
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2024-08-01

Flow-Shop Scheduling Optimization Through Discrete-Event Flow-Shop Scheduling Optimization Through Discrete-Event

Simulation And Neural Networks. Simulation And Neural Networks.

Jesus Ricardo Herrera Garfio
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Herrera Garfio, Jesus Ricardo, "Flow-Shop Scheduling Optimization Through Discrete-Event Simulation
And Neural Networks." (2024). Open Access Theses & Dissertations. 4183.
https://scholarworks.utep.edu/open_etd/4183

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F4183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=scholarworks.utep.edu%2Fopen_etd%2F4183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/4183?utm_source=scholarworks.utep.edu%2Fopen_etd%2F4183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

FLOW-SHOP SCHEDULING OPTIMIZATION THROUGH DISCRETE-EVENT

SIMULATION AND NEURAL NETWORKS.

JESUS RICARDO HERRERA GARFIO

Master’s Program in Industrial Engineering

APPROVED:

Tzu-Liang (Bill) Tseng, Ph.D., Chair

Ivan A. Renteria Marquez, Ph.D., Co-Chair

Yirong Lin, Ph.D.

Stephen L. Crites, Jr., Ph.D.

Dean of the Graduate School

Copyright ©

by

JESUS RICARDO HERRERA GARFIO

2024

Dedication

To my family and my girlfriend, for your love, patience, and belief in me.

FLOW-SHOP SCHEDULING OPTIMIZATION THROUGH DISCRETE-EVENT

SIMULATION AND NEURAL NETWORKS

by

JESUS RICARDO HERRERA GARFIO

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Industrial, Manufacturing and Systems Engineering

THE UNIVERSITY OF TEXAS AT EL PASO

August 2024

v

Acknowledgements

I would like to thank my advisor, Dr. Renteria, for his constant support and mentorship.

His knowledge and guidance have been essential to the success of this work.

I also thank Dr. Tseng for his financial support and dedication to industrial projects. His

contributions made this project possible.

vi

Abstract

Industrial developments over the past few decades have transformed manufacturing

processes, emphasizing the necessity for efficient scheduling systems. The shift from manual

scheduling to automated and optimized systems has underscored the need for innovative

approaches to improve production efficiency.

Scheduling optimization of manufacturing systems is critical to improve operational

efficiency. Typically, these scheduling problems become challenging because they involve

coordinating various production tasks, resource management, and makespan minimization. These

challenges are particularly evident in flow-shop manufacturing systems, where the operation

sequencing significantly impacts overall performance. The main objective of this manuscript is to

present the methodology followed to optimize the schedule of a flow-shop manufacturing system

through the combination of discrete-event simulation and neural networks. With a specific focus

on enhancing operational efficiency, the study aimed to employ the built-in neural network

capabilities of Simio simulation software to optimize the makespan, consequently reducing the

overall production time required for processing manufacturing orders. By exploring the integration

of advanced simulation techniques with neural network functionalities, this research highlights the

advantages of this powerful tool to model and optimize complex manufacturing processes.

Moreover, the study compared the Simio with neural networks approach and Palmer Heuristic

method to assess their respective advantages and disadvantages and emphasized the potential

benefits for the manufacturing industry by implementing these methodologies to facilitate

informed decision-making and drive improvements in productivity and resource utilization within

the context of manufacturing operations.

vii

The findings from this research offer valuable insights into the effectiveness of combining

discrete-event simulation with neural networks, providing a framework for future studies and

practical applications in manufacturing systems. The demonstrated improvements in makespan

and overall operational efficiency highlight the potential for these advanced techniques to be

adopted in different industrial settings.

viii

Table of Contents

Dedication .. iii

Acknowledgements ..v

Abstract .. vi

Table of Contents ... viii

List of Tables ...x

List of Figures .. xi

Nomenclature .. xii

Chapter 1: Introduction ..1

1.1 Literature review ..2

1.1.1 Overview of flow-shop scheduling problems ...2

1.1.2 Traditional scheduling methods ..4

1.1.3 Advances in discrete-event simulation ...5

1.1.4 Application of neural networks in production scheduling6

1.1.4.1 The artificial Neural Network Technology ..7

1.2 Thesis objectives ..8

Chapter 2: Case Study and Problem Definition ...10

2.1 Description of the industrial flow-shop case study ..10

2.2 Processing times and job sequences ..12

2.3 Identification of key performance indicators ...12

2.3.1 Makespan ..12

2.4 Notation definition ...13

Chapter 3: Proposed Methodology ..15

3.1 Research design and framework ..15

3.2 Discrete-event simulation integration ..16

3.2.1 Simio software features...16

3.2.1.1 Simio Key Components ..16

3.2.2 Neural networks integration ..20

3.2.3 Plan for data collection and processing ..23

ix

3.3 Palmer Heuristic integration ..24

3.4 performance metrics and evaluation criteria ..25

Chapter 4: Simulation Model Development ..26

4.1 Design and setup of the simulation model in Simio ..26

4.2 Definition of input parameters and constraints ..27

4.2.1 Entities ..27

4.2.2 Sources ..29

4.2.3 Servers...30

4.3 Training and implementation of the neural network model...30

4.3.1 Setting the neural network properties ...30

4.3.2 Collecting data for training ...33

4.3.3 Training of the neural network ...34

4.3.4 Implementation of neural network ..34

Chapter 5: Results and Conclusions ..36

5.1 Performance of the Simio neural network optimization ..36

5.2 Results of the Palmer Heuristic algorithm ...37

5.3 Conclusion ...38

References ..40

Appendix ..42

A1.1 Python code for Palmer’s Heuristic implementation ...42

Vita 45

x

List of Tables

Table 2.1 Processing times for each job on each machine ... 12

Table 2.2 Nomenclature for completion time calculation of FSSP .. 13

Table 3.1 Key components of FSSP simulation ... 17

Table 5.1 Average time in system (hours) .. 36

xi

List of Figures

Figure 1.1 Representation of an Artificial Neural Network (ANN) .. 8

Figure 2.1 Processing flow of parts in flow shop ... 11

Figure 2.2 Illustrative examples of final product’s assembly levels. .. 11

Figure 3.1 Simio NN integration process ... 20

Figure 3.3 Training parameters ... 24

Figure 4.1 2D view for the simulation model ... 27

Figure 4.2 Entity properties .. 28

Figure 4.3 Sequence table ... 29

Figure 4.4 Source properties ... 29

Figure 4.5 Server properties .. 30

Figure 4.6 Neural network properties ... 31

Figure 4.7 Input value expressions ... 32

Figure 4.8 Save inputs trigger ... 32

Figure 4.9 Save actual trigger ... 33

Figure 4.10 Training data .. 33

Figure 4.11 NN trainer properties ... 34

Figure 4.12 NN implementation ... 35

Figure 5.1 Schedule without optimization. ... 36

Figure 5.2 Schedule optimized by NN .. 37

Figure 5.3 Schedule optimized by Palmer heuristics. ... 38

xii

Nomenclature

Acronyms

DES: Discrete-Event Simulation

FSSP: Flow-Shop Scheduling Problem

NN: Neural Networks

ANN: Artificial Neural Networks

GA: Genetic Algorithms

SA: Simulated Annealing

PSO: Particle Swarm Optimization

B&B: Branch and Bound

MILP: Mixed-Integer Linear Programming

OR: Operations Research

BOM: Bill of Materials

SUA: Sub-Assemblies

FIFO: First-In, First-Out

1

Chapter 1: Introduction

Efficient scheduling in manufacturing systems is crucial for optimizing operational

efficiency, particularly in the context of flow-shop environments. The challenges of coordinating

diverse production tasks and minimizing makespan have led to the exploration of innovative

methodologies. Hence, this research employs the powerful combination of discrete-event

simulation and Simio neural networks to optimize scheduling in flow-shop manufacturing systems.

The integration of Simio's neural networks served as a cornerstone of the methodology. By

utilizing the built-in neural network capabilities within Simio simulation software, the study aims

to optimize the makespan and reduce the overall production time required for processing

manufacturing orders. Successful implementations in related fields inspired this approach, where

the integration of simulation and neural networks had proven to be a potent tool for process

optimization. Furthermore, the Palmer Heuristic method was incorporated as a complementary

approach to scheduling optimization. This method offered a systematic approach to job

sequencing, known for its effectiveness in finding near-optimal solutions for flow-shop scheduling

problems.

Utilizing both Simio's neural networks and the Palmer Heuristic method allowed for a

comparative analysis to determine if both approaches could achieve similar results, which is

particularly crucial in flow-shop scheduling problems, where attaining an optimal schedule is

paramount for minimizing makespan. Each method presents distinct limitations and challenges.

The limitations of Simio NN primarily arise from its black box nature, hindering interpretability

and diagnostic capabilities, and posing challenges in domains with limited data availability. On

the other hand, implementing the Palmer heuristic can be challenging due to the need to accurately

translate its algorithmic steps into code, handle complex data structures, and optimize computation

2

efficiency. By evaluating the efficiency and effectiveness of each method, the study seeks to offer

insights into their individual strengths and weaknesses in optimizing flow-shop scheduling. Recent

studies have demonstrated the effectiveness of integrating neural networks into simulation models

for optimizing manufacturing processes. Their findings have showcased notable improvements in

makespan reduction and operational efficiency, providing a basis for the exploration of this

combined approach. By building upon the insights gained from prior research, this study

contributes to the understanding of the application of advanced simulation techniques and heuristic

methods in the context of flow-shop scheduling optimization.

1.1 LITERATURE REVIEW

1.1.1 Overview of flow-shop scheduling problems

Flow-shop scheduling problems (FSSP) are a class of production scheduling problems

where n jobs {𝐽1, 𝐽2, … , 𝐽𝑛} must pass through a series of m machines {𝑀1, 𝑀2, … , 𝑀𝑚} in a

specific order. Each job has an identical flow pattern, must visit each machine exactly once, and

the order of machines is the same for all jobs.

The processing of job 𝐽𝑗 on machine 𝑀𝑖 is called an operation, denoted by 𝑂𝑖𝑗. For each

operation 𝑂𝑖𝑗, there is an associated processing time 𝑡𝑖𝑗. In addition, there may be a ready time (or

release date) 𝑟𝑗 associated with each job, at which time 𝐽𝑗 is available for processing, and/or a due

date 𝑑𝑗, by which time 𝐽𝑗 should be completed. A schedule in this context is an assignment of jobs

over time onto machines. The scheduling problem is to find a schedule that optimizes some

performance measure. The following assumptions appear frequently in scheduling theory

literature:

1. Machines are always available and never break down.

2. Each machine can process at most one job at any time.

3. Any job can be processed on at most one machine at any time.

3

4. Ready times of all jobs are zero, i.e., all jobs are available at the commencement of

processing.

5. No pre-emption is allowed; once an operation is started, it is continued until complete.

6. Setup times are independent of the schedules and are included in processing times.

7. Processing times and technological constraints are deterministic and known in advance,

and similarly for due dates, where appropriate [1].

The main objective in FSSP is typically to minimize the makespan, which is the total time required

to complete all jobs. For a comprehensive review of flow shop scheduling problems, one can refer

to Linn and Zhang (1999) [2]. FSSP is characterized by the following elements:

− Jobs and Machines: A finite set of jobs, each requiring a sequence of operations performed

on a finite set of machines.

− Processing Order: Each job must follow a specific sequence of operations across the

machines. The order is predefined and identical for all jobs.

− Processing Times: Each operation has a specific processing time that can vary for each job

and machine.

− Constraints: Common constraints include no job splitting, where a job cannot be

interrupted once started on a machine, and machine availability, where each machine can

process only one job at a time.

FSSP is considered NP-hard [3], meaning that finding an optimal solution requires computational

time that increases exponentially with the problem size. This complexity arises from the large

number of possible job sequences and the need to account for various constraints and processing

times. Key challenges in FSSP include:

− Makespan Minimization: Achieving the shortest possible total elapsed time required to

process all jobs on all machines [4].

− Resource Allocation: Efficiently assigning jobs to machines to minimize idle times and

maximize utilization.

4

− Sequencing and Scheduling: Determining the optimal order in which jobs should be

processed on each machine to minimize delays and bottlenecks.

1.1.2 Traditional scheduling methods

Like many OR application areas, the study of scheduling theory began in the early 1950s.

Johnson's article (Johnson 1954) [5], is acknowledged as a pioneering work. Jackson (1955) [6]

and Smith (1956) [7] provided various optimal rules for single-machine problems. These early

works formed the basis for much of the development of classical scheduling theory.

In the 1970s, theoretical work on problem complexity began. It was found that most

problems are NP-hard (Lenstra et al. 1977) [8]. Fast optimal algorithms are unlikely to exist for

these problems. The effectiveness of heuristic algorithms was studied by theoretical analysis and

computational experiments [1].

There are many scheduling problems that are intrinsically very hard, i.e., NP-hard. They

cannot be formulated as linear programs and there are no simple rules or algorithms that yield

optimal solutions in a limited amount of computer time. It may be possible to formulate these

problems as integer or disjunctive programs, but solving these to optimality may require an

enormous amount of computer time [9].

One of the traditional methods for solving scheduling problems is the use of heuristic

methods, which provide good solutions in a reasonable time frame. These methods, as discussed

by Thomas L. Saaty, are often based on rules or strategies that guide the search for feasible

solutions in complex optimization problems [10]. Examples include Johnson's rule, which

provides an optimal solution for two-machine flow-shop problems, and the Palmer Heuristic,

which uses priority rules to sequence jobs. One advantage of heuristic methods like the Palmer

Heuristic is their efficiency and quick processing, making them suitable for real-time applications

and providing satisfactory solutions.

5

Metaheuristic algorithms are advanced strategies that guide the search process to explore

the solution space more effectively. Examples include Genetic Algorithms (GA), Simulated

Annealing (SA), and Particle Swarm Optimization (PSO). These methods are often used for larger,

more complex problems due to their ability to find near-optimal solutions within acceptable

computational times. However, a disadvantage of metaheuristic algorithms is that they do not

guarantee an optimal solution and their performance can be sensitive to the choice of parameters

and the specific problem instance.

Exact algorithms guarantee an optimal solution by exhaustively exploring all possible

solutions. Examples include Branch and Bound (B&B) and Mixed-Integer Linear Programming

(MILP). These methods are typically limited to smaller problem instances due to their high

computational demands, making them impractical for larger, more complex scheduling problems.

1.1.3 Advances in discrete-event simulation

Discrete-event simulation (DES) has evolved significantly in recent years, particularly in

its application to flow-shop scheduling problems. DES involves modeling systems as a series of

discrete events over time, where each event represents a change in the system's state. This method

allows for a detailed representation of complex manufacturing processes, enabling researchers and

practitioners to analyze system behavior, optimize processes, and test scenarios under controlled

conditions.

In the context of flow-shop scheduling, advancements in DES have led to more robust tools

and methodologies for optimizing scheduling decisions. Researchers such as Benjamin W.

Johnson and Jeffrey S. Smith have leveraged DES not only to simulate and analyze existing

scheduling strategies but also to develop and test novel approaches. This includes the integration

of machine learning algorithms and optimization heuristics, thereby pushing the boundaries of

what can be achieved in terms of scheduling efficiency and operational effectiveness.

6

Simulation has been extensively utilized to address various short-term decision-making

challenges in manufacturing. Thomas and Charpentier [11] illustrate the benefits of constructing

simplified models with reduced elements, connections, or calculations to enhance scheduling

efficiency in manufacturing systems. Lejmi and Sabuncuoglu [12], on the other hand, employ

simulation coupled with statistical analysis to assess how variations in load, processing time, and

due dates impact scheduling system performance within manufacturing environments. These

studies underscore the versatility of simulation techniques in optimizing manufacturing operations

by providing insights into system behavior under different conditions [13].

 Advances in discrete-event simulation (DES) have played a crucial role in the development

of software platforms like Simio LLC, which specializes in simulation software widely used for

addressing complex flow-shop scheduling problems (FSSP). Simio is a leading platform in

discrete-event simulation, offering innovative solutions for modeling manufacturing processes,

logistics, healthcare, and aerospace industries. The software integrates advanced algorithms to

effectively manage uncertainty and variability in FSSP, significantly enhancing operational

efficiency and decision-making across various industries.

1.1.4 Application of neural networks in production scheduling

In recent years, the application of neural networks has gained significant attention in the

manufacturing sector, revolutionizing traditional approaches to optimizing production processes.

The manufacturing industry has experienced an unprecedented degree of change, including

global competition, shortened product life cycles, shifts in management, increasing quality

demands, higher customer expectations, rapid advances in complex technologies, and a vast array

of options in materials and processes. Today's companies are challenged not only to adapt to these

evolving conditions but also to harness them strategically to maintain a competitive advantage

[14].

7

Neural networks have become widely recognized in manufacturing due to their capability

to handle complex patterns and nonlinear relationships in production systems. In flow-shop

scheduling, neural networks are employed to optimize scheduling decisions by learning from

historical data and real-time inputs. This approach enables neural networks to predict processing

times more accurately than traditional methods, thereby improving the overall efficiency of

manufacturing operations.

1.1.4.1 The artificial Neural Network Technology

Artificial Neural Networks (ANN) Are a type of machine learning algorithm that is inspired

by the structure and function of biological neurons in the human brain. The fundamental concept

of ANNs is the structure of the information processing system. Composed of a large number of

highly interconnected processing units, “neurons” connected into networks, a neural network

system uses the human-like technique of learning by example to resolve problems [15].

Neural networks (NN) are models designed to detect and predict complex relationships

within data sets, making them highly effective in tasks such as forecasting future trends, classifying

data, and optimizing decision-making processes. NNs are designed to model and predict complex

relationships between input data and output data (see Figure 1.1), making them useful in

applications such as forecasting, classification, and optimization. These networks function by

systematically adjusting parameters known as weights, which determine the strength and direction

of connections between individual neurons. During the training phase, neural networks learn from

8

historical data inputs and corresponding outputs, iteratively refining their weights to minimize the

disparity between predicted outcomes and actual results.

Through this iterative learning process, neural networks gain an understanding of the

patterns and structures present in the data. This acquired knowledge enables them to make accurate

predictions when presented with new, previously unseen data. In the context of manufacturing and

flow-shop scheduling, neural networks enable the optimization of production schedules by

leveraging historical performance data and real-time operational inputs. By continuously adapting

and refining their predictive capabilities, neural networks contribute significantly to enhancing

efficiency and decision-making within manufacturing environments.

One significant application of neural networks in manufacturing is their integration with

simulation tools like Simio. By incorporating neural networks within simulation models,

researchers can simulate various scheduling scenarios and optimize schedules dynamically.

1.2 THESIS OBJECTIVES

The primary objective of this thesis is to apply Simio software's neural network capabilities

in a production scheduling case study to evaluate the efficiency of discrete-event simulation and

neural network integration. This research will utilize Simio's advanced features to minimize the

makespan in a specific manufacturing system, thereby enhancing overall operational efficiency.

Figure 1.1 Representation of an Artificial Neural Network (ANN)

9

By comparing the performance of Simio's neural network approach with the Palmer Heuristic

method, the study aims to assess their effectiveness in addressing the complexities of flow-shop

scheduling and providing practical solutions applicable to real-world manufacturing environments.

Additionally, this thesis seeks to provide insights into the strengths and limitations of

employing neural networks and Palmer Heuristic for scheduling optimization. Through a detailed

documentation of the integration process and an evaluation of their impact on scheduling

performance, the research will analyze how these techniques can be optimally utilized. The goal

is to emphasize the potential advantages of these approaches, including potential reductions in

production times and enhancements in resource utilization. Ultimately, this study aims to establish

a foundation for further research and practical implementation in the field of manufacturing

operations.

10

Chapter 2: Case Study and Problem Definition

Efficient scheduling is crucial in improving operational performance within manufacturing

processes, offering advantages such as reduced lead times, optimized resource utilization, and,

ultimately, cost savings. Moreover, schedule optimization holds the potential to streamline

workflows, ensuring tasks are completed in a timely and cost-effective manner. The presented case

study aims to optimize the schedule of an industrial flow-shop, which is described in the following

sections.

2.1 DESCRIPTION OF THE INDUSTRIAL FLOW-SHOP CASE STUDY

In this study, each machine serves as an assembly operation station responsible for a

specific part of the final product's manufacturing process. Upon completion of processing through

all three machines, the final product is considered finished.

The case study centers around four jobs that must pass through three machines in a

predefined order (see Figure 2.1). In this FSSP, the machine stages are represented by Machine 1,

Machine 2, and Machine 3. Each job has a different processing time for each machine. The goal

is to identify an optimal job completion sequence, reduce the makespan, and enhance overall

operational efficiency.

Once each job passes through the three machines, it will be considered a finished product.

Finished products consist of several components that need to be assembled according to a

hierarchical assembly structure. These components are sub-assembly operations, called sub-

assemblies (SUA). Figure 2.2 presents an illustrative example of the final products with a

hierarchical assembly structure. The assembly structure has a tree configuration, where the final

node (machine 3) represents the final assembly operation. Final products have simple hierarchical

assembly structures involving just one assembly operation in each machine. They are completed

11

in the assembly stage, where each product is built by assembling the processed parts according to

the Bill of Materials (BOM). For this case study, it is assumed that each assembly stage (machine

operation) has infinite BOM capacity, meaning material capacity constraints are not considered as

a factor in optimizing the FSSP. The goal is to find the assembly operations sequence that

optimizes a specified performance measure, such as the makespan, which means determining the

order in which jobs should be processed for maximum efficiency.

Figure 2.1 Processing flow of parts in flow shop

Figure 2.2 Illustrative examples of final product’s assembly levels.

12

2.2 PROCESSING TIMES AND JOB SEQUENCES

The variability in processing times for each job across Machine 1, Machine 2, and Machine

3 adds complexity to the scheduling problem. The distinct processing times for different jobs on

each machine imply that the sequence in which jobs are processed directly influences the makespan

and overall efficiency of the flow-shop scheduling system. The production sequences and

processing times are specified in Table 2.1. This table specifies the required processes per job type,

where j and k, specifies the machine where the part must be processed on, and the task processing

time.

Table 2.1 Processing times for each job on each machine

Job (j)

Machine processing times in minutes (k)

M1 M2 M3

1 6 5 10

2 8 9 7

3 3 8 6

4 4 7 9

Effective job sequencing balances the workload across machines, reduces idle time, and

ensures the timely completion of all jobs by determining the optimal order in which jobs should

be processed through the machines to minimize makespan. In this study, methods for estimating

processing times and strategies for sequencing jobs are explored to improve the operational

performance of flow-shop manufacturing systems.

2.3 IDENTIFICATION OF KEY PERFORMANCE INDICATORS

2.3.1 Makespan

By minimizing the makespan, manufacturers can ensure that all jobs are completed in the

shortest possible time, reducing idle times, improving machine utilization, and increasing overall

efficiency. This leads to cost savings and higher customer satisfaction due to timely deliveries.

13

Given its significance, optimizing the makespan has been the focal point of this study.

Different techniques have been developed and employed to achieve this optimization. Among

these techniques, discrete-event simulation (DES) and heuristic methods stand out. Discrete-event

simulation provides a powerful tool for modeling complex manufacturing systems and evaluating

the impact of different scheduling strategies on the makespan. By simulating various scenarios,

DES helps in identifying bottlenecks and testing alternative solutions without disrupting the actual

production process.

Heuristic methods, on the other hand, offer practical and often computationally efficient

approaches to find near-optimal solutions for minimizing the makespan. These methods, such as

the Palmer Heuristic, are designed to generate good scheduling sequences based on certain rules

or heuristics.

2.4 NOTATION DEFINITION

The notation definition used for describing the scheduling problem in a flow-shop

manufacturing environment is presented in table 2.2.

 Table 2.2 Nomenclature for completion time calculation of FSSP

Indices

j: Index of jobs, where:

j = 1,2, . . . ,n

k: Index of machines, where:

k= 1,2, . . ., m

Parameters:

n: Number of jobs

m: Number of machines

Decision variables:
Cj,k:Completion time of job j on machine k

Processing time:
tj,k:Time taken for job j to be processed on machine k

Assuming (j
1
, j

2
, ... , j

n
) as jobs’ sequence, the completion time Cj,k for each job j on each

machine k is calculated as follows:

− Start with the first job on the first machine:

C1,1=t1,1

14

− For the first job on subsequent machines:

C1,k = C1,k-1 + t1,k 𝑓𝑜𝑟 𝑘 = 2, … , 𝑚

− For the remaining jobs on the first machine:

Cj,1 = Cj-1,1 + tj,1 𝑓𝑜𝑟 𝑗 = 2, … , 𝑛

− For the remaining jobs on the remaining machines:

Cj,k = max(Cj-1,k, Cj,k-1) + tj,k 𝑓𝑜𝑟 𝑗 = 2, … , 𝑛 𝑎𝑛𝑑 𝑘 = 2, … , 𝑚

The makespan, which represents the completion time of the last job on the last machine, is given

by:

Makespan = C
n,m

This notation and calculation method form the basis for analyzing scheduling efficiency

and optimizing flow-shop manufacturing systems.

15

Chapter 3: Proposed Methodology

The proposed methodology for optimizing the flow-shop schedule involves a systematic

and iterative process to compare the effectiveness of Simio with neural networks and Palmer’s

Heuristic.

3.1 RESEARCH DESIGN AND FRAMEWORK

The process begins with simulating the flow-shop schedule without NN optimization using

Simio, establishing a baseline makespan.

Next, neural networks are integrated into the Simio environment and trained using relevant

data to understand system patterns. The trained neural network is then applied to optimize the

schedule, and its impact on performance is evaluated. Subsequently, Palmer’s Heuristic is

implemented in Python to find an optimal routing solution, which is then used to optimize the

schedule, and its performance is assessed.

A comparative analysis is conducted between the results obtained from the Simio with

neural networks optimization and Palmer’s Heuristic. The analysis considers computational

efficiency, accuracy, and ease of implementation. Validation and sensitivity analysis are

performed to confirm the results and identify significant factors affecting each method’s

performance.

Finally, the entire methodology, including simulation parameters, neural network

parameters, and the Python code for Palmer’s Heuristic, is documented. A comprehensive report

is prepared to highlight findings and provide recommendations.

The following sections will detail the tools and techniques used in this research, including

the functionalities of Simio, the plan for data collection and processing, the integration of neural

networks, and the implementation of Palmer’s Heuristic.

16

3.2 DISCRETE-EVENT SIMULATION INTEGRATION

3.2.1 Simio software features

Simio software is a powerful tool for discrete-event simulation, offering features that make

it highly useful for modeling and optimizing manufacturing systems. One of its advantages is its

object-oriented modeling environment, which allows users to create detailed and realistic

representations of their systems. This is particularly beneficial for flow-shop scheduling, where

understanding the impact of different job sequences on overall system performance is crucial.

Another significant feature of Simio is its neural network capabilities. This tool enables the

utilization of data derived from validated simulations to train the neural network, thereby

optimizing production processes. This approach ensures higher reliability and accuracy in the

training process, leading to more effective and efficient production schedule optimizations.

Simio software includes built-in templates and libraries with objects that can significantly

reduce the time required to develop and test simulation models. The following section defines the

objects and tools employed in this simulation of FSSP.

3.2.1.1 Simio Key Components

Simio intelligent objects are key components in modeling and simulating complex systems.

These objects, along with tools like sequence tables, enable the simulation of system workflows

and facilitate optimization efforts.

Table 3.1 presents each of the key components utilized for the simulation of the FSSP.

17

Table 3.1 Key components of FSSP simulation

Source Objects
Their primary role is to generate or "create"

entities within the model, which represent

units of work, orders, products, or other items

flowing through the simulated system. These

objects can be configured with specific rules

that govern the arrival rate of entities into the

system, as well as other parameters related to

the generation and initial behavior of

simulated entities.

Entity objects
Represents an object that moves through a

simulation model. Entities typically represent

items, such as parts, orders, or jobs that flow

through a system being modeled. They can

carry attributes and follow paths defined by

the simulation logic. Entities are fundamental

for simulating how real-world objects move

and interact within a simulated environment,

allowing analysts to study system behavior,

optimize processes, and evaluate performance

metrics such as throughput, utilization, and

waiting times.

18

Server object
Represents a resource or a work center that

manages the processing of entities according

to defined schedules or rules within a

simulation model. These resources can be

configured to handle different types of tasks,

processing times, and capacities, which

influence the flow and efficiency of entities

through the system being modeled.

Sequence table
It is a tool used to define and manage the order

in which entities move through a simulation

model. It specifies the sequence in which

tasks or operations are performed on entities

as they progress through various stages of a

system or process.

Connector object
These objects define pathways through which

entities, such as products or resources, travel

from one location to another. They are

configured with attributes like capacity and

speed and integrated with logic for routing

and decision-making. These pathways

connect different parts of the model,

representing movement between stations,

machines, or process steps.

19

Status labels
Label associated with an entity, object, or

state within a simulation model. It is used to

indicate the current status, condition, or state

of an entity or component in the simulated

system. This label can dynamically change as

the simulation progresses based on predefined

conditions or events modeled within Simio. It

helps in monitoring and analyzing the

behavior and performance of the simulated

system by providing real-time or near-real-

time updates on the status of various entities

or processes.

Sink object
Used to represent the final destination or end

point for entities in a model. Its primary

function is to collect entities that have

completed their processing within the

simulation. Sink objects are typically placed

at the end of process flows or pathways to

capture and record data related to completed

entities, such as arrival times, processing

times, and other relevant metrics.

20

3.2.2 Neural networks integration

Simio Software offers a no-code neural network development process. This no-code

process empowers developers to create NN models without having to encounter complex coding

challenges. Once created, the user has the option to train and evaluate the NN model directly using

the Simio Trainer feature [16].

This study utilizes Simio's recent feature, which enables the generation of training data,

conducting neural network training, and implementing the trained model directly within the Simio

interface. This process involves creating a feed-forward neural network directly in Simio without

any coding required.

The way Simio's neural networks operate is illustrated in Figure 3.1. The process starts by

acquiring information from within the simulation, which then enters a black box with the output

function based on the defined feed-forward neural network model. The neural network then learns

patterns from the data, making predictions or classifications based on the inputs. The neural

networks can analyze the simulated outcomes to suggest optimal scheduling sequences, reducing

the makespan improving operational efficiency.

The neural network model in Simio is a fully connected feedforward neural network

regression model with a fixed number of numeric inputs and a single numeric output.

“Black box” with the

output function based on

the defined feed-forward

neural network model

Input data to get

prediction
Predicted value

Figure 3.1 Simio NN integration process

21

This type of neural network can have one or more hidden layers. The number of hidden

layers and the number of nodes in each hidden layer are hyperparameters that can be set before

training the model.

The hyperbolic tangent function (tanh) is used as the activation function for hidden layers,

while the identity function (linear) is used as the activation function for the output layer.

Table 3.2 outlines the specific features that enable Simio to create and define a neural

network element. The neural network is trained using Simio's built-in trainer (refer to Table 3.3

for detailed concepts) and subsequently implements the model logic. This approach utilizes

Simio's capabilities to improve process efficiency and optimize the flow-shop scheduling problem.

Table 3.2 Simio concepts to create the neural network element.

Neural Network element This element is used to integrate a neural

network regression model into simulation

logic

Input Value Expressions The expressions used to get a set of input

values for the associated neural network

model. These expressions should always

match the order of the input values provided

during the training of the model.

Save Input Triggers Optional event-driven triggers that will save a

set of input values for the associated neural

network model.

22

Save Actual Triggers Optional event-driven triggers that will sabe an

actual observed value for the associated neural

network model.

Actual Value Expression The expression used to record an actual

observed value for the associated neural

network model when a Save Actual Trigger

occurs.

Table 3.3 Simio concepts to train the neural network.

Number of Input Nodes The number of nodes in the neural network’s

input layer.

Record Training Data Indicates whether to record training data for

the neural network model.

Maximum Training Record Limit Indicates the maximum number of training

records that may be stored in the neural

network models training data repository. The

oldest records will be overwritten by new ones

then the specified maximum record limit is

reached.

23

3.2.3 Plan for data collection and processing

One of the advantages of using Simio software is its ability to utilize simulation for data

sampling, which can then be used to train the neural network. The plan for optimization using

neural networks in Simio involves running simulations and using the generated data to train the

neural network. Specifically, the FSSP simulation is run 10,000 times to generate a comprehensive

dataset. The purpose is to capture a wide range of possible system states and outcomes, helping

the neural network to generalize better and optimize the process more effectively

During training, the neural network adjusts its internal weights and biases to minimize the

difference between predicted and actual outputs. To create a more efficient trained model, 100,000

data points are collected from the nine specified input nodes. This extensive dataset ensures that

the neural network has sufficient data to accurately identify the optimal routing solution, thereby

optimizing the production schedule for this flow-shop problem.

Figure 3.3 shows the parameters set within the neural network configuration, specifying

that 100,000 records are extracted from the simulations for training. This number is chosen to

ensure that the neural network has a comprehensive dataset, which enhances the model's ability to

learn and adapt to the complexities of the system, leading to more precise and reliable optimization

outcomes. By using a large dataset from multiple simulation runs, the neural network can better

learn and adapt to the system's intricacies, resulting in a more efficient optimization process and

ensuring that the solutions generated are based on a thorough understanding of the system

dynamics.

24

3.3 PALMER HEURISTIC INTEGRATION

Palmer Heuristic is a well-established algorithm utilized in scheduling optimization,

known for its effectiveness in solving complex scheduling problems. The Palmer Heuristic uses

heuristic rules and strategies to determine an optimal job processing sequence to minimize the

makespan and improve operational efficiency. This study employs the Palmer Heuristic as an

alternative optimization approach to measure the performance of the Simio simulation with neural

networks. Therefore, a custom Python code is developed to implement the Palmer's Heuristic and

determine the optimal scheduling route for this particular problem. This section outlines the steps

required to implement the Palmer Heuristic for the FSSP involving three machines and four jobs.

The general formula for calculating 𝐴1, which represents the completion time for job j, is used to

determine the optimal job sequence.

The completion time 𝐴𝑗 for j using the Palmer Heuristic is calculated as follows:

𝐴𝑗 = − ∑((3 − (2𝑖 − 1)) ∗ 𝑝𝑖𝑗

𝑚

𝑖=1

Where m is the number of machines and 𝑝𝑖𝑗 is the processing time of job j on machine i.

Figure 3.3 Training parameters

25

This formula calculates 𝐴𝑗 by summing the product of the processing time of job j on

each machine, multiplied by a specific factor determined by the Palmer Heuristic. Once 𝐴𝑗

values are calculated for all jobs, sort the jobs in descending order based on their 𝐴𝑗 values.

This sorted order represents the optimal job sequence according to the Palmer Heuristic.

3.4 PERFORMANCE METRICS AND EVALUATION CRITERIA

The makespan obtained from both Simio's neural network-based approach and the

traditional Palmer Heuristic method will be used to compare and evaluate their respective

performances. The comparative analysis will involve assessing the makespan values from both

methods to determine their advantages and disadvantages. The key evaluation criteria will

include:

− Efficiency: Evaluating which method produces a lower makespan, thus indicating

a more efficient scheduling process.

− Computational Effort: Comparing the time and resources required to achieve results

using both methods.

− Implementation Complexity: Assessing the ease of implementing each method,

considering the need for custom coding versus using built-in simulation tools.

− Flexibility and Scalability: Analyzing how each method adapts to changes in the

scheduling problem, such as varying the number of jobs or machines.

26

Chapter 4: Simulation Model Development

4.1 DESIGN AND SETUP OF THE SIMULATION MODEL IN SIMIO

In this simulation model, Simio source objects were defined to generate entity objects with

programmed parameters such as quantity, type, and frequency. Four source objects were allocated

in the model, each producing one of the four entities created that share identical characteristics.

Each entity represents an order and must pass through the three machines necessary for completion.

The machines are simulated using server objects in the model, which are utilized to model the

machines required for processing each order. These server objects represent processes with finite

capacity. A sequence table was also employed, specifying the routes and processing times required

for each entity to pass through each machine.

Connector objects were used to define the connections between different areas of the

simulation through which orders travel. These connector objects are unidirectional since orders

always follow a specific route (e.g., machine 1, machine 2, machine 3). Dynamic labels were

placed next to the sources to monitor the average time in the system for each order from each

source. Dynamic labels are variables used to display dynamic information about entities, objects,

or the system state. Finally, a sink object was employed to denote the completion of the simulation,

signifying when an order has been fulfilled. The 2D view of the simulation is shown in Figure 4.1.

27

4.2 DEFINITION OF INPUT PARAMETERS AND CONSTRAINTS

In this section, the parameters of each object used to create the baseline model for this

simulation in the FSSP case study will be described, defining and explaining each parameter and

the reasons for these choices. It is important to highlight that all the parameters established in this

section are for the creation and development of the model without optimization through neural

networks.

4.2.1 Entities

Four entities were established in this model, each representing one of the jobs or "orders"

as named in the Simio simulation. All entities in this model have identical characteristics (refer to

Figure 4.2 for detailed entity properties). The free space steering behavior is defined as "direct to

destination," meaning that the order will always travel through the connectors directly to the next

object in the simulation, whether it is the next machine to be processed or the sink. The routing

Figure 4.1 2D view for the simulation model

28

logic for all entities is the same and is defined with the same processing priority, meaning all orders

have equal importance in the simulation and none are prioritized over another.

At time zero of the simulation, the initial number of entities in the system is zero. Upon

running the model, the four entities are simultaneously created at their respective sources. The key

and important difference between these four orders or jobs is that each has a different processing

time for each of the three machines they must pass through to be considered a finished product.

All orders must follow the same path: machine 1, then machine 2, and finally machine 3.

Additionally, the entities were configured with specific parameters to ensure accurate

modeling of the production process. The sequence table, which details the processing times

required for each entity at each machine, is presented in Figure 4.3. This table ensures that each

entity's process through the system is defined and allows for control over the simulation's

workflow.

In the sequence table, processing times for each machine are listed. For instance, Entity 1

might have a processing time of 6 minutes on Machine 1, 5 minutes on Machine 2, and 4 minutes

Figure 4.2 Entity properties

29

on Machine 3. Entity 2 could have different times, reflecting variability in job requirements. This

setup provides a realistic depiction of the production environment and its constraints.

4.2.2 Sources

Four sources were defined in the model, each tasked with creating one of the four entities

representing the orders. The interarrival time for the four sources is set to 26 minutes, meaning the

interval at which entities are created. This timing ensures that each new order is generated only

after the previous four orders have been processed, thereby preventing a new entity from being

delayed by an order from the previous set still being processed by the three machines.

Figure 4.4 details the properties of the four sources, all of which share the same defined

properties.

Figure 4.3 Sequence table

Figure 1
Figure 4.4 Source properties

30

4.2.3 Servers

Each server represents a machine that processes the orders with the times specified in

Figure 4.3. All machines share the same properties. It is important to note that the ranking rule for

these servers is set to first-in, first-out (FIFO), meaning the machines process entities in the order

they arrive without prioritizing any order over another. Additionally, the log resource usage feature

is activated, which allows for obtaining the visual schedule at the end of the simulation. Figure 4.5

shows the properties of the servers.

4.3 TRAINING AND IMPLEMENTATION OF THE NEURAL NETWORK MODEL

4.3.1 Setting the neural network properties

Implementing a neural network at the input node of the server allowed the machines to

determine which order to process first to achieve an optimal makespan and complete all four

Figure 4.5 Server properties

31

orders, resulting in informed routing decision. In this case study, it was assumed that the predicted

makespan depended only on the current load at each of the servers. Figure 4.6 shows the properties

of the neural network element created.

A neural network element was created in this simulation model and connected to other

elements to receive input data and send output data. The Input Value Expressions used to train the

neural network are shown in Figure 4.7. These parameters include:

− Associated Station Load: This is the sum of the number of entities currently routed

to that server, the number of entities currently waiting at the server, and the number

of entities currently being processed at the server. This parameter helps identify

potential bottlenecks in the system.

− Resource State: Indicates the status of servers, whether they are busy, available, or

in another state, assisting in resource allocation management.

− Schedule Utilization: Indicates how efficiently the planned schedules are being

utilized in the model.

Figure 4.6 Neural network properties

32

Save Inputs Triggers determines when to start collecting training data. In this study, the

chosen point for collecting training data was when the orders entered the system. To ensure that

all four orders had been created by the time of data collection, transfer node 1 was selected as the

save input trigger, see Figure 4.8.

Save Actual Trigger determines when to stop collecting training data. This trigger was

activated when the orders finished being processed, specifically when machine 3 had completed

the processing of the orders (see Figure 4.9).

Figure 4.7 Input value expressions

Figure 4.8 Save inputs trigger

33

The Actual Value Expression calculates the current time minus the time when the order

was created in the model. This helps determine the processing time and efficiency of the system.

4.3.2 Collecting data for training

Once the parameters and properties of the neural network were established, the next step

was to run the simulation to collect the training data. Simio automatically gathered the specified

number of records, set to 100,000 data points for this study. As mentioned in section 3.2.3, "Plan

for Data Collection and Processing," these data points were obtained from the nine input nodes.

Figure 4.10 illustrates an example of the data collected by Simio during the simulation.

Figure 4.9 Save actual trigger

Figure 4.10 Training data

34

4.3.3 Training of the neural network

To train the neural network, the collected data is used by selecting the training option in

the Simio interface. Figure 4.11 shows the neural network trainer window, detailing the specified

properties for training the neural network in this case study. It is important to note that the number

of hidden nodes equals the number of input value expressions.

4.3.4 Implementation of neural network

After the neural network parameters were determined and adequately trained, the trained

neural network was implemented by adjusting the properties of the input node for the servers (see

figure 4.12). The property entry ranking rule of the servers was set to "smallest value first" to be

determined with the data previously obtained from the established neural network, and the entry

ranking expression was defined as NeuralNetwork.predictedvalue(entity). Instead of processing

orders as they arrive (i.e., first in, first out), the model employs the neural network's insights to

Figure 4.11 NN trainer properties

35

make informed decisions on the optimal sequence for order processing, aiming to achieve the

production schedule with the minimum possible makespan.

4.4 DEVELOPMENT OF THE PALMER HEURISTIC ALGORITHM IN PYTHON

 Palmer Heuristics uses heuristic rules and strategies to determine an optimal job processing

sequence to minimize the makespan and improve operational efficiency. This study employed

Palmer Heuristics as an alternative optimization approach to measure the performance of Simio

simulation with neural networks. To achieve this, a custom Python code was developed to

implement Palmer's Heuristic and determine the optimal scheduling route for this specific

problem. The complete Python code can be found in Appendix A1.1.

Figure 4.12 NN implementation

36

Chapter 5: Results and Conclusions

5.1 PERFORMANCE OF THE SIMIO NEURAL NETWORK OPTIMIZATION

To assess Simio's capacity for optimizing scheduling problems using neural networks, a

simulation lasting 10 hours was conducted without the application of neural networks. The

obtained results are detailed in Table 5.1. It is notable that without parameter modification, the

model processes orders in a "first in, first out" manner, indicating that the model does not make

decisions regarding the sequence of order processing. Consequently, as orders arrive at the server,

the machine processes them, leading to idle times and a suboptimal schedule. Consequently, the

orders were processed in the sequence of 1, 2, 3, and 4, resulting in the schedule depicted in Figure

5.1.

It's important to point out that order four has an average time in the system of 0.466 hours,

approximately 28 minutes longer than the other three orders. This is because order four is

processed last and must wait for the previous orders to finish before it can be processed.

Consequently, the makespan derived from the simulation, without any optimization to complete

all four orders, is 0.466 hours.

Table 5.1 Average time in system (hours)

Order Average time in system (Hours)

1 0.249

2 0.316

3 0.433

4 0.466

Figure 5.1 Schedule without optimization.

37

Upon integration of the neural network, the makespan was significantly reduced to 26

minutes, with the order processing revised to job3-job4-job1-job2. This outcome underscores the

effectiveness of utilizing neural networks to enhance scheduling decisions and streamline

operational efficiency within the flow-shop environment. Furthermore, downtime has been notably

reduced through the neural network optimization process, as evidenced by the schedule presented

in Figure 5.2. Consequently, both the average time in the system and the makespan have been

decreased.

5.2 RESULTS OF THE PALMER HEURISTIC ALGORITHM

The optimization results obtained through Palmer Heuristics are the same as those achieved

with the Simio software. The optimal job sequence identified using Palmer Heuristics was job3,

job1, job4, and job2, resulting in a total makespan of 26 minutes for processing all four orders.

Figure 5.3 shows the schedule obtained through Palmer Heuristics. This comparison between

Simio simulation with neural networks and Palmer Heuristics emphasizes the effectiveness of both

methods in optimizing flow-shop.

Figure 5.2 Schedule optimized by NN

38

5.3 CONCLUSION

In conclusion, the implementation of both methodologies produced remarkably similar

results. Both methods successfully optimized the flow-shop scheduling problem by providing the

optimal routing sequence. This similarity in results highlights the effectiveness of the neural

network capabilities within Simio software. Moreover, the results confirm that Simio with neural

networks effectively optimizes scheduling processes and highlights its ease of implementation.

The integrated approach within Simio offers a user-friendly platform that facilitates the

implementation of neural networks for scheduling optimization. In contrast, the complexity

associated with coding and implementing a heuristic method, as demonstrated by Palmers

Heuristic in Python, adds a layer of complexity to the process.

This comparison emphasizes the practical advantages of leveraging Simio with neural

networks as a powerful tool for flow-shop scheduling optimization. The user-friendly nature of

Simio, combined with the efficiency of neural networks, positions it as a persuasive solution for

manufacturing systems seeking to improve operational efficiency. The findings suggest that

Simio's integrated neural network capabilities provide a viable alternative to traditional heuristic

Figure 5.3 Schedule optimized by Palmer heuristics.

39

methods, offering a more accessible and efficient avenue for achieving optimal scheduling

outcomes.

The limitations of this study include the specific context of the flow-shop scheduling

problem and the predefined parameters within the simulation model. Future work could address

these limitations by testing the methodologies in more diverse and dynamic settings.

40

References

1. MacCarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review

of optimization and heuristic methods in production scheduling. International Journal of

Production Research, 31(1), 59–79.

2. Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers &

Industrial Engineering, 37(1–2), 57–61.

3. Hall, N. G., & Sriskandarajah, C. (1996). A survey of machine scheduling problems with

blocking and no-wait in process. Operations Research, 44(3), 510–525.

4. Ding, J.-Y., Song, S., Gupta, J. N. D., Wang, C., Zhang, R., & Wu, C. (2016). New block

properties for flowshop scheduling with blocking and their application in an iterated greedy

algorithm. International Journal of Production Research, 54(16), 4759-4772.

5. Johnson, S. M. (1954). Optimal two- and three-stage production schedules with set-up

times included. Naval Research Logistics Quarterly, 1, 61-68.

6. Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness

(Research Report No. 43). Management Science Research Project, University of California

at Los Angeles.

7. Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research

Logistics Quarterly, 3, 59-66.

8. Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1, 343-302.

9. Pinedo, M. L. (2009). Planning and Scheduling in Manufacturing and Services (2nd ed.

2009.). Springer New York. https://doi.org/10.1007/978-1-4419-0910-7

41

10. Saaty, T. L. (1982). Decision making for leaders : the analytical hierarchy process for

decisions in a complex world. Lifetime Learning Publications.

11. Thomas, A., & Charpentier, P. (2005). Reducing simulation models for scheduling

manufacturing facilities. European Journal of Operational Research, 161(1), 111–125.

12. Lejmi, T., & Sabuncuoglu, I. (2002). Effect of load, processing time and due date variation

on the effectiveness of scheduling rules. International Journal of Production Research,

40(4), 945–974.

13. Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and

operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241–

261.

14. Kostas Metaxiotis & John Psarras (2003). Neural networks in production scheduling:

Intelligent solutions and future promises, Applied Artificial Intelligence, 17:4, 361-373,

DOI: 10.1080/713827140

15. Arbib, M. (1998). The Handbook of Brain Theory and Neural Networks. Cambridge, MA:

The MIT Press.

16. Simio LLC. (2024). Overview of neural networks with simulation modeling. Simio.

https://www.simio.com/applications/industry-40/Overview-of-Neural-Networks-with-

Simulation-Modeling.php

42

Appendix

A1.1 PYTHON CODE FOR PALMER’S HEURISTIC IMPLEMENTATION

import time

startTime = time.time()

job = [1,2,3,4]

processing times for each machine

m1 = [6,8,3,4]

m2 = [5,1,5,4]

m3 = [4,4,4,2]

A1 calculations

Indx_m1 = m1[0]

Indx_m2 = m2[0]

Indx_m3 = m3[0]

A0 = (3-((2)*(job[0])-1))*(Indx_m1)

A1 = (3-((2)*(job[1])-1))*(Indx_m2)

A2 = (3-((2)*(job[2])-1))*(Indx_m3)

print("A1 values: ", A0,A1,A2)

A1_Sum = ((A0 + A1 + A2)*(-1))

print("A1 Sum is: ", A1_Sum)

JOB1 = A1_Sum

#A2 calculations

Indx_m1_A2 = m1[1]

Indx_m2_A2 = m2[1]

Indx_m3_A2 = m3[1]

A2_0 = (3-((2)*(job[0])-1))*(Indx_m1_A2)

A2_1 = (3-((2)*(job[1])-1))*(Indx_m2_A2)

A2_2 = (3-((2)*(job[2])-1))*(Indx_m3_A2)

print("A2 values: ", A2_0,A2_1,A2_2)

A2_Sum = ((A2_0 + A2_1 + A2_2)*(-1))

print("A2 Sum is: ", A2_Sum)

JOB2 = A2_Sum

43

#A3 calculations

Indx_m1_A3 = m1[2]

Indx_m2_A3 = m2[2]

Indx_m3_A3 = m3[2]

A3_0 = (3-((2)*(job[0])-1))*(Indx_m1_A3)

A3_1 = (3-((2)*(job[1])-1))*(Indx_m2_A3)

A3_2 = (3-((2)*(job[2])-1))*(Indx_m3_A3)

print("A3 values: ", A3_0,A3_1,A3_2)

A3_Sum = ((A3_0 + A3_1 + A3_2)*(-1))

print("A3 Sum is: ", A3_Sum)

JOB3 = A3_Sum

#A4 calculations

Indx_m1_A4 = m1[3]

Indx_m2_A4 = m2[3]

Indx_m3_A4 = m3[3]

A4_0 = (3-((2)*(job[0])-1))*(Indx_m1_A4)

A4_1 = (3-((2)*(job[1])-1))*(Indx_m2_A4)

A4_2 = (3-((2)*(job[2])-1))*(Indx_m3_A4)

print("A4 values: ", A4_0,A4_1,A4_2)

A4_Sum = ((A4_0 + A4_1 + A4_2)*(-1))

print("A4 Sum is: ", A4_Sum)

JOB4 = A4_Sum

#Sorting The JOB sequence

JOBS = [JOB1, JOB2, JOB3, JOB4]

JOBS.sort(reverse = True)

#print(JOBS)

#allows to sort values in dictionarys

mydict = {'job1': JOB1, 'job2': JOB2, 'job3': JOB3, 'job4': JOB4}

sorted_values = sorted(mydict.items(), key =lambda x:x[1], reverse = True)

converted_dict = dict(sorted_values)

44

#print(converted_dict)

#values arranged in decending order

print("The Job sequence using palmers heuristic is:")

for keys, values in converted_dict.items():

 print(keys, values)

executionTime = (time.time() - startTime)

print('Execution time in seconds: ' + str(executionTime))

45

Vita

Jesús Ricardo Herrera Garfio was born in Ciudad Juárez, Chihuahua, México. He obtained

his Bachelor's degree in Industrial Engineering from the Universidad Autónoma de Ciudad Juárez

in 2020. He then pursued a Master's in Industrial Engineering at The University of Texas at El

Paso, during this time, he became a Research Assistant in the Department of Industrial,

Manufacturing, and Systems Engineering, while also working as a Quality Engineer intern at

Cummins, a global leader in engine technology. His research focuses on Flow-Shop Scheduling

Optimization through Discrete-Event Simulation and Neural Networks.

	Flow-Shop Scheduling Optimization Through Discrete-Event Simulation And Neural Networks.
	Recommended Citation

	ThesisAndDissertationDocumentTemplate

