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Abstract 

Many ground-breaking scientific experiments require the execution of multiple complex 

scientific computations. Thus, scientific workflows (i.e., a sequence of scientific computations) 

have received significant attention, more specifically, the automated composition of scientific 

workflows. Scientific workflows that repurpose data may have unique scientific assumptions that 

need to be considered when composing a workflow. Workflow composition tools have enabled a 

wider range of stakeholders (e.g., policymakers, the general public, and researchers) to create and 

execute workflows; however, domain expertise is still required for these tasks. The overarching 

goal of this work is to further improve the automatic composition of scientific workflows by 

validating if the scientific assumptions taken during the creation of a dataset are aligned with the 

scientific assumptions required to use these datasets for a specific scientific computation. This 

work aims to answer the following research questions: How can metadata and provenance be used 

to describe scientific assumptions of data consumed by scientific computations for the 

improvement of automated scientific workflow composition and repurposing of data? and to what 

extent can current Artificial Intelligence (AI) planning techniques with a heuristic function be used 

to formulate a scientific workflow that considers scientific assumptions in a hydrology domain?  

Our initial work focused on exploring automatic workflow composition with components 

that require and produce multiple scientific variables for an abstract case study (i.e., domain-free) 

using graph traversal. In addition, a second case study was conducted for a real-world hydrology 

scenario, which provided us with insights into how scientific assumptions could be described to 

enable model-to-model integration. In both cases, abstract and real-world scenarios, we use 

domain-independent vocabulary to represent a workflow for interoperability between different 

workflow management systems. We extended existing and widely used ontologies and 
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vocabularies for describing scientific assumptions that are used in the automated composition of 

workflows. In addition, we propose a heuristic function for optimizing the algorithm. Our work 

aims to support scientific decision-making by enabling a wider range of stakeholders (e.g., 

policymakers, the general public) to automatically generate scientific workflows leveraging 

additional domain knowledge captured in metadata that can be executed in frameworks compatible 

with the standard workflow language used in this work. 
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Chapter 1: Introduction 

Current ground-breaking scientific experiments are taking advantage of executing multiple 

complex scientific computations sequentially (Carrillo et al., 2019; Davies et al., 2020; Maechling 

et al., 2005; Pavlovikj et al., 2014; Reed et al., 2007; Riedel et al., 2018; Vahi et al., 2018; Zia et 

al., 2016). The referred scientific computations might have unique scientific assumptions that need 

to be considered when executing sequential computations. As a result, scientific workflows (i.e., 

the representation of “complex distributed scientific computations” (Gil et al., 2007a) have 

received significant attention, more specifically on the composition of scientific workflows (Gil et 

al., 2010; Kasalica & Lamprecht, 2020; Kim et al., 2006) with a focus on data repurposing. 

Scientific workflow composition deals with defining a sequence of complex scientific 

computations for producing a desirable output. Although diverse approaches to the composition 

of scientific workflows have been proposed (Gil et al., 2010; Kasalica & Lamprecht, 2020), there 

is an interest in identifying and chaining compatible scientific computations taking into 

consideration their unique assumptions. We define scientific assumptions as all design decisions 

made during the creation of a computational component that affects data produced by a scientific 

computation. These scientific assumptions are of relevant interest as they might impact when 

datasets should be used (or should not). 

For example, Holmes et al., (2022) describe a water balance model used to better 

understand the hydrologic effects of climate change in the local reservoirs located in the Rio 

Grande river region (R. N. Holmes et al., 2022). This water balance model requires inflows to the 

region to project water storage in local reservoirs. The U.S. Bureau of Reclamation, using the VIC 

hydrologic routing model (Brekke et al., 2014), provides region-specific streamflow without 

human-made alterations (R. N. Holmes et al., 2022). If the output dataset from the U.S. Bureau of 
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Reclamation is used as input to a regional surface water model then erroneous conclusions might 

be generated due to a mismatch of spatial scale (global vs. regional) and not considering 

anthropogenic impairments within the region. Therefore, validating that input data, either provided 

by a third party (e.g., governmental agencies) or self-collected, is suitable for consumption by a 

specific scientific computation is of vital importance. 

This dissertation focuses on further improving the automatic composition of scientific 

workflows with a special focus on repurposing and reuse of data. We state that our work will serve 

as an initial step for stakeholders to sketch out an initial workflow. In this chapter, we elaborate 

on our motivation to further improve the composition of workflows as well as the scope of the 

research and objectives; contributions are described at the end of the chapter. In Chapter 2 we 

present related work that is used as the foundation for this work. Our methodology and approach 

are described in Chapter 3. We present our results and discussion in Chapter 4 and Chapter 5 

outlines our conclusions and future work. Happy reading. 

1.1 MOTIVATION 

Understanding and predicting environmental phenomena is an urgent need in today’s 

modern society as it enables stakeholders (e.g., scientists, and policymakers) to make informed 

decisions (Carrillo et al., 2019). Being able to predict or to make projections of this type of 

phenomenon, assists stakeholders in the uptake of scientific conclusions fostering better 

management of non-renewable natural resources,  (e.g., water (Ward et al., 2019a)), or 

understanding our environment, (e.g., the study of celestial bodies (Gil et al., 2010; Vahi et al., 

2018)). 

Current practices on scientific research take advantage of computing power to accelerate 

their calculations, thus the design, development, and sharing of scientific computations are 



3 

becoming a common practice among the scientific community as shown in the collaborative effort 

led by the HydroShare team to enable scientists to discover hydrologic data and models (Tarboton 

et al., 2014). Moreover, chaining the execution of several scientific computations is becoming a 

requirement among diverse scientific experiments. 

With this goal in mind, workflows are adopted and used as scientific workflows to capture 

and communicate the steps taken in a scientific experiment as well as the location of the datasets 

used. Scientific workflows specify, without ambiguity, which computational tasks must be 

performed, and the scientific assumptions data should comply with to be used in the experiment 

(Carvalho et al., 2017; Deelman et al., 2018; Gil et al., 2007a). However, composing scientific 

workflows currently requires manual selection of scientific computations from domain experts. It 

is therefore of interest in this work to aim to further improve the composition of scientific 

workflows by automatically selecting scientific components. 

Within this work, we will refer to computational tasks as scientific components or scientific 

computations, an example of these components is a scientific model. We focus on creating 

workflows of components that digest and produce multiple data values, within our work we refer 

to those values as scientific variables, therefore the name of our work is denominated as the 

automated composition of multivariable scientific workflows.  

1.2 SCOPE OF THE RESEARCH 

Our work relies on identifying the capabilities of knowledge representation languages for 

describing the scientific assumptions adopted when generating scientific data in scientific 

computations (i.e., a semantically annotated model catalog) for the further improvement of 

scientific workflow composition based on scientific assumptions. Our catalog will focus on 
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describing scientific variables and their assumptions when generated/consumed by scientific 

components. 

Our work is evaluated using an abstract case study and a real-world case study in the 

environmental sciences, more specifically, hydrology. It is of interest to local scientists in the El 

Paso region to model the hydrologic behavior of the region. The Sustainable Water through 

Integrated Modeling (SWIM) (Garnica Chavira et al., 2022) is a framework that contributes to this 

objective; therefore, the SWIM framework is part of our case study and enables us to implement 

and evaluate our approach. 

1.3 OUT OF SCOPE OF THE RESEARCH 

The automatic generation of annotations of scientific variables and computations is out of 

the scope of this project. Scientific variables produced and required by scientific computations 

need to be manually annotated to generate a workflow. The process of how to manually or 

automatically annotate scientific assumptions is not covered in this dissertation. 

In addition, we envision that our work will be an initial step to automatically compose 

workflows that consume data contained in files, rather than data contained in a web service request. 

This type of workflow will require further representation of data digested/produced by the 

workflow. 

Evaluating the portability of our approach will include the use of relevant existing 

workflow management systems. The implementation of these tools is provided by third-party 

agents. 

While executing two or more scientific components within a workflow, it can be found that 

two or more scientific variables produced by different scientific components must follow a specific 

scientific pattern (i.e., to identify if there is a correlation or causation between variables). This type 
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of validation involves the analysis of the computations within the scientific components, i.e., 

scientific component validation, therefore this is indicated as future work. 

1.4 RESEARCH QUESTIONS 

1. How can metadata and provenance be used to describe scientific assumptions of data consumed 

by scientific computations for the improvement of automated scientific workflow composition 

and repurposing of data? 

2. To what extent can current Artificial Intelligence (AI) planning techniques with a heuristic 

function be used to formulate a scientific workflow that considers scientific assumptions 

evaluated in a scientific domain? 

 

1.5 GOAL AND OBJECTIVES 

The overarching goal of this research is to further improve the automatic composition of 

scientific workflows by validating if the scientific assumptions taken during the creation of a 

dataset are equivalent to the scientific assumptions data must comply with if used as input in a 

subsequent scientific computation. The following specific objective addresses research question 

one. 

O1. to describe and enhance current approaches to scientific workflow composition considering 

scientific assumptions 

A1.1. investigate advantages and limitations of current approaches to scientific workflow 

composition 

A1.2. extend current approaches to scientific workflow composition using a method that 

considers scientific assumptions 
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A1.3. investigate state-of-the-art approaches for representing scientific workflows using 

domain-independent specific vocabulary 

 

For addressing research question two, we define the following specific objective. 

O2. to define how knowledge representation languages can assist in describing the scientific 

assumptions adopted when generating scientific data in scientific computations 

A2.1. investigate current approaches on describing scientific assumptions of data generated in 

scientific computations using knowledge representation languages 

A2.2. extend current approaches using knowledge representation languages to describe 

scientific assumptions of data generated in scientific computations for the automatic 

composition of scientific workflows 

 

Finally, we propose a third objective for evaluating our work. 

O3. to evaluate the role of semantically annotated data in enhancing the composition of scientific 

workflows using scientific assumptions 

A3.1. validate the behavior of the workflow composer when creating workflows on different 

operating parameters 

A3.2. validate the portability of the composed scientific workflow in diverse workflow 

management systems 

A3.3. evaluate the correctness of the scientific workflows used for evaluation with domain 

experts in a scientific domain. 
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1.6 CONTRIBUTIONS 

The contributions of this dissertation are: 

1. A methodology for the automatic composition of scientific workflows composed of multiple 

sequenced input/output scientific computations that consider scientific assumptions in data 

generation. 

2. Knowledge representation vocabularies for describing the scientific assumptions when 

generating data from scientific computations. 
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Chapter 2: Background and Related Work 

2.1 KNOWLEDGE REPRESENTATION 

One approach used to formally describe a specific domain is an ontology. Hitzler et al. 

(2020) describe an ontology as “a description of knowledge about a domain of interest, the core of 

which is a machine-processable specification with a formally defined meaning” (Hitzler et al., 

2010). In the context of this work, we describe variables as individuals; their relationship to other 

individuals, referred to as object properties; attributes, which are called data properties; and their 

types, referred to as classes in an ontology. 

Given the domain of interest, it might be required to have a more specific definition of the 

class. In other words, a class might be decomposed into subclasses, the parent class is referred to 

as superclass in these situations. An example is given by Noy and McGuinness (Noy & 

McGuinness, 2001) in which they define the set of all wines to be classified into red, white, and 

rosé. In this example, red, white, and rosé are examples of subclasses, and the parent class, wine, 

is the superclass. 

Ontologies can be created with the use of the Web Ontology Language (OWL) (World 

Wide Web Consortium, 2012). OWL is a standardized language that extends the Resource 

Description Framework (RDF). RDF is a “general-purpose language for representing information 

in the Web” (Brickley et al., 2004), a domain of interest is then described using a triple: subject-

predicate-object using RDF syntax. An example of how RDF is used for describing a domain is 

seen in Table 1, the “prefix” annotation denotes that we will use the vocabulary described by the 

RDF vocabulary1 . The triple is composed of the subject: data5, the predicate: rdf:type, and the 

 
1 http://www.w3.org/1999/02/22-rdf-syntax-ns# 
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object: WaterFlow. For the purpose of this work, we make use of Protégé (Musen, 2015) as a tool 

for describing our domain of interest, which is scientific components. 

Table 1 Variable Annotation Example 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

data5 rdf:type WaterFlow . 

 

While RDF can be used to serialize ontologies, the expressiveness of RDF is limited in 

comparison with OWL. OWL allows the creation of hierarchies, a class can be defined as the 

intersection of other classes, and it also allows the definition of properties (Horrocks et al., 2003). 

It is for these reasons that OWL is the preferred method of serializing our ontology.  

With the formal description of the domain of interest, logical conclusions can be computed 

through classes, data properties, and/or object properties. To further explain our definition of a 

logical conclusion we use a typical example as follows: Assume that statement 1 states that “All 

humans have a birthdate”; statement 2 establishes that “Diego is human”; in consequence, we can 

logically conclude that “Diego has a birthdate”. A logical conclusion is described as an inference, 

given the widespread adoption of ontologies there are different types of inference engines, known 

as reasoners, to facilitate the automatic generation of logical conclusions. 

Reasoners make use of formal knowledge representation languages for the process of 

deriving logical conclusions. Description Logics (DL) is a formal knowledge representation 

language (Baader et al., 2007) used by the automatic reasoner Hermit (Shearer et al., 2008). RDF 

and DL work in tandem to describe a domain and for the making of inferences. We rely upon the 

utilization of ontologies and reasoners to identify equivalence between scientific variables. Our 

proposed variable reconciliation approach, described in 3.3 Ontology-Driven Scientific Variable 

Reconciliation, makes use of ontologies to formally describe scientific components and their 
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scientific variables (i.e., input and output scientific variables), Hermit then allows the identification 

of equivalent variables using superclasses. We rely upon the capabilities of Hermit instead of other 

reasoner tools, for example, Pellet (Sirin et al., 2007), as its technical abilities and learning curve 

are more suitable for our needs to perform subsumptions and inferences operations. 

2.2 INFORMED SEARCH STRATEGIES 

In the broad context of searching, diverse strategies are used. An uninformed search is 

based on using a breath or depth-first search (Russell & Norvig, 1995). However, a strategy using 

an uninformed search might lead to exploring the totality of the search space to find a specific 

target, as shown in our work. To reduce the exploration of the totality of the search space, an 

informed search strategy is typically used. This type of strategy makes use of a heuristic function, 

Russell and Norvig (1995) define a heuristic function as an “estimated cost of the cheapest path 

from the state at node n to a goal state” (Russell & Norvig, 1995), in our context, a heuristic 

function aids in guiding our algorithm to compose a scientific workflow. 

In terms of our very own heuristic function, our algorithm is classified as a greedy search 

algorithm. Per Russell & Norvig (1995), greedy search “tries to expand the node that is closest to 

the goal, on the grounds that this is likely to lead to a solution quickly”. That is, our approach 

involves the making of the best logical choice given with local information. In other words, when 

a problem is divided into smaller subproblems, a decision is taken based on the information 

available to the subproblem, not the problem overall. An example is shown in our research, in 

which we aim to choose a scientific component to analyze based on the data it generates (local 

information) described in 3.4 Target Variables: A Tie-Breaking Strategy. 



11 

2.3 COMPOSING SCIENTIFIC WORKFLOWS 

Manual and automatic scientific workflow composition have been addressed in previous 

work. In this section, we review approaches for manually describing workflows in different 

scientific domains, which require a domain expert to sketch out how the scientific components 

should be executed. In contrast, we outline how automatic approaches for the composition of 

workflows can use graph theory, abstract workflows, or SAT solvers (i.e., to evaluate if there is a 

set of values that yield a propositional formula to true (Zhang & Malik, 2002)). 

Automatically composing a type of workflow is a challenge addressed and described in 

diverse areas. In software engineering, for example, efforts were made to define a sequence of 

services to achieve a specific task. In (Oberhauser & Stigler, 2017), Oberhauser and Stigler 

describe their approach for automatically composing workflows of microservices. Their generated 

workflow, defined as a microflow, describes the execution of microservices (i.e., an element in 

which every functionality of a solution is divided into diverse components allowing to upgrade or 

replace them as required (Jamshidi et al., 2018)). 

Oberhauser and Stigler’s approach consists of creating workflows of microservices in 

which every microservice generates a single element or kind of data; this allows for a directed 

cycle graph to be pre-defined. Having a pre-defined graph enables the retrieval of a path to execute 

a specific task using a graph algorithm, such as the shortest path (i.e., finding the shortest path 

between two nodes). Our work described in 3.2 Automating Multivariable Workflow 

Composition, leverages Oberhauser and Stigler’s work by following their approach to manually 

annotate microservices and by implementing a graph traversal algorithm; however, our approach 

focuses on composing a path of computational components that digest and produce multiple 

scientific variables. 
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Other efforts to compose workflows are found in diverse scientific domains. In (Carrillo et 

al., 2019; Davies et al., 2020; Maechling et al., 2005; Pavlovikj et al., 2014; Reed et al., 2007; 

Riedel et al., 2018; Vahi et al., 2018; Zia et al., 2016) several examples of workflows and their 

implementations are described. Another example of workflow composition is found in (Del Rio et 

al., 2013; Villanueva-Rosales et al., 2015), who make use of semantic web technologies for 

composing workflows that allow users to make projections of species distribution based on specific 

climate scenarios. 

Del Rio et al., (2013) also make use of Semantic Health and Research Environment 

(SHARE) (Vandervalk et al., 2009), through the Semantic Automated Data Integration framework 

(SADI) (Wilkinson et al., 2011), for composing workflows to enable the transformation of data to 

satisfy the input requirements of models (Del Rio et al., 2013). 

The data transformation workflows defined by Del Rio et al., (2013) are manually 

composed and are not computational component specific as they do not specify which components 

are to be executed. Instead, the workflows operate to define the characteristics and restrictions of 

the components to be executed as well as the order in which they must be executed. These 

specifications are then fed to SHARE for retrieval of components that satisfy the restrictions 

specified (Vandervalk et al., 2009) and for building a working workflow of computational 

components. 

The approach taken by SHARE requires the definition of the classification, restrictions, 

and the sequence of execution of the components. This characteristic requires a domain expert to 

manually define a pre-processed workflow. This approach is also adopted by Gil et al., in (Gil et 

al., 2010) for composing a scientific workflow. 
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Gil et al., approach is focused on representing scientific computations (Gil et al., 2007a). 

Their approach, denoted Wings, requires input descriptions and a workflow template (i.e., a sketch 

of the scientific experiment to be executed) to generate an abstract workflow or workflow instance. 

This instance contains the data location of the scientific experiment to be then mapped to an 

executable workflow. This executable workflow is then used as input by a workflow enactment 

solution (e.g., Pegasus (Deelman et al., 2019a)) for its execution (Kim et al., 2006). 

The literature review described in the next two paragraphs was originally published in 

(Vargas-Acosta et al., 2022) © 2022 IEEE. 

Subsequently, the MINT project was proposed by Gil et al. to assist users with cross-

disciplinary model integration building on existing tools, including CSDMS (Peckham, 2014), 

BMI (Ferreira da Silva et al., 2018), GSN (Garijo et al., 2018), WINGS (Gil et al., 2011), Pegasus 

(Deelman et al., 2019b), Karma (Gupta et al., 2015), and GOPHER (Karpatne et al., 2016). 

MINT’s approach includes using semantic representations to describe model requirements and 

data characteristics, automatic planning through abductive reasoning techniques, a data discovery 

and integration framework, and machine learning algorithms for model parameterization (Gil et 

al., 2018). Their current implementation is being used to explore the role of weather on food 

availability in select regions of the world (Gil et al., 2021). 

Kasalica et al. present the Automated Pipeline Explorer (APE), a synthesis-based workflow 

discovery framework for automated workflow composition. APE captures technical domain 

knowledge in taxonomic and functional tool annotations. The user intent of required output data 

is then modeled through temporal constraints using Semantic Linear Time Logic (SLTL) and then 

translated as a propositional logic instance that can be solved with a SAT solver. This tool has 
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been applied to the geospatial domain to map waterbird movement patterns in the Netherlands 

(Kasalica & Lamprecht, 2020). 

Approaches taken by SHARE (Vandervalk et al., 2009) and Wings (Gil et al., 2010) require 

a domain expert to define abstract computational components and their execution sequence as well 

as their specific constraints (i.e., a workflow template). The former approach digests the pre-

processed workflow serialized as a SPARQL query (Vandervalk et al., 2009) while the latter 

provides a graphical user interface that allows an expert to sketch out a workflow template. We 

propose the automated composition of a workflow without manual guidance, contrary to the 

previously mentioned approaches. 

2.4 ENABLING VARIABLE RECONCILIATION 

In our approach, it is required for variables to be analyzed and identify those that are 

equivalent between each other given their classification and representation of scientific 

assumptions. This step will enable component-to-component integration, in other words, 

identifying that an output variable can be used as an input variable for another model will enable 

the creation of workflows. In this section, we describe previous efforts in describing variables and 

identify areas of opportunities. 

Madin et al., (2007) present the Extensible Observation Ontology (OBOE) for describing 

and discovering scientific variables and their units. They describe discovery as “the process of 

locating relevant and available data related to a specified topic of interest.” Their approach is to 

first classify variables in classes (e.g., weight) and query the ontology for variables using the 

classification. Their approach enables the description of scientific variables of different domains, 

as explained in their work. Their framework allows us to reconcile scientific variables by extending 
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their ontology to describe scientific assumptions with a custom classification and facilitating 

component-to-component integration (i.e., composing a workflow). 

2.5 COMPONENT SELECTION: A TIE-BREAKING STRATEGY 

Matching algorithms are used in different contexts. Chen et al., (2022) propose a matching 

algorithm with an adaptative tie-breaking strategy to match food orders with food riders. In e-

commerce, more specifically in the online-to-offline business, online food delivery has become 

popular. This type of service enables customers to order food by using technology (e.g., 

smartphones). Logistics of delivering food proves to require a matching algorithm for matching 

food orders and riders, and a tie-breaking strategy. Chen et al., (2022) besides proposing their 

matching algorithm, propose a heuristic based on matching orders to the best riders available. This 

strategy enables to ensure quality of service (i.e., delivery on time) by evaluating riders and 

prioritizing food orders. However, this strategy is not perfect as Chen et al., recognize a need to 

break ties arises if two or more food orders are matched to a single rider. It is then that they further 

propose a tie-breaking strategy based on operators. 

Their proposed strategy consists of selecting one out of five greedy methods for matching 

a food order to a rider. Their different tie-breaking operators consist of computing dispatching 

costs (i.e., the cost of dispatching a rider with a set of food orders), time, and distance. This type 

of heuristics enables them to formulate a solution based on previous information (e.g., a catalog 

of riders, and traveling distance). Chen et al., (2022) provide a similar problem to the one we 

describe in this work but applied in a different domain. We recognize similarities between their 

work and ours for example their approach to matching food orders to best riders can be 

implemented as ranking computational components (e.g., scientific models) based on precision, 
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accuracy, correctness, resources needed, and time to execute, among others. However, we do not 

consider those attributes as, in our case study, similar information is scarce. 

A second likeness identified is that their tie-breaking strategy consists of a greedy approach 

based on known data, for example, traveling distance or riders’ performance. While we must 

adhere to the fact that our information is limited, we utilize variables produced by components to 

prioritize them and therefore, break the tie. 

2.6 ANNOTATING COMPUTATIONAL COMPONENTS 

The development of a computational component can be an important step for research 

projects. In (Harpham et al., 2019; Khattar et al., 2021), an approach for sharing models and data 

is presented. Furthermore, (Harpham et al., 2019) propose a tool for documenting computational 

components. They elaborate that their tool can be incorporated into any component without a need 

to modify the code of the component. 

The Open Modeling Interface (OpenMI), as defined by (Harpham et al., 2019), consists of 

a Software Development Kit that can be incorporated into the code of a component, therefore 

creating a wrapper for a component. This approach can be of assistance in creating machine-

readable descriptions of the components. 

The OpenMI standard has been adopted by different frameworks. Adoption examples are 

(Buahin & Horsburgh, 2018; Bulatewicz et al., 2010; Fotopoulos et al., 2010). The effort made by 

(Harpham et al., 2019) allows to use a standardized approach to document components and enables 

the discovery by workflow composition frameworks. This approach requires documentation in the 

code while our approach requires annotations (i.e., metadata) that are not included in the code.  
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Chapter 3: Research Methodology 

This section describes our methodology for addressing the composition of multivariable 

workflows, a graphical representation is found in Figure 1. First, we address the composition of 

single variable workflows, in other words, chaining components that consume and produce a single 

variable. Addressing this challenge is suitable to be addressed as it presents the challenges of 

chaining components. In this work, we learned that a machine-readable description of components 

is needed for analyzing components and that a directed acyclic graph can improve the composition 

of this type of workflow. 

As an incremental step, we designed an algorithm for composing workflows of components 

that consume and produce more than one variable. The challenge in this type of workflow lies in 

the uncertainty of having all the required data to execute a component. Given this uncertainty, a 

directed graph for all possible cases is not a suitable approach, therefore we propose the exploration 

of the components catalog for dynamically composing a directed acyclic graph that represents the 

workflow. In this work, two challenges are identified: an automatic step for variable reconciliation 

and a tie-breaking strategy for selecting a component to be analyzed. 

In the third and fourth subsections of this chapter, we present our approach for identifying 

equivalent variables given their type and their scientific design decisions (i.e., scientific 

assumptions), and our strategy for selecting a component. 
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Figure 1 Graphical Representation of Our Methodology 

 

3.1 AUTOMATING SINGLE VARIABLE WORKFLOW COMPOSITION 

In our first approach to workflow composition, we explored the creation of a workflow to 

perform unit transformation. Unit transformation is sometimes required to perform operations or 

to correctly display the information so end-users can better understand the results. This case study 

proved to be a good initial exploration as the components in the workflow consume and produce 

a single variable. 

3.1.1 Automated Single Variable Workflow Composition: Approach 

An abstract graph is shown in Figure 2 in which every node, a computational component 

(circle), digests and produces a single scientific variable (e.g., b, c, d). An edge between two nodes 

denotes that executing a node produces enough data to execute the next node. 

 

Figure 2 Each Node in the Abstract Graph Digests and Produces a Single Data Element, Which 

is Digested by the Next Node in the Graph. 
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We focused on implementing an algorithm to compose a workflow for performing unit 

transformation. Our solution involved the design and implementation of a directed graph in which 

every node represents a Typescript function, a unit transformation function (e.g., convert from 

kilometers to miles), and every edge in the graph implies that a transformation function digests a 

unit generated by another transformation function. 

The directed graph is then traversed by an algorithm to find the shortest path between a 

source node (i.e., a transformation function that digests the same unit given as the input of the 

problem) and a target node (i.e., a transformation function that produces the same unit given as the 

desired output of the problem). If such a path exists, then this path is stored in temporary memory 

to be reused if needed again. 

This first attempt to enable the automated workflow composition allowed us to identify 

key aspects and challenges in this area, i) semantic annotations are needed for identifying suitable 

computational components, and ii) a directed graph enables the identification of a path in a single 

input/output scientific component. However, identifying a path in a graph is not a trivial task if the 

scientific variables required by a node are not available. This type of workflow in which a 

component produces and digests a single variable, will have predefined paths. In the next 

subsection, we describe our approach to composing workflows of components that 

produce/consume multiple variables. 

3.2 AUTOMATING MULTIVARIABLE WORKFLOW COMPOSITION 

This section is composed of an explanation of the importance of building scientific 

workflows, followed by our approach to automatically construct workflows, and finally a 

description of the required components to implement our workflow composer as well as executing 

scientific workflows. 
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This section details our approach described in the 2022 IEEE 18th International Conference 

on eScience (Vargas-Acosta et al., 2022) © 2022 IEEE for automatically composing scientific 

workflows as well as our initial efforts to incorporate the mentioned approach into an existing 

research software solution. 

Computational workflows, particularly scientific workflows,  address the challenge of 

integrating data sources, methods, and computational models across different domains (Carrillo et 

al., 2019). At the core level, computational workflows capture the computational steps and data 

dependencies required to execute computational experiments (Gil et al., 2007a). Computational 

workflows are widely used across domains, including those that require expensive computational 

processes. 

Creating a workflow usually starts at a conceptual level with the use of abstract 

representations such as Data Flow Diagrams (DFD) and Directed Acyclic Graphs (DAGs). Once 

scientists conceptualize and capture their computational process as declarative workflow 

structures, they can use workflow-management systems (WMS) to support their scientific 

endeavors by “creating, merging, executing, and reusing these processes” (Gil et al., 2007b). 

Declarative workflows can then be serialized to a target WMS system using programmatic libraries 

or following tool-specific syntax and structure. The workflow specification may also require 

metadata to locate data and jobs across distributed computational environments, along with data 

transfer protocols and credentials. The disparity of workflow specification languages across 

WMSs was addressed by standardization efforts such as the Common Workflow Language (CWL) 

(Crusoe et al., 2022). 

Despite broad access and standardization efforts, WMSs still require users to have a high 

level of computational expertise and collaboration across scientific teams (Gil et al., 2007b). This 
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may require a high learning curve for the public (i.e., non-scientists) and users who lack the 

necessary expertise to use these tools, limiting informed decision-making and potential scientific 

breakthroughs. Even with the proper domain expertise, building a workflow plan for a WMS by 

hand can be a time-consuming and cumbersome task. The design of workflows can be supported 

by systems that can potentially accelerate the process to automate the creation and reproduction of 

workflows. 

3.2.1 Automated Multivariable Workflow Composition: Approach 

Our approach to the automated composition of workflows uses a breadth-first search 

strategy; in other words, we start building a directed acyclic graph in which the expansion of nodes 

is performed first with siblings instead of child nodes, opposite to how the depth-first search is 

performed (Russell & Norvig, 1995). In Figure 3, a computational process (p) is represented as a 

node that needs to be expanded. Scientific variables produced by this computational process enable 

the exploration of other computational processes that can consume the generated data as part of 

their inputs. In our scenario, computational processes can produce and consume multiple data 

elements (e), which we also refer to as variables in the rest of the manuscript. 

 

Figure 3 DFD of a Multivariable Workflow Example. The Dashed Path Passes Through 

Candidate Nodes, the Blue Solid Path is Selected for the Workflow. © 2022 IEEE 
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Table 2 shows the core algorithm used by the workflow composition. This algorithm can 

automatically compose a workflow of processes that consume and produce multiple data elements. 

The algorithm composes a scientific workflow by iteratively identifying candidate processes that 

can be executed based on the initially available data elements (line 10). For each candidate process, 

data variables generated from each process are added to a set of collected data variables and a 

record of the iteration (i.e., step) and the process that produced it (lines 14 – 20). The algorithm 

continues to iterate until all desired data elements (i.e., target variables) are collected, or there are 

no processes available to explore (lines 11 – 13). Multiple paths can lead to the generation of the 

target variables; however, only one path is needed. Figure 3 shows a DFD that represents a 

multivariable workflow example. If a process does not contribute to the final solution (e.g., the 

process identified as “p8” in Figure 3), it is pruned (lines 24 – 34). Processes that cannot be 

executed due to a lack of data elements (e.g., the process identified as “p9”) are not included in 

the analysis. 

Table 2 Pseudocode for Multivariable Workflow Composition © 2022 IEEE 
1: targetVariable = desired variable provided in the request 

2: collectedVariable = available variable provided in the request 

3: iterationNumber = 1 

4: workflowMap = new Map(Integer, Process set) 

5: for each variable  collectedVariable do 

6:       variable.addOrigin(“request”) 

7:       variable.addStep(0) 

8: end for 

9: while !collectedVariable.contains(targetVariable) do 

10:       executableProcesses = ProcessCatalog.getProcessBy(collectedVariable) 

11:       if  executableProcesses.isEmpty() && !targetVariable.isEmpty()  do 

12:           return Exception(“Target variable cannot be collected with available processes and initial variables”) 

13:       end if 

14:       for each process  executableProcesses do 

15:             for each variable  process.getOutputs() do 

16:                   variable. addOrigin(process) 

17:                   variable. addStep(iterationNumber) 

18:                   collectedVariable.add(variable) 

19:             end for 

20:       end for 

21:       iterationNumber++ 

22: end while 

23: variableToBeCollected = desired variable provided in the request 

24: for each variable  variableToBeCollected do 

25:       if workflowMap.contains(variable.getStep()) do 

26:             processSet = workflowMap.get(variable. getStep()) 
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In this example (Figure 3), the target data elements are labeled as e11 and e12, and user-

provided data elements are e1, e2, e3, e4, and e5. The target data elements and available data 

elements form part of a user request. In addition, to the user request, metadata for available 

processes is also required as input. All processes need to be previously described in the process 

catalog. The process catalog includes the data elements consumed by a process and the data 

elements produced. The process catalog used in our example contains nine processes depicted in 

Figure 3; the blue path shows a candidate workflow path for generating the target variables. 

The multivariable workflow composition algorithm generated the blue path by first 

analyzing all desired and available initial data variables (lines 1 and 2 in Table 2) for the creation 

of a target and collected data sets, a record of the origins of the initial data variables is created in 

lines 5 – 8. Process nodes are collected in line 10, resulting in p1 being selected. Data variables 

generated by this process are added to the collected data set, and the record of data origins is 

updated. This iteration is repeated, and now line 10 will expand processes p2, p3, p4, and p5; data 

variables generated by these processes are added to the collected data set, and the record of data 

origin is updated. In the third iteration, the processes p6, p7, and p8 are retrieved from the model 

catalog by line 10, extracting all target variables. In the fourth iteration, line 11 will identify that 

the target variable set is empty and stop iterating. Table 3 shows the possible paths for this abstract 

example. Each “step” can include a set of processes that can be executed in parallel.  

27:       end if 

28:       process = variable.getOrigin() 

29:       for each variableInput  process.getInputs() do 

30:             variableToBeColleted.add(variableInput) 

31:       end for 

32:       processSet.add(process) 

33:       workflowMap.put(variable.getStep(), processSet) 

34: end for 
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Table 3 Possible Workflow Paths © 2022 IEEE 

 

At this stage, the process graph will contain multiple paths for generating target variables 

and a process that doesn’t contribute to the final output. Lines 24 – 34 will then use the record of 

data origin to backtrack at what iteration the data was generated and what process generated it. 

The cycle will continue for every data collected, given the inputs required by the processes. 

This algorithm, as described before, will enable the creation of a candidate path for 

generating the scientific variables. The implementation of this algorithm as a stand-alone web 

service is described in 4.1 Automatic Workflow Composition. 

3.3 ONTOLOGY-DRIVEN SCIENTIFIC VARIABLE RECONCILIATION 

Modeling environment behavior as a scientific model (i.e., scientific component) is most 

of the time performed by domain experts. During this process, domain experts generally develop 

computational components, to the best of their abilities, that might yield to using non-standard 

vocabulary for naming the scientific variables produced and consumed by their models. 

Documentation for computational components and their corresponding variables would ideally be 

found in the form of software documentation and/or publications to foster the reproducibility of 

workflows. However, this practice is uncommon among domain experts. It is of interest then, to 

identify equivalencies between scientific variables among third-party computational components 

Path Step 1 Step 2 Step 3 

1 p1 p2, p3, p5 p6 

2 p1 p2, p4, p5 p6 

3 p1 p3, p5 p7 

4 p1 p4, p5 p7 
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so they can be integrated, and a scientific workflow composed, this process is described in this 

work as variable reconciliation. 

We hypothesize that ontologies and automated reasoners can allow us to identify 

equivalencies between scientific variables to automatically orchestrate workflows and support the 

reuse of scientific models. This would require providing additional information about scientific 

variables including their type (e.g., category) and any scientific assumption used when describing 

and using these variables. A category provides more information about the type of data the variable 

will hold, e.g., flow of water or temperature. In this work, we refer to the term scientific 

assumption, as any decision or assumption made when generating a value for a scientific variable, 

whether it was observed, collected, or generated by a scientific model. 

3.3.1 Variable Reconciliation: Approach 

Supporting the automation of variable reconciliation relies on the annotations of data (i.e., 

formally described). Scientific variable annotations can be formally described in any computer-

readable format. Our approach makes use of descriptions using the JavaScript Object Notation 

(JSON) format (Internet Engineering Task Force, 2017). An example of a variable annotation is 

presented in Table 4. A unique identifier, “id”, is used to identify the variable and to relate this 

variable with other variables for which an equivalency is found. The “type” attribute allows 

categorization of the variable, in the example shown the variable is classified as water flow. 

Scientific assumptions are represented within the “assumptions” field, this field contains key-value 

pairs. In our example, a variable that represents the real flow of water (i.e., not natural flow) in 

Fort Quitman is depicted.  
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Table 4 Variable Annotation Example 

{ 

            "id": "data5", 

            "type": "WaterFlow", 

            "_comment":"Fort Quitman", 

            "assumptions": { 

                "isNaturalFlow": "false", 

                "hasLatitude": "31.06433", 

                "hasLongitude": "-105.59508" 

            } 

        } 

 

This description is then formally described by making use of a custom-made ontology. The 

Variable Reconciliation Ontology (VaR-O2) extends the OBOE (Madin et al., 2007) and 

ELSEWeb (Del Rio et al., 2013; Villanueva-Rosales et al., 2015) ontologies, details on the 

extended ontology are found in section 4.2 Variable Reconciliation. Our ontology is populated 

using the algorithm depicted in Table 5. This approach processes the JSON structured description 

of variables to create individuals for every variable, assumptions are described as data properties, 

and an automatic reasoner is used to identify equivalent variables by first identifying the superclass 

of the assumptions and finally creating a description logic query (DL Query (Baader et al., 2007)) 

using the superclasses to identify equivalent variables (i.e., individuals in the ontology context).  

The implementation of our approach is described in section 4.2 Variable Reconciliation. 

Table 5 Pseudocode for Populating the VaR-O with Scientific Variables 

 
2 https://purl.org/variablereconciliationontology 

1: targetVariable = desired variable provided in the request 

2: collectedVariable = available variable provided in the request 

3: componentCatalog = component catalog provided in the request 

4: equivalentVariables = new Collection() 

5: createIndividualsAndDataProperties(targetVariable) 

6: createIndividualsAndDataProperties(collectedVariable) 

7: for each component   componentCatalog  do 

8:      createIndividualsAndDataProperties(component.getInputsAndOutputs()) 

9: end for 

10: equivalentVariables = runReasoner.getEquivalentIndividuals(targetVariable, collectedVariable, componentCatalog) 
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3.4 TARGET VARIABLES: A TIE-BREAKING STRATEGY  

In our described approach for composing multivariable workflows, it might come to a case 

in which two or more computational components are selected to be analyzed given that there is 

enough information to execute them. In situations like this, a tie-breaking strategy is needed to 

decide which component to analyze first in the hopes of discovering the target variables. Common 

tie-breaking strategies consider intrinsic characteristics of the components, for example, running 

time, resources needed, availability, performance, and precision, among others. Our strategy 

consists of analyzing the number of target variables produced by a specific component, this tactic 

reduces the information needed for composing a multivariable workflow (e.g., running time, 

resources needed) and it is useful for case studies in which other information is not available. 

In this subsection, we delve into our tie-breaking strategy by composing a heuristic 

function that considers target variables only. 

3.4.1 Tie-Breaking Strategy: Approach 

The tie-breaking strategy implemented in our approach (i.e. the heuristic adopted) requires 

the set of nodes to be analyzed, the set of target variables, and the set of available variables (i.e. 

variables provided by the user or outputs provided by pre-analyzed components). Our strategy 

improves our search algorithm, described in Table 6 in color blue, by selecting a component using 

an informed decision. Details of our strategy are described in Table 7 and Table 8, it analyzes 

every component and selects the one that produces more target variables. In other words, the 

number of variables is used as a heuristic to guide our search. In the case in which a tie is produced, 

we run our algorithm once more to expand our graph one more level with the nodes to break the 

tie (Table 8). If the tie still exists, the graph is expanded to a second level (Line 18 of the same 

table). If the tie is not broken with this second expansion, then the first component in the initial set 
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(without expansion) is selected as the best candidate to be analyzed (Line 3 of the same table). 

  

 

 

Table 6 Pseudocode Modification for 

Multivariable Workflow Composition © 2022 IEEE 
1: targetVariable = desired variable provided in the request 

2: collectedVariable = available variable provided in the request 

3: iterationNumber = 1 

4: workflowMap = new Map(Integer, Process set) 

5: for each variable  collectedVariable do 

6:       variable.addOrigin(“request”) 

7:       variable.addStep(0) 

8: end for 

9: while !collectedVariable.contains(targetVariable) do 

10:       executableProcesses = ProcessCatalog.getProcessBy(collectedVariable) 

11:       if  executableProcesses.isEmpty() && !targetVariable.isEmpty()  do 

12:           return Exception(“Target variable cannot be collected with available processes and initial variables”) 

13:       end if 

14:       for each process  getNextProcess(executableProcesses, targetVariable, collectedVariable) do 

15:             for each variable  process.getOutputs() do 

16:                   variable. addOrigin(process) 

17:                   variable. addStep(iterationNumber) 

18:                   collectedVariable.add(variable) 

19:             end for 

20:             executableProcesses.remove(process) 

21:       end for 

22:       iterationNumber++ 

23: end while 

24: variableToBeCollected = desired variable provided in the request 

25: for each variable  variableToBeCollected do 

26:       if workflowMap.contains(variable.getStep()) do 

27:             processSet = workflowMap.get(variable. getStep()) 

28:       end if 

29:       process = variable.getOrigin() 

30:       for each variableInput  process.getInputs() do 

31:             variableToBeColleted.add(variableInput) 

32:       end for 

33:       processSet.add(process) 

34:       workflowMap.put(variable.getStep(), processSet) 

35: end for 

Table 7 Pseudocode for Tie-Breaking Strategy Part I 
1: Method: getNextProcess(executableProcesses, targetVariable, collectedVariable) 

2: stepsToAnalyze = 2 

3: return getMaxTargetVariables(stepsToAnalyze, executableProcesses, targetVariable, collectedVariable) 

Table 8 Pseudocode for Tie-Breaking Strategy Part II 
1: Method: getMaxTargetVariables(stepsToAnalyze, executableProcesses, targetVariable, collectedVariable) 

2: if stepsToAnalyze == 0 

3:       return executableProcess.getFirstProcess() 

4: end if 

5: maxVariablesProduced = 0 

6: candidateProcess = null 

7: for each process  executableProcesses do 

8:       if process.getVariablesProduced(targetVariables) > maxVariablesProduced 
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Figure 4 illustrates our tie-breaking strategy. In this example, the variables “e11” and “e12” 

are to be generated (i.e., target variables). The algorithm shown in Table 8 gets executed when 

more than one component is to be analyzed (i.e., the components p2, p3, p4, and p5) and selects 

the component “p5” to be analyzed next as this component produces one target variable. After 

analyzing the “p5” component it gets removed from the components to be analyzed. Given that 

the target variable set is not empty another iteration is executed, this is indicated in line 9 of Table 

6. Our tie-breaking strategy will analyze the next set of possible components, given that a tie still 

exists, it will run another iteration but now expanding the set of components. In this iteration, it is 

shown that “p6” produces one target variable and it will provide information to break the tie, 

therefore the components “p2” and “p3” are selected. 

 

Figure 4 DFD of a Multivariable Workflow Example After Implementing our Tie-Breaking 

Strategy. Green Nodes are not Discovered Given the Heuristic Used. 

 

9:             maxVariablesProduced = process.getVariablesProduced(targetVariables) 

10:             candidateProcess = process 

11:       end if 

12: end for 

13: if maxVariablesProduced != 0 and candidateProcess != null 

14:       return process 

15: end if 

16: collectedVariable.add(executableProcesses.getOutputAllProcesses()) 

17: executableProcesses = ProcessCatalog.getProcessBy(collectedVariable) 

18: return executableProcesses.getPreProcess(getMaxTargetVariables(stepsToAnalyze – 1, executableProcesses, targetVariable, 

collectedVariable) 
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Chapter 4: Results 

In this chapter, we describe our implementations and results obtained with respect to our 

initial efforts to automatically compose a scientific workflow, our approach for variable 

reconciliation, and the tie-breaking strategy. 

4.1 AUTOMATIC WORKFLOW COMPOSITION 

We first describe the case study used to evaluate our approach. This case study involves the 

creation of a scientific workflow that can be incorporated into the SWIM platform, a framework 

for enabling open access to scientific models to diverse stakeholders (Garnica Chavira et al., 2022). 

This section was originally published in (Vargas-Acosta et al., 2022) © 2022 IEEE. 

4.1.1 The Workflow Composer Service 

The Workflow Composer service receives an abstract model catalog and the workflow 

request as input. These two artifacts include platform-independent metadata that identifies models 

and data elements with general unique identifiers. The abstract model catalog contains the 

metadata of available modeling and transformation services (i.e. computational components). The 

abstract workflow request contains the user-defined payload. 

The abstract model catalog contains metadata for the computational components, for 

example, URL if implemented as a service, required input, and output. An example of these 

components is scientific models or data transformation jobs. All the models and transformation 

jobs can be wrapped with a web service interface. Transformation services enable the serialization 

of data values in the format required by the following scientific model to be executed. Data changes 

might include units (e.g., Metric to English) or data structures (e.g., different schemas). 
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The workflow request contains desired output variables as well as available input variables. 

The available input variables will be used by the composer to search components to be executed 

with these available variables (i.e. available data). The request is serialized as JSON. 

The resulting product of the workflow composer is a workflow plan serialized in JSON 

format. The serialized workflow plan contains metadata for the execution of every model as well 

as its prerequisites (i.e., models or transformation services that need to be executed beforehand). 

The workflow plan is sent as input to the Workflow CWL service. 

The Workflow Composition implementation as a microservice is available online on 

GitHub3 and as a docker image on the DockerHub registry4. 

4.1.2 The Workflow CWL Service 

Our implementation for executing workflows is done as a web service and leverages the 

third-party CWL Python API for creating CWL workflows (Amstutz et al., 2016). A CWL 

serialization can be used to execute workflows in a WMS that uses this same standard (e.g., 

Pegasus). The CWL API is used to transform a workflow plan serialized as JSON into a CWL 

workflow and use the workflow management capabilities of the CWL tool. Implementing the 

workflow CWL as a web service and the components as web services enables the use of the curl 

command to send and receive messages with the HTTP protocol. 

The Workflow CWL implementation as a microservice is available online on GitHub5 and 

as a docker image on DockerHub6. 

This proposed algorithm and its implementation manage to explore a components catalog 

(e.g. a model catalog) to create a scientific workflow. However, two challenges are found: a 

 
3 https://github.com/iLink-CyberShARE/workflow-composer-public 
4 https://hub.docker.com/r/lagarnicachavira/workflow-composer-public 
5 https://github.com/iLink-CyberShARE/workflow-cwl-public 
6 https://hub.docker.com/r/lagarnicachavira/workflow-cwl-public 
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preprocessing step is required to identify equivalencies between scientific variables (i.e. to identify 

if a scientific variable can be used as input in another component), and a selection criterion is 

needed to decide which component to analyze first if two or more can be executed with available 

input. 

 

4.1.3 Case Study  

Overview 

Our case study aims to support scientists and policy-makers in exploring different scenarios 

and the effects of short-term management strategies projected into the future. In particular, 

answering the question: How does regional reservoir storage behave in an economically optimal 

water use scenario? 

This case study requires the integration of two heterogeneous models available in SWIM, 

namely the Water Balance Model (WBM) (R. Holmes, 2021) and the Hydroeconomic Model 

(HEM)  (Ward et al., 2019b). The coverage area for both models is bounded to the Middle Rio 

Grande in the Paso del Norte region, which includes the south of New Mexico (NM), West Texas 

in the US, and the north of Chihuahua in Mexico. The WBM is a regional water supply simulation 

model driven by: upstream inputs to Elephant Butte Reservoir in NM, local climate, regional water 

demand, and existing reservoir operation rules. The HEM is an economic optimization model that 

maximizes profits from regional water use. Both models can take multiple inputs and generate 

output values for multiple variables. 

Provided below is a description of the inputs used to generate this workflow and the outputs 

generated, which are also depicted in Figure 5. 
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Figure 5 DAG of a SWIM Model-to-Model Integration Scenario 

Derived from the Case Study. © 2022 IEEE 
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4.1.4 SWIM Workflow Input 

In this section, we describe the content of the workflow request payload used in our case 

study. The payload is divided into three blocks: inputs, outputs, and rules. 

Table 9 SWIM Workflow Input Excerpt. 

{ "inputs" : [ 

{"paramName" : "StartYearV2", 

"paramValue" : 1994 }], 

"outputs" : [ 

{"varName" : "EBStorageV2_af " }, 

{ "varName" : "water_stocks" } ], 

"rules" : [ 

{ "excludeDefault" : ["evap_rat_p"] }, 

{ "equivalence" : ["evap_rat_p", "SWEvapV2_ft"]}] 

} 

 

Table 9 shows an excerpt of the SWIM workflow request payload. The first block of the 

input payload includes data inputs with custom values specified by the user. For each input entry, 

the “paramName” field carries a unique identifier for the data element. The “paramValue” field is 

a user-defined value for the parameter. The scenario provided applies a numeric value of 1994 to 

the input parameter with the identifier “StartYearV2”. The remaining inputs for this scenario are 

depicted in Figure 5. The workflow composer implementation supports numeric, table, and time-

series data serialized in JSON. As the “paramValue” field is not bounded to a specific data type, 

we can potentially use the field to reference more complex data input types (e.g., Tiff, Geo-JSON, 

NetCDF). The outputs block specifies the target output data that will be obtained after the 

workflow execution. The “varName” field is a unique identifier for each output. Both input and 

output blocks will be extended with additional metadata that could enable data transformations 

such as unit conversions, resolutions, or time-series timesteps. 
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Finally, in the rules block (Table 9), the first rule disables the use of the default value for 

the variable parameter “evap_rat_p”. The second rule marks the variables “evap_rat_p” and 

“SWEvapV2_ft” as semantically equivalent.  

4.1.5 SWIM Workflow Output 

This section describes the content of the SWIM workflow output of the case study scenario. 

The workflow payload is divided into three blocks: metadata, provenance, and resource. Table 10 

shows an excerpt of the SWIM workflow output. 

Table 10 SWIM Workflow Output Excerpt. 
{ "metadata": { 

        "status": "success", 
        "type": "Workflow Result" }, 

    "provenance": [ { 

 "entity": "Model Output", 

 "generatedAtTime": "2022.05.25.14.06.25", 

 "id": "EBStorageV2_af", 
 "wasGeneratedBy": "1fb918b3-bf35-40f3-9821-b4d907cd610f" }], 

    "resource": [  

        { 

            "modelID": "7b7ac93638f711ec8d3d0242", 
            "varName": " EBStorageV2_af", 

            "varValue": "...", 

            "varinfo": [ 

                { 

                  "lang": "en-us", 
                  "varCategory": " Storage", 

                  "varDescription": "Elephant Butte reservoir storage...", 

                  "varLabel": "Elephant Butte Reservoir Storage", 

                  "varUnit": "Acre-Feet" 

                }, 
                { 

                  "lang": "es-mx", 

                  "varCategory": "Almacenamiento", 

                  "varDescription": "Promedio anual en el volumen...", 

                  "varLabel": " Almacenamiento en Presa del Elefante Butte", 
                  "varUnit": “Acre-Pies" 

                }]  

}] 

} 

 

The first block of the output payload contains general metadata regarding the execution of 

the overall workflow; the excerpt in Table 10 includes the execution status and the type of artifact.  

The provenance block shows a trace of where the workflow entities were generated. For 

example, the entity “Model Output” with id “CabReleaseV2_af” was generated by another entity 

with id “1fb918b3-bf35-40f3-9821-b4d907cd610f”. We anticipate being able to trace back to the 
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metadata of the modeling service corresponding to an identifier using an RDF graph for 

representing the provenance. 

Finally, the resource block contains all the target data elements requested by the user (for 

simplicity, the excerpt contains only one output). The data elements include metadata in terms of 

the SWIM data model schema (Garnica Chavira et al., 2018), and generated data values on the 

“varValue” field. 

4.1.6 Automatic Workflow Composition: Results 

 Testing the validity of integrating models is more dependent on the compatibility of the 

models, their inputs, and integration methods than on the usability of a workflow management 

tool. This task should consider how scientists and decision-makers can interpret the results from 

such complex data and model integrations. This subsection presents our initial efforts for 

evaluating model-to-model integration. In our case study, the reservoir evaporation rate, an output 

of the WBM, is an input to the HEM. Using SWIM’s infrastructure, annual reservoir evaporation 

rates generated from the WBM are generated and used as input to the HEM. Results indicate that 

the output reservoir evaporation rate from the WBM was consumed as an input to the HEM. Figure 

6 and Figure 7 show bar plots retrieved from the SWIM interface. In Figure 6, we can visualize 

the Surface Water Evaporation Depth values as an output of the WBM. These values were sent to 

the HEM as Reservoir Evaporation Rate values, as shown in Figure 7.  
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Figure 6 Surface Water Evaporation Depth 

Output of the WBM  © 2022 IEEE. 

Figure 7 Reservoir Evaporation Rate Input to 

the HEM  © 2022 IEEE. 

  
Figure 8 Elephant Butte Reservoir Storage 

Projected by the WBM  © 2022 IEEE. 

Figure 9 Surface Water Storage Projected by 

HEM. This Output is a Sum of the Two 

Regional Reservoirs, Elephant Butte and 

El Caballo  © 2022 IEEE. 

 

Inflows to the Elephant Butte Reservoir produced by the WBM and HEM are shown in 

Figure 8 and Figure 9 respectively obtained using SWIM in collaboration with M.S. Luis Garnica 

Chavira. 

 

4.2 VARIABLE RECONCILIATION 

4.2.1 Ontology 

To outline our approach for variable reconciliation, we describe an example with two 

different types of assumptions. We make use of a specific-valued assumption (e.g., a true/false 

value) to identify equivalent variables. In our example, we identify those variables that represent 

the natural flow of water (i.e., the flow of water without considering man-made modifications) by 

having the assumption isNaturalFlow set to true. This use-case allows us to depict how to describe 
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specific-valued assumptions allowing for their variables to be reconciliated based on a comparison. 

Our second assumption type makes use of continuous values, with this example, we aim to identify 

those variables whose assumption is within a specific range. In other words, two or more variables 

will be considered equivalent if their value for a specific assumption is within a specified range. 

Scientific variables are represented within an ontology of our design as individuals. We 

extend the ontologies OBOE and ELSEWeb to describe variables. OBOE contains an extensive 

list of properties (i.e., the class Characteristic) an entity might have; in our context, a property is 

equivalent to a variable. ELSEWeb on the other hand is used to describe geographical regions 

either by specifying them by name or by latitude and longitude. Additional classes may be added 

to represent specific entities or processes in the domain. For example, in our real-world case study, 

we added RealFlow. Restrictions that apply to these classes according to the specific domain are 

represented as equivalent classes restrictions. This will allow us to classify scientific variables 

using reasoners. An example is illustrated in Table 11 using Manchester syntax (Horridge & Patel-

Schneider, 2012), the class RealFlow is described as equivalent to the class that contains 

individuals (i.e., scientific variables) that contain a data property isNaturalFlow with the value set 

to false or the data property isRealFlow set to true. Classifying scientific variables using this 

methodology enables the retrieval of corresponding variables, even if they were described using 

different terminologies (i.e., isNaturalFlow as opposed to isRealFlow). 

Table 11 Super Class Description Example 

RealFlow isEquivalentTo (isNaturalFlow value "false") or (isRealFlow value "true") 

 

Presented in Table 12 is an example of an abstract case for illustrating a numeric range, it 

encapsulates the concept of continuous data values through its data properties. Within this 
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example, the class Range is characterized by a relationship with the data property abstractRange, 

employing a restriction that is formally defined by an equivalence relation.  

To illustrate, the OWL class expression describes Range as equivalent to abstractRange 

being set to a value in a specific segment, the closed interval from 73.45 to 123.23. Therefore, if 

an individual entity possessing an abstractRange attribute with a value of 73.46 it is systematically 

classified under the Range class, thereby satisfying the ontological constraint. This precision 

classification underlines the ontology's capacity to handle continuous data and illustrates the 

granularity of the data property-based class definitions. 

Table 12 Super class description example 

Range isEquivalentTo abstractRange some xsd:double[>= "73.45"^^xsd:double , <= 

"123.23"^^xsd:double] 

 

4.2.2 Ontology Population 

This process involves importing data from JSON files into the ontology with the help of 

the OWL Java API7. Within this framework, each variable is instantiated as an entity, classified 

according to its respective type, and its associated scientific assumptions are articulated through 

designated data properties. Table 13 describes the variable from Table 4 using Manchester Syntax. 

This is possible by using the OWL API (Horridge & Bechhofer, 2011) and parsing the JSON 

received in the package. Implementation of the ontology population is performed by a 

microservice using Java and Maven, the implementation is available online on GitHub8.  

 
7 https://mvnrepository.com/artifact/net.sourceforge.owlapi/owlapi-distribution 
8 https://github.com/alex-vargas/workflow-composer-heuristic 
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Table 13 Example of Scientific Variable Described in our Ontology 

Individual: data5 

    Types: WaterFlow 

    Facts: 

        hasLatitude  = "31.06433"^^xsd:double 

        hasLongitude = "-105.59508"^^xsd:double 

        isNaturalFlow = "false"^^xsd:string 

 

4.2.3 Automated Reasoning 

In the subsequent stage of the ontology population task, we proceed to identify 

equivalencies among individuals, which, in our context, refer to scientific variables. We make use 

of Hermit (Shearer et al., 2008) as a reasoner engine to discover these equivalencies, leveraging 

data properties that represent the scientific assumptions, as the basis for this identification. All 

equivalent individuals are serialized using JSON. A representation is shown in Table 14. All the 

variables identified in the equivalence field are semantically equivalent given their scientific 

assumptions and types, therefore, the values of those variables can be used regardless of the model. 

The equivalent variables are found taking into consideration their unique scientific assumptions, 

however, if the stakeholder is aware of these constraints and decides to consider two or more 

variables equivalent regardless of their assumptions, they can specify those requirements in the 

ignore field.  
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Table 14 Equivalent Individuals Serialized as JSON 

{ 

    "rules":[ 

        { 

            "equivalence":[ 

                "Water-Balance-Model-StreamFlow-Input", 

                "data4", 

                "e1", 

                "data6" 

            ] 

        } 

    ], 

    "ignore":[] 

} 

 

 

Table 15 shows equivalent individuals when the stakeholder indicates to ignore specific 

scientific assumptions. The assumption hasNamedLocation is ignored in that example and as a 

result, more variables are indicated as equivalent. We recognize that this action might affect the 

final workflow generated by our approach, however, this feature enables stakeholders to reuse a 

specific component in different conditions, for example, to use a component for a different 

geographic region for which it was initially designed.  
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Table 15 Equivalent Individuals Ignoring Scientific Assumptions 

{ 

    "rules":[ 

        { 

            "equivalence":[ 

                "Normalization-StreamFlow-Output", 

                "Water-Balance-Model-StreamFlow-Input", 

                "data4", 

                "e1", 

                "data6", 

                "data5" 

            ] 

        } 

    ], 

    "ignore":[ 

        "hasNamedLocation" 

    ] 

} 

 

This approach allows us to identify equivalent variables that are later digested by our 

workflow composer described in the previous section for computing a workflow. Stakeholders can 

decide if specific scientific assumptions should be ignored when computing the equivalency rules. 

4.2.4 Variable Reconciliation: Results  

The evaluation of our approach includes evaluating the results of the reconciliation process 

of variables given scientific assumptions, an abstract case study and a real-world case study were 

used for this purpose. The abstract case study involves the definition of edge cases, i.e. – validating 

the approach utilizing multiple operating parameters. The design and execution of edge cases 

provide information to evaluate the performance of our variable reconciliation approach under 

different executing scenarios. An evaluation of our approach in a real-world scenario is performed 

following the description of an environmental case study described in (R. Holmes, 2021; 
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Townsend & Gutzler, 2020). Holmes and Townsend describe scientific assumptions that can be 

used for outlining the importance of scientific tool description. 

Given that this is an abstract case study, all the scientific assumptions, variables, and 

components are simulated and are not part of a specific real-world case. The definition of these 

edge cases involves clarifying what is the expected output and what is available data. The module 

is tested using a black-box approach in which the operations performed by the variable 

reconciliation component are unknown (Bunge, 1963). After executing all test cases an average 

running time of 8.121 seconds was obtained. 

The real-world case study analyzed focused on further describing the analysis described in 

our previous work (Vargas-Acosta et al., 2022). Our work describes how the chaining of two 

scientific components is required to produce a hydro-economic analysis in the southwest region of 

the United States, more specifically the region bordering Mexico in El Paso, Texas. That analysis 

does not comprehend the scientific assumptions of how data was generated for the study, therefore, 

to further describe those assumptions we annotated the work reported in (R. Holmes, 2022; 

Townsend & Gutzler, 2020). 

Data generated by the U.S. Bureau of Reclamation do not account for water diversions 

(i.e., human-made alterations). This characteristic needs to be accounted for and preprocessed 

before being used in a scientific component that requires measurements that represent the real flow 

of water, this can be visualized in Figure 10. Townsend & Gutzler (2020) detail the characteristics 

of a normalization process performed on this dataset in their work (Townsend & Gutzler, 2020).  
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Figure 10 Data Flow Visual Representation 

 

The annotation describing the input of the normalization process described in (Townsend 

& Gutzler, 2020) as natural flow is shown in Table 16. The id depicted is a unique identifier for 

that specific input enabling to mark two variables as equivalent. Consideration of artificial 

diversions is located in the attribute as isNaturalFlow. Classification of the variable is described 

in the type attribute. 

Table 16 Annotation Example as JSON. 
{ 

"id": "a9612349a5c66f49ea20b1d33dafd9c1aa7bf32ad75e39aa8115600a720c2762", 

"type": "WaterStreamflow", 

"assumptions": { 

"isNaturalFlow": "true" 

} 

} 

 

A secondary abstract case study involves describing situations for continuous data. This 

ensures that our approach can be used for more complex situations than that of a string comparison 

(e.g., true/false). An example is shown in Table 17. This example shows a numeric value in which 

a superclass will use it as a range.  
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Table 17 Continuous Value Annotation Example as JSON. 
{ 

"id": "97ab7041165def1cb4d8d12f4db6d998852a9daa7e84273818bea178374663e1", 

"type":"abstract", 

"assumptions": { 

"abstractRange": "73.45" 

} 

} 

 

After annotating the components and their assumptions we tested our reconciliation 

approach with input shown in Table 18 and Table 19, the expected output is described in Table 20. 

Table 21 shows the output obtained after running our abstract case study. Our variable 

reconciliation process successfully generated equivalency rules 

Table 18 Available Data for Abstract Case Study in JSON. 
{ 

    "inputs": [ 

        { 

            "id": "data1", 

            "type": "WaterFlow", 

            "assumptions": { 

                "isNaturalFlow": "true" 

            } 

        }, 

        { 

            "id": "data2", 

            "type": "WaterFlow", 

            "assumptions": { 

                "isRealFlow": "false" 

            } 

        }, 

        { 

            "id": "data3", 

            "type": "WaterFlow", 

            "assumptions": { 

                "isRealFlow": "false" 

            } 

        }, 

        { 

            "id": "data4", 

            "type": "WaterFlow", 

            "_comment":"San Marcial", 

            "assumptions": { 

                "isNaturalFlow": "false", 
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                "hasLatitude": "33.68511", 

                "hasLongitude": "-106.98214" 

            } 

        }, 

        { 

            "id": "data5", 

            "type": "WaterFlow", 

            "_comment":"Fort Quitman", 

            "assumptions": { 

                "isNaturalFlow": "false", 

                "hasLatitude": "31.06433", 

                "hasLongitude": "-105.59508" 

            } 

        }, 

        { 

            "id": "data6", 

            "type": "WaterFlow" 

        },{ 

            "id": "data7", 

            "type":"abstract", 

            "_comment":"San Marcial", 

            "assumptions": { 

                "abstractRange": "73.45", 

                "hasLatitude": "33.68521", 

                "hasLongitude": "-106.98314" 

            } 

        } 

    ], 

    "outputs": [ 

        { 

            "id": "e3", 

            "type": "WaterPrice" 

        }, 

        { 

            "id": "e4", 

            "type": "AvocadoPrice" 

        } 

    ] 

} 

 

Table 19 Component Catalog for Abstract Case Study in JSON. 
{ 

    "context": "Context goes here, mainly for using generic vocab as prefix", 

    "transformations": [], 

    "models": [ 

        { 

            "id": "p1", 

            "inputs": [ 

                { 

                    "id": "e1p1", 

                    "type": "WaterFlow", 

                    "_comment":"San Marcial", 

                    "assumptions": { 

                        "isNaturalFlow": "false", 
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                        "hasLatitude": "33.68721", 

                        "hasLongitude": "-106.98254" 

                    } 

                }, 

                { 

                    "id": "e2p1", 

                    "type": "Temperature" 

                }, 

                { 

                    "id": "e3p1", 

                    "type": "AtmosphericPressure" 

                } 

            ], 

            "outputs": [ 

                { 

                    "id": "e6p1", 

                    "type": "WaterPrice" 

                }, 

                { 

                    "id": "e7p1", 

                    "type": "RunOff" 

                } 

            ], 

            "computationInfo": { 

                "method": "POST", 

                "contentType": "Content-Type: application/json", 

                "url": "http://p1-endpoint-url.com" 

            } 

        }, 

        { 

            "id": "p2", 

            "inputs": [ 

                { 

                    "id": "e1p2", 

                    "type": "WaterFlow", 

                    "_comment":"San Marcial", 

                    "assumptions": { 

                        "isRealFlow": "true", 

                        "hasLatitude": "33.68831", 

                        "hasLongitude": "-106.98644" 

                    } 

                }, 

                { 

                    "id": "e2p2", 

                    "type": "RunOff" 

                },{ 

                    "id": "e3p2", 

                    "type":"abstract", 

                    "_comment":"San Marcial", 

                    "assumptions": { 

                        "abstractRange": "124.22", 

                        "hasLatitude": "33.68820", 

                        "hasLongitude": "-106.98013" 

                    } 

                } 

            ], 
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            "outputs": [ 

                { 

                    "id": "e4p2", 

                    "type": "AvocadoPrice" 

                } 

            ], 

            "computationInfo": { 

                "method": "POST", 

                "contentType": "Content-Type: application/json", 

                "url": "http://p2-endpoint-url.com" 

            } 

        } 

    ] 

} 

 

Table 20 Expected Output for our Variable Reconciliation. 
{"rules":[{"equivalence":["data4","e1p1","e1p2"]},{"equivalence":["e2p1"]},{"equivalence":["e3p1"]},{"equivale

nce":["e3","e6p1"]},{"equivalence":["e2p2","e7p1"]},{"equivalence":["data4","e1p1","e1p2"]},{"equivalence":["e

2p2","e7p1"]},{"equivalence":["data7","e3p2"]},{"equivalence":["e4","e4p2"]}],"ignore":[]} 

 

Table 21 Output Obtained for our Variable Reconciliation. 
{"rules":[{"equivalence":["data4","e1p1","e1p2"]},{"equivalence":["e2p1"]},{"equivalence":["e3p1"]},{"equivale

nce":["e3","e6p1"]},{"equivalence":["e2p2","e7p1"]},{"equivalence":["data4","e1p1","e1p2"]},{"equivalence":["e

2p2","e7p1"]},{"equivalence":["data7","e3p2"]},{"equivalence":["e4","e4p2"]}],"ignore":[]} 

 

4.3 TARGET VARIABLES: A TIE-BREAKING STRATEGY 

4.3.1 Tie-Breaking Strategy: Results 

Our implementation of the tie-breaking strategy was integrated into the existing workflow 

composer. This existing microservice was developed using Java and Maven. Detailed inputs, 

obtained output, and expected output are described in Appendix A – Test cases for workflow 

composition using our tie-breaking strategy.  

The tie-breaking strategy implementation as a microservice is available online on GitHub9. 

 

  

 
9 https://github.com/alex-vargas/workflow-composer-heuristic 
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Chapter 5: Evaluation and Discussion 

5.1 AUTOMATIC WORKFLOW COMPOSITION 

This section was originally published in (Vargas-Acosta et al., 2022) © 2022 IEEE. 

This section delineates the interpretation of data obtained by our workflow composition 

approach and lessons learned. Our approach for automated workflow composition was tested with 

the described case study in Figure 5, we successfully obtained a workflow serialized using the 

CWL. By serializing our workflow as CWL, it enables the execution of the workflow by a different 

set of workflow management systems, e.g., Pegasus (Jayawardana et al., 2022), thus fostering 

portability. The execution of our workflow was performed by the automated workflow enactment 

system provided by CWL10 using scientific models and their descriptions (i.e., component catalog) 

available through the SWIM platform.  

 

Results from the obtained workflow are shown in Figure 8 and Figure 9, corresponding to 

inflows to the Elephant Butte Reservoir by the WBM and HEM respectively, show that reservoir 

storage through time was clearly different, with much higher reservoir storage volumes shown in 

the HEM than in the WBM; as identified by M.S. Luis Garnica and later confirmed by Dr. Deana 

Pennington. This result is inconsistent from a scientific perspective. A closer analysis of the results 

indicated differences in the input parameters for starting reservoir storage that highly impacted 

storage through time. Further comparisons were manually made on the initial conditions of the 

models, in this case, the reservoir initial conditions. Additional analysis is required to verify water 

balance compatibility between both models.  

 
10 https://github.com/common-workflow-language/cwltool 
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A lesson learned from the initial evaluation is that the results of integrated models need to 

be validated from the technical and scientific perspectives. In addition, it is important to investigate 

how users understand and use the results of these complex systems.  

 

5.2 VARIABLE RECONCILIATION 

Results show that the algorithm can perform variable reconciliation for the following 

scientific assumptions: assumptions that rely on the fact that the variable’s continuous value is 

within a range, and those assumptions that rely on a specific variable’s value. We hypothesize that 

assumptions composed of variable’s discrete values and time stamp values (i.e., data and time 

values) will be handled successfully by our approach, as shown by our continuous value case study 

shown in Table 21. 

Data obtained from our case study matches the expected data. For example, in section 4.2.4 

Variable Reconciliation: Results we showed that the obtained output from Table 21 matched the 

expected output, referenced in Table 20. Our implemented approach, discussed in 4.2 Variable 

Reconciliation, successfully identified equivalent variables based on scientific assumptions. 

To validate the scientific assumptions needed to use the output of the VIC hydrologic 

routing model (Brekke et al., 2014) in the normalization process conducted by Townsend and 

Gutzler (2020) depicted in Figure 10, we consulted with Dr. Gutzler who is one of the modelers 

for this normalization process. Dr. Gutzler provided additional information about the 

normalization process to account for human diversions, which confirms our understanding that the 

natural flow provided by the VIC hydrologic routing model is not the same as the real flow (D. 

Gutzler, personal communication, March 29, 2024). This inquiry highlights the need for 
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multidisciplinary efforts where domain experts are key in the generation of metadata that can be 

used for automating processes. 

We verified our understanding of the inputs of the Water Balance Model (R. Holmes, 

2022), with another domain expert. Dr. Mayer also confirmed our understanding of the difference 

between natural and real flows used in our variable reconciliation test cases to represent scientific 

assumptions (A. Mayer, personal communication, April 29, 2024). In addition, Dr. Mayer provided 

additional information between inputs and outputs from the temperature-based model generated 

by (R. Holmes, 2022). A graphical description of the models used in the real-world case study in 

this work is presented in Figure 11. This figure provides additional context than Figure 5. Note 

that the last step of the workflow, i.e., the HydroEconomic model is described in (Ward et al., 

2019a). 

 

Figure 11 Graphical Depiction of Models Used as Part of the Case Study.   

 

While scientific component annotation, e.g., Table 4, may be time-consuming, it is 

important to recognize that this effort can have significant implications for the future, particularly 

in terms of variable identification and reconciliation. Component annotation involves describing 

components and more importantly variables used as input and output generated by every 

component. Our validation of the scientific assumptions and workflow composition process used 
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in the real-world case study shows the importance of involving domain experts in this process.  In 

addition, it is of high importance that every variable is identified using a unique identifier in the 

entire component catalog. The process of unique identifiers can be generated automatically using 

a hash function to avoid duplicates. 

While our approach to model scientific assumptions uses the VaR-O, we rely on the 

capabilities of the reasoner to identify equivalent variables. More specifically, we utilize relational 

operators to identify superclasses. As a result of using this feature, an area of opportunity is to 

model assumptions that do not require relational operators. 

5.3 TIE-BREAKING STRATEGY 

In the composition of scientific workflows, particularly those involving the orchestration 

of components handling multiple scientific variables, the approach we adopt plays a crucial role 

in determining both efficiency and effectiveness. Our methodology employs a greedy approach 

for the selection of components, a decision primarily influenced by the inherent uncertainty 

associated with the availability of required data for the execution of a scientific component. This 

uncertainty arises from the dynamic nature of scientific data, where not all variables might be 

readily available for workflow composition. Consequently, the greedy approach that uses the 

number of target variables obtained, serves as a pragmatic strategy to navigate through this 

uncertainty, favoring immediate, locally optimal selections that cumulatively aim to converge on 

a workflow. 

However, it is acknowledged that the reliance on a greedy algorithm is not without its 

potential for refinement. One such avenue for enhancement lies in the incorporation of more 

comprehensive metadata into our heuristic function. By expanding the metadata considered during 

component selection, we can potentially increase the accuracy and relevance of the chosen 
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components in relation to the target variables. This enrichment of metadata could encompass a 

wider range of attributes related to the scientific components, such as their historical performance 

metrics, data processing capabilities, or compatibility with other workflow elements. The 

integration of this additional metadata is visualized to refine our heuristic, allowing for more 

informed and precise component selection, thereby enhancing the overall robustness and 

efficiency of the workflow. 

On the other hand, the introduction of an additional computational layer for component 

selection may appear as an overhead in the workflow composition process. This perception 

originates from the notion that any additional computation, particularly one involving a detailed 

examination of an extensive component catalog, could potentially increase the workflow 

composition process. However, we speculate that this is a necessary investment, especially in 

scenarios characterized by having a large number of components. In such contexts, the time and 

effort spent in the exploration and selection of components are likely to be less by the subsequent 

reduction in time required for component exploration. The rationale is that a thorough initial 

assessment leads to more accurate and relevant component selection, thereby diminishing the need 

for frequent re-evaluations or adjustments later in the workflow composition lifecycle. Essentially, 

the upfront computational investment in component selection is recuperated through enhanced 

workflow efficiency and a reduction in the cumulative time and resources required for workflow 

composition. 

In summary, while our greedy approach to component selection in scientific workflow 

composition is shaped by the need to manage data uncertainty, it opens pathways for further 

refinement through enriched metadata integration. Simultaneously, we anticipate that the 

perceived overhead of this selection process is counterbalanced by the long-term efficiencies 



54 

gained in managing extensive component catalogs, underlining the strategic value of this approach 

in complex scientific workflow environments.  
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Chapter 6: Conclusions and Future Work 

This section contains content originally published in (Vargas-Acosta et al., 2022) © 2022 

IEEE. 

This dissertation has focused on the significant role of computational workflows in modern 

scientific research, highlighting their advantages such as automated execution of computational 

experiments, sharing capabilities, and targeted step execution in scientific workflows. Despite their 

benefits, we identified the challenges in workflow design and reuse, particularly when manual 

composition and extensive domain expertise are required. In this dissertation, we review multiple 

approaches to automatically create workflows. These approaches include sketching out an initial 

workflow with the help of domain experts, our analysis shows that approaches like Wings (Gil et 

al., 2010) and SADI (Wilkinson et al., 2011) are typically used for this approach. Another approach 

delineated in APE (Kasalica & Lamprecht, 2020) considers the automatic creation of workflows 

by the use of selecting operations. While these considerable efforts are great contributions to this 

area, our work is complementary as we take a different point of view. 

In this dissertation, we focus on scientific assumptions that affect the decision to use a 

specific computational component. Our research addresses these challenges through the 

development of an automated workflow planning microservice, the Workflow Composer, 

integrated into the SWIM infrastructure. This innovative approach facilitates the automatic 

composition of multivariable workflows and has been demonstrated through a real-world case 

study within the water sustainability domain. 

The application of a breadth-first, uninformed search algorithm in our approach, is 

employed to explore and prune computational processes not contributing to target variables, thus 

improving the process of workflow composition. This methodology, coupled with a heuristic 
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function for an informed selection of computational components, showcases an integration of AI 

planning in workflow composition. Furthermore, the decoupled design and abstract microservices 

of our infrastructure present a versatile framework that can be extended to various application 

domains beyond the initial implementation in the SWIM infrastructure. 

We also address the challenge of identifying equivalent scientific variables by considering 

scientific assumptions. Any design decision made during the creation of computational 

components might affect the decision to use data generated by them. To delve into this challenge, 

we explore the use of the Var-O ontology to describe scientific variables. Using an automatic 

reasoner, we identify variables that can be reused by other computational components, thus 

enabling the chaining of computational components (i.e., model-to-model integration). 

We reflect on our research questions next, in regard to the first research question, How can 

metadata and provenance be used to describe scientific assumptions of data consumed by scientific 

computations for the improvement of automated scientific workflow composition and repurposing 

of data? In our approach explained in 3.3 Ontology-Driven Scientific Variable Reconciliation we 

leverage the potential hidden in metadata and provenance by documenting scientific components, 

data required to execute them, data generated by them, and scientific assumptions within all 

components. We identified that by using a formal description to document the mentioned 

components and assumptions, we were able to identify equivalent scientific variables with the 

variable reconciliation process. As shown in the results obtained in 4.2 Variable Reconciliation, 

this is a key step in the automatic workflow composition. However, we recognize that a manual 

interaction with domain experts is still necessary in order to describe components and variables. 

We also postulate that this unique interaction will enable the repurposing of components and data 
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by automatically discovering components if they are described using annotations as proposed in 

this work. 

With respect to the second research question, To what extent can current Artificial 

Intelligence (AI) planning techniques with a heuristic function be used to formulate a scientific 

workflow that considers scientific assumptions evaluated in a scientific domain?, addressed in this 

work in section 3.4 Target Variables: A Tie-Breaking Strategy we proposed a strategy for breaking 

a tie when selecting components in the composition of workflows. Our strategy is useful when 

information about a component is unavailable, for example, running time, confidence, and 

resources used, to mention a few. Results obtained from our tests show that using a strategy could 

reduce the components analyzed, therefore improving the process of workflow composition. 

One of the challenges in this work was identifying scientific assumptions in manuscripts 

or repositories without the guidance of domain experts. To address this challenge, we performed 

a deeper analysis of the real-world case study to find scientific assumptions suitable for our 

purpose and consulted domain experts. In Section 4.2 Variable Reconciliation we describe how 

scientific assumptions in water modeling can be represented to identify variables that are 

semantically equivalent given their scientific assumptions and generate equivalency rules. In 

Section 4.1 Automatic Workflow Composition we describe how equivalency rules guide the 

automated workflow composition. While we were unable to find a real-world case study to connect 

all the components proposed in this work, i.e., automate the process of generating equivalency 

rules and use them in the automated workflow composition, each step in the proposed methodology 

was evaluated separately using abstract case studies when needed. 
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Looking forward, we identify several key areas for future development. A notable 

limitation within the current SWIM model-orchestration service pool is the absence of a 

mechanism for automatic verification of technical and semantic data requirements essential for 

model-to-model integration. Addressing this gap, it is recommended to incorporate rich metadata 

annotations and explore the use of semantics and formal requirement descriptions, drawing 

inspiration from existing literature. This approach aims to overcome the case-specific limitations 

observed in current annotation processes. 

Additionally, the importance of tracing data origins  (i.e., provenance) in validating the 

origins of specific data elements generated by computational processes has been recognized. This 

need has been recognized by the W3C Provenance working group on the PROV ontology (PROV-

O) (Lebo et al., 2013) to annotate provenance data. To enhance this aspect, we propose the creation 

of an RDF graph using PROV-O for capturing and enriching provenance information and 

incorporating our efforts into the SWIM workflow composer. 

Collecting previously executed workflows can enhance our approach. We propose that 

having a cache of workflows based on components available, target variables, and available 

variables might help to reduce the overhead if a workflow is already composed. 

An area of opportunity is also identified in the tie-breaking strategy of using the number of 

nodes. In section 3.4 Target Variables: A Tie-Breaking Strategy we described our approach for 

selecting a computational component to analyze, we acknowledge an area of opportunity by 

holding a cache of components already explored. This information can optimize our algorithm and 

make it more efficient with respect to time and resources. 

In addition to cache exploration, we also propose the use of ranking scientific variables to 

improve our heuristic in our tie-breaking strategy. Ranking of variables can be performed based 
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on one or multiple attributes, for example, precision or resources used to execute the component 

that generates data. We anticipate that this approach will require the interaction of domain experts 

to collect their input in the area of precision and to analyze the running time of multiple 

computational components for identifying resources or time of execution. 

Our efforts toward automating model-to-model integration hold the potential to improve 

scientific research and decision-making processes. By simplifying the usage of scientific 

components and reducing the reliance on manual curation of data and tool usage, we aim to enable 

a broader range of stakeholders to engage more effectively with scientific components.  However, 

we recognize that a misuse or misinterpretation of data by stakeholders might be a dangerous 

scenario. Constraints can be implemented to minimize the misuse of data by stakeholders. 

Computational components descriptions are an important element for automated workflow 

composition. The Open Modeling Interface (OpenMI) is an effort developed for this purpose. 

Created as a standard, it creates a wrapper among components (e.g., scientific models) by the use 

of its Software Development Kit. We propose the further analysis of OpenMI descriptions to be 

leveraged by our approach. 

In conclusion, our work relies on the importance of using knowledge representation 

languages for modeling scientific assumptions in the composition of scientific workflows. When 

combined with sophisticated Artificial Intelligence techniques, this approach not only streamlines 

the workflow composition process but also empowers stakeholders including scientists; this 

process can assist them in defining and executing complex scientific experiments that require 

computational models. Policymakers can be assisted in the discovery of scientific information, and 

moreover in the understanding of scientific information with the use of scientific narratives 

(Vargas-Acosta et al., 2018). In addition to empowering stakeholders, scientific components and 
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data become findable, accessible, interoperable, and reusable (FAIR principles) (Wilkinson et al., 

2016). 

As technology becomes more interconnected, we recognize the value of making data and 

computational components available to everyone. Parashar recollects in his work the recognition 

of democratizing science, that is enabling fair access to data and software (Parashar, 2022), with 

this goal in mind, we aim to contribute to this goal by enabling non-experts with the discovery and 

generation of scientific information. 

While we state that our work can improve the reuse of components by the automatic 

composition of workflows, we also recognize the need for further investigation in this area with a 

special interest in tie-breaking strategies, model-to-model verification, and the automatic 

generation of formal descriptions of computational components.  
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Appendix 

APPENDIX A – TEST CASES FOR WORKFLOW COMPOSITION USING OUR TIE-BREAKING 

STRATEGY 

Description: 

The component catalog is empty. Therefore, there are no components to generate the desired 

output. 

Component catalog: 

Empty 

Request: 

Input = e1, e2, e3, e4, e5 

Target variables = e11, e12 

Expected output: 

There are not enough scientific models to generate the desired output 

Obtained output: 

There are not enough scientific models to generate the desired output 

Description: 

The target variable set is empty. Therefore, there is no workflow to generate. 

Component catalog: 

p1 = Inputs{e1, e2, e3}, Outputs{e6, e7} 

p2 = Inputs{e1, e6}, Outputs{e8} 

p3 = Inputs{e4, e6}, Outputs{e9, e10} 

p4 = Inputs{e5, e6}, Outputs{e9, e10} 

p5 = Inputs{e6}, Outputs{e11} 

p6 = Inputs{e7, e8, e9}, Outputs{e12} 

p7 = Inputs{e9, e10}, Outputs{e12} 

p8 = Inputs{e9, e10}, Outputs{e13} 

p9 = Inputs{e14}, Outputs{e15} 

Request: 

Input = e1, e2, e3, e4, e5 

Target variables = Empty 

Expected output: 

Error 

Obtained output: 

Error 

Description: 

The available variable set is empty. Therefore, as there is no available variable(s) to kick-start 

a component, the workflow can’t be generated. 

Component catalog: 

p1 = Inputs{e1, e2, e3}, Outputs{e6, e7} 

p2 = Inputs{e1, e6}, Outputs{e8} 

p3 = Inputs{e4, e6}, Outputs{e9, e10} 

p4 = Inputs{e5, e6}, Outputs{e9, e10} 

p5 = Inputs{e6}, Outputs{e11} 
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p6 = Inputs{e7, e8, e9}, Outputs{e12} 

p7 = Inputs{e9, e10}, Outputs{e12} 

p8 = Inputs{e9, e10}, Outputs{e13} 

p9 = Inputs{e14}, Outputs{e15} 

Request: 

Input = Empty 

Target variables = e11, e12 

Expected output: 

Error 

Obtained output: 

Error 

Description: 

There are components to generate the target variables, however, input to those components is 

not provided and can’t be generated. Therefore, a workflow can’t be composed. 

Component catalog: 

p1 = Inputs{e1, e2, e3}, Outputs{e6, e7} 

p2 = Inputs{e1, e6}, Outputs{e8} 

p3 = Inputs{e4, e6}, Outputs{e9, e10} 

p4 = Inputs{e5, e6}, Outputs{e9, e10} 

p5 = Inputs{e6, e66}, Outputs{e11} 

p6 = Inputs{e7, e8, e9, e99}, Outputs{e12} 

p7 = Inputs{e9, e10}, Outputs{e12} 

p8 = Inputs{e9, e10}, Outputs{e13} 

p9 = Inputs{e14}, Outputs{e15} 

Request: 

Input = e1, e2, e3, e4, e5 

Target variables = e11, e12 

Expected output: 

There are not enough scientific models to generate the desired output 

Obtained output: 

There are not enough scientific models to generate the desired output 

Description: 

There are no components to generate all target variables. Therefore, a workflow can’t be 

generated. 

Component catalog: 

p1 = Inputs{e1, e2, e3}, Outputs{e6, e7} 

p2 = Inputs{e1, e6}, Outputs{e8} 

p3 = Inputs{e4, e6}, Outputs{e9, e10} 

p4 = Inputs{e5, e6}, Outputs{e9, e10} 

p5 = Inputs{e6}, Outputs{e11111} 

p6 = Inputs{e7, e8, e9}, Outputs{e1222} 

p7 = Inputs{e9, e10}, Outputs{e12} 

p8 = Inputs{e9, e10}, Outputs{e13} 

p9 = Inputs{e14}, Outputs{e15} 

Request: 

Input = e1, e2, e3, e4, e5 
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Target variables = e11, e12 

Expected output: 

There are not enough scientific models to generate the desired output 

Obtained output: 

There are not enough scientific models to generate the desired output 

Description: 

A workflow is generated. However, the chosen workflow is not guaranteed to be an optimal 

one. 

Component catalog: 

p1 = Inputs{f}, Outputs{a, c} 

p2 = Inputs{f}, Outputs{e} 

p3 = Inputs{c}, Outputs{d} 

p4 = Inputs{e}, Outputs{a, b} 

p5 = Inputs{d}, Outputs{b} 

p6 = Inputs{e7, e8, e9}, Outputs{e12} 

p7 = Inputs{e9, e10}, Outputs{e12} 

p8 = Inputs{e9, e10}, Outputs{e13} 

p9 = Inputs{e14}, Outputs{e15} 

Request: 

Input = f 

Target variables = a, b 

Expected output: 

A workflow composed of components that generate the target variables. However, the 

workflow does not contain the shortest possible path. 

Obtained output: 

{"2":[{"inputs":["f"],"outputs":["a","c"],"id":"p1","computationInfo":{"method":"POST","con

tentType":"Content-Type: application/json","url":"http://p1-endpoint-

url.com"},"prerequisites":[]},{"inputs":["f"],"outputs":["e"],"id":"p2","computationInfo":{"me

thod":"POST","contentType":"Content-Type: application/json","url":"http://p2-endpoint-

url.com"},"prerequisites":[]}],"4":[{"inputs":["e"],"outputs":["a","b"],"id":"p4","computationI

nfo":{"method":"POST","contentType":"Content-Type: application/json","url":"http://p4-

endpoint-url.com"},"prerequisites":["p2"]}]} 

Explanation: 

The proposed implementation uses a heuristic function to select “p1” as the most promising 

component to explore first as it produces a target variable “a”. However, that path is a dead 

end as the other variable “b” is generated two components after it. 
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