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Abstract 

Industrial developments over the past few decades have transformed manufacturing 

processes, emphasizing the necessity for efficient scheduling systems. The shift from manual 

scheduling to automated and optimized systems has underscored the need for innovative 

approaches to improve production efficiency.  

Scheduling optimization of manufacturing systems is critical to improve operational 

efficiency. Typically, these scheduling problems become challenging because they involve 

coordinating various production tasks, resource management, and makespan minimization. These 

challenges are particularly evident in flow-shop manufacturing systems, where the operation 

sequencing significantly impacts overall performance. The main objective of this manuscript is to 

present the methodology followed to optimize the schedule of a flow-shop manufacturing system 

through the combination of discrete-event simulation and neural networks. With a specific focus 

on enhancing operational efficiency, the study aimed to employ the built-in neural network 

capabilities of Simio simulation software to optimize the makespan, consequently reducing the 

overall production time required for processing manufacturing orders. By exploring the integration 

of advanced simulation techniques with neural network functionalities, this research highlights the 

advantages of this powerful tool to model and optimize complex manufacturing processes. 

Moreover, the study compared the Simio with neural networks approach and Palmer Heuristic 

method to assess their respective advantages and disadvantages and emphasized the potential 

benefits for the manufacturing industry by implementing these methodologies to facilitate 

informed decision-making and drive improvements in productivity and resource utilization within 

the context of manufacturing operations.  
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The findings from this research offer valuable insights into the effectiveness of combining 

discrete-event simulation with neural networks, providing a framework for future studies and 

practical applications in manufacturing systems. The demonstrated improvements in makespan 

and overall operational efficiency highlight the potential for these advanced techniques to be 

adopted in different industrial settings. 
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Chapter 1: Introduction 

Efficient scheduling in manufacturing systems is crucial for optimizing operational 

efficiency, particularly in the context of flow-shop environments. The challenges of coordinating 

diverse production tasks and minimizing makespan have led to the exploration of innovative 

methodologies. Hence, this research employs the powerful combination of discrete-event 

simulation and Simio neural networks to optimize scheduling in flow-shop manufacturing systems.  

The integration of Simio's neural networks served as a cornerstone of the methodology. By 

utilizing the built-in neural network capabilities within Simio simulation software, the study aims 

to optimize the makespan and reduce the overall production time required for processing 

manufacturing orders. Successful implementations in related fields inspired this approach, where 

the integration of simulation and neural networks had proven to be a potent tool for process 

optimization. Furthermore, the Palmer Heuristic method was incorporated as a complementary 

approach to scheduling optimization. This method offered a systematic approach to job 

sequencing, known for its effectiveness in finding near-optimal solutions for flow-shop scheduling 

problems.  

Utilizing both Simio's neural networks and the Palmer Heuristic method allowed for a 

comparative analysis to determine if both approaches could achieve similar results, which is 

particularly crucial in flow-shop scheduling problems, where attaining an optimal schedule is 

paramount for minimizing makespan. Each method presents distinct limitations and challenges. 

The limitations of Simio NN primarily arise from its black box nature, hindering interpretability 

and diagnostic capabilities, and posing challenges in domains with limited data availability. On 

the other hand, implementing the Palmer heuristic can be challenging due to the need to accurately 

translate its algorithmic steps into code, handle complex data structures, and optimize computation 



2 

efficiency. By evaluating the efficiency and effectiveness of each method, the study seeks to offer 

insights into their individual strengths and weaknesses in optimizing flow-shop scheduling. Recent 

studies have demonstrated the effectiveness of integrating neural networks into simulation models 

for optimizing manufacturing processes. Their findings have showcased notable improvements in 

makespan reduction and operational efficiency, providing a basis for the exploration of this 

combined approach. By building upon the insights gained from prior research, this study 

contributes to the understanding of the application of advanced simulation techniques and heuristic 

methods in the context of flow-shop scheduling optimization. 

1.1 LITERATURE REVIEW 

1.1.1 Overview of flow-shop scheduling problems 

Flow-shop scheduling problems (FSSP) are a class of production scheduling problems 

where n jobs {𝐽1, 𝐽2, … , 𝐽𝑛} must pass through a series of m machines {𝑀1, 𝑀2, … , 𝑀𝑚}  in a 

specific order. Each job has an identical flow pattern, must visit each machine exactly once, and 

the order of machines is the same for all jobs.  

The processing of job 𝐽𝑗 on machine 𝑀𝑖 is called an operation, denoted by 𝑂𝑖𝑗. For each 

operation 𝑂𝑖𝑗, there is an associated processing time 𝑡𝑖𝑗. In addition, there may be a ready time (or 

release date) 𝑟𝑗 associated with each job, at which time 𝐽𝑗 is available for processing, and/or a due 

date 𝑑𝑗, by which time 𝐽𝑗 should be completed. A schedule in this context is an assignment of jobs 

over time onto machines. The scheduling problem is to find a schedule that optimizes some 

performance measure. The following assumptions appear frequently in scheduling theory 

literature: 

1. Machines are always available and never break down. 

2. Each machine can process at most one job at any time. 

3. Any job can be processed on at most one machine at any time. 
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4. Ready times of all jobs are zero, i.e., all jobs are available at the commencement of 

processing. 

5. No pre-emption is allowed; once an operation is started, it is continued until complete. 

6. Setup times are independent of the schedules and are included in processing times. 

7. Processing times and technological constraints are deterministic and known in advance, 

and similarly for due dates, where appropriate [1]. 

The main objective in FSSP is typically to minimize the makespan, which is the total time required 

to complete all jobs. For a comprehensive review of flow shop scheduling problems, one can refer 

to Linn and Zhang (1999) [2]. FSSP is characterized by the following elements: 

− Jobs and Machines: A finite set of jobs, each requiring a sequence of operations performed 

on a finite set of machines. 

− Processing Order: Each job must follow a specific sequence of operations across the 

machines. The order is predefined and identical for all jobs. 

− Processing Times: Each operation has a specific processing time that can vary for each job 

and machine. 

− Constraints: Common constraints include no job splitting, where a job cannot be 

interrupted once started on a machine, and machine availability, where each machine can 

process only one job at a time. 

FSSP is considered NP-hard [3], meaning that finding an optimal solution requires computational 

time that increases exponentially with the problem size. This complexity arises from the large 

number of possible job sequences and the need to account for various constraints and processing 

times. Key challenges in FSSP include: 

− Makespan Minimization: Achieving the shortest possible total elapsed time required to 

process all jobs on all machines [4]. 

− Resource Allocation: Efficiently assigning jobs to machines to minimize idle times and 

maximize utilization. 
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− Sequencing and Scheduling: Determining the optimal order in which jobs should be 

processed on each machine to minimize delays and bottlenecks. 

 

1.1.2 Traditional scheduling methods 

Like many OR application areas, the study of scheduling theory began in the early 1950s. 

Johnson's article (Johnson 1954) [5], is acknowledged as a pioneering work. Jackson (1955) [6]  

and Smith (1956) [7] provided various optimal rules for single-machine problems. These early 

works formed the basis for much of the development of classical scheduling theory.  

In the 1970s, theoretical work on problem complexity began. It was found that most 

problems are NP-hard (Lenstra et al. 1977) [8]. Fast optimal algorithms are unlikely to exist for 

these problems. The effectiveness of heuristic algorithms was studied by theoretical analysis and 

computational experiments [1]. 

There are many scheduling problems that are intrinsically very hard, i.e., NP-hard. They 

cannot be formulated as linear programs and there are no simple rules or algorithms that yield 

optimal solutions in a limited amount of computer time. It may be possible to formulate these 

problems as integer or disjunctive programs, but solving these to optimality may require an 

enormous amount of computer time [9]. 

One of the traditional methods for solving scheduling problems is the use of heuristic 

methods, which provide good solutions in a reasonable time frame. These methods, as discussed 

by Thomas L. Saaty, are often based on rules or strategies that guide the search for feasible 

solutions in complex optimization problems [10]. Examples include Johnson's rule, which 

provides an optimal solution for two-machine flow-shop problems, and the Palmer Heuristic, 

which uses priority rules to sequence jobs. One advantage of heuristic methods like the Palmer 

Heuristic is their efficiency and quick processing, making them suitable for real-time applications 

and providing satisfactory solutions. 
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Metaheuristic algorithms are advanced strategies that guide the search process to explore 

the solution space more effectively. Examples include Genetic Algorithms (GA), Simulated 

Annealing (SA), and Particle Swarm Optimization (PSO). These methods are often used for larger, 

more complex problems due to their ability to find near-optimal solutions within acceptable 

computational times. However, a disadvantage of metaheuristic algorithms is that they do not 

guarantee an optimal solution and their performance can be sensitive to the choice of parameters 

and the specific problem instance. 

Exact algorithms guarantee an optimal solution by exhaustively exploring all possible 

solutions. Examples include Branch and Bound (B&B) and Mixed-Integer Linear Programming 

(MILP). These methods are typically limited to smaller problem instances due to their high 

computational demands, making them impractical for larger, more complex scheduling problems. 

 

1.1.3 Advances in discrete-event simulation 

Discrete-event simulation (DES) has evolved significantly in recent years, particularly in 

its application to flow-shop scheduling problems. DES involves modeling systems as a series of 

discrete events over time, where each event represents a change in the system's state. This method 

allows for a detailed representation of complex manufacturing processes, enabling researchers and 

practitioners to analyze system behavior, optimize processes, and test scenarios under controlled 

conditions. 

In the context of flow-shop scheduling, advancements in DES have led to more robust tools 

and methodologies for optimizing scheduling decisions. Researchers such as Benjamin W. 

Johnson and Jeffrey S. Smith have leveraged DES not only to simulate and analyze existing 

scheduling strategies but also to develop and test novel approaches. This includes the integration 

of machine learning algorithms and optimization heuristics, thereby pushing the boundaries of 

what can be achieved in terms of scheduling efficiency and operational effectiveness. 
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Simulation has been extensively utilized to address various short-term decision-making 

challenges in manufacturing. Thomas and Charpentier [11] illustrate the benefits of constructing 

simplified models with reduced elements, connections, or calculations to enhance scheduling 

efficiency in manufacturing systems. Lejmi and Sabuncuoglu [12], on the other hand, employ 

simulation coupled with statistical analysis to assess how variations in load, processing time, and 

due dates impact scheduling system performance within manufacturing environments. These 

studies underscore the versatility of simulation techniques in optimizing manufacturing operations 

by providing insights into system behavior under different conditions [13]. 

 Advances in discrete-event simulation (DES) have played a crucial role in the development 

of software platforms like Simio LLC, which specializes in simulation software widely used for 

addressing complex flow-shop scheduling problems (FSSP). Simio is a leading platform in 

discrete-event simulation, offering innovative solutions for modeling manufacturing processes, 

logistics, healthcare, and aerospace industries. The software integrates advanced algorithms to 

effectively manage uncertainty and variability in FSSP, significantly enhancing operational 

efficiency and decision-making across various industries. 

 

1.1.4 Application of neural networks in production scheduling 

In recent years, the application of neural networks has gained significant attention in the 

manufacturing sector, revolutionizing traditional approaches to optimizing production processes. 

The manufacturing industry has experienced an unprecedented degree of change, including 

global competition, shortened product life cycles, shifts in management, increasing quality 

demands, higher customer expectations, rapid advances in complex technologies, and a vast array 

of options in materials and processes. Today's companies are challenged not only to adapt to these 

evolving conditions but also to harness them strategically to maintain a competitive advantage 

[14]. 
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Neural networks have become widely recognized in manufacturing due to their capability 

to handle complex patterns and nonlinear relationships in production systems. In flow-shop 

scheduling, neural networks are employed to optimize scheduling decisions by learning from 

historical data and real-time inputs. This approach enables neural networks to predict processing 

times more accurately than traditional methods, thereby improving the overall efficiency of 

manufacturing operations. 

 

1.1.4.1 The artificial Neural Network Technology 

Artificial Neural Networks (ANN) Are a type of machine learning algorithm that is inspired 

by the structure and function of biological neurons in the human brain. The fundamental concept 

of ANNs is the structure of the information processing system. Composed of a large number of 

highly interconnected processing units, “neurons” connected into networks, a neural network 

system uses the human-like technique of learning by example to resolve problems [15].  

Neural networks (NN) are models designed to detect and predict complex relationships 

within data sets, making them highly effective in tasks such as forecasting future trends, classifying 

data, and optimizing decision-making processes. NNs are designed to model and predict complex 

relationships between input data and output data (see Figure 1.1), making them useful in 

applications such as forecasting, classification, and optimization. These networks function by 

systematically adjusting parameters known as weights, which determine the strength and direction 

of connections between individual neurons. During the training phase, neural networks learn from 
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historical data inputs and corresponding outputs, iteratively refining their weights to minimize the 

disparity between predicted outcomes and actual results. 

Through this iterative learning process, neural networks gain an understanding of the 

patterns and structures present in the data. This acquired knowledge enables them to make accurate 

predictions when presented with new, previously unseen data. In the context of manufacturing and 

flow-shop scheduling, neural networks enable the optimization of production schedules by 

leveraging historical performance data and real-time operational inputs. By continuously adapting 

and refining their predictive capabilities, neural networks contribute significantly to enhancing 

efficiency and decision-making within manufacturing environments. 

One significant application of neural networks in manufacturing is their integration with 

simulation tools like Simio. By incorporating neural networks within simulation models, 

researchers can simulate various scheduling scenarios and optimize schedules dynamically. 

 

1.2 THESIS OBJECTIVES 

The primary objective of this thesis is to apply Simio software's neural network capabilities 

in a production scheduling case study to evaluate the efficiency of discrete-event simulation and 

neural network integration. This research will utilize Simio's advanced features to minimize the 

makespan in a specific manufacturing system, thereby enhancing overall operational efficiency. 

Figure 1.1 Representation of an  Artificial Neural Network (ANN) 
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By comparing the performance of Simio's neural network approach with the Palmer Heuristic 

method, the study aims to assess their effectiveness in addressing the complexities of flow-shop 

scheduling and providing practical solutions applicable to real-world manufacturing environments. 

Additionally, this thesis seeks to provide insights into the strengths and limitations of 

employing neural networks and Palmer Heuristic for scheduling optimization. Through a detailed 

documentation of the integration process and an evaluation of their impact on scheduling 

performance, the research will analyze how these techniques can be optimally utilized. The goal 

is to emphasize the potential advantages of these approaches, including potential reductions in 

production times and enhancements in resource utilization. Ultimately, this study aims to establish 

a foundation for further research and practical implementation in the field of manufacturing 

operations. 
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Chapter 2: Case Study and Problem Definition 

Efficient scheduling is crucial in improving operational performance within manufacturing 

processes, offering advantages such as reduced lead times, optimized resource utilization, and, 

ultimately, cost savings. Moreover, schedule optimization holds the potential to streamline 

workflows, ensuring tasks are completed in a timely and cost-effective manner. The presented case 

study aims to optimize the schedule of an industrial flow-shop, which is described in the following 

sections.  

2.1 DESCRIPTION OF THE INDUSTRIAL FLOW-SHOP CASE STUDY 

In this study, each machine serves as an assembly operation station responsible for a 

specific part of the final product's manufacturing process. Upon completion of processing through 

all three machines, the final product is considered finished. 

The case study centers around four jobs that must pass through three machines in a 

predefined order  (see Figure 2.1). In this FSSP, the machine stages are represented by Machine 1, 

Machine 2, and Machine 3. Each job has a different processing time for each machine. The goal 

is to identify an optimal job completion sequence, reduce the makespan, and enhance overall 

operational efficiency. 

Once each job passes through the three machines, it will be considered a finished product. 

Finished products consist of several components that need to be assembled according to a 

hierarchical assembly structure. These components are sub-assembly operations, called sub-

assemblies (SUA). Figure 2.2 presents an illustrative example of the final products with a 

hierarchical assembly structure. The assembly structure has a tree configuration, where the final 

node (machine 3) represents the final assembly operation. Final products have simple hierarchical 

assembly structures involving just one assembly operation in each machine. They are completed 
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in the assembly stage, where each product is built by assembling the processed parts according to 

the Bill of Materials (BOM). For this case study, it is assumed that each assembly stage (machine 

operation) has infinite BOM capacity, meaning material capacity constraints are not considered as 

a factor in optimizing the FSSP. The goal is to find the assembly operations sequence that 

optimizes a specified performance measure, such as the makespan, which means determining the 

order in which jobs should be processed for maximum efficiency. 

 

  

Figure 2.1 Processing flow of parts in flow shop 

Figure 2.2 Illustrative examples of final product’s assembly levels. 
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2.2 PROCESSING TIMES AND JOB SEQUENCES 

The variability in processing times for each job across Machine 1, Machine 2, and Machine 

3 adds complexity to the scheduling problem. The distinct processing times for different jobs on 

each machine imply that the sequence in which jobs are processed directly influences the makespan 

and overall efficiency of the flow-shop scheduling system. The production sequences and 

processing times are specified in Table 2.1. This table specifies the required processes per job type, 

where j and k, specifies the machine where the part must be processed on, and the task processing 

time. 

Table 2.1 Processing times for each job on each machine 

 

Job (j) 

Machine processing times in minutes (k) 

M1 M2 M3 

1 6 5 10 

2 8 9 7 

3 3 8 6 

4 4 7 9 
 

 

Effective job sequencing balances the workload across machines, reduces idle time, and 

ensures the timely completion of all jobs by determining the optimal order in which jobs should 

be processed through the machines to minimize makespan. In this study, methods for estimating 

processing times and strategies for sequencing jobs are explored to improve the operational 

performance of flow-shop manufacturing systems. 

2.3 IDENTIFICATION OF KEY PERFORMANCE INDICATORS 

2.3.1 Makespan 

By minimizing the makespan, manufacturers can ensure that all jobs are completed in the 

shortest possible time, reducing idle times, improving machine utilization, and increasing overall 

efficiency. This leads to cost savings and higher customer satisfaction due to timely deliveries. 
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Given its significance, optimizing the makespan has been the focal point of this study. 

Different techniques have been developed and employed to achieve this optimization. Among 

these techniques, discrete-event simulation (DES) and heuristic methods stand out. Discrete-event 

simulation provides a powerful tool for modeling complex manufacturing systems and evaluating 

the impact of different scheduling strategies on the makespan. By simulating various scenarios, 

DES helps in identifying bottlenecks and testing alternative solutions without disrupting the actual 

production process. 

Heuristic methods, on the other hand, offer practical and often computationally efficient 

approaches to find near-optimal solutions for minimizing the makespan. These methods, such as 

the Palmer Heuristic, are designed to generate good scheduling sequences based on certain rules 

or heuristics.  

2.4  NOTATION DEFINITION 

The notation definition used for describing the scheduling problem in a flow-shop 

manufacturing environment is presented in table 2.2. 

 

 Table 2.2 Nomenclature for completion time calculation of FSSP 

Indices 

j: Index of jobs, where: 

j = 1,2, . . . ,n 

k: Index of machines, where: 

k= 1,2, . . ., m 

Parameters:  

n: Number of jobs 

m: Number of machines 

Decision variables: 
Cj,k:Completion time of job j on machine k 

Processing time: 
tj,k:Time taken for job j to be processed on machine k 

 

 

Assuming (j
1
, j

2
, ... , j

n
) as jobs’ sequence, the completion time Cj,k for each job j on each 

machine k is calculated as follows: 

− Start with the first job on the first machine: 

      

C1,1=t1,1 
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− For the first job on subsequent machines: 

 

C1,k = C1,k-1 + t1,k 𝑓𝑜𝑟 𝑘 = 2, … , 𝑚 

      

− For the remaining jobs on the first machine: 

 

Cj,1 = Cj-1,1 +  tj,1 𝑓𝑜𝑟 𝑗 = 2, … , 𝑛 

 

− For the remaining jobs on the remaining machines: 

 

Cj,k = max(Cj-1,k, Cj,k-1) + tj,k 𝑓𝑜𝑟 𝑗 = 2, … , 𝑛 𝑎𝑛𝑑 𝑘 = 2, … , 𝑚 

      

 

The makespan, which represents the completion time of the last job on the last machine, is given 

by: 

Makespan = C
n,m

 

 

 

This notation and calculation method form the basis for analyzing scheduling efficiency 

and optimizing flow-shop manufacturing systems.   
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Chapter 3: Proposed Methodology 

The proposed methodology for optimizing the flow-shop schedule involves a systematic 

and iterative process to compare the effectiveness of Simio with neural networks and Palmer’s 

Heuristic.  

3.1 RESEARCH DESIGN AND FRAMEWORK 

The process begins with simulating the flow-shop schedule without NN optimization using 

Simio, establishing a baseline makespan. 

Next, neural networks are integrated into the Simio environment and trained using relevant 

data to understand system patterns. The trained neural network is then applied to optimize the 

schedule, and its impact on performance is evaluated. Subsequently, Palmer’s Heuristic is 

implemented in Python to find an optimal routing solution, which is then used to optimize the 

schedule, and its performance is assessed. 

A comparative analysis is conducted between the results obtained from the Simio with 

neural networks optimization and Palmer’s Heuristic. The analysis considers computational 

efficiency, accuracy, and ease of implementation. Validation and sensitivity analysis are 

performed to confirm the results and identify significant factors affecting each method’s 

performance. 

Finally, the entire methodology, including simulation parameters, neural network 

parameters, and the Python code for Palmer’s Heuristic, is documented. A comprehensive report 

is prepared to highlight findings and provide recommendations. 

The following sections will detail the tools and techniques used in this research, including 

the functionalities of Simio, the plan for data collection and processing, the integration of neural 

networks, and the implementation of Palmer’s Heuristic. 
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3.2 DISCRETE-EVENT SIMULATION INTEGRATION 

3.2.1 Simio software features 

Simio software is a powerful tool for discrete-event simulation, offering features that make 

it highly useful for modeling and optimizing manufacturing systems. One of its advantages is its 

object-oriented modeling environment, which allows users to create detailed and realistic 

representations of their systems. This is particularly beneficial for flow-shop scheduling, where 

understanding the impact of different job sequences on overall system performance is crucial.  

Another significant feature of Simio is its neural network capabilities. This tool enables the 

utilization of data derived from validated simulations to train the neural network, thereby 

optimizing production processes. This approach ensures higher reliability and accuracy in the 

training process, leading to more effective and efficient production schedule optimizations. 

Simio software includes built-in templates and libraries with objects that can significantly 

reduce the time required to develop and test simulation models. The following section defines the 

objects and tools employed in this simulation of FSSP. 

3.2.1.1 Simio Key Components 

Simio intelligent objects are key components in modeling and simulating complex systems. 

These objects, along with tools like sequence tables, enable the simulation of system workflows 

and facilitate optimization efforts. 

Table 3.1 presents each of the key components utilized for the simulation of the FSSP.  
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Table 3.1 Key components of FSSP simulation 

Source Objects 
Their primary role is to generate or "create" 

entities within the model, which represent 

units of work, orders, products, or other items 

flowing through the simulated system. These 

objects can be configured with specific rules 

that govern the arrival rate of entities into the 

system, as well as other parameters related to 

the generation and initial behavior of 

simulated entities. 

 

Entity objects 
Represents an object that moves through a 

simulation model. Entities typically represent 

items, such as parts, orders, or jobs that flow 

through a system being modeled. They can 

carry attributes and follow paths defined by 

the simulation logic. Entities are fundamental 

for simulating how real-world objects move 

and interact within a simulated environment, 

allowing analysts to study system behavior, 

optimize processes, and evaluate performance 

metrics such as throughput, utilization, and 

waiting times. 
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Server object 
Represents a resource or a work center that 

manages the processing of entities according 

to defined schedules or rules within a 

simulation model. These resources can be 

configured to handle different types of tasks, 

processing times, and capacities, which 

influence the flow and efficiency of entities 

through the system being modeled. 

 

Sequence table 
It is a tool used to define and manage the order 

in which entities move through a simulation 

model. It specifies the sequence in which 

tasks or operations are performed on entities 

as they progress through various stages of a 

system or process. 

 

Connector object 
These objects define pathways through which 

entities, such as products or resources, travel 

from one location to another. They are 

configured with attributes like capacity and 

speed and integrated with logic for routing 

and decision-making. These pathways  

connect different parts of the model, 

representing movement between stations, 

machines, or process steps. 
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Status labels 
Label associated with an entity, object, or 

state within a simulation model. It is used to 

indicate the current status, condition, or state 

of an entity or component in the simulated 

system. This label can dynamically change as 

the simulation progresses based on predefined 

conditions or events modeled within Simio. It 

helps in monitoring and analyzing the 

behavior and performance of the simulated 

system by providing real-time or near-real-

time updates on the status of various entities 

or processes. 

 

Sink object 
Used to represent the final destination or end 

point for entities in a model. Its primary 

function is to collect entities that have 

completed their processing within the 

simulation. Sink objects are typically placed 

at the end of process flows or pathways to 

capture and record data related to completed 

entities, such as arrival times, processing 

times, and other relevant metrics. 
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3.2.2 Neural networks integration 

Simio Software offers a no-code neural network development process. This no-code 

process empowers developers to create NN models without having to encounter complex coding 

challenges. Once created, the user has the option to train and evaluate the NN model directly using 

the Simio Trainer feature [16]. 

This study utilizes Simio's recent feature, which enables the generation of training data, 

conducting neural network training, and implementing the trained model directly within the Simio 

interface. This process involves creating a feed-forward neural network directly in Simio without 

any coding required.  

The way Simio's neural networks operate is illustrated in Figure 3.1. The process starts by 

acquiring information from within the simulation, which then enters a black box with the output 

function based on the defined feed-forward neural network model. The neural network then learns 

patterns from the data, making predictions or classifications based on the inputs. The neural 

networks can analyze the simulated outcomes to suggest optimal scheduling sequences, reducing 

the makespan improving operational efficiency. 

 

 

 

 

 

 

 

The neural network model in Simio is a fully connected feedforward neural network 

regression model with a fixed number of numeric inputs and a single numeric output. 

“Black box” with the 

output function based on 

the defined feed-forward 

neural network model 

Input data to get 

prediction 
Predicted value 

Figure 3.1 Simio NN integration process 
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This type of neural network can have one or more hidden layers. The number of hidden 

layers and the number of nodes in each hidden layer are hyperparameters that can be set before 

training the model. 

The hyperbolic tangent function (tanh) is used as the activation function for hidden layers, 

while the identity function (linear) is used as the activation function for the output layer. 

Table 3.2 outlines the specific features that enable Simio to create and define a neural 

network element. The neural network is trained using Simio's built-in trainer (refer to Table 3.3 

for detailed concepts) and subsequently implements the model logic. This approach utilizes 

Simio's capabilities to improve process efficiency and optimize the flow-shop scheduling problem. 

Table 3.2 Simio concepts to create the neural network element. 

Neural Network element This element is used to integrate a neural 

network regression model into simulation 

logic 

Input Value Expressions The expressions used to get a set of input 

values for the associated neural network 

model. These expressions should always 

match the order of the input values provided 

during the training of the model.  

Save Input Triggers Optional event-driven triggers that will save a 

set of input values for the associated neural 

network model. 
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Save Actual Triggers Optional event-driven triggers that will sabe an 

actual observed value for the associated neural 

network model. 

Actual Value Expression The expression used to record an actual 

observed value for the associated neural 

network model when a Save Actual Trigger 

occurs. 

 

Table 3.3 Simio concepts to train the neural network. 

Number of Input Nodes The number of nodes in the neural network’s 

input layer. 

Record Training Data Indicates whether to record training data for 

the neural network model. 

Maximum Training Record Limit Indicates the maximum number of training 

records that may be stored in the neural 

network models training data repository. The 

oldest records will be overwritten by new ones 

then the specified maximum record limit is 

reached. 
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3.2.3 Plan for data collection and processing 

One of the advantages of using Simio software is its ability to utilize simulation for data 

sampling, which can then be used to train the neural network. The plan for optimization using 

neural networks in Simio involves running simulations and using the generated data to train the 

neural network. Specifically, the FSSP simulation is run 10,000 times to generate a comprehensive 

dataset. The purpose is to capture a wide range of possible system states and outcomes, helping 

the neural network to generalize better and optimize the process more effectively 

During training, the neural network adjusts its internal weights and biases to minimize the 

difference between predicted and actual outputs. To create a more efficient trained model, 100,000 

data points are collected from the nine specified input nodes. This extensive dataset ensures that 

the neural network has sufficient data to accurately identify the optimal routing solution, thereby 

optimizing the production schedule for this flow-shop problem. 

Figure 3.3 shows the parameters set within the neural network configuration, specifying 

that 100,000 records are extracted from the simulations for training. This number is chosen to 

ensure that the neural network has a comprehensive dataset, which enhances the model's ability to 

learn and adapt to the complexities of the system, leading to more precise and reliable optimization 

outcomes. By using a large dataset from multiple simulation runs, the neural network can better 

learn and adapt to the system's intricacies, resulting in a more efficient optimization  process and 

ensuring that the solutions generated are based on a thorough understanding of the system 

dynamics.  
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3.3 PALMER HEURISTIC INTEGRATION  

Palmer Heuristic is a well-established algorithm utilized in scheduling optimization, 

known for its effectiveness in solving complex scheduling problems. The Palmer Heuristic uses 

heuristic rules and strategies to determine an optimal job processing sequence to minimize the 

makespan and improve operational efficiency. This study employs the Palmer Heuristic as an 

alternative optimization approach to measure the performance of the Simio simulation with neural 

networks. Therefore, a custom Python code is developed to implement the Palmer's Heuristic and 

determine the optimal scheduling route for this particular problem. This section outlines the steps 

required to implement the Palmer Heuristic for the FSSP involving three machines and four jobs. 

The general formula for calculating 𝐴1, which represents the completion time for job j, is used to 

determine the optimal job sequence.  

The completion time 𝐴𝑗 for j using the Palmer Heuristic is calculated as follows: 

𝐴𝑗 = − ∑((3 − (2𝑖 − 1)) ∗ 𝑝𝑖𝑗

𝑚

𝑖=1

 

Where m is the number of machines and 𝑝𝑖𝑗 is the processing time of job j on machine i. 

Figure 3.3 Training parameters 
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This formula calculates 𝐴𝑗 by summing the product of the processing time of job j on 

each machine, multiplied by a specific factor determined by the Palmer Heuristic. Once 𝐴𝑗 

values are calculated for all jobs, sort the jobs in descending order based on their 𝐴𝑗 values. 

This sorted order represents the optimal job sequence according to the Palmer Heuristic.  

3.4 PERFORMANCE METRICS AND EVALUATION CRITERIA 

The makespan obtained from both Simio's neural network-based approach and the 

traditional Palmer Heuristic method will be used to compare and evaluate their respective 

performances. The comparative analysis will involve assessing the makespan values from both 

methods to determine their advantages and disadvantages. The key evaluation criteria will 

include: 

− Efficiency: Evaluating which method produces a lower makespan, thus indicating 

a more efficient scheduling process. 

− Computational Effort: Comparing the time and resources required to achieve results 

using both methods. 

− Implementation Complexity: Assessing the ease of implementing each method, 

considering the need for custom coding versus using built-in simulation tools. 

− Flexibility and Scalability: Analyzing how each method adapts to changes in the 

scheduling problem, such as varying the number of jobs or machines. 
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Chapter 4: Simulation Model Development 

4.1 DESIGN AND SETUP OF THE SIMULATION MODEL IN SIMIO 

In this simulation model, Simio source objects were defined to generate entity objects with 

programmed parameters such as quantity, type, and frequency. Four source objects were allocated 

in the model, each producing one of the four entities created that share identical characteristics. 

Each entity represents an order and must pass through the three machines necessary for completion. 

The machines are simulated using server objects in the model, which are utilized to model the 

machines required for processing each order. These server objects represent processes with finite 

capacity. A sequence table was also employed, specifying the routes and processing times required 

for each entity to pass through each machine. 

Connector objects were used to define the connections between different areas of the 

simulation through which orders travel. These connector objects are unidirectional since orders 

always follow a specific route (e.g., machine 1, machine 2, machine 3). Dynamic labels were 

placed next to the sources to monitor the average time in the system for each order from each 

source. Dynamic labels are variables used to display dynamic information about entities, objects, 

or the system state. Finally, a sink object was employed to denote the completion of the simulation, 

signifying when an order has been fulfilled. The 2D view of the simulation is shown in Figure 4.1.  
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4.2 DEFINITION OF INPUT PARAMETERS AND CONSTRAINTS 

In this section, the parameters of each object used to create the baseline model for this 

simulation in the FSSP case study will be described, defining and explaining each parameter and 

the reasons for these choices. It is important to highlight that all the parameters established in this 

section are for the creation and development of the model without optimization through neural 

networks. 

4.2.1 Entities 

Four entities were established in this model, each representing one of the jobs or "orders" 

as named in the Simio simulation. All entities in this model have identical characteristics (refer to 

Figure 4.2 for detailed entity properties). The free space steering behavior is defined as "direct to 

destination," meaning that the order will always travel through the connectors directly to the next 

object in the simulation, whether it is the next machine to be processed or the sink. The routing 

Figure 4.1 2D view for the simulation model 
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logic for all entities is the same and is defined with the same processing priority, meaning all orders 

have equal importance in the simulation and none are prioritized over another. 

At time zero of the simulation, the initial number of entities in the system is zero. Upon 

running the model, the four entities are simultaneously created at their respective sources. The key 

and important difference between these four orders or jobs is that each has a different processing 

time for each of the three machines they must pass through to be considered a finished product. 

All orders must follow the same path: machine 1, then machine 2, and finally machine 3. 

 

Additionally, the entities were configured with specific parameters to ensure accurate 

modeling of the production process. The sequence table, which details the processing times 

required for each entity at each machine, is presented in Figure 4.3. This table ensures that each 

entity's process through the system is defined and allows for control over the simulation's 

workflow. 

In the sequence table, processing times for each machine are listed. For instance, Entity 1 

might have a processing time of 6 minutes on Machine 1, 5 minutes on Machine 2, and 4 minutes 

Figure 4.2 Entity properties 
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on Machine 3. Entity 2 could have different times, reflecting variability in job requirements. This 

setup provides a realistic depiction of the production environment and its constraints. 

 

4.2.2 Sources 

Four sources were defined in the model, each tasked with creating one of the four entities 

representing the orders. The interarrival time for the four sources is set to 26 minutes, meaning the 

interval at which entities are created. This timing ensures that each new order is generated only 

after the previous four orders have been processed, thereby preventing a new entity from being 

delayed by an order from the previous set still being processed by the three machines. 

Figure 4.4 details the properties of the four sources, all of which share the same defined 

properties.  

Figure 4.3 Sequence table 

Figure 1 
Figure 4.4 Source properties 
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4.2.3 Servers 

Each server represents a machine that processes the orders with the times specified in 

Figure 4.3. All machines share the same properties. It is important to note that the ranking rule for 

these servers is set to first-in, first-out (FIFO), meaning the machines process entities in the order 

they arrive without prioritizing any order over another. Additionally, the log resource usage feature 

is activated, which allows for obtaining the visual schedule at the end of the simulation. Figure 4.5 

shows the properties of the servers. 

4.3 TRAINING AND IMPLEMENTATION OF THE NEURAL NETWORK MODEL 

4.3.1 Setting the neural network properties 

Implementing a neural network at the input node of the server allowed the machines to 

determine which order to process first to achieve an optimal makespan and complete all four 

Figure 4.5 Server properties 
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orders, resulting in informed routing decision. In this case study, it was assumed that the predicted 

makespan depended only on the current load at each of the servers. Figure 4.6 shows the properties 

of the neural network element created. 

A neural network element was created in this simulation model and connected to other 

elements to receive input data and send output data. The Input Value Expressions used to train the 

neural network are shown in Figure 4.7. These parameters include: 

− Associated Station Load: This is the sum of the number of entities currently routed 

to that server, the number of entities currently waiting at the server, and the number 

of entities currently being processed at the server. This parameter helps identify 

potential bottlenecks in the system. 

− Resource State: Indicates the status of servers, whether they are busy, available, or 

in another state, assisting in resource allocation management. 

− Schedule Utilization: Indicates how efficiently the planned schedules are being 

utilized in the model. 

 

Figure 4.6 Neural network properties 
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Save Inputs Triggers determines when to start collecting training data. In this study, the 

chosen point for collecting training data was when the orders entered the system. To ensure that 

all four orders had been created by the time of data collection, transfer node 1 was selected as the 

save input trigger, see Figure 4.8. 

Save Actual Trigger determines when to stop collecting training data. This trigger was 

activated when the orders finished being processed, specifically when machine 3 had completed 

the processing of the orders (see Figure 4.9). 

 

Figure 4.7 Input value expressions 

Figure 4.8 Save inputs trigger 
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The Actual Value Expression calculates the current time minus the time when the order 

was created in the model. This helps determine the processing time and efficiency of the system. 

 

4.3.2 Collecting data for training  

Once the parameters and properties of the neural network were established, the next step 

was to run the simulation to collect the training data. Simio automatically gathered the specified 

number of records, set to 100,000 data points for this study. As mentioned in section 3.2.3, "Plan 

for Data Collection and Processing," these data points were obtained from the nine input nodes. 

Figure 4.10 illustrates an example of the data collected by Simio during the simulation. 

Figure 4.9 Save actual trigger 

Figure 4.10 Training data 
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4.3.3 Training of the neural network 

To train the neural network, the collected data is used by selecting the training option in 

the Simio interface. Figure 4.11 shows the neural network trainer window, detailing the specified 

properties for training the neural network in this case study. It is important to note that the number 

of hidden nodes equals the number of input value expressions.  

 

 

4.3.4 Implementation of neural network 

After the neural network parameters were determined and adequately trained, the trained 

neural network was implemented by adjusting the properties of the input node for the servers (see 

figure 4.12). The property entry ranking rule of the servers was set to "smallest value first" to be 

determined with the data previously obtained from the established neural network, and the entry 

ranking expression was defined as NeuralNetwork.predictedvalue(entity). Instead of processing 

orders as they arrive (i.e., first in, first out), the model employs the neural network's insights to 

Figure 4.11 NN trainer properties 
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make informed decisions on the optimal sequence for order processing, aiming to achieve the 

production schedule with the minimum possible makespan. 

 

4.4 DEVELOPMENT  OF THE PALMER HEURISTIC ALGORITHM IN PYTHON 

 Palmer Heuristics uses heuristic rules and strategies to determine an optimal job processing 

sequence to minimize the makespan and improve operational efficiency. This study employed 

Palmer Heuristics as an alternative optimization approach to measure the performance of Simio 

simulation with neural networks. To achieve this, a custom Python code was developed to 

implement Palmer's Heuristic and determine the optimal scheduling route for this specific 

problem. The complete Python code can be found in Appendix A1.1. 

  

Figure 4.12 NN implementation 
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Chapter 5: Results and Conclusions 

5.1 PERFORMANCE OF THE SIMIO NEURAL NETWORK OPTIMIZATION 

To assess Simio's capacity for optimizing scheduling problems using neural networks, a 

simulation lasting 10 hours was conducted without the application of neural networks. The 

obtained results are detailed in Table 5.1. It is notable that without parameter modification, the 

model processes orders in a "first in, first out" manner, indicating that the model does not make 

decisions regarding the sequence of order processing. Consequently, as orders arrive at the server, 

the machine processes them, leading to idle times and a suboptimal schedule. Consequently, the 

orders were processed in the sequence of 1, 2, 3, and 4, resulting in the schedule depicted in Figure 

5.1. 

It's important to point out that order four has an average time in the system of 0.466 hours, 

approximately 28 minutes longer than the other three orders. This is because order four is 

processed last and must wait for the previous orders to finish before it can be processed. 

Consequently, the makespan derived from the simulation, without any optimization to complete 

all four orders, is 0.466 hours. 

Table 5.1 Average time in system (hours) 

Order Average time in system (Hours)  

1 0.249 

2 0.316 

3 0.433 

4 0.466 

 

 

Figure 5.1 Schedule without optimization. 
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Upon integration of the neural network, the makespan was significantly reduced to 26 

minutes, with the order processing revised to job3-job4-job1-job2. This outcome underscores the 

effectiveness of utilizing neural networks to enhance scheduling decisions and streamline 

operational efficiency within the flow-shop environment. Furthermore, downtime has been notably 

reduced through the neural network optimization process, as evidenced by the schedule presented 

in Figure 5.2. Consequently, both the average time in the system and the makespan have been 

decreased. 

5.2 RESULTS OF THE PALMER HEURISTIC ALGORITHM 

The optimization results obtained through Palmer Heuristics are the same as those achieved 

with the Simio software. The optimal job sequence identified using Palmer Heuristics was job3, 

job1, job4, and job2, resulting in a total makespan of 26 minutes for processing all four orders. 

Figure 5.3 shows the schedule obtained through Palmer Heuristics. This comparison between 

Simio simulation with neural networks and Palmer Heuristics emphasizes the effectiveness of both 

methods in optimizing flow-shop. 

 

Figure 5.2 Schedule optimized by NN 
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5.3 CONCLUSION 

In conclusion, the implementation of both methodologies produced remarkably similar 

results. Both methods successfully optimized the flow-shop scheduling problem by providing the 

optimal routing sequence. This similarity in results highlights the effectiveness of the neural 

network capabilities within Simio software. Moreover, the results confirm that Simio with neural 

networks effectively optimizes scheduling processes and highlights its ease of implementation. 

The integrated approach within Simio offers a user-friendly platform that facilitates the 

implementation of neural networks for scheduling optimization. In contrast, the complexity 

associated with coding and implementing a heuristic method, as demonstrated by Palmers 

Heuristic in Python, adds a layer of complexity to the process. 

This comparison emphasizes the practical advantages of leveraging Simio with neural 

networks as a powerful tool for flow-shop scheduling optimization. The user-friendly nature of 

Simio, combined with the efficiency of neural networks, positions it as a persuasive solution for 

manufacturing systems seeking to improve operational efficiency. The findings suggest that 

Simio's integrated neural network capabilities provide a viable alternative to traditional heuristic 

Figure 5.3 Schedule optimized by Palmer heuristics. 
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methods, offering a more accessible and efficient avenue for achieving optimal scheduling 

outcomes. 

The limitations of this study include the specific context of the flow-shop scheduling 

problem and the predefined parameters within the simulation model. Future work could address 

these limitations by testing the methodologies in more diverse and dynamic settings. 
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Appendix 

A1.1 PYTHON CODE FOR PALMER’S HEURISTIC IMPLEMENTATION  

import time 

startTime = time.time() 

 

job = [1,2,3,4] 

# processing times for each machine 

 

m1 = [6,8,3,4] 

 

m2 = [5,1,5,4] 

 

m3 = [4,4,4,2] 

 

# A1 calculations 

 

Indx_m1 = m1[0] 

Indx_m2 = m2[0] 

Indx_m3 = m3[0] 

 

A0 = (3-((2)*(job[0])-1))*(Indx_m1) 

A1 = (3-((2)*(job[1])-1))*(Indx_m2) 

A2 = (3-((2)*(job[2])-1))*(Indx_m3) 

 

print("A1 values: ", A0,A1,A2) 

 

A1_Sum = ((A0 + A1 + A2)*(-1)) 

 

print("A1 Sum is: ", A1_Sum) 

 

JOB1 = A1_Sum 

 

#A2 calculations 

 

Indx_m1_A2 = m1[1] 

Indx_m2_A2 = m2[1] 

Indx_m3_A2 = m3[1] 

 

A2_0 = (3-((2)*(job[0])-1))*(Indx_m1_A2) 

A2_1 = (3-((2)*(job[1])-1))*(Indx_m2_A2) 

A2_2 = (3-((2)*(job[2])-1))*(Indx_m3_A2) 

 

print("A2 values: ", A2_0,A2_1,A2_2) 

 

A2_Sum = ((A2_0 + A2_1 + A2_2)*(-1)) 

 

print("A2 Sum is: ", A2_Sum) 

 

JOB2 = A2_Sum 
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#A3 calculations 

 

Indx_m1_A3 = m1[2] 

Indx_m2_A3 = m2[2] 

Indx_m3_A3 = m3[2] 

 

A3_0 = (3-((2)*(job[0])-1))*(Indx_m1_A3) 

A3_1 = (3-((2)*(job[1])-1))*(Indx_m2_A3) 

A3_2 = (3-((2)*(job[2])-1))*(Indx_m3_A3) 

 

print("A3 values: ", A3_0,A3_1,A3_2) 

 

A3_Sum = ((A3_0 + A3_1 + A3_2)*(-1)) 

 

print("A3 Sum is: ", A3_Sum) 

 

JOB3 = A3_Sum 

 

#A4 calculations 

 

Indx_m1_A4 = m1[3] 

Indx_m2_A4 = m2[3] 

Indx_m3_A4 = m3[3] 

 

A4_0 = (3-((2)*(job[0])-1))*(Indx_m1_A4) 

A4_1 = (3-((2)*(job[1])-1))*(Indx_m2_A4) 

A4_2 = (3-((2)*(job[2])-1))*(Indx_m3_A4) 

 

print("A4 values: ", A4_0,A4_1,A4_2) 

 

A4_Sum = ((A4_0 + A4_1 + A4_2)*(-1)) 

 

print("A4 Sum is: ", A4_Sum) 

 

JOB4 = A4_Sum 

 

#Sorting The JOB sequence 

 

 

JOBS = [JOB1, JOB2, JOB3, JOB4] 

 

JOBS.sort(reverse = True) 

 

#print(JOBS) 

 

#allows to sort values in dictionarys  

 

mydict = {'job1': JOB1, 'job2': JOB2, 'job3': JOB3, 'job4': JOB4} 

 

sorted_values = sorted(mydict.items(), key =lambda  x:x[1], reverse = True) 

 

converted_dict = dict(sorted_values) 
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#print(converted_dict) 

 

#values arranged in decending order 

 

print("The Job sequence using palmers heuristic is:" ) 

for keys, values in converted_dict.items(): 

    print(keys, values) 

     

 

executionTime = (time.time() - startTime) 

print('Execution time in seconds: ' + str(executionTime)) 
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