 0.0199 0.0194 0.0245 0.0283 0.0276

0.0616 0.019 0.0106 0.0104 0.199 0.0307 0.0306 0.1492 0.0383 0.0381
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Table B.5: MSE and Kullback–Leibler divergence of the MDPD, FASTMCD, and DetMCD

for the mean vector and scatter matrices for simulation scenarios: p = 10 ,ncp = 250,

δ = 0.001

bdp n eps eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

0.067

50 0.0223 0.2664 0.2155 0.2196 0.3042 0.3326 0.3329 1.0252 0.8685 0.8634

0.0335 0.2622 0.2215 0.2167 0.3028 0.3338 0.3285 1.0178 0.8771 0.8542

0.0670 0.2712 0.2121 0.2123 0.318 0.3423 0.3405 1.0558 0.8104 0.8076

100 0.0223 0.1216 0.1138 0.1096 0.1432 0.1547 0.1509 0.439 0.4174 0.4069

0.0335 0.1252 0.1084 0.1106 0.1434 0.1546 0.154 0.4426 0.4085 0.4042

0.0670 0.1268 0.1058 0.1065 0.1494 0.1594 0.1558 0.4549 0.3894 0.3862

200 0.0223 0.0629 0.0574 0.0541 0.0695 0.0755 0.0748 0.2096 0.208 0.2034

0.0335 0.062 0.0565 0.0552 0.0705 0.0754 0.0746 0.2098 0.2035 0.201

0.0670 0.0651 0.0539 0.0547 0.0744 0.0813 0.082 0.2197 0.2006 0.2025

500 0.0223 0.0244 0.0232 0.0232 0.0277 0.0298 0.0293 0.0816 0.0825 0.0813

0.0335 0.0251 0.0228 0.0228 0.028 0.0308 0.03 0.0824 0.0833 0.0816

0.0670 0.0253 0.0209 0.0214 0.0296 0.0356 0.0359 0.0857 0.0881 0.0889

0.0502

50 0.0167 0.2077 0.2174 0.2132 0.2327 0.2948 0.2914 0.7458 0.8065 0.7985

0.0251 0.2157 0.213 0.208 0.2335 0.2942 0.2863 0.7472 0.7973 0.7858

0.0502 0.2161 0.2075 0.2113 0.2414 0.2918 0.2894 0.7647 0.7625 0.7566

100 0.01670 0.1042 0.1114 0.1069 0.1156 0.1444 0.1427 0.3514 0.4043 0.3956

0.0251 0.1037 0.1117 0.1076 0.1167 0.1461 0.1413 0.3575 0.3996 0.3887

0.0502 0.1093 0.1041 0.104 0.121 0.1497 0.1489 0.37 0.3782 0.3768

200 0.01670 0.0533 0.0559 0.0557 0.0583 0.0708 0.0697 0.1752 0.1979 0.1957

0.0251 0.0528 0.0551 0.0536 0.059 0.0714 0.07 0.1763 0.1956 0.192

0.0502 0.0542 0.0525 0.0519 0.061 0.0738 0.0735 0.1814 0.1895 0.1882

500 0.0167 0.0216 0.0218 0.0223 0.0233 0.028 0.0276 0.0696 0.0784 0.0777

0.0251 0.0213 0.0218 0.0219 0.0236 0.0285 0.028 0.0701 0.0784 0.0774

0.0502 0.0218 0.0208 0.0212 0.0243 0.0312 0.0312 0.0717 0.0801 0.0802

0.0335

50 0.0112 0.2092 0.2059 0.2079 0.2277 0.2592 0.2571 0.7334 0.7301 0.7292

0.0167 0.2025 0.2006 0.2028 0.2301 0.2558 0.2546 0.7305 0.724 0.7271

0.0335 0.1992 0.2015 0.2059 0.2263 0.2593 0.2594 0.7228 0.7311 0.7302

100 0.0112 0.1012 0.1059 0.1051 0.1131 0.1322 0.1312 0.3465 0.3781 0.3746

0.0167 0.0992 0.1075 0.106 0.1142 0.1312 0.1287 0.3476 0.3767 0.3689

0.0335 0.1057 0.1047 0.1032 0.1182 0.132 0.1333 0.3584 0.3564 0.3607

200 0.0112 0.0508 0.0529 0.0519 0.056 0.0652 0.0635 0.1684 0.186 0.1815

0.0167 0.0516 0.0516 0.0525 0.0559 0.0648 0.0642 0.1682 0.182 0.1813

0.0335 0.0518 0.0526 0.0509 0.0598 0.065 0.0664 0.1755 0.177 0.179

500 0.0112 0.0201 0.0209 0.0209 0.0225 0.026 0.0256 0.0668 0.0741 0.073

0.0167 0.0206 0.021 0.0214 0.0228 0.026 0.0257 0.0675 0.0731 0.0727

0.0335 0.021 0.0207 0.0208 0.026 0.0273 0.0275 0.0721 0.0733 0.0738
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Table B.6: MSE and Kullback–Leibler divergence of the MDPD, FASTMCD, and DetMCD

for the mean vector and scatter matrices for simulation scenarios: p = 10 ,ncp = 250, δ = 1

bdp n eps eµ eΣ eKL

MDPD FastM DetM MDPD FastM DetM MDPD FastM DetM

0.067

50 0.0223 0.2605 0.2241 0.2159 0.2967 0.3313 0.3271 1.0112 0.8692 0.8524

0.0335 0.2670 0.2244 0.2221 0.3036 0.3374 0.3272 1.0207 0.8781 0.8539

0.0670 0.2688 0.2122 0.2158 0.3249 0.3404 0.3386 1.0708 0.8038 0.8078

100 0.0223 0.1252 0.1072 0.1108 0.1403 0.1534 0.1503 0.4351 0.413 0.406

0.0335 0.1249 0.1105 0.108 0.1433 0.1534 0.1506 0.4432 0.4059 0.3998

0.0670 0.1305 0.1081 0.1086 0.1496 0.1585 0.1575 0.4593 0.3895 0.39

200 0.0223 0.0619 0.055 0.0569 0.0696 0.0747 0.0742 0.2087 0.205 0.2035

0.0335 0.0606 0.0557 0.0542 0.0698 0.0762 0.0745 0.2085 0.2041 0.2003

0.0670 0.0640 0.0533 0.0541 0.0746 0.0816 0.0801 0.2194 0.2011 0.1985

500 0.0223 0.0246 0.023 0.0228 0.0277 0.0297 0.0293 0.0818 0.0821 0.0813

0.0335 0.0248 0.0219 0.0226 0.0285 0.0303 0.03 0.0835 0.0818 0.0815

0.0670 0.0250 0.0209 0.0217 0.0295 0.0352 0.0355 0.0853 0.0873 0.0881

0.0502

50 0.0167 0.2086 0.2086 0.213 0.234 0.2917 0.291 0.7466 0.7956 0.7944

0.0251 0.2115 0.2109 0.2124 0.2323 0.2913 0.2939 0.7497 0.7976 0.7969

0.0502 0.2120 0.2113 0.2087 0.2368 0.2968 0.2933 0.7581 0.7661 0.7644

100 0.0167 0.1037 0.1105 0.1077 0.1146 0.1449 0.1419 0.3516 0.4048 0.3952

0.0251 0.1054 0.1104 0.1089 0.116 0.1445 0.1435 0.3564 0.3974 0.3937

0.0502 0.1091 0.1056 0.1073 0.1216 0.1505 0.1479 0.37 0.3794 0.3766

200 0.01670 0.0524 0.0544 0.0568 0.0581 0.0705 0.0695 0.1750 0.1966 0.1956

0.0251 0.0541 0.0536 0.0537 0.0591 0.0712 0.0698 0.1779 0.1945 0.1918

0.0502 0.0554 0.0519 0.0523 0.0605 0.074 0.0744 0.1814 0.189 0.19

500 0.0167 0.0207 0.0222 0.0215 0.0233 0.0279 0.0277 0.0689 0.0784 0.0776

0.0251 0.0210 0.0215 0.022 0.0234 0.0281 0.0282 0.0693 0.0773 0.0778

0.0502 0.0218 0.0214 0.0214 0.0245 0.0316 0.0312 0.0722 0.0811 0.0804

0.0335

50 0.0112 0.2047 0.2033 0.2029 0.2272 0.2541 0.254 0.7263 0.7237 0.722

0.0167 0.2057 0.2007 0.2072 0.2237 0.2571 0.257 0.7202 0.7306 0.7311

0.0335 0.2053 0.2046 0.204 0.2284 0.2562 0.2566 0.7306 0.7321 0.7235

100 0.0112 0.1038 0.1054 0.1073 0.1129 0.1308 0.1325 0.3477 0.3754 0.3761

0.0167 0.1016 0.1068 0.1068 0.1127 0.132 0.1302 0.3461 0.3751 0.3726

0.0335 0.1077 0.1037 0.1035 0.114 0.1328 0.1338 0.352 0.3597 0.3591

200 0.0112 0.0505 0.0533 0.0533 0.0568 0.0649 0.0635 0.1702 0.1856 0.1832

0.0167 0.052 0.0517 0.0526 0.0564 0.0651 0.0648 0.1693 0.1838 0.1825

0.0335 0.0534 0.0521 0.0511 0.0589 0.0659 0.0661 0.1752 0.1785 0.1781

500 0.0112 0.0207 0.0217 0.0214 0.0224 0.0259 0.0259 0.0667 0.0741 0.074

0.0167 0.0206 0.0211 0.0211 0.0228 0.0261 0.0261 0.0673 0.0735 0.0735

0.0335 0.0209 0.0208 0.0208 0.0239 0.0272 0.0276 0.0698 0.0733 0.0739
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