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Abstract

Storytelling is a set of algorithms used to create narratives by connecting documents in a sequence

that accurately reflects the evolution of events and entities within a particular topic or theme.

Early storytelling algorithms face challenges in encoding the progression and interconnections

of information between consecutive texts, given that the conventional approaches rely primarily

on connecting document pairs based on content overlap. They often neglect critical linguistic

features, such as word contexts, semantics, the roles words play across different documents, and

attention to the historical contexts of the underlying documents. Many existing storytelling models

frequently produce story chains that, while connected by keywords, lack meaningful coherence in

the chains. My dissertation introduces innovative LLM-driven storytelling algorithms to overcome

the challenges traditional storytelling algorithms face and significantly enhance downstream tasks.

In my research, I propose a role-based contextual embedding algorithm using a large language

model that provides a rich understanding of text in a document by considering the different roles

of the same word in other documents. I also employ a generative diffusion model to seamlessly

link documents within a narrative, even with gaps in the data, to ensure a smoother and more

logical story progression. In my dissertation, I introduce a novel distributed attention similarity

mechanism designed to control the narrative output of storytelling algorithms locally and globally.

The techniques I have designed ensure that the generated stories are not merely connected by

keywords but are also coherent and meaningfully sequenced. The experiments in my dissertation

indicate that the proposed storytelling models generate more coherent, cohesive, and contextually

rich narratives than existing approaches. In addition, I demonstrate that my proposed storytelling

model has immense potential in vector data preparation for conventional machine-learning tasks.
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Chapter 1

Introduction

Nowadays, with the exponential growth of data, the analyses of subjects and the evolution of topics

have a significant place in helping us understand events from the past, present, and potentially

the future [57]. Analyzing the development of an entity within a few documents is feasible;

however, the task becomes considerably more complex as the number of documents increases.

The challenge lies in the evolving nature of events that is more complex to capture across large

datasets.

To analyze a subject or topic effectively, selecting the most relevant documents is crucial.

Any irrelevant documents (noise) or missing key documents (gaps) can impact the performance

of analytical models. This process for document selection ensures that the data provided in the

model accurately reflect the evolution of a subject or topic over time. This process is crucial for

allowing precise and comprehensive analysis of subject evolution or topic trends within large

collections of documents. The process also provides a more accurate understanding of historical

and contemporary events in a large data collection.

1.1 Storytelling Algorithm

A storytelling algorithm is a data mining task designed to construct a sequence of documents

related to a topic, entity, or incident [34]. The storytelling algorithms use the temporal dimensions

of a corpus to trace the evolution of entities and reveal obvious connections and highlight the

relationships between entities that may not be immediately apparent [38]. Despite the essential

role of storytelling in the NLP domain, there was not much research and study done in the past

[92].
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Selecting a chain of documents from data collection is one of the most challenging parts of

analyzing the evolution of entities and subjects. When a narrative is constructed correctly, it

enhances the performance of any downstream NLP models by offering a better understanding of

the data [92, 4].

Fundamentally, a storytelling algorithm functions by taking a starting document and an ending

document and then searching through a corpus to locate the documents that lie in between them to

form a coherent narrative chain [77]. Some techniques initiate from a given document and collect

other parts of the story while the end of the story is open. This process allows for the construction

of narratives that maintain coherence and reflect the chronological or thematic evolution of events,

making it possible to trace the development or evolution of specific subjects, entities, or events

within a larger corpus.

This narrative may be segmented into chapters, each focusing on specific events, characters,

locations, or time periods. Its length can vary depending on the narrative topic and the story’s

coverage.

The evolution of a story from its beginning, featuring particular entities and events, then

follows the story’s narrative to evolve to another point. These evolution, which occur smoothly

and logically, form the backbone of different chapters within the story. A compelling story is

characterized by these seamless transitions, allowing for a detailed analysis of how entities and

themes evolve over time. This outcome provides analysts with a valuable understanding of the

dynamics of a given subject.

1.1.1 Challenges and Gaps in Storytelling algorithms:

Despite recent studies on storytelling algorithms, these algorithms still face several challenges.

We must address these challenges to construct coherent and focused narratives.

Topic Drifts: Despite recent advancements in storytelling algorithms, they are not entirely

resistant to topic changes in a story. Some algorithms may lose the narrative line or focus while

collecting documents to construct the narrative, leading to stories that include irrelevant or ”noisy”
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documents.

User-Defined Parameter Tuning: The quality of the stories generated relies heavily on

user-defined parameters. Fine-tuning these settings is essential, yet it puts the burden on users to

adjust them correctly based on their understanding of the textual data and the desired outcome,

which makes the story’s quality highly subjective.

Handling Missing Data: In large data collections, finding the missing documents that serve

as supporting documents between two distanced documents in the timestamps is a significant

challenge. The absence of these supporting documents can interrupt the flow of the story chain or

lead to a deviation coming from unrelated topics.

Feature Enrichment: Extracting and enriching features from textual data is crucial for

understanding the relationships and patterns between entities in a dataset. Improving feature

extraction methods is important for enhancing the performance of story chains, as it provides a

deeper understanding of the data and contributes to more coherent and engaging narratives.

Addressing these challenges is essential for developing and improving storytelling algorithms

and their reliability, adaptability, and effectiveness in generating meaningful narratives.

1.1.2 Main Contributions of This Study

This dissertation introduces novel models designed to overcome the challenges of storytelling

algorithms by enhancing their performance and utility.

Contextual Role-Based Storytelling (CoRBS) offers a new perspective on words’ roles in

texts. By recognizing and using these roles, CoRBS can extract more valuable features from the

textual data. In addition to this contribution, CoRBS employs contextual documents and word

embeddings alongside a contemporary-based search process to efficiently generate narratives from

temporal corpora.

Diffusion-Based Storytelling (DifStoryGen), another novel model presented in this disserta-

tion, uses a conditional diffusion model and a distributed attention mechanism. This approach

effectively addresses the issues of missing content and topic drift, making the story chains more
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applicable and valuable for various downstream NLP tasks.

1.2 Research Questions

I have formulated four research questions to address the challenges associated with storytelling

algorithms. These questions are described in the following sections.

Research question 1: Besides the context and semantics of a text, what other aspects of natural

language can be used to generate a better representation of a word, a paragraph, or a document?

Research question 2: What other possibilities of the contemporary aspect of natural language

can be employed to help construct a story’s evolution sufficiently?

Research question 3: How can a storytelling model handle the gaps between temporally distant

articles and trace themes within stories in the absence of supporting documents in the corpus?

Research question 4: How does incorporating past documents in a storytelling algorithm during

temporal progression impact the stories’ coherence and thematic consistency?
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1.2.1 Research Question 1

Besides the context and semantics of a text, what other aspects of natural language can be

used to generate a better representation of a word, a paragraph, or a document?

Text is a valuable resource for extracting information and analyzing the evolution of real-world

entities and events. While textual data are naturally easy for humans to understand, machines

face challenges in understanding this data. To address this issue, we must develop methods to

transform words and sentences into representations that are easy for machines to understand.

In NLP, different techniques are used to transform words into numerical formats that machines

can understand. One basic technique is Hot Encoding, which gives every word a unique binary

vector. The length of this vector matches the total number of unique words in the text. In this

vector, all parts are set to 0, except for one that corresponds to a specific word and is set to 1. This

approach, while simple, provides a foundational step toward bridging the gap between human

language and machine processing capabilities.

Term Frequency (TF) and Term Frequency-Inverse Document Frequency (TF-IDF) are two

techniques that better represent words in a document collection by assigning a weighting to each

word. TF measures how frequently a word appears in a document because the words appearing

more frequently in a document are more important for understanding the document’s contents.

On the other hand, TF-IDF enhances this by reducing the weight of words that appear frequently

across many documents in the corpus, effectively reducing the impact of common stopwords [43].

This method emphasizes the words that are crucial for differentiating the documents in a corpus.

Neural Networks introduce new approaches to word representation, allowing the encoding

of words into lower-dimensional vectors that encapsulate much richer semantic information.

Word2vec [53] and Global Vectors for Word Representation (GloVe) [49] are two of the main

models in static word embedding algorithms. These techniques rely on the context in which words

appear to generate embeddings reflecting semantic similarities and differences between words.

These techniques offer a deeper semantic understanding of the text that is more aligned with how

humans interpret language.
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Contextual word representation techniques significantly advance the field of word embeddings

by leveraging large language models that have been pre-trained on extensive collections of

documents. These models capture the words’ complex relationships and semantics in a language,

offering a deeper understanding of word usage in different contexts. Embeddings from Language

Models (ELMo) [63] and Bidirectional Encoder Representations from Transformers (BERT) [17]

are two models for generating deep contextualized word representations used by different tasks

and applications.

These approaches try to capture a word’s semantics and contextual meaning in a text. Incorpo-

rating words’ contexts and semantics will help us to obtain a richer representation of words and

documents in a corpus. This contextual information generates a more suitable representation for

different models to use. These embedding vectors help a machine better understand a text in a

corpus [58]. I have provided a more detailed overview of different word embedding techniques in

Chapter2.

Herein, I propose a novel approach, the Contextual Role-Based Storytelling algorithm (CoRBS),

to create an embedding space that captures the role of each word within its context. This role-

based embedding technique captures a deeper understanding from textual data by uncovering

aspects of language that previous methods may have missed. The effectiveness of this approach

is analyzed by the empirical experiments presented in this dissertation. These experiments show

how combining role-based vectors with contextual embedding vectors can significantly enhance

the performance of storytelling models. As detailed in Section 3 of this dissertation, such models

produce narratives with a stronger focus on the subjects and entities thus contributing to more

coherent and topic-centered storytelling.

CoRBS aims to incorporate additional linguistic properties and enrich the word embedding

vectors with a broader spectrum of language attributes. Such advancements promise to improve

the capabilities of storytelling algorithms and provide new insights into the complex patterns of

language that offer valuable contributions to NLP.

The main contributions of the CoRBS algorithm are as follows:

• Inclusion of the roles of words: CoRBS extracts the localized distribution of each word for
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all its appearances in the same document. Based on the distribution of the vector similarities

of the surroundings, CoRBS creates a localized cluster-based context that serves as a set for

the roles of words in a text.

• Lesser number of user-settable parameters: Unlike previous storytelling models, our

proposed algorithm has only one user-settable parameter. The parameter is easy to tweak,

given that it is the Jaccard similarity threshold, varying between 0 and 1.
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1.2.2 Research Question 2

What other possibilities of the contemporary aspect of natural language can be employed to

help construct a story’s evolution sufficiently?

Dynamic word embedding refers to an embedding space where each vector has a time label.

These labels indicate in which timestamp that word appeared. This new space allows us to track

the changes in a word over different times. In Figure 1.1, Hamilton et al. [31] presented a visual

example of a word embedding space and how the semantics of terms evolve over time. These are

some words whose meanings have changed over the last decades. Semantic changes enable the

study of how language evolves over time. It also helps analyze the evolution of specific words,

entities, or events through time. Predicting an event or analyzing entities are some applications of

this evolution. There are multiple studies on developing this temporal aspect of a text collection

[36, 35, 31, 39].

A more detailed exploration of different methods in Temporal Word Embedding is presented

in Chapter 2.

Traditional NLP techniques generally use the exact representation of the same word’s multiple

appearances. For example, Word2vec [53] and GloVe [49] consider global embeddings, even

though the context of the word varies between different documents or even within different

paragraphs of the same document. A word’s context is localized by its surroundings, and each

appearance of the same word may have a different context.

In addition, we cannot directly compare the embedding spaces formed on different temporal

corpora. An embedding vector for a word in a specific timestamp is not comparable with an

embedding vector of the same word from a different timestamp. There are research studies

[91, 6, 11, 56, 26] that address this issue in temporal embeddings.

In CoRBS, two techniques are proposed to leverage the contemporary aspect of language and

enable the model to trace the evolution of a story effectively. The first approach uses BERT to

create distinct embedding vectors for each word’s appearance within a corpus. This technique

allows us to analyze all word appearances across different timestamps in one embedding space.
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Figure 1.1: Form Hamilton et al. (2016) paper. “Diachronic Word Embeddings Reveal Statistical

Laws of Semantic Change.”

This approach helps the model differentiate between word representations at different appearances.

Hence, it facilitates a more efficient analysis of how entities evolve over time.

Previous storytelling algorithms employed various techniques to narrow the search field during

the storytelling process. Hossain et al. [38] introduced a clique-based method to limit the search

scope by focusing primarily on the connections between documents rather than considering the

temporal dimension of the corpus.

CoRBS introduces a novel dynamic search process to enhance the storytelling algorithms’

efficacy. This method uses a threshold parameter to determine whether to proceed with or halt the

search effectively. The domain of this search process over a timestamped corpus is illustrated in

Figure 1.2.

The main contributions to developing the contemporary aspect of a storytelling algorithm are

as follows:

• Contemporary context to capture evolution: CoRBS uses BERT to capture the contem-

porary context of every word’s appearance. Using this approach enables CoRBS to capture

the evolution of a story better than other models.

• Dynamic storytelling: CoRBS introduces a new search process designed to create more

coherent and cohesive story chains, including all relevant documents from a corpus in

different timestamps. This approach significantly enhances the search mechanism and
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Figure 1.2: A series of documents belong to a story which is clustered by their timestamps used to

dynamically search for a chain of documents

reduces the need for post-processing steps. Also, it makes the model more dynamic and less

dependent on user-defined parameters.
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1.2.3 Research Question 3

How can a storytelling model handle the gaps between temporally distant articles and trace

themes within stories in the absence of supporting documents in the corpus?

Many storytelling algorithms lack an effective mechanism to bridge the gaps in the text of

document collections. This challenge often leads to the search process being prematurely halted

or shifted into unrelated narratives, particularly in cases where documents that could logically

connect parts of the story are missing.

Many algorithms employ a user-defined threshold to decide whether the search process should

proceed or if there are no documents relevant to the narrative within the dataset. This parameter

requires individual calibration for different tasks and datasets, making it necessary to define it

specifically for each unique application.

If the threshold parameter is not defined correctly, this can significantly decrease the perfor-

mance of a storytelling algorithm. Consequently, the model may generate shorter stories due to

the absence of adequate supporting documents in the dataset or construct a document chain that

shifts from the original topic midway through the narrative.

Storytelling algorithms require a mechanism capable of predicting missing documents during

the search process and incorporating these hypothesized documents into the search process. This

approach bridges the gap between two distanced documents, ensuring a continuous and coherent

narrative flow, even in the absence of supporting documents within the corpus.

The Diffusion-Based Storytelling Algorithm (DifStoryGen) is a solution we developed to

overcome the limitations faced by traditional storytelling models. This neural network incorporates

a conditional diffusion-based module designed to generate new document embedding vectors that

link two sequential timestamps. If a gap is caused by a missing supporting document between these

timestamps, then the conditional network fills this gap with a hypothesis document embedding.

Such a capability ensures that the model continues the search process smoothly without shifting

the topic due to the absence of essential documents to maintain the narrative’s coherence and

continuity.
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The main contributions of integrating a conditional diffusion model into a storytelling algorithm

are as follows:

• Bridging Narrative Gaps: By employing a conditional diffusion-based document gen-

eration model, our algorithm effectively connects two articles in the absence of relevant

supporting documents within the corpus. This capability is crucial for uncovering recurring

themes and enriching the story’s depth and continuity.

• Less User-Defined Parameters: The algorithm’s capacity to use generated documents to

determine the next document in the narrative allows it to navigate temporal shifts dynamically

or define the story’s evolution. This reduces the dependency on critical parameters that

previously needed to be manually set by analysts, significantly simplifying the model’s

operation and making it more user-friendly.
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1.2.4 Research Question 4

How does incorporating past documents in a storytelling algorithm during temporal pro-

gression impact the stories’ coherence and thematic consistency?

We have two types of storytelling algorithms. The first type is an open-ended algorithm in

which the model receives a seed document and tries to build the story by looking at the rest of

the chain from a given corpus. The second type is when the model receives two documents as

start and end points and tries to find the documents between them from a corpus. The first task

is an extrapolation, where a model tries to find the next possible document to form a chain, and

the second task is an interpolation where a model looks for missed documents between those two

given points.

Traditional storytelling algorithms focus on the last document in a story, one-way or two-way.

Attention to the last element of a story chain forces the algorithm to find the next document by

considering the last document it found in the previous iteration. In other words, the algorithm only

depends on the last document when looking for the next one.

Challenges for Traditional Storytelling Algorithms

• Noise Sensitivity and Robustness: One notable problem in traditional algorithms is their

vulnerability to noise – a common issue when a storytelling algorithm depends on a last

document in the story chain to identify the next document among all potential candidates.

If a document in the sequence weakly aligns with the theme of the narrative, it can easily

change the story’s direction.

• Comprehensive Topic Coverage: Another challenge derives from using just one document

in the search process to advance the story’s narrative and represent the story’s multifaceted

topics and aspects. A narrative often transits several sub-topics, not all of which may be

presented in a single document. These sub-topics are distributed across different documents

within the story chain, making it difficult to follow all story facets within the corpus when

the algorithm only considers the last document in the story chain.
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Implementing distributed attention across the last documents can maintain the narrative’s

integrity by ensuring continuity with the preceding entities and topics of the story. However, this

approach may reduce the ability of a storytelling algorithm to evolve by distributing the focus

on the documents collected from previous timestamps. Finding an optimal balance is crucial to

avoid compromising either aspect of storytelling in order to maintain narrative consistency without

losing the story’s evolution over time.

Therefore, any solution to this challenge must maintain a consistent thematic focus and allow

for the natural evolution of entities and themes within the story.

Moreover, for a distributed attention component in a storytelling algorithm, it is crucial to

consider the unique contribution of each document in the story chain to the main narrative. Stories

contain different documents and each influences the narrative to a varying degree. Some documents

are pivotal in shaping the storyline, while others might have a lesser impact. Consequently,

assigning different weights to each document, reflecting their individual contributions to the

narrative, becomes essential. This differentiated weighting ensures that more influential documents

impact the direction and development of the story more, while weak documents have a lesser

impact. This approach guarantees the reflection of the significance of each narrative component.

The Distributed Attention component within a storytelling algorithm, such as DifStoryGen,

is crucial in maintaining narrative’s coherence and thematic consistency. This component is

explained more in detail in Chapter 5. The main contributions of this component are as follows:

• Thematic Consistency: By applying distributed attention as the story progresses over time,

DifStoryGen ensures the story remains faithful to the narrative’s main theme. This aspect of

distributed attention helps to construct a coherent narrative by considering the collective

influence of previous documents rather than relying on a single document at a time.

• Narrative Stability: The Distributed Attention mechanism is key to keeping the story

glued to its main narrative by preventing sudden shifts in the storyline caused by a singular

document. This stability is key to maintaining the integrity and continuity of the narrative,

ensuring that each document contributes meaningfully to the story’s progression.
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• Flexible Adaptation: This component offers adaptability through a user-defined parameter

that controls the range of the last documents when selecting the following document for the

story. This flexibility allows for modifying the storytelling process to fit specific applications

and tasks, enabling stories to be customized according to the expected level of narrative

evolution or consistency.

Together, these contributions of the Distributed Attention component highlight its importance

in enhancing storytelling algorithms. This component ensures narrative coherence while also

providing the flexibility to adapt the storytelling process to generate stories that are both engaging

and faithful to their intended narrative
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Chapter 2

Related Work

A storytelling model can be used to analyze events or entities for different applications, such

as event forecasting [29, 41], intelligence analysis [38, 79], and knowledge extraction[8]. A

storytelling algorithm can also discover relationships between entities, actors, or events [96,

65].These relationships can form a graph in many applications to discover deeper connections

between entities. In addition, storytelling can be used as a pre-processing stage to select relevant

documents for other downstream tasks.

This chapter reviews state-of-the-art research on storytelling algorithms and different aspects of

this dissertation to put its contributions into perspective. The following sections review storytelling

algorithms in different domains, including approaches and applications2.1, different approaches to

generating embedding space representing words and documents 2.2, and the state-of-the-art text

generative models 2.3.

2.1 Storytelling Algorithms

Storytelling forms a coherent chain of documents that belong to a story. These algorithms have

been used to enhance news recommendations [30] and search engine outcomes [21, 98] by

automatically excluding redundant articles from a story chain to create robust recommendation

systems. In addition, storytelling algorithms aid in discovering relationships between entities,

information flow among articles, and interactions in social media and news articles [20, 84, 59, 11].

D. Shahaf et al. [77] analyzed methods for automatically connecting documents by providing

a structure based on the coherency of a story. The model integrated user feedback, refining

and personalizing the generated stories. Hossain et al.[39] designed a storytelling algorithm by
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adding a clique constraint into connecting chains to generate more meaningful stories. Some

efforts leverage visualization systems to connect the dots to study stories formed from a corpus

[40, 23, 41, 76].

Storytelling algorithms have also been applied in the domain of vulnerability analysis, par-

ticularly in assessing network risks [91]. For instance, Pascal et al. [61] aimed to automate the

evaluation of the Internet of Things (IoT) networks by analyzing the security risks posed by IoT

devices and tracking the progression of incidents to understand vulnerabilities better

2.1.1 Probabilistic Approaches

Different studies exist to discover valuable information from large textual data collections. Proba-

bilistic techniques are a common approach to follow a narrative’s flow, aiming to connect the dots

in a story seamlessly. Most studies suggest algorithms designed to bridge two documents as two

fixed points or to begin with a seed document and construct a narrative by gathering other related

documents to the story from a corpus.

Several approaches are employed to determine the most efficient path between the start and end

of a narrative. Random walks have been widely applied in multiple studies [77, 98, 30, 78, 93] for

their effectiveness in navigating through complex narrative structures. Monte Carlo simulations [2]

present another probabilistic technique known for its capacity to handle uncertainty and variability

in predicting outcomes. The Structured Determinantal Point Processes (SDPPs) [25] technique is

used for its ability to model diversity and repulsion, making it suitable for selecting a set of diverse

and representative points (or documents) along the narrative path. These methods have collectively

contributed to developing storytelling algorithms to construct a narrative by connecting relevant

documents within a large corpus.

2.1.2 Optimization-Based Approaches

Identifying a relevant document sequence that tells a coherent story within a large corpus presents

a classic search challenge. A common challenge in such search algorithms is the local optimum

17



problem, where the algorithm picks a local solution that is different from the global solution to

that search problem.

D. Shahaf et al. [77] introduced a novel approach using a joint optimization over words and

chains instead of assessing many chains along the local search path. This technique aims to

mitigate the issue of local optima by considering a broader view of textual content and narrative

structure.

Similarly, Camacho et al. [11] explored diffusion to trace entity evolution within seed docu-

ments. Their algorithm, focused on historical news articles, aims to pinpoint the origin of an event

and highlight key documents that mark its progression over time.

2.1.3 Entity Extraction in Social Media datasets

Keyword extraction is crucial in discovering entity relationships within texts, especially in social

media. Studies [96, 16, 45] have demonstrated its utility in revealing complex social dynamics

and structuring narrative maps. Toraman et al. [88] introduced a dynamic approach to finding

connections in social media news by using a zigzag search that revisits documents to refine the

story as new information emerges. Additionally, Zhang’s model [97] combines entity features

with social network characteristics to automate storytelling in extensive datasets. These studies

emphasize the effectiveness of integrating keyword extraction with advanced analytical techniques

for narrative construction.

2.1.4 Entity Mining in Big Data

Exploring large information networks is challenging due to processing demands and noises. Si

[80] proposed a method to engage audiences with narrative generation, while Chen [16] used

keyword evolution in sentences for storytelling in NLP. Rigsby et al. [71] showed that signal

injection does not harm model performance and instead helps analysts to concentrate on a story

with personal knowledge. Shukla et al. [79] introduced the DISCRN, or distributed spatiotemporal

concept search-based model that facilitates spatiotemporal storytelling by linking entities from
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microblogs for structured narrative exploration. Koutrika et al. [47] proposed organizing entities

on a tree for user-selected document sequences to allow users to select a reading sequence over

documents.

2.2 Text Representation

Text representation in NLP involves transforming words and tokens from documents into numerical

forms and vectors. This approach lets models capture the context and meaning behind these words

and tokens. Different techniques have been developed for this purpose, each targeting different

aspects of the linguistic properties embedded in textual data. This section reviews some of these

methods and their applications.

2.2.1 Numerical Statistic Representation

Each token in a document contributes to its semantic and contextual meaning. NLP often considers

this feature set, a collection of keywords for effectively summarizing the document in a more

manageable form.

Term Frequency-Inverse Document Frequency (TF-IDF) is a method that evaluates the im-

portance of a word or token of a document and its frequency across the entire corpus. The idea

behind TF-IDF is that words identified by this method are more relevant to the document’s content

than words in the same document. These selected words offer a concise document representation

that provides valuable features for classification and various NLP tasks.

TF-IDF operates by combining the term frequency (the count of a word’s occurrence in a

document) with the inverse document frequency (a measure of how unique a word is across

all documents in the corpus) [42]. A higher inverse document frequency indicates a word’s

significance within a particular document [33]. This technique is widely applied in document

classification to weigh terms effectively and highlight the relevance of specific words or tokens in

capturing the essence of a document’s content [69].

19



2.2.2 Word Embedding

Word embedding techniques use vector space models to represent words in a corpus based on their

distributional properties, providing fixed-length vectors for each word. Key methods include:

Word2vec, introduced by Mikolov et al. [52, 53], offers static embeddings through two

approaches: CBOW, predicting words based on context, and Skip-gram, predicting context from

words. These models were enhanced with negative sampling for better performance [54].

GloVe, introduced by Pennington et al. [62], generates embedding vectors by analyzing global

word co-occurrence matrices, capturing the semantic relationships between words.

However, these models need more temporal information, which is crucial for studying how

the relevance of entities changes over time. Further discussions will explore how to address this

limitation in word embedding models.

2.2.3 Dynamic Word Embedding

Over time, the meanings and uses of terms in a language evolve in different periods. Understanding

this evolution helps us learn the historical context of terms and predict future shifts [3, 95].

Different studies [7, 7, 70, 73, 85, 94] proposed techniques to extract temporal changes in word

meaning and semantic evolution by converting a text corpus into a latent time sequence model.

Mihalcea et al. [51] have utilized parts of speech and contextual information from a text to

predict the publication era of words. Other methods [46, 55] represent a corpus as a graph, with

words as nodes connected by edges representing their contextual relationships, to analyze how

word meanings shift over time. Camacho et al. [22] proposed a diffusion model and tackled

the challenge of sparsity in dynamic word embeddings, showing how incorporating temporal

dynamics can enrich our understanding of semantic shifts. Moreover, the static representation for

words at each timestamp in a corpus can be used to track the semantic evolution of terms in a

corpus by employing regression or similar techniques [32, 72, 18]. Tikhomirov and Dobrov [87]

used the temporal aspect of a corpus to build a query-oriented timeline summary. Camacho et

al. [6] proposed a new time-reflective vector space model that used the concept of diffusion to
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compensate for the possible sparsity of a dataset.

Recent approaches, including transformer-based models like BERT [17], have introduced

novel word and document embedding representations that provide a unique vector representation

for each word’s appearance. This transformer-based approach allows us to embed each word in a

document contextually.

2.3 Generative Models

In the field of generative artificial intelligence (AI), diffusion models are a class of generative

models that use a diffusion process to create new samples resembling existing ones in many

aspects. Denoising Diffusion Probabilistic Models (DDPMs) introduced by Sohl-Dickstein et al.

[81] and extended by Ho et al. [37] are notable for generating realistic samples through forward

and reverse processes. Innovations include Bit Diffusion by Chen et al. [15] for generating discrete

data, Text2Tex by Zhenyu Chen et al. [13] for high-quality textures in 3D meshes from text

prompts, and DiffUTE by Haoxing Chen et al. [14] for self-supervised text editing in images.

Conditional diffusion models, which use encoded input to control the output, have emerged

as a significant research area. Diffusion-LM by Xiang Lisa Li et al. [48] exemplifies this with

its ability to control complex NLP tasks. Applications extend to text-to-image synthesis, as

demonstrated by the Imagen algorithm for photorealistic image generation from text [74], and to

sequence-to-sequence text generation tasks, as seen in DiffuSeq [27].

Other noteworthy contributions include Austin et al.’s [5] discrete text diffusion model, the

COLD framework by Lianhui et al. [68] for text generation under constraints, DeLorean by Qin et

al. [67] for considering both past and future contexts in language models, Donahue et al.’s [19]

text infilling approach, and Yang et al.’s [82] stochastic differential equation method for generative

modeling. This dissertation uses a conditional diffusion model to connect documents separated by

gaps, demonstrating the potential of diffusion models in storytelling algorithms.
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Chapter 3

CoRBS: A Contextualization Approach for

Documents Using BERT Features

3.1 Introduction

With many timestamped document collections available digitally over the internet, the use of

conventional search engines is no longer sufficient for complex analyses of an event [28, 83, 10, 50].

Moreover, a single article may not represent an entire story that developed over a long period of

time. For example, the news articles describing Elon Musk’s intention for the Twitter acquisition

spanned several months, resulting in thousands of documents (news articles, blog posts, and

opinion/interview articles). A conventional search engine presents the relevant news articles to a

surfer based on the keywords the person is using for the search. Oftentimes, the number of search

results is overwhelming, and the user tends to surf only the top few documents, leaving with an

incomplete idea about the evolution of a story. Similar trends are seen in the scientific literature

review process [86, 75, 66, 64]. A researcher searching for a specific topic in a relevant digital

library may end up with thousands of documents to study for a literature review. Another scenario

of a conventional search resulting in a massive information overflow is how intelligence analysts

attempt to find information from a large number of news articles, field reports, and social media

discussions [59, 11, 79, 97]. In this chapter, we present a storytelling algorithm that outlines a

story as a chain of documents illustrating the evolution of an event. Such a storytelling algorithm

can be used in scientific studies, new search engine development, and intelligence analysis.

While different variations of storytelling algorithms have been developed over the past two

decades, none of them is completely immune from sudden drifts of topics in a story. Some lose
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the narrative of the stories in intermediate steps, some lose the story’s focus, and some stories

result in noisy documents. Most techniques have difficult-to-manage parameters to obtain more

meaningful chains of articles. Table 3.1(a) shows a chain of news article titles regarding Elon

Musk’s intention for Twitter acquisition. The chain contains a coherent story flow with relevant

documents representing the evolution of the topic. Table 3.1(b) is a story chain that keeps Elon

Musk as the topic but fails to realize the relationship between Elon Musk and Twitter in the chain.

The story lost the narrative right from the second document in the chain. Table 3.1(c) shows

another story chain where the narrative lost the connection between Elon Musk and Twitter in

the middle of the chain on May 19th, 2022. Table 3.1(d) is an example of a chain that does not

recognize the connection between Elon Musk and Twitter in the entire chain but rather drifts from

their interactions in the middle (on July 14). The story ends with a connection between a Twitter

employee and a possible spying activity. Given a start document, Table 3.1 demonstrates what a

good story should look like, such as Table 3.1(a), and how a story might lose the narrative, such as

Table 3.1(b), (c), and (d).

The literature acknowledges that a good story must have the following characteristics [9, 38,

11, 77, 39]: (a) the surroundings of characters and events must evolve from the starting point to

the end, while the entire story stays faithful to the main topic [11], (b) the evolution of the story

should be smooth without any major leap from one article to another in the story[77, 9], and (c)

a brief story does not provide valuable insights, and a long story is not analytically sound for

examining the evolution of the entities and the events involved [39, 38]. Achieving these qualities

in a story chain formed from text data is challenging in several different ways, which we outline in

the following subsection.

3.1.1 Challenges

Challenges associated with a storytelling algorithm are listed below:

1. Missing context: In most of the existing storytelling algorithms [77, 39, 38, 11, 40], the

semantics of a word are either represented by the co-occurrence of other words [40, 38, 77]
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Table 3.1: Four different chains of news articles from the New York Times. These documents

are relevant to Elon Musk’s acquisition of Twitter. Each of these stories started with the same

document published on April 14th and was followed by other documents generating a chain of

supposedly connected events. (a) is an example story chain faithful to a specific theme connecting

Elon Musk and his Twitter acquisition; (b) realizes Elon Musk but ignores his relationship with

Twitter; (c) follows keyword overlaps in consecutive documents drifting to an irrelevant topic, and

(d) does not realize the main theme of the starting document drifting to an irrelevant event.

date a)

14 April 2022 Musk says he has the means to buy Twitter, but investors aren’t so sure

14 April 2022 Twitter says it will review Musk’s bid for the company.

14 April 2022 Elon Musk wants all of Twitter.

21 April 2022 Elon Musk details his plan to pay for a $46.5 billion takeover of Twitter.

29 April 2022 Elon Musk sells billions in Tesla stock as he prepares to buy Twitter.

4 May 2022 Elon Musk suggests Twitter could charge commercial and government accounts.

5 May 2022 Elon Musk has brought in new investors to fund his Twitter deal, a filling shows.

17 May 2022 Elon Musk says Twitter deal cannot move forward without more information.

8 July 2022 Twitter is ready for a legal battle to force Elon Musk to buy the company.

11 July 2022 twitter’s stock falls further as doubts swirl over Elon Musk’s takeover.

23 August 2022 Whistle-Blowers spam claims pose challenges for Twitter.

b)

14 April 2022 Musk says he has the means to buy Twitter, but investors aren’t so sure

23 May 2022 SpaceX executive defends Elon Musk against misconduct accusations.

1 June 2022 Elon Musk to workers: spend 40 hours in the office, or else.

7 June 2022 Elon Musk, Mars and the modern economy.

16 June 2022 SpaceX workers write letter to executives with concerns about Elon Musk’s twitter

20 July 2022 Tesla profits falls in second quarter as supply chain problems hurt.

25 July 2022 Tesla will spend more to increase production at two new factories.

4 August 2022 Tesla prevails over most activist shareholder proposals

5 August 2022 California regulator accuses Tesla of falsely advertising autopilot

c)

14 April 2022 Musk says he has the means to buy Twitter, but investors aren’t so sure

14 April 2022 Elon Musk, after toying with Twitter, now wants it all.

18 April 2022 The big questions about what happens next in Elon Musk’s bid for Twitter.

19 April 2022 Elon Musk race to secure finance for Twitter bid.

19 May 2022 G7 finance ministers race to secure more Ukraine aid

3 July 2022 Australia’s new prime minister promises increased aid during visit to Ukraine.

16 August 2022 The secret powers of an Australian prime minister, now revealed.

28 August 2022 referendum seeks to mend the open wound at Australia’s heart.

d)

14 April 2022 Musk says he has the means to buy Twitter, but investors aren’t so sure

4 May 2022 Elon Musk suggests Twitter could charge commercial and government accounts.

8 June 2022 Twitter said to agree to give Elon Musk access to stream of tweets.

16 June 2022 Elon Musk tells Twitter’s employees he wants the service to contribute to a better.

11 July 2022 Twitter stock falls further as doubts swirl over Elon Musk’s takeover.

14 July 2022 Twitter suffers a global outage at a delicate moment for the company.

20 July 2022 Twitter worker accused of spying for Saudi Arabia heads to trial.

21 July 2022 Trail begins for Ex-Twitter employee accused of spying for Saudis.

26 July 2022 Twitter security director says former employees viewed various Saudi accounts.

9 August 2022 Former Twitter employee convicted of charges related to spying for Saudis
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Figure 3.1: In (a), we have the semantic of the word Apple according to the Oxford dictionary. In

(b), We have the contextual meaning of Apple in the past and the current time. In (c), we have the

different roles of Apple in a text depending on the topic and the focus of the paragraph.

or by retrieved meanings from the dictionary or a knowledge base [39]. The state of the

word representations in the literature has moved toward contextual embeddings, which are

not present in storytelling algorithms. As a result of primitive non-contextual representations

of words, most of the existing storytelling algorithms suffer from losing the main context of

the topic in intermediate documents of the story.

2. Missing evolution: While some existing storytelling algorithms attempt to capture context

to some extent using additional information, such as images in news articles [44], most do

not include contemporary context to build on the evolution of the story. The algorithms

sometimes rely on out-of-context words to jump from one document to another while

forming the evolution of a story. As a result, a sudden leap from one article to another, using

poor connections between overlapping words and ignoring the topical evolution, is observed

in many stories. Generally, such low-quality stories are removed as a post-processing step,

which can be time-consuming.

3. Missing role of words: The semantics of a word refer to its meaning and is a global concept

(Figure 3.1(a)). The context of a word refers to other words that generally appear close to

the word. Whereas before 1970, the word ”apple” was highly contextual with fruits, but
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over time, the context of the word Apple spread to the technology area, as shown in Figure

3.1(b). A role of a word is localized to exactly when the word is mentioned in the text. It is

a distribution of other words seen near a given word. For example, the localized distribution

γapple of the word Apple in one paragraph relates to iPhone, iPad, and Macbook Pro, whereas

in another paragraph, the localized distribution, γsamsung, of the word Samsung relates to

Galaxy phone, Galaxy Tab, and Galaxy book. If γapple and γsamsung are similar, we call Apple

and Samsung to have a similar role in a given document. The role concept is reflected in

Figure 3.1(c).

4. Difficulty in tuning user-settable parameters: Existing storytelling algorithms require

complex user-settable tuning parameters to retrieve coherent stories. It is difficult for users

to study those parameters for different datasets, as the optimal values for the parameters

may vary between datasets and even for events found in the same dataset.

5. Missing temporal nature of stories: Most existing storytelling algorithms [77, 39, 34, 11]

are static in nature, ignoring the temporal nature and progression of events through time.

While such static storytelling algorithms work well for hypotheses generation in scenting

domains [39], event analysis using news data requires additional information and post-

processing stages to prune non-evolving stories [44].

3.1.2 Contributions

The contributions of this chapter are listed below.

1. Contemporary context to capture evolution: We use Bidirectional Encoder Represen-

tations from Transformers (BERT) to capture the contemporary context of every word’s

appearance and better understand a story’s evolution than other existing models. (See section

3.3.1)

2. Inclusion of roles of words: We extract the localized distribution of each word for all its

appearances in the same document. Based on the distribution of vector-similarities of the
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surroundings, we create a localized cluster-based context, which serves as the role of a word.

(See the section 3.3.2.)

3. Lesser number of user-settable parameters: Unlike previous storytelling models, our

proposed algorithm has only one user-settable parameter. The parameter is easy to tweak

given that it is the Jaccard similarity threshold, varying between 0 and 1. (See the section

3.3.3.)

4. Dynamic storytelling: We propose a storytelling algorithm where the temporal evolution

of the story is a combination of the underlying neural network embedding and the search

algorithm that drives the story’s progression. As a result, the generated stories smoothly

progress in time, requiring no post-processing filtering. (See the section 3.3.4.)

3.2 Problem Description

Storytelling refers to an algorithmic framework to select a chain of documents from a corpus, such

that the sequence of the documents in the chain represents the evolution of one or more connected

events [77, 39, 16, 96, 92, 38, 34, 11, 8].

For a corpus D, a story S is defined as:

∃S ⊆ D, ∀di ∈ S =⇒ f(di, di+1) > θ (3.1)

where f() is a user-defined function and θ is an acceptable criteria to consider di and di+1 in story

S a part of the evolution of relevant events.

3.2.1 Temporal aspects of storytelling

A story is dynamic in nature. The entities evolve over time, and the narrative follows them. To

generate a story, we need to assure each part of the story follows the contemporary context. Besides

that, the algorithm must cover all documents that are related to the story in each timestamp:
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Figure 3.2: A series of documents belonging to a story that are clustered by their timestamps.

{
dt11 , ..., d

tl
i , ..., d

tk
j , ..., d

tm
n

}
∈ S, i < j ⇒ tl ⩽ tk (3.2)

where di refers to the ith document in story S and dtli is the representation of the document in

timestamp tl. That is, documents dt1i ... dtmn form a series of documents belonging to a story S

spanning the time range t1...tm.

A storytelling algorithm can pick zero, one, or more documents from a timestamp (Figure 3.2).

The temporal aspect of storytelling is that the timestamps of the documents in a story cannot go

back in time but rather only move forward.

3.2.2 The Contemporary contextual aspect of storytelling

Conventional natural language processing techniques generally use the same representation for

the same word’s multiple appearances. For example, word2vec [52], and GloVe [62] consider

global embeddings as the context of a word even though the context of the word can vary between

documents and within different paragraphs of the same document. A word’s context is localized

by its surroundings, and each appearance of the same word may have a different context:
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∀m ̸= n,∃wim
k , win

k ∈ di,⇒ E(wim
k ) ̸= E(win

k ) (3.3)

where E is the context (e.g., embedding vector) for a word w that was generated for document i.

m and n are two different appearances of the kth word, wk, of the vocabulary.

Ignoring the local context and summarizing each word to give it a global context lead to

incorrect overlaps of concepts while joining two consecutive documents of a story. To capture

contemporary contextual aspects of a story, an algorithm must follow the constraint provided in

Equation 3.3.

3.2.3 Role-based aspects of words in storytelling

The context of a word is conventionally represented by words in the neighborhood formed inside

the mathematical space of the data, such as the embedding E. A role is different than a context.

Two words may have the same role but a different contextual neighborhood. For example, the

words Apple and Samsung have different neighborhoods of keywords, but both words have a

similar role (Figure 3.1). The role of a word is computed from the similarity distribution of the

words in the neighborhoods (details are in Section 3.3.2). Traditional storytelling algorithms

focus on contextual overlaps of consecutive documents. For high-quality story chains, we need to

incorporate the role aspect of storytelling so that the story can progress with relevant documents

even without a direct match of keywords.

The problem of generating a new representation γ for an appearance of a word in document dk

by incorporating the word’s role, r, with its context e is formalized below:

{
γ ∈ Γ : ri ∈ R, ej ∈ E,F (ri, ej) = γij

}
∈ dk (3.4)

where F() is a function to integrate the context e with role r.
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3.3 Methodology

This section proposes an algorithmic framework called Contextual Role-Based Storytelling

(CoRBS). Given a corpus and a document of interest, CoRBS generates a chain of documents start-

ing from the given one explaining the evolution of an event, addressing role and contemporary

context issues of existing methods.

Figure 3.3: The enhancement process to improve contextual features that represent a word in a

text.

3.3.1 Generate contemporary context for each word of the corpus

CoRBS stitches together role and contemporary context-driven documents to represent the evo-

lution of the events that appear in the given document. CoRBS uses the Bidirectional Encoder

Representations from Transformers (BERT) model as its mechanism to extract contemporary

contextual features. BERT generates an embedding vector for each word in a document. That is, a

word appearing in two different contexts in the same document may have two different embedding
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vectors. We use this unique feature vector to capture the dynamic nature of evolution in our

storytelling algorithm.

We leverage BERT’s classification node (CLS) to extract the embedding for each document.

CoRBS uses document embedding for its similarity search for articles. CoRBS uses the base

version of BERT, which has 12 layers of transformer blocks and 12 attention heads. The base

version has 110 million parameters and 768 tokens as the input. Each token is a vector of 768

values, which is the embedding vector for that token [17].

3.3.2 Role generation for each word

The role of a word depends on how the nearest neighbors are becoming distant rather than what

exact nearest neighbors are there. For example, for the word Apple, if the embedding vectors of

the three nearest neighbors are losing similarity with Apple in δ1, δ2, δ3 rates, and another word

Samsung also has three nearest neighbors with similarity rate-changes of δ1, δ2, δ3, then we call

Apple and Samsung to be sharing the same role, even though their three nearest neighbors are not

exactly the same.

The role generation steps for a given word’s appearance in a document are outlined below:

Step 1: For the given word’s appearance in the given document, we computed the cosine

similarity of all appearances of all words of that document (Figure 3.3a), based on their BERT-

based embedding vectors.

Step 2: We organized the words based on descending order of their similarity with the given

word’s appearance (Figure 3.3b). That is, the similarities form a monotonic distribution.

Step 3: For every three points of the monotonic distribution, we applied linear regression to

compute the slope of the descending line of Figure 3.3b, which results in Figure 3.3c. That is,

Step 1, Step 2, and Step 3, generate Figure 3.3c, as can be explained using the following formula:

DNSD =
∂

∂E
Sorted

([
∀wi, wj ∈ dk,

E(wi) · E(wj)

∥E(wi)∥ ∥E(wj)∥

]
[: µ]

)
(3.5)

where DNSD indicates the Derivative of Neighborhood Similarity Distribution. µ is the user-
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Figure 3.4: Boxplots of DNSD features generated from 1,219 words of 5,700 documents. These

documents were selected because they had the same length.

defined maximum number of words in the starting distribution of Figure 3.3(a), which had µ = 150.

In the distribution of Figure 3.3c, we compute DNSD with every three consecutive points; as a

result, we have a length of 50 (one-third of 150). E(wi) and E(wj) are the embedding vectors for

words wi and wj in document dk.

Step 4: The DNSD of a word indicates the similarity change of neighboring words in the

embedding space, as they are situated in a distant location. The left part of DNSD contains the

closest neighbors, which are words contextually connected to the given word. On the other hand,

the words in the right part of DNSD are the words that are contextually far away. DNSD represents

changes in similarity but not the similarity itself. The similarity is reflected in the ordering alone

in DNSD (hence Figure 3.3c is not monotonic, but Figure 3.3b is).

Our empirical study demonstrates that changes in similarity occur more often in the nearest

neighbor region and far neighbor region. We selected documents with n words and found that the

number of documents in our dataset is the highest when n=147. The 5,700 documents have exactly

147 words. With three consecutive nearest neighbors to compute the DNSD vector, we ended up

with a DNSD vector length of 49. Figure 3.4 shows DNSD boxplots for kth DNSD feature of all

1,219 words. It demonstrates that the boxes (i.e., ranges of the kth DNSD feature) are larger in the

beginning and tend to become smaller in the middle. In the latter part of the distribution, the boxes

again tend to become larger. Taking the difference between the minimum and maximum values
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Figure 3.5: The range of DNSD changes distribution values for each feature vector.

of the boxplots, we constructed the red line (window size=1) of Figure 3.5. Moving a running

window of different lengths (3, 5, 7, 9) and computing the average within the window, we find the

holistic pattern of the DNSD features. The pattern is that variations of changes occur in the closest

nearest neighbors and furthest nearest neighbors compared to the ones in the middle.

Motivated by the fact from the empirical study, we smooth the DNSD vector of Equation 3.6

using a funnel-shaped filter to generate the role of a word rw.

rw =
−1

1 + e−(|DNSD|+ 1
2
µ)
− 1

2
(3.6)

Figure 3.3(d) shows the generated role from the DNSD of Figure 3.3(c). Note here that the

starting and ending have higher weights in Figure 3.3(d), and the amplitudes are all normalized

between 0 to 1, using equation 3.6.

To explain the concept of the role of a word’s appearance further, we provided an example with

four words – communist, party, popular, and new – from a document. Figure 3.6 (a) shows the

KL-divergence between each pair of words’ role vectors’ probability distribution (each role vector

is normalized such that the sum of the vector becomes 1.0). So far, we have discussed two types

of representations for words. For each word that appears in a document, one representation is the

contextual representation vector generated by BERT, and the second is the role vector generated
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Figure 3.6: the comparison of Kl-divergence values for words Communist, Party, Popular, and

New.

by equation 3.6 for each word’s appearance. Figure 3.6 (b) shows clusters of words from the

document using role-based vectors. Figure 3.6 (c) contains clusters using BERT-provided vectors.

Figure 3.6 (a) shows that pairs of words — (popular, new) and (communist, party) — have

low KL-divergence (0.008 and 0.031, respectively) between the corresponding role vectors. This

is also reflected in Figure 3.6 (b), where the pair (popular, new) is in the same cluster. Also,

the pair of words (communist, party) are in the same group. The other pairs – (communist,

popular), (communist, new), (new, party), and (popular, party) – exhibiting higher KL-divergence

(0.133, 0.146, 0.217, and 0.380, respectively) are in different clusters. Therefore, the role vector

representation seems to reflect in a clustering algorithm properly.

The roles and contexts of words might not always form the same cluster because contextual

vectors focus on the nearest neighborhood of a word to form a context, whereas our role-based

representation considers a holistic role of the word’s appearance in the entire neighborhood of

the document both at near and far distances, and how sharply or slowly the neighbors are drifting

apart. Figure 3.6 (c) shows clusters formed by the BERT-generated contextual vectors. The pair

(popular, party) is in the same cluster of Figure 3.6 (c), even though the words are in different

clusters in their roles, as shown in Figure 3.6 (b). The pair (communist, party) is in the same
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cluster of the role-based cluster in Figure 3.6 (b), but the words are in two different clusters in

the context-based representation space of the document shown in Figure 3.6 (c). The role-based

and context-based representations may not always disagree. For example, the pair of words (free,

party) are in two different clusters in both Figure 3.6 (b) and (c).

Contextual representation is biased toward the neighborhood, sometimes resulting in findings

that do not directly have a meaningful perspective. For example, the words free and communist,

even though appearing in the neighborhood in the text, resulting in solid connectivity between them

in the contextual space, they are known to have opposing semantics. That is, their roles might be

different. The observation is evident in Figure 3.6, where the pair of words (free, communist) are in

the same cluster of contextual groups (Figure 3.6 (c)) but in different role-based clusters in Figure

3.6 (b). Our role-based representation complements contextual representations by distinguishing

such relationships automatically.

3.3.3 Generation of role-based document representation

For the appearance of each word in a document, we now have role vectors. In this section, we

outline how we can represent a document using the roles of the words in that document. We use the

role vectors of the appearances of all words to form groups of roles. Application of any clustering

technique could provide us with a general sense of the role groups in a document. However,

automating how many strong groups of roles there are in a document is tricky. To automate the

process of generating a role-based representation, we apply k-means clustering on the role vectors

of a document with different k, varying from 2 to k′. If a cluster of words, C, remains almost

the same with two runs of the k-means clustering algorithm, with k = i and k = i+ 1, then C is

considered to be a strong group of roles that did not break even when k was increased. Varying

the number of clusters for the k-means clustering algorithm, from k = 2 to k′, allows us to find

the strongest groups of words in a document in terms of the role vectors of the words.

Figure. 3.8 demonstrates how we vary k = 2 to 6. Based on a group-similarity threshold, we

chose groups of words that do not change much, with an increased number of clusters.
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RoleGroupSim(Ci, Cj) = 1.0−
min

(
[
∑

(MCi
−Mi) ◦ (MCi

−Mi)]
◦ 1

2 ,
[∑

(MCj
−Mj) ◦ (MCj

−Mj)
]◦ 1

2

)
max

(
[
∑

(MCi
−Mi) ◦ (MCi

−Mi)]
◦ 1

2 ,
[∑

(MCj
−Mj) ◦ (MCj

−Mj)
]◦ 1

2

)
(3.7)

Figure 3.7: Weighted Jaccard index between two clusters formed using role-vectors of words in a

document.

To compute the role-based similarity between two groups of words, let us assume that MCi

contains all the role vectors of cluster Ci and a centroid matrix Mi has the center of cluster Ci

copied in each row, where the number of rows and columns in both matrices MCi
and Mi are

equal. Equation 3.7 in Figure 3.7 demonstrates how we compute the role-based similarity between

two groups of words, Ci and Cj . We use the distance between the role vector of a word and the

center of the group of the word as the feature value of the word in that group. ◦ in Equation 3.7 is

a Hadamard product, and ◦1
2

refers to the square-rooting of every element of a vector.

To determine which clusters to keep in the representation of a document, we computed the

role-based group similarity (RoleGroupSim) between every two clusters generated using k = i

and k = i+ 1 for the k-means clustering algorithm.

A document in our data contains around 150 to 200 words. In our observation, setting k′ = 6

is sufficient to form groups of roles from all documents. Moreover, having k′ = 6 may generate as

many as 20 groups (2+3+4+5+6) to represent a document. Figure 3.9 demonstrates how role-based

group similarity thresholds may impact the number of selected groups of words in a document for

different k, varying between 4 to 8. With k=6, with low role-based similarity requirements, such

as 0.1, on average, there are 15 groups of words per document. With a more stringent threshold,

such as 0.9, the number of surviving clusters is less than 5.

With lower k, the number of selected role groups per document will be lower. With a larger k,

the number of selected role groups per document will be more. In a document containing around

150 to 200 words, our observation is that there can be six or seven paragraphs containing different

roles. Setting K=6, and the RoleGroupSim threshold to 0.7, on average, gives us around seven

role groups per document.
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Figure 3.8: The transition of tokens over different clustering. K-clusters of tokens k=2,3,..,6 for a

document.
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Figure 3.9: The median of different numbers of group representation of documents for different

values of the threshold similarity between two clusters.

A text collection containing larger documents with many different topics requires a larger k to

capture a sufficient number of roles on average to represent the document of that collection.

RoleDocSim(dk, dl) =
1

|Cdk ||Cdl |
∑
i∈dk

∑
j∈dl

RoleGroupSim(Cdk
i , C

dl
j ) (3.8)

A role-group is given a higher weight when it appears in multiple k and k+1 clusterings.

Figure 3.10: Text’s representation using clusters of words for each document.

3.3.4 Finding the best narrative

Equations 5.1 and 3.2 of Section 3.2 define a story as a chain of documents with an acceptable

similarity between each consecutive pair of documents, where the chain monotonically moves

forward in time. To allow an acceptable similarity between two consecutive documents, so far,
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we have two types of similarity: contextual similarity (from BERT) and role-based similarity

(equation 3.8). The acceptable similarity can be a combination of both.

Give an initial document dseed, we generated a story based on an algorithm, StoryGen

(Algorithm 2), that takes both contextual and role-based similarities into account with α and β

weights, respectively. The time span T is divided into n time groups, and each time group is

composed of m consecutive time stamps. As outlined in Algorithm 2, StoryGen starts from dseed

and iterates over groups of timestamps to construct a story.

The for loop in line 12 of Algorithm 2 iterates over the time groups. Within each time group

Tj , which is representative of a short time span, the algorithm attempts to find a set of consecutive

documents satisfying equations 5.1 and 3.2. θmin and θmax in Line 16 of the algorithm ensure an

acceptable similarity range between consecutive documents in the story. The function docMax

on Line 22 of Algorithm 2 returns the document from the CandidateList that has the maximum

similarity with document dselected.

If a time group does not have any acceptable connecting documents, the algorithm moves

forward to the next time group. This happens in real-world stories where a topic spikes for a few

days, then dies down, and then again reappears after some time. Our StoryGen algorithm is able

to capture such scenarios. Figure 3.2 shows that a story can contain multiple documents from a

time group and might not pick any document at all from another group.

We allowed StoryGen to be open-ended, unlike a destination-based story generator [77,

39, 11, 44, 40], to ensure that the stories are a natural flow of connected events. Our objective

is to construct natural open-ended stories that are not used for hypothesis generation where a

forceful directional flow of a story is required. StoryGen uses temporal shifts (unlike the other

approaches), and contextual and role-based similarities as its basis for open-ended exploration. As

a result, StoryGen is a suitable tool for news event analysis.
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Algorithm 1 StoryGen(D, dseed,Mrole,Memb, T, α, β, θ)

1: D is the document collection, {d1, .., dk}.

2: dseed is the initial document for the story.

3: Mrole is the role similarity matrix for all pairs of documents.

4: Memb is the contextual similarity (embedding-based) matrix for all pairs of documents.

5: T contains the time groups: T1, .., Tn.

6: α is the weight coefficient for role-based similarity.

7: β is the weight coefficient for contextual-based similarity.

8: θ is a range between θmin and θmax.

———————————————————

9: MSim = αMrole + βMemb

10: dselected ← dseed

11: Story ← ϕ

12: for j = 1 to n do

13: Tj ← jth time group from T containing m timestamps

14: while tj not in Tj[−1] do

15: for i = 1 to m do

16: if θmin < Msim[d
ti , dselected] < θmax then

17: CandidateList← dtj

18: end if

19: for s in Story do

20: CandidateList.remove(s)

21: end for

22: dselected ← docMax(Msim[dselected, CadidateList])

23: Story.append(dselected)

24: end for

25: end while

26: end for
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3.3.5 Time and space complexity

The proposed algorithm has multiple stages. In the preprocessing step, which is mostly composed

of contextual vector generation using BERT, the time complexity is O(n2). The reason behind

the quadratic time complexity of the vector generation is that the transformer-based model we

leveraged was a pre-trained model; therefore, the training from scratch was not involved in our

process. The number of transformer layers was 12 in BERT, and the embedding length of the

vectors was 768.

The role-based document representation is a combination of computing derivatives, generating

role-vectors for each appearance of every word in a given corpus and finally forming the document

representation. Computing derivatives is a linear process over documents and a quadratic process

over the words of each document. Since each document is small, the quadratic complexity over

words per document results in a feasible computation. The computation of role vectors (DNSD)

is a linear process over the generated derivatives. A role-based document representation uses

groups of role vectors to represent each document. In our approach, we applied k-means clustering

with k varying from 2 to k′ for role vectors of each document, which results in the complexity

of the k-means clustering algorithm, O(n2), over the words of each document. All of these steps

are one-time computations for the entire storytelling system and can be considered amortized

establishment costs.

The search component of the algorithm is the only part that changes given a seed document.

Theoretically, a breadth-first-search variant has a time complexity of O(bd), where b is the

branching factor, and d is the depth of the search. Our StoryGen algorithm (Algorithm 2) has a

feasible computation given that its branches are heuristically contained by timestamp groups and a

combination of role and contextual similarity. The search behaves like a polynomial one as if it is

operating over a tree, making StoryGen a suitable algorithm for storytelling.
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3.4 Conclusions

This chapter introduces an algorithmic framework named Contextual Role-Based Storytelling

(CoRBS). CoRBS is designed to construct a sequence of documents from a starting point named

seed from a corpus, enabling models to trace the evolution of events and entities. This approach

addresses the challenges related to understanding the role of terms and their contemporary context,

which are often missed by conventional storytelling algorithms.

The role of a term in a document is defined by analyzing the distribution of similarities among

its nearest neighbors using BERT contextual embedding vectors for all words in a document.

Contemporary contexts are incorporated to ensure a proper chain of documents as the story

develops to ensure a narrative’s progression remains coherent.
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Chapter 4

Experimental Analysis: CoRBS

4.1 Introduction

In this chapter, we discuss the experimental analysis of the CoRBS model using the New York

Times dataset containing 5,700 articles covering a wide range of topics, including politics, sports,

entertainment, economics, and medicine. This dataset is used to evaluate the different challenges

highlighted in the problem description from the previous chapter 3.

This chapter is structured into the following sections: Evaluation Mechanism4.2, Experimental

Results 4.3, and Conclusion 4.4, providing a comprehensive overview of the CoRBS model’s

effectiveness and performance.

4.2 Evaluation Mechanism

Usually, generated stories are evaluated based on inherent objectives of the storytelling algorithm

[77, 11]. Based on our storytelling algorithm, our evaluation mechanism is driven by four core

metrics: dispersion coefficient, temporal continuity of the story, story stretch, and story evolution.

The four metrics are described in the following subsections.

4.2.1 Dispersion coefficient

Hossain et al. [38] introduced the concept of the dispersion coefficient in evaluating a storytelling

algorithm. The dispersion coefficient reflects whether two consecutive story documents have

sufficient overlaps. Additionally, the dispersion coefficient metric penalizes if non-consecutive
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documents of the story have overlapped. A dispersion coefficient value of 1.0 indicates that

only each consecutive pair of documents has certain overlaps in the story. The score reduces

as non-consecutive documents start to have content overlaps. A value of 0.0 indicates that no

consecutive pair of documents overlaps, but all other non-consecutive pairs overlap the content of

a certain threshold.

The dispersion coefficient for a story, {d0, d1, ..., dn−1}, is given by the following formula.

ψ = 1− 1

n− 2

n−3∑
i=0

n−1∑
j=i+2

disp(di, dj) (4.1)

Where

disp(di, dj) =


1

n+i−j
, if normdist(di, dj) < η.

0, otherwise.
(4.2)

η is an acceptable distance threshold for the evaluation. For computing the normdist, one

can use Soergel distance, cosine dissimilarity, or any other normalized dissimilarity between

two documents di and dj . di and dj are vector representations of two documents. We used

BERT-generated contextual vectors for all methods in our experiments for a fair comparison.

Note that the dispersion coefficient evaluates a story based on content or context overlaps but

does not check if the story progresses over time. The next evaluation metric assesses the temporal

continuity of a story.

4.2.2 Temporal coverage coefficient, TempoCover, for stories

While the dispersion coefficient helps in measuring content overlaps in the story chain, whether

the documents in the story cover different timestamps is not reflected in the dispersion coefficient.

To evaluate the temporal coverage, we use a story-length normalized value of the number of

timestamps covered by each story of a set. In equation 4.3, the function Cover(si, tj) returns 1 if

the story si has a document in timestamp tj . Otherwise, the function returns 0.
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Cover(si, tj) =

1, if ∃ d ∈ si & d ∈ tj .

0, otherwise.
(4.3)

Equation 4.4 provides the length-normalized temporal coverage coefficient, TempoCover, for

a set of m stories, S.

TempoCover(S) =
1

m

m∑
i=1

∑n
j=1Cover(si, tj)

|si|
(4.4)

TempoCover becomes 1.0 when all the stories in the given set of stories S have an equal

number of timestamps covered, and each document of a story appears in a unique timestamp.

TempoCover tends to 0.0 when each story in set S covers close to one timestamp only.

4.2.3 Evaluation of the stretch of stories, StoryStretch

Short stories are not eventful in the sense that they express sudden events. Our objective is to find

stories that evolve over time. In contrast, long stories are difficult to analyze and might contain

obvious relationships in the chain of documents available throughout the timeline. For a set of

stories generated from random seed documents, shorter and longer stories should be less than

stories of average length.

To measure if stories are homogeneously stretched, we use a property named StoryStretch

for a set of stories, S.

StoryStretch(S) = 1−

√∑|S|
i=1(li − L̄)2

|S|L̄
(4.5)

li is the number of total documents in si ∈ S, and L̄ is the average length of all the stories in S.

If S contains a set of stories with the same length, then StoryStretch(S) = 1. With an increasing

number of shorter and longer stories, StoryStretch(S) tends to become smaller.
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Figure 4.1: (a) Number of terms overlapping vs. cosine similarity between pairs of documents.

A boxplot of contextual cosine similarities is shown at each term overlap. The blue dashed line

shows how many pairs of documents are found with a certain number of term overlaps. (b) The

functional distribution of Story Evaluation Coefficient (SEC of Equation 6.3) with respect to

cosine similarity values.
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SEC(S) =
1

(n− 1)|S|

|S|∑
s=1

n−1∑
i=1

(φτmax − φCosine(E(dsi ), E(dsi+1)) + ρ)

×exp(−φ(τmax − Cosine(E(dsi ), E(dsi+1))))

(4.6)

4.2.4 Story evolution coefficient (SEC)

To evaluate the evolution of a story, we need to examine two items.

• Do consecutive documents in a story have enough overlap? If two consecutive documents in

a story do not have sufficient overlap, then the story is broken and does not reflect evolution.

• Do consecutive documents in a story exhibit enough change to foster evolution? If con-

secutive documents have too much similar content, the change might not be sufficient to

construct an evolving story.

To reflect these two criteria in an evaluation metric, we design equation 6.3, which we call

Story Evolution Coefficient (SEC). The definition of enough overlap and enough change between

two consecutive documents of a story can be set as a function of the similarities between their

contextual vectors. SEC should be the highest for a certain similarity, before and after which the

function should decay sharply to penalize lower or higher similarities. The function’s peak is τmax.

τmax and determined empirically, where random pairs of documents have reasonable overlap in

terms of content and contextual vector similarity.

Figure 6.1(a) shows the number of terms (words) overlapping vs. cosine similarity between

pairs of documents. A boxplot of contextual cosine similarities is shown at each term overlap.

The blue dashed line shows how many pairs of documents are found with a certain number of

term overlaps. This experiment was done by randomly selecting 200 documents, where each

document had at least one word in common with another document on this list. The number of

pairs from this list is 9,900. Our observation is that with an overlap of one word, the median

cosine similarity between the contextual vectors is around 0.79. The median cosine similarities

between the contextual vectors tend to become higher with more overlaps of terms as we go from
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left to right of Figure 6.1(a). The dashed blue line shows that pairs of documents with around 19

words in common are most frequent. Note here that the frequency of these pairs forms a Gaussian

distribution.

The maximum word overlap is 48, and only around 1% of the pairs have more than 37-word

overlaps. Based on this empirical study, we consider that more than 37-word overlaps can be

considered as evolution being stuck and less than three overlaps being not enough content overlap.

37-word overlaps are equivalent to a median contextual similarity of 0.89, as shown by τmax in

Figure 6.1(a).

SEC is an evaluation metric that should be the highest when the contextual similarity between

two consecutive documents in a story is τmax. Figure 6.1(b) shows the function we design in

Equation 6.3 to compute SEC for a set of stories.

In Equation 6.3, S is a set of stories, and ei is the contextual embedding vector for document i.

ρ is the parameter to set the scale of the metric SEC from zero to a desired maximum value. We

set ρ to = 1.0 to vary SEC within the range of [0, 1]. SEC would vary between 0 to 2 with ρ = 1.7,

and 0 to 10 with ρ = 3.3. The choice depends on analytic needs. In our experiments later, we use

the range [0, 1] for SEC.

φ is a parameter to tune the metric for changing the slope of the curve from zero to τmax. In

our case, φ = 10 gives a reasonable rise to the maximum value of SEC. Greater values for φ make

SEC sharper (the width of the bell shape reduces).

4.3 Experimental Results

We performed some experiments using the New York Times articles dataset [1]. The dataset contains

more than 140,000 articles about different subjects, including politics, sports, entertainment,

economics, medicine. Each article has a title, publication date, author name, and text. We used

more than 5700 articles from this dataset in our experiments. We split articles into 84 different

time intervals based on their publication date. We randomly selected 20 different articles from

the first timestamp as a seed set to generate separate stories based on them. For this dataset, we
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applied some restrictions, such as the size of an article must be 200 to 500 words, and all special

characters and links must be removed from the text.

We used different evaluation metrics to examine the performance of our proposed model

compared with three other methods:

1. a storytelling algorithm based on the Doc2Vec contextual embedding model.

2. a storytelling algorithm based on the document embedding in BERT. This document embed-

ding is extracted from the classification token in the last layer of BERT.

3. a storytelling algorithm based on the entity overlap between two documents. This algorithm

uses the Jaccard Index to calculate the overlap between pairs of documents to select the

maximum overlap to generate the narrative of the story (entity-set-based method).

We seek to answer the following questions:

• How well does the proposed model select the relevant documents over irrelevant documents

in a search algorithm? We used the Dispersion coefficient to calculate this aspect of a story.

• How well does the story generated by the proposed model distribute over different time

spans? We used the TempoCover coefficient to measure the temporal coverage aspect of a

story.

• How well does the proposed model generate stories that are homogeneously stretched? We

used the StoryStretch metric to generate the normal length of chain documents.

• How well does the proposed model reflect the evolution of a story? We use the SEC metric

to measure the quality of the evolution in a story.

The source code of the project is available on this GitHub repository: https://github.

com/AlirezaPNouri/CoRBS
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Figure 4.2: Dispersion coefficient for different values of normdist requirements η. We set θmax

for StoryGen to a high value of 0.9 for this experiment.

4.3.1 Evaluation of local content overlap in a story using dispersion coeffi-

cient

The dispersion coefficient (Equation 4.1) provides a measure of how a story carries content from

its start to the end. With the content overlap between only consecutive pairs of documents of a

story chain, the dispersion coefficient is 1. With overlaps between non-consecutive documents,

the dispersion coefficient becomes smaller. As stated in the literature on storytelling algorithms

[39, 38], stories of higher quality should exhibit a higher dispersion coefficient.

In this subsection, we evaluate four different models for the same storytelling framework

(Algorithm 2) for a fair comparison. The models are Doc2Vec, entity-set representation, BERT,

and our proposed CoRBS-based representation that combines role-based and contextualized vector

representations.

The earliest timestamp (early January 2018) of our data contains 93 documents. Using each of

these 93 documents as a seed document, Figure 4.2 demonstrates the average dispersion coefficient

of all the stories with different normdist requirements η. Our CoRBS model and BERT have

similar dispersion coefficient values, whereas the use of Doc2vec and the direct entity-set-based

models exhibit lesser average dispersion coefficients. This indicates that storytelling using the
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CoRBS and BERT models results in better stories in terms of the dispersion coefficient. That is,

the stories generated with CoRBS and BERT have evolving content as they progress over a chain

of documents.

4.3.2 Temporal coverage coefficient (TempoCover)

Temporal coverage coefficient, TempoCover, evaluates a set of stories based on how unique each

story in the set is to the timestamps covered and how much all the stories agree in terms of coverage

length. A set of stories that is well-distributed over time has a higher value of TempoCover. A

story with many documents covering a limited number of timestamps accompanied by similar

stories exhibits a smaller value of TempoCover.

A comparison of the temporal coverage coefficient of four models, including our CoRBS

model, is shown in Figure 4.3. Our CoRBS model has the highest TempoCover value among

models with different maximum similarity thresholds (θmax values) of the StoryGen algorithm

(Algorithm 2).

This value does not change when we increase the maximum similarity filter to pick the

candidate document in the StoryGen algorithm. Notice here that some of the models exhibit a

straight-line TempoCover after a certain similarity threshold. This occurs because, after a certain

θmax, there were no pair of documents with a cosine similarity greater than θmax, leading to the

same set of stories for the rest of the thresholds provided in the experiment. For Doc2vec, this

started with a small θmax value of around 0.12. With the entity-set-based representation, the set of

stories (and hence TempoCover) kept changing until around 0.9.

Overall, regardless of the values of θmax, stories generated with our CoRBS model provided

the highest TempoCover compared to those generated with all the other three models.

4.3.3 Evaluation of the stretch of stories (StoryStretch)

StoryStretch (Equation 4.5) measures the homogeneity of the lengths of stories. Stories that are

shorter than the average length of a set of stories are likely to lack evolution and represent sudden
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Figure 4.3: Temporal Coverage Coefficient for different maximum similarities, θmax, in the

storytelling algorithm.

events. Stories that are longer than the average length of a set of stories might have superfluous

and obvious words connecting the events. A higher StoryStretch of a set of stories indicates that

most of the stories in the set have lengths closer to the average length of the stories.

Figure 4.4 demonstrates that CoRBS-driven stories exhibit higher StoryStretch with higher max-

imum similarity thresholds (θmax values greater than 0.28) of the StoryGen algorithm (Algorithm

2), compared to stories driven by the other three models: BERT, Doc2vec, and entity-set-based

representations. The allowable maximum similarity, θmax, is generally set higher rather than lower

to ensure enough contextual match between consecutive documents. Therefore, it is essential that

a model performs better with higher θmax values. Compared to other models, our CoRBS-driven

stories have better homogeneous lengths with higher θmax values.

Similar to TempoCover, StoryStretch also does not change after certain θmax values, for some

methods, and for reasons explained in the previous subsection (Subsection 4.3.2)

As shown in Figure 4.4 the most changes of StoryStretch vs. Maximum Cosine similarity

appear on the range of the densest embedding area for each model.
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Figure 4.4: Story stretch coefficient for different ranges of maximum similarity in storytelling

algorithm.

4.3.4 Story evolution coefficient (SEC)

Story Evolution Coefficient (SEC) (Equation 6.3) is a measure to evaluate a set of stories in

terms of how much overlap consecutive documents have in a story and how much changes are

propagating from one document to another in each chain. That is, evolution is considered a

combination of preservation and modification of some concepts. A set of stories with high SEC

value represents chains that have evolving concepts. We evaluate different models provided with

the StoryGen algorithm (Algorithm 2) using SEC to discover which model provides the most

evolving stories.

Figure 4.5 shows boxplots for stories generated with the same seeds using four models: CoRBS,

BERT, Doc2Vec, and entity-set-based representations. CoRBS provides the highest SEC (the

box’s median line is higher than any other medians of the other methods). The thinnest boxplot

is seen for CoRBS, which indicates that the variance of SEC for CoRBS is lower than any other

model. Doc2Vec exhibits the lowest SEC, indicating that the generated stories driven by the

Doc2Vec model are less evolving. Our CoRBS model is superior in terms of SEC compared to the

three other methods, as observed in Figure 4.5.
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Figure 4.5: Story Evaluation coefficient boxplots for different models using θmax = 0.9 for

StoryGen.

4.3.5 Model comparison Summary

In Table 4.1, we provide the average SEC, Dispersion, StoryStretch, and TempoCoverage of all

the methods. We allowed StoryGen to use a wide range of similarities [θmin, θmax] of [0.001, 0.9]

for consecutive documents. Table 4.1 shows that our model, CoRBS, provides the best (highest)

average evaluation scores. All the models were provided with the same seed documents to generate

stories using the StoryGen algorithm.

Table 4.1: Comparison between the CoRBS, Doc2Vec,Entity-set based model, and BERT.

Models SEC Dispersion StoryStretch TempoCoverage

Doc2Vec 0.86 0.76 0.92 0.37

Entity-set based 0.94 0.89 0.83 0.31

BERT 0.93 0.94 0.88 0.28

CoRBS 0.98 0.97 0.97 0.76
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4.3.6 Case study

In this case study, as a seed document, we selected an article that was on the front-page news for a

while in early 2018. It is a peripheral event associated with President Trump’s election campaign

and possible obstruction of justice. The peripheral event is about a Republican memo claiming that

the FBI surveilled Carter Page, the foreign policy advisor of President Trump’s election campaign.

The allegation was that the FBI used information collected by a former British spy, Christopher

Steele, to request the court for a surveillance warrant against Carter Page in 2016. The news had

different actors and episodes over a time range, making it a suitable event for analyzing results

generated by different storytelling models.

All the storytelling models we used for this case study contained the same StoryGen algorithm

2 to form a story, given the seed document. All the models are tuned to the same parameters,

which are minimum acceptable contextual similarity, maximum acceptable contextual similarity,

and minimum acceptable entity overlap in each pair of consecutive documents. Having different

document representations is the only distinction among these models. The CoRBS model uses

contextual and role-based embedding representations, while BERT and Doc2Vec use their native

embeddings, and the entity-based model uses a weighted TF-IDF representation for documents.

Figure 4.6 shows TF-IDF-based word clouds of the stories generated by each method for the

same seed news article (Document ID 24058). Corresponding article links, publication dates, and

titles for stories generated by CoRBS, BERT, Doc2Vec, and entity-based models are provided in

Tables 4.2, 4.4, 4.3, and 4.5.

As can be seen from the word clouds for the story documents of all methods (Figure 4.6) and

the respective Tables, CoRBS provides the longest story, spanning a wider time range (January 29

to February 26 of 2018), compared to all other methods. CoRBS sets the chain of documents in

such a way that it connects the event of the use of British Intelligence in approval of surveillance

for the Russia inquiry, relevant Mueller investigation, democratic rebuttal in support of the Russia

investigation, possible influence on the Justice Department, and Trump’s reaction toward Barack

Obama administration as well as the Attorney General.
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Compared to other baseline models, the CoRBS model performs better by selecting all the

relevant articles related to the seed document. Remarkably, the CoRBS model correctly includes

article 263962, titled ”The Real Aim of the Nunes Memo Is the Mueller Investigation,” which

none of the other models consider relevant to the story. Furthermore, the CoRBS model effectively

continues the story by incorporating article 221778, titled ”Trump Attacks Obama, and His Own

Attorney General, Over Russia Inquiry,” article 252336, titled ”5 Takeaways From the Release of

the Democratic Memo,” and article 241855 titled ”2 Weeks After Trump Blocked It, Democrats

Rebuttal of G.O.P. Memo Is Released.” In contrast, other models cease progression at this stage.

The CoRBS model’s ability to utilize both role-based and contextual-based embeddings allows

it to identify and capture the significance of various roles played by entities such as ”President

Trump,” ”the attorney general,” ”Russian interference,” ”Justice Department,” and more. This

comprehensive approach enhances the storytelling model’s capacity to distinguish and incorporate

relevant information within the story.

The BERT model (Table 4.4) creates a chain that starts on January 29 but ends quickly by

February 4, 2018. This chain is present almost entirely in the CoRBS model. BERT missed the

connection of the story with the democratic rebuttal in support of the Russia investigation and the

connection of the story with the Justice Department. Since BERT is not role-based, it relies on

contextual similarity and might miss significantly important connections if the content does not

bring words into the contextual neighborhood.

Despite its initial success, the BERT model falls short of maintaining the story’s coherence. It

mistakenly selects article 261196, titled ”How Trump’s Allies Fanned an Ember of Controversy

Into Flames of Outrage,” as the final article, disregarding other important entities mentioned

in subsequent articles such as article 226858, titled ”Senate Letter Echoes House Republicans’

Accusations of Bias”, article 262729, titled ”No. 3 Official at the Justice Department Is Stepping

Down,”, article 262821, titled ”Pressure From Trump May Lead to Revision of Democratic

Memo”, article 221778, titled ”Trump Attacks Obama, and His Own Attorney General, Over

Russia Inquiry”, article 252336, titled ”5 Takeaways From the Release of the Democratic Memo,”

and article 241855, titled ”2 Weeks After Trump Blocked It, Democrats’ Rebuttal of G.O.P.
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Memo Is Released.” The BERT model fails to recognize the connection between the first and

final chapters of the story, primarily because it ignores the roles played by entities such as the

”House Intelligence Committee,” ”F.B.I.,” ”Justice Department,” and ”Trump campaign” in articles

261196 and 266389. This limitation in entity role identification contributes to the model’s inability

to track the story’s narrative flow effectively.

The Doc2Vec model (Table 4.3) was able to move up to February 11, 2018, but could not

bring Trump’s reaction toward the Barack Obama administration and the Attorney General during

Trump’s own administration.

The entity-based model was only able to include one document in the story after the seed

document and failed to generate a coherent chain because the method is content similarity-based.

Such a chain might not have content similarity; rather, context similarity, along with the role, is

the key to generating meaningful stories.

Due to its static embedding nature, the Doc2Vec model fails to encompass all documents about

the story, such as articles 263962, 285583, 221778, 252336, and 241855. This limitation arises

from the model’s inability to establish contextual connections between entities within the story.

While the model maintains narrative continuity by leveraging semantic relationships found through

static embedding, it overlooks related documents. Doc2Vec struggles to recognize the similarity

between a person and a title in a news article, as exemplified by the instances of ”Stephen E. Boyd”

and ”The Republican chairman of the committee” in article 268651. In contrast, contextual-based

models like BERT and CoRBS effectively identify them as the same entity due to their ability to

extract richer connection information from the document.

Tables 4.6, 4.7, and 4.8 show the average of Contextual Embedding, Entity overlap Role

similarity for all stories generated by different models.

The entity-based model encountered difficulties identifying the subsequent document following

article 254266, ”House Republicans Vote to Release Secret Memo on Russia Inquiry,” in the story

news. The potential candidates for continuing the story were article 232340, ”F.B.I. Condemns

Push to Release Secret Republican Memo,” and article 263962, ”The Real Aim of the Nunes

Memo Is the Mueller Investigation.” However, despite article 254266 containing more frequent
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mentions of entities such as Russia, Republicans, and the committee compared to article 232340,

the model failed to recognize the latter as a viable candidate. This suggests that the model’s

reliance on entity frequency alone led to an erroneous decision. Furthermore, the entity-based

model struggled to establish the semantic connections between certain words, such as Trump,

President, and he. Unlike contextual-based models that recognize these words as different forms

of the same entity, the entity-based model failed to identify their similarity. This limitation further

restricted its ability to follow the story chain appropriately. In summary, the entity-based model’s

shortcomings in both entity frequency analysis and semantic understanding have impeded its

performance in determining the next document in the storyline.

Our observation regarding stories is that consecutive pairs of documents have similar average

similarity using all methods, whereas CoRBS has the highest standard deviation. Also, CoRBS

generates stories that have a trail of documents with more deviation from the seed compared to

other methods. Table 4.6 demonstrates that the highest standard deviation of average similarity,

both for consecutive documents and with seed, is obtained by CoRBS, indicating a better evolution

compared to other methods. Additionally, CoRBS generates longer stories compared to other

methods. Table 4.6 contains averages of a total of 18 stories with different seed documents.

Tables 4.7 and 4.8 provide similar information as Table 4.6 but for entity overlaps and role-

vector similarities of consecutive documents in each story and similarities with the seed. Among all

models, the standard deviation is the highest with CoRBS. The tables demonstrate that even though

StoryGen attempts to find similar documents fairly for all models, the models are responsible for

picking up documents that provide better evolution. CoRBS provides better evolution in terms of

embedding similarity, content overlap, and role.

Another note is that CoRBS provides high-quality similarity as well as better evolution, which

is difficult to maintain for longer stories. Yet, CoRBS provides longer stories compared to other

models.

58



Figure 4.6: The word cloud of a story generated by CoRBS, BERT, doc2vec, and Entity-set based

models from seed document 240581.
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4.4 Conclusion

This chapter describes a novel algorithmic framework to generate a chain of documents forming a

storyline given a start document from a corpus. This framework uses embedding vectors generated

by a bidirectional transformer to address issues in relevant legacy models. The localized role-driven

context of each word helps the framework bring latent connections into the scenario, in addition to

the semantics of a token. Experimental results demonstrate that our approach extracts evolving

stories that smoothly change from some events and actors to others over time, outperforming

baseline techniques.
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Table 4.6: Average and Standard Deviation of similarities between embedding vectors of consecu-

tive pairs of documents and between the seed and other documents of a story.

Model Avg. Avg. Sim. Std. dev. Avg. Sim. Std. dev. of Sim.

Length of Sim. with seed with seed

CoRBS 4.6 0.88 0.012 0.88 0.015

Bert 2.8 0.88 0.009 0.87 0.009

doc2vec 2.5 0.87 0.010 0.87 0.007

Entity-set based 1.3 0.87 0.002 0.87 0.003

Table 4.7: Average and Standard Deviation of entity overlaps of consecutive pairs of documents

and between the seed and other documents of a story.

Model Avg. Avg. Sim. Std. dev. Avg. Sim. Std. dev. of Sim.

Length of Sim. with seed with seed

CoRBS 4.6 0.11 0.023 0.11 0.023

Bert 2.8 0.11 0.018 0.10 0.014

doc2vec 2.5 0.10 0.014 0.10 0.011

Entity-set based 1.3 0.10 0.001 0.11 0.003
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Table 4.8: Average and Standard Deviation of similarities between role-vectors of consecutive

pairs of documents and between the seed and other documents of a story.

Model Avg. Avg. Sim. Std. dev. Avg. Sim. Std. dev. of Sim.

Length of Sim. with seed with seed

CoRBS 4.6 0.73 0.150 0.31 0.13

Bert 2.8 0.74 0.092 0.30 0.10

doc2vec 2.5 0.69 0.076 0.32 0.06

Entity-set based 1.3 0.66 0.003 0.34 0.01
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Chapter 5

DifStoryGen: Diffusion-Based Storytelling

Algorithm with Distributed Attention

5.1 Introduction

As news outlets and scientific archives composed of text data grow, analyzing events and entities in

a collection of timestamped documents by conventional search engines falls short [28, 83, 10, 50].

A singular article often fails to represent the knowledge that has accumulated over the past or

explain how an event evolved. Accessing the history of an event is critical in understanding

the root and, as such, making decisions in consideration of the past contexts of the event. A

storytelling algorithm is a method designed to create chains of consecutive documents using a

corpus representing the evolution of an event or topic. Storytelling algorithms aim to generate

cohesive and coherent stories, usually by stitching together events and entities from documents

with timestamps. They are used in various domains, including search algorithms [21, 98], rec-

ommendation systems [30, 90, 12], vulnerability analysis [91, 61], intelligence analysis[40, 38],

entity relations discovery [20, 84, 59, 11], and text summarization [23, 41, 76, 24, 70, 89].

The effectiveness of a storytelling algorithm depends on the interpretability of the generated

sequence. Clearly, a story that fails to track an event’s evolution is of little to no use. Also, a story

that changes topics drastically is misleading. Figure 5.1 (a) shows an example where the story

chain starts from the Russia-Ukraine War, changes the topic to the vaccination of astronauts, and

then ends with Elon Musk’s appearance on a TV show on Mother’s Day. This story was generated

based on entity overlaps between consecutive pairs of documents. While the contents of each pair

of consecutive documents had entity overlaps, the overall story changed the topics so drastically
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Figure 5.1: Stories generated by three different storytelling algorithms: (a) Entity overlap-based

storytelling algorithm, (b) Semantic overlap-based storytelling algorithm, and (c) Our method,

DifStoryGen. Entity overlap and topic overlap between each consecutive document are shown on

the right side. The words with the highest TF-IDF in the title are colored for each news article.
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that it lost coherence. The story in Figure 5.1 (b) started with the same document as Figure 5.1 (a)

and used a semantic technique to curate a cohesive series of documents. The chain of documents

covers the concept of war but with different regions. From the Russia-Ukraine War, the story

shifted to the conflicts between the two Koreas in East Asia, then to the crisis in Afghanistan, and

finally ended with an article covering some entities and events in Afghanistan and Iraq. While the

story in (b) is more coherent than the story in (a) in covering wars across the globe, the temporal

shifts are not topically connected. Finally, the story in Figure 5.1 (c) consistently adheres to its

central theme, the Russia-Ukraine War, while allowing the entities to evolve over time. The story

is generated by our proposed DifStoryGen, which is a Distributed Attention-based storytelling

algorithm. In addition to remaining on topic, the discovered storyline of Figure 5.1 (c) covered the

main characters and events, allowing the evolution of various incidents over time. This chapter

focuses on a method that constructs coherent stories, as presented in Figure 5.1 (c).

Different literature explains that a good storytelling algorithm should possess the following

characteristics:

1. The narrative context, including characters and events, must progressively evolve from start

to end while remaining loyal to the topic [11],

2. The storyline should transition smoothly, avoiding any drastic shifts between consecutive

documents in a story [77, 9], and

3. The narrative length must be sufficient to provide valuable insights. A brief story lacks

depth, and a lengthy one may compromise clarity in tracing the evolution of events and

entities [39, 38].

5.1.1 Challenges

The challenges faced by storytelling algorithms include:

• Missing Context: Existing storytelling algorithms often rely on static, non-contextual

representations of words based on co-occurrence or definitions from a knowledge base. This
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approach leads to losing the main topic’s context in the middle of the narrative.

• Missing Content: Many storytelling algorithms lack an effective mechanism to bridge gaps

in the text of document collections. This issue either halts the search process or shifts into

unrelated narratives due to missing documents.

• Complexity in Parameter Tuning: The need for a detailed set of user-defined parameters

to control the narrative makes conventional storytelling algorithms biased towards user

preference. Each dataset requires its specific settings, adding to the complexity and potential

impartiality of the algorithm.

• Incorporating Historical Context: Most storytelling algorithms use only the last document

in the story chain for the search process, missing the influence of earlier documents selected

in the story. This issue, most of the time, leads to a sudden shift in the narrative, distanced

from the main flow of a story.

• Consistency of Main Entities and Concepts: Storytelling algorithms that focus on key-

words often distract from the story’s core concept. On the other hand, those concentrating

on the main concept may shift focus between groups of entities, losing the narrative’s main

characters.

5.1.2 Contributions

Narratives generated by our proposed storytelling algorithm achieve these attributes by constructing

a framework of generative models and machine learning algorithms. The main contributions of

the chapter are:

• DifStoryGen employs Bidirectional Encoder Representations from Transformers (BERT)

to capture the temporal context of each document. This approach significantly enhances

the ability to track the evolution of entities in a story, offering excellent performance in

capturing narrative evolution compared to other existing storytelling models.
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Figure 5.2: DifStoryGen consists of four vital modules: 1) the data preprocessing unit, 2) a

generative model, 3) the story generator, and (4) the candidate selector.

• DifStoryGen helps a human analyst by generating intermediate documents, using a diffusion-

based document generation model, to connect the dots between two articles in the absence of

relevant supporting documents in the corpus. This helps discover stories with re-appearing

themes.

• Given the involvement of generated documents to identify the next real document, the

temporal shift or the definition of evolution need not be set by the analyst, reducing critical

user-settable parameters and enhancing the model’s ease of use.

• DifStoryGen uses distributed attention while temporally progressing during story construc-

tion to ensure the story’s overall theme. The distributed attention helps the model generate a

coherent story (as illustrated in Figure 5.1 (c)).

• To ensure a smooth transition between two consecutive candidate documents in a story,

DifStoryGen relies on two types of similarities: (a) embedding similarity and (b) overlap of

generated keywords for two consecutive candidate documents. Keywords are generated for

each document based on an encoder-decoder model between embedding and words, rather

than on the words appearing in the documents.
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5.2 Problem Description

Storytelling is the task of creating a sequence of documents from a corpus, such that the ordering

of the documents in the chain represents the evolution of events and entities in that story [77, 39,

16, 96, 92, 38, 34, 11, 8].

For a document collection D, a story S is defined as:

∃S ⊆ D, s.t. ∀di ∈ S =⇒ f(di, di+1) > θ, s.t. T (di) ⩽ T (di+1) (5.1)

where f() is a user-specified function and θ is an acceptable criteria to consider to consecutive

documents, di and di+1, connected in story S. T (di) is the timestamp of document di.

Earlier storytelling formulations in the literature [77, 39, 38, 11] did not include the timestamps

in the definition of a story as a part of the story generation algorithm, instead considering pruning

approaches to select stories that follow a reasonable timeline.

5.3 Methodology

The pipeline of the DifStoryGen framework is illustrated in Figure 5.2. DifStoryGen starts with

extensive preprocessing involving document embedding generation, TF-IDF computation, and

preparing a keyword generator neural network from embeddings. The story generator involves

(1) a diffusion-based generative model to generate a new document in a coming timestamp, (2)

a clustering component that is used as a condition of the generative model, and (3) a candidate

document selector to find the next most suitable document, if any. The following subsections

explain the components of DifStoryGen.

5.3.1 Data preprocessing

Before involving the core of the DifStoryGen model, the dataset goes through a series of processing:

(a) generate an embedding vector ed for each document d, using a pre-trained large language

model E(d), BERT, in this chapter, (b) to fit the embeddings in compact and reasonable memory
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space, construct an encoder-decoder arrangement of layers to reduce the size of the embeddings,

(c) compute a TF-IDF vector, TF (d) for each document d, and (d) train a neural network to

generate TF-IDF vector TF (d) given an embedding vector ed of document d.

The neural network to generate TF-IDF from embedding vectors is later used in the core

of DifStoryGen to realize prominent words of a generated embedding vector where no original

document exists.

Our method incorporates contextual document embeddings to capture a document’s subtle

semantic and syntactic differences. It leverages the Bidirectional Encoder Representations from

Transformers (BERT) framework to generate a contextual representation for each document.

BERT is adept at generating a comprehensive embedding vector for each word and provides a

distinct ecls vector from the final layers of its encoders, encapsulating the entire document. Our

storytelling algorithm uses this ecls vector to represent each document contextually.

d = {w1, ..., wn} → E(di) = (ecls, e1, ..., en, esep)

∀di, dj ∈ D, i ̸= j ⇔ Ecls(di) ̸= Ecls(dj)
(5.2)

Where di and dj are two documents from the corpusD. The contextual representation for these two

documents Ecls(di) and Ecls(dj) cannot be equal as far as these two documents are not identical.

This requirement guarantees a unique contextual representation for each document in the corpus.

Incorporating keywords in addition to document embedding enriches the representation of

a text. Keywords act as beacons, emphasizing core themes and offering a direct, interpretable

route to determining the document’s main ideas. Although embedding yields a rich, subtle textual

content characterization, keywords can help recognize the stories’ central themes.

We use an encoder-decoder architecture to reduce the size of contextual document embeddings

generated by this large language model to distill the most crucial information from the high-

dimensional embeddings into a more compact form. By compressing embeddings, the encoder-

decoder model also reduces the noise in the document embedding. This transformation leads to a

more robust contextual representation of documents in the corpus.

Given these advantages, we have developed a multi-layer neural network specifically designed

to extract keywords from a document embedding.
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∀dj ∈ D,Ecls(dj) = ecls ∧ ∀wi ∈ V, (wi, [0..1]) ∈ vtf−idf

mlp(µ) : ecls → vtf−idf

(5.3)

Where w is a term in a document d, and D is the corpus, which is a collection of documents.

mlp() represents a deep neural network with a set of parameters µ to generate a TF-IDF vector:

vtf−idf for document d using contextual document embedding ecls.

Our multi-layer neural network is designed to take a document’s contextual embedding vector

and generate a corresponding TF-IDF vector as its final output. The input to this model is the

output from the contextual document embedding, and it returns in a TF-IDF vector with the size

of the corpus’s vocabulary, V . The network employs three dense layers and leverages the Adam

optimizer to accomplish this. It learns to transform a contextual document embedding into a

TF-IDF vector through training on all the documents in the corpus.

Later in our process, this model will extract key terms from a hypothesis text by processing its

document embedding as generated by a conditional diffusion model. These extracted keywords

will function as features to enhance our proposed algorithms, offering an additional dimension

that complements the rich detail encoded within the document embedding.

5.3.2 Conditional generative diffusion model

DifStoryGen trains a generative diffusion model to predict potential future documents in a narrative

sequence. The algorithm will need a model that can generate a document embedding of Monday

(as an example of a future timestamp), given a document from Sunday and an indication of a topic

for the generated document embedding of Monday.

A forward diffusion process (a standard Markov process) involves the following data: an

embedding vector edti from timestamp ti (Sunday), the embedding, e
d
t(i+1) (Monday), and the

centroid of the cluster where e
d
t(i+1) exists. The noise is only gradually added to e

d
t(i+1) , keeping

edti and the centroid fixed in the Markov process. For s steps, there will be s pairs of input and

output combinations for each document e
d
t(i+1) . Figure 5.3 illustrates the process.

The forward process in the conditional diffusion model is defined as:
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Figure 5.3: Illustration of the conditional generative diffusion model.

q(di+1
s |di+1

s−1, C
i+1, E(di)) = N (di+1

s ; βs + di+1
s−1) (5.4)

In the forward diffusion process, the model gradually adds noise to the data di+1
0 (original

document in ti+1) over a sequence of steps s to produce di+1
s , and a reverse diffusion process

which generates samples from the noise by conditioning on the cluster center Ci+1 and E(di). βs

are noise levels at each step, and N represents the normal distribution.

For training the model, we provide the noisy version of the data prepared during forward

diffusion in the input and the previous, less noisy version of forward diffusion in the output. Note

here that the model trains on how a Monday document can be generated from noise given a Sunday

document and a centroid of Monday. The centroid reflects the topic of the generated document

because otherwise a document from the corpus can be generated.

The reverse process, which is what we train the model over the documents on the corpus, is:

pθ(d
t+1
s−1|dt+1

s , Ci+1, E(di)) = N (dt+1
s−1;µθ(d

t+1
s , Ci+1, E(di)), σ2

sI) (5.5)

75



Here, µθ is a neural network with parameters θ, typically an encoder-decoder architecture for

text data. The function predicts the mean of the distribution of dt+1
s−1 given dt+1

s and conditions

Ci+1 and E(di), while σ2
s is the variance of the reverse process at step s, which is often learned or

fixed as a function of βs.

To sample from the model, we start with noise dS ∼ N (0, I) and apply the reverse process

conditioned on Ci+1 and E(di) to obtain d0 in timestamp i+ 1.

di+1
0 ∼ pθ(d

i+1
0 |Ci+1, E(di)) (5.6)

In the context of a diffusion model, conditions should ideally offer a concise yet comprehensive

overview of the data they represent. Centroids from k-means clustering fit this criterion.

Determining a reasonable value for K in k-means clustering often requires analytic efforts in

the absence of previous knowledge about data. Centroids that are distinct from one another better

represent the corpus. Conversely, centroids that closely resemble each other represent similar

topics and hence indicate redundant clusters.

In Figure 5.4, the distribution (with a boxplot) of cosine similarity between all-pair centroids

for different k averaged over each data timestamp. The plot demonstrates that as the number of

clusters increases, the average similarity between clusters has the tendency to decrease in the

beginning. With a large number of clusters, the average similarity does not change much, but the

variation of similarities starts to increase. That is, the boxes tend to grow bigger with larger k,

from k=6. This necessitates a process to select a reasonable value for the number of clusters, k.

To find a reasonable value for k at timestamp t, we maximize the intra-cluster distance and

minimize the inter-cluster distance at each timestamp t. Maximizing Λ in Equation 5.7 ensures

that we have high-quality clusters that are distant from each other in each timestamp.

Λ(d, c, C) =
1

k|Ci|

∑k
i=1

∑
d∈Di

k
sim(d, ci)∑

i ̸=j sim(ci, cj)
(5.7)

where Ci is the set of documents in cluster i. |Ci| is the number of documents in cluster i, and d is

a document in cluster i. ci is the centroid of cluster i in timestamp t and sim(d, ci) is the cosine

similarity between document d and centroid ci.
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Figure 5.4: The average cosine similarity between all pairs of cluster centroids against different

numbers of clusters, k. The green line is average. Each boxplot represents the distribution of the

centroid similarities. kmeans clustering was used to cluster the documents of each timestamp with

different k.

Noising process: In a diffusion model, the number of steps for noise addition and the

magnitude of the noise itself are two critical hyper-parameters that significantly affect the quality

of the generated text. Careful selection of a number of steps can ensure that the training phase

later is not over-trained with too much noise-to-noise data in the input. That is, we expect our

training data to capture how to transition text in a small amount. A large number of iterations in the

noising process will result in more noise-to-noise data rather than capturing the text into noisy-text

transition. To define when to stop creating more pairs of instances of data and noisy data, we

design a formula that computes the ratio of two elements for each document: (1) similarity between

the original document and complete noise and (2) similarity between the original document and

computed noise added so far iteratively. The ratio is then averaged over all documents. Equation

5.8 provides the ratio.

1

K

K∑
i=1

Cosine(ei, [N (0, I)])

Cosine(ei, [ei + (s− 1)η ×N (0, I)])
∼ 1 (5.8)

Where ei is a document embedding of document di and η is a scaling factor (usually much smaller

than 1.0) applied to each step of noising. s is the iteration number, and K is the number of
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documents in the training set. The ratio is less than 1 in the beginning and will increase over

iterations because the denominator decreases. The blue line in Figure 5.5 shows the denominator,

reflecting that the similarity between the original document and the noisy document monotonically

decreases. The green line marks where the average ratio for all documents becomes 1.0. The

orange line marks the number of steps where the blue and green lines are crisscrossed. For Figure

5.5, we used more than 8k documents and a noise scaling factor, η = 0.025, that resulted in 115

steps to train the diffusion model. After creating the data for diffusion, we proceed to the training

phase of the conditional diffusion model.

5.3.3 Story generator

Algorithm 2 outlines the generator, StoryGen, which is a document search mechanism that starts

at document m within timestamp i and navigates towards document n at timestamp j, where

j > i. The sequence of documents in this path, starting from document m and ending in document

n, constitutes a story spread across different timestamps. The story generator traces a path

and strategically selects documents that exhibit high similarity to the story’s main narrative,

maintaining evolution and coherence simultaneously.

The conditional generative diffusion model aids in predicting the following document in the

sequence, effectively forecasting the narrative’s progression. The distributed attention similarity

mechanism, as seen in Figure 5.6, is another crucial feature in our search algorithm, which ensures

that selecting the upcoming documents in the story is not just based on the last documents in the

story but all documents in the story, weighted by their contribution to the core storyline and their

temporal distance. We explain the components below.

Initializing the StoryGen algorithm:

The search process in the StoryGen algorithm is initiated with a seed document. StoryGen

selects the initial timestamp i, corresponding to the seed document, and proceeds to continue the

story through documents associated with the following timestamps, all of which are greater than

or equal to i. As the story develops, the algorithm constructs and continually updates a set of
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Algorithm 2 StoryGen(D, dseed, Ei, TF, T, Cx, θ, α, β)

1: D={d1, .., dk} is a document collection.

2: S={s1, ..., sm} is a chain of documents in story s.

3: dseed is the initial document for the story.

4: Ei={e1, ..., ek} is a set of document embeddings of documents in timestamp i.

5: TF={tf1, ..., tfk} is a collection of keywords in D.

6: T={t1, ..., tp} is a collection of timestamps in D.

7: Cx={c1, ..., cz} is a collection of centroids in tx .

8: θ is the minimum acceptable similarity between di and dj in story S.

9: α maximum similarity accepted for the generative model.

10: β the constant value for the temporal drift.

—————————————————

11: S ← ϕ

12: dselected ← dseed

13: S ← dselected

14: storyLine← TF (dselected)

15: harvesting ← True

16: for ti in T = {t1, ..., tn} do

17: while harvesting do

18: pool = Diffusion(Ci, Ei, dselected)

19: for x, y in pool do

20: if Sim(x, y) > α then

21: pool.remove(y)

22: end if

23: end for

24: candidate = Max(pool)

25: similarity = 0

26: for dj in D
ti+1 do

27: for si in S = {s1, ..., sn} do

28: wi = TF (si)× TF (storyLine)

29: wi = wi × (1− β)(n−i)

30: similarity+ = wi × Cosine(si, candidate)

31: end for

32: distAttnResults← (similarity, dj)

33: end for

34: sim, dj = Max(distAttnResults)

35: if sim > θ then

36: dselected ← dj

37: S ← dj

38: Update(storyLine, dj)

39: else

40: harvesting ← False

41: end if

42: end while

43: end for
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keywords that represent the story’s main entities and characters.

This keyword set is derived from the top-N TF-IDF scores, with TF[:N ](S) across all documents

in the story S that has been constructed so far. With each new document di added to the story,

this set is updated—a weighted update that assigns a τ weight to the existing keywords in the

past documents. This weighted update technique (Equation 5.9) allows the narrative elements and

entities within the story to evolve dynamically as the story is forming.

TF (S) = (1− τ)× TF[:N ](S) + τ × TF[:N ](di) (5.9)

Generating hypothetical document: In the next step, StoryGen clusters documents within

the next timestamp and retrieves the cluster centroids. As explained earlier, these centroids

represent the various topics or ideas that might emerge in the following timestamps. The algorithm

dynamically determines the number of clusters using the method described earlier (Equation 5.7).

The diffusion model utilizes the centroids with the last document’s embedding vector in the

story as conditions to generate hypothetical document embeddings representing the potential

next documents in the story as shown in Equation 5.5. The conditions ensure that cohesive new

documents are generated that flow well with the ongoing story.

The conditional diffusion Network ψ generates M document embeddings from the two given

conditions, Ci+1 and E(di). To maintain diversity and reduce redundancy, StoryGen filters

generated embeddings, eliminating highly similar generated document embedding vectors, as

formulated in Equation 5.10.

∀ei, ej ∈ ψ(Ci+1, E(di))⇔ Sim(ei, ej) < ϑ (5.10)

where, ϑ is a similarity threshold.

StoryGen generates TF-IDF of the newly generated document embeddings from the neural

network we trained over corpus documents (Subsection 5.3.1). We pick the generated document

with the highest TF-IDF-based weighted Jaccard similarity with the last document. The generative

model ensures contextual similarity at the embedding level, and our selection using TF-IDF

ensures content overlap between the last document and the generated document.
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Figure 5.5: The detection of an optimal number of steps for the generative diffusion model during

training data creation. The cosine similarities between the original documents and documents with

added noise at each step are plotted.

Figure 5.6: Distributed Attention Similarity calculates the contribution of each document to the

story generated so far.
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StoryGen uses the selected generated document to find the most relevant document in the

following timestamps to add to the story.

To select the next document, argmax of distributed attention similarity between the documents

in the next timestamp and the selected generated document embedding vector is used (Equation

5.11).

di ∈ S ⇔ f(dc, S) > γ ∧ di = argmax(distAttn(S, dc)) (5.11)

Where dc is a document embedding vector generated by diffusion model ψ, and di is the best

candidate picked by distributed attention in timestamp t, which satisfies requirements γ. Next, we

explain the distributed attention similarity function.

Distributed attention similarity mechanism:

Unlike previous storytelling algorithms in the literature, which applied similarity measure-

ments only to the latest document during story progression, ignoring the storyline’s historical

context, DifStoryGen uses a distributed attention similarity mechanism. The distributed attention

incorporates other documents within the story constructed so far based on their contribution to the

main story and in which timestamps they are positioned.

Distributed attention is a weight vector to quantify each document’s impact on a story’s

ongoing narrative. Leveraging these weights helps StoryGen maintain a coherent narrative with a

smooth evolution of entities.

Equation 5.12 calculates the distributed attention similarities, which is a vector of similarities

between a candidate document dc for the story S constructed so far.

distAttn(S, dc) =
1

|S|

|S|∑
i=1

(1− α)|S|−i ×
∑

TF(S)× TF(si)
|V |

× Cosine(E(dc), E(si)) (5.12)

where TF () is a function to retrieve the TF − IDF vector of a document d with vocabulary V .

α is a temporal drift parameter to assign weights based on the distance of the head of the story.

Cosine(E(dc), E(si)) calculates the similarity between document embedding vectors of si in

story S and candidate document dc.

Harvesting documents for the story chain:
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At the last step of the StoryGen algorithm, the model utilizes the computed distributed attention

similarity vector to select the document that most aligns with the hypothetical sample generated

by the diffusion model. If this document’s similarity is greater than a certain threshold, which

we call the StoryGen threshold, the document is considered the next document in the story.

Then, the algorithm updates the storyline keyword sets (Equation 5.9) and repeats the process

for the following timestamps. If the similarity is less than the threshold, the model ignores that

timestamp, repeating the process with the next timestamp to look forward to collecting other

relevant documents.

The StoryGen threshold is adjustable and can be modified in various storytelling applications.

Assigning for a lower threshold allows the story to cover broader topics, including a variety of

entities. On the other hand, a higher threshold narrows the focus, keeping the storyline tightly knit

around a few entities and characters.

5.4 Conclusions

This chapter presented DifStoryGen (Diffusion-based Story Generator), a novel storytelling algo-

rithm that leverages a diffusion model and distributed attention mechanism to construct a story

chain from a collection of documents. DifStoryGen provides a narrative that maintains a consis-

tent theme, tracks the evolution of events and entities, and generates hypothetical intermediate

documents to connect temporally distant documents due to missing a supporting document. Also,

it uses contextual similarity rather than direct word overlap in its search process to form the story

chain. The next chapter 6 will evaluate the algorithm’s effectiveness using diverse metrics and

analyze the impact of its individual components.
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Chapter 6

Experimental Analysis: DifStoryGen

6.1 Introduction

In this chapter, I demonstrate a series of experiments designed to evaluate the effectiveness of

DifStoryGen and its individual components in constructing cohesive story chains. We introduce

different evaluation metrics and discuss DifStoryGen’s performance across two datasets, The

New York Times articles and PubMed abstracts. Additionally, we conduct an ablation study to

determine the contribution of each component in this algorithm. Also, we analyze how integrating

DifStoryGen into different classification and clustering tasks can enhance the performance of

these downstream tasks.

6.1.1 Evaluation metrics

We use different evaluation metrics to assess the quality of stories: the Hit@K metric, the

Dispersion Coefficient, the Story Evolution Coefficient, and storyStretch, which are described

below.

6.1.1.1 Hit@K for content overlap between consecutive documents

To determine the flow of entities in a story from start to end, we use an average of Hit@K of all

consecutive pairs of documents in the story, where a hit refers to the overlap of any of the top k

highest TF-IDF entities of each of i-th and (i+ 1)-th document in the story. Hit@K is either 1 or

0, based on whether there is a hit or not.

For example, hit@10 determines whether any shared keywords exist among the top 10 highest
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TF-IDF keywords between a pair of consecutive documents. If the story length is 15, there are 14

such consecutive pairs, and if hit@10 is 1 for 11 pairs and 0 for the rest, then the average Hit@K

will be 11/14. In our experiments, we used hit@10, hit@30, and hit@50 to examine the overlap of

entities in three different levels between consecutive documents in a story.

6.1.1.2 Dispersion coefficient for coherence and separation

Dispersion coefficient [11] measures the extent of overlap between consecutive documents within a

narrative while penalizing overlaps between non-consecutive documents. A dispersion coefficient

of 1.0 indicates that overlaps are exclusively found between each consecutive pair of documents

in the story. The coefficient value decreases as the narrative begins to exhibit content overlaps

among non-consecutive documents. Contrarily, a coefficient of 0.0 indicates a complete absence of

overlaps in consecutive document pairs, with all overlaps occurring only between non-consecutive

pairs of a certain threshold.

The dispersion coefficient of a story chain {d0, d1, ..., dn−1} is defined by the following two

formulae 6.1 and 6.2.

disp(di, dj) =


1

n+i−j
, if normdist(E(di), E(dj)) < θ.

0, otherwise.
(6.1)

where,

Ω = 1− 1

n− 2

n−3∑
i=0

n−1∑
j=i+2

disp(di, dj) (6.2)

Where θ is an adequate distance threshold for evaluating a story. For calculating the normdist, So-

ergel distance, cosine dissimilarity, or any other normalized dissimilarity between two documents,

E(di) and E(dj) can be used.

In our experiments, we calculate the dispersion coefficient by measuring the similarity between

two contextual document embedding vectors within a story.

6.1.1.3 Story Evolution Coefficient (SEC) for measuring evolution

In order to assess a story’s evolution, two main aspects must be considered:
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• The degree of overlap between consecutive documents in a story: Insufficient overlap

between two consecutive documents results in a discontinuity in the story, indicating a lack

of evolution.

• The degree of change between consecutive documents: If consecutive documents are too

similar, there might not be enough progress to support the development of an evolving

narrative.

While the dispersion coefficient incorporates both overlaps between consecutive documents

(coherence) and the difference of non-consecutive documents (separation and hence evolution),

the change of concepts is not incorporated.

The Story Evolution Coefficient (SEC) [60] reflects these criteria as an evaluation metric.

SEC reaches its maximum value at a specific level of similarity between consecutive documents,

before and after which the function should decrease rapidly to penalize both lower and higher

levels of similarity between consecutive documents. The function’s peak is represented by τmax, a

parameter empirically determined where random pairs of documents have reasonable content and

contextual vector similarity overlap.

Figure 6.1(a) illustrates the relationship between the overlap in terms (words) and the cosine

similarity among document pairs. For each level of term overlap, there is a boxplot that represents

the distribution of contextual cosine similarities. The blue dashed line indicates the number of

document pairs corresponding to various amounts of term overlap. This experiment randomly

selected 200 documents, each sharing at least one word with another document (after removing all

stopwords) in the set, resulting in 9,900 pairs. The observation demonstrates that a single word

overlap corresponds to a median contextual vector cosine similarity of approximately 0.79. As the

overlap in terms increases from left to right in Figure 6.1(a), the median cosine similarities also

tend to increase. The dashed blue line further reveals that pairs of documents sharing around 19

words are the most common, with the distribution of these pairs resembling a Gaussian curve.

The maximum word overlap is 48, and only about 1% of the pairs have more than 37 word

overlaps. Based on this observed study, we consider that more than 37-word overlaps can be
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Figure 6.1: (a) Number of term overlapping vs. cosine similarity between pairs of documents.

A boxplot of contextual cosine similarities is shown at each term overlap. The blue dashed line

shows how many pairs of documents are found with a certain number of term overlaps. (b) The

functional distribution of Story Evaluation Coefficient (SEC of Equation 6.3) with respect to

cosine similarity values.
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considered as evolution being stuck and less than three overlaps being not enough content overlap.

A 37-word overlap is equivalent to a median contextual similarity of 0.89, as shown by τmax in

Figure 6.1(a).

The Story Evolution Coefficient (SEC) is a metric designed to peak at τmax, representing the

optimal contextual similarity between two consecutive documents in a narrative. Figure 6.1(b)

presents the formula outlined in Equation 6.3, which we use to calculate SEC for a collection of

stories.

Story Evolution Coefficient (SEC) includes the evolution of entities in a story by incorporating

overlaps between consecutive documents and variations between them. Story Evolution Coefficient

is story S and it is defined by:

SEC(S) =
1

(n− 1)|S|

|S|∑
s=1

n−1∑
i=1

(φτmax − φCosine(E(dsi ), E(dsi+1)) + ρ)

×exp(−φ(τmax − Cosine(E(dsi ), E(dsi+1))))

(6.3)

Where ei is the contextual embedding vector for document i and ρ is the parameter to set the scale

SEC from zero to a desired maximum value.

Our experiments use the range [0, 1] for SEC. φ is a parameter to tune SEC to ensure a reward

for the similarity between a pair of consecutive documents if the similarity is between zero to τmax.

For similarities greater than τmax, SEC penalizes the overall score of a story for any consecutive

document pair with high similarity because high similarity might prevent evolution.

6.1.1.4 Evaluation of the stretch of stories

Short stories usually do not cover the evolution of entities, as our goal is to identify narratives that

demonstrate gradual evolution over time. Conversely, analyzing long stories can be challenging

due to their complexity and the potential for obvious connections within the document sequence

over the entire timeline. In a collection of narratives originating from randomly selected seed

documents, both shorter and longer stories are considered inadequate compared to medium-length

stories.
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To evaluate whether narratives are distributed normally in terms of length, it is essential to

evaluate all stories generated from seed documents and analyze their length distribution. An

effective storytelling algorithm should mostly produce stories whose lengths are close to the

average, with only a few narratives shorter or longer than this mean value. This approach ensures

a balanced distribution of story lengths, reflecting the characteristics of real-world stories.

6.2 Experimental Results

To evaluate the performance of our storytelling model, we used two different datasets: 1) the New

York Times articles dataset and 2) the PubMed dataset. In our experiments, 10,000 New York

Times articles from 2022 under the “international” and “US” news categories are used to compare

the performance of DifStoryGen against other storytelling baseline models. Meanwhile, we used

Pubmed dataset to benchmark the impact of incorporating DifStorygen into various classification

and clustering baseline models. This dataset contains 50,000 abstractions of biomedical and life

sciences literature, with 14 different MeSH terms used as labels.

In this experiment, we compare DifStoryGen with other storytelling algorithms using three

approaches: (1) static Doc2Vec embedding model, (2) contextual BERT embedding model, and

(3) entity-set overlap-driven similarities (Jaccard).

Our research aims to address several fundamental questions to evaluate the effectiveness of the

DifStoryGen model:

1. How well does DifStoryGen perform compared to other models in terms of content flow,

dispersion, and evolution? (Section 6.2.2)

2. What is the impact of distributed attention on the stories generated by DifStoryGen? (Section

6.2.3)

3. What is the impact of DifStoryGen on enhancing the performance of classification and

clustering models? (Section 6.2.4)
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4. Are all major components of DifStoryGen absolutely required? (Section 6.2.5)

5. How does a story change when distributed attention is applied? (Section 6.2.6)

6. How does a narrative of a story generated by DifStoryGen impact LLMs applications?

(Section 6.2.7)

Addressing these questions is crucial for advancing the field of automated storytelling and enhanc-

ing models’ abilities to generate coherent, engaging, and robust narratives.

6.2.1 Implementation details

The DifStoryGen utilizes the base version of the BERT model, which has 12 transformer blocks

and 12 layers of attention heads. This base model, containing more than 110 million param-

eters and receiving 768 tokens, then generates a 768-dimensional embedding vector for each

corresponding token. In our storytelling algorithm, we use the CLS token of BERT as the docu-

ment embedding vector for every document, representing a text uniquely with all contextual and

semantics information encoded into that vector.

To align with the requirements of the contextual document embedding generator, every doc-

ument is truncated to a maximum of 512 tokens. This resizing is accomplished by applying a

WordPiece tokenizer, which reduces the length of each document to fit within the specified token

limit.

Initial documents (seed documents) serve as the narrative’s foundation. The algorithm identifies

and selects temporally relevant documents to these initial points. We randomly selected a thousand

articles as seed documents for this experiment. These seed documents are selected from the first

quarter of 2022 to construct a narrative containing various events and entities.

6.2.2 Quality evaluation of stories

In this subsection, we use the story quality evaluation metrics that we outlined in Section 6.1.1.

Plots in Figure 6.2 portray the results using Hit@K, dispersion coefficient, and SEC.
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Figure 6.2: (left) Average Hit@10 ratio – the sum of Hit@10 for all consecutive pairs in a story

divided by the number of consecutive pairs. (middle) Dispersion coefficient averaged over all

stories for different ranges of thresholds (right) Story Evolution Coefficient, SEC, averaged over

all stories at different similarity threshold τmax.

For the experiment in this section, we generated 1000 stories, but some of the generated stories

were sub-stories of longer stories. We removed any sub-story generated by the same storytelling

method. DifStoryGen, Doc2Vec, BERT, and entity-set-based approaches ended up with 471, 467,

459, and 415 stories, respectively.

Table 6.1: A comparison of different storytelling methods in terms of Hit@K, dispersion coefficient,

and SEC.

Model H@10 H@30 H@50 disp32 disp64 disp128 SEC32 SEC64 SEC128

BERT Storytelling 0.09 0.18 0.46 0.53 0.88 0.95 0.76 0.95 0.97

doc2vec Storytelling 0.04 0.05 0.23 0.48 0.47 0.53 0.70 0.65 0.71

Entity-set based 0.36 0.61 0.79 0.76 0.76 0.76 0.85 0.85 0.85

Storytelling

DifStoryGen w/o Attn 0.42 0.69 0.86 0.92 0.94 0.95 0.93 0.94 0.94

DifStoryGen 0.40 0.64 0.81 0.83 0.82 0.84 0.85 0.86 0.87

Figure 6.2 (left) shows an average Hit@10 against the length of stories. BERT and Doc2Vec

have low Hit@10, indicating that the consecutive pairs of documents in the stories had less

commonality in entities. BERT produced shorter stories, while Doc2Vec produced longer ones.

The entity-set-based approach has a high Hit@10, but that is to be expected because entity-set-
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based storytelling focuses on maximizing entity overlaps for constructing stories. Our approach,

DifStoryGen (the blue line), exhibits an even higher Hit@10 than entity-set-based storytelling,

demonstrating that DifStoryGen does not compromise basic story properties despite consideration

of context and other crucial elements.

Figure 6.2 (middle) demonstrates the average dispersion coefficients of all the stories produced

by each method as a function of distance threshold, θ. A higher dispersion coefficient refers to

coherent (better) stories with lesser distance between consecutive documents and more distance

between non-consecutive documents. BERT has the highest dispersion coefficient. This is

because the downstream storytelling algorithm focused on lower context embedding distance

when selecting the next document from a set of candidates. DifStoryGen focused on several

factors, including embedding distance and how generated hypothetical documents can diffuse to

the concept of the next document and attention. To maintain the evolution aspect of DifStoryGen,

it compromises the dispersion coefficient but not as much as the Doc2Vec and entity-set-based

approaches. Note that the underlying embedding space of our DifStoryGen is still the BERT

embedding. On top of BERT similarity, DifStoryGen considers other essential elements to generate

evolving stories rather than stories that merely exhibit high dispersion.

Figure 6.2 (right) demonstrates a similar trend as Figure 6.2 (middle). BERT has the highest

SEC, indicating high evolution. Our DifStoryGen method has the second highest one. However,

this evolution metric relies heavily on the embedding change, thereby favoring BERT more than

DifStoryGen. Referring back to Figure 6.2 (left), BERT has a very low average Hit@K, indicating

that even though stories generated by BERT have high evolution content-wise, the evolution is not

reflected in consecutive documents in the BERT-based storytelling approach.

DifStoryGen has a balance of Hit@K, dispersion, and evolution, generating more meaningful

evolving stories than other approaches. This subsection includes the results of DifStoryGen with

distributed attention. The following subsection provides a comparative study on the impact of

attention in DifStoryGen.

The Story Stretch metric evaluates the length distribution of stories created by a storytelling

algorithm. Stories shorter than average may lack sufficient detail for event evolution, while those
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Figure 6.3: Log of distribution of stories length by different models for stories containing less

than 25 documents

exceeding average length could include irrelevant content, complicating entity analysis. Stories

naturally vary in length, with most following a normal distribution known as Gaussian distribution.

Figures 6.3 and 6.4 present the length distribution for different models. Analysis of length

distributions for different models, like BERT and Doc2Vec, shows these models typically produce

stories within a narrow length range. Conversely, the entity-set-based and our proposed model

cover a wider range of story lengths. The entity-set model shows a uniform distribution across

lengths, whereas the proposed model’s distribution resembles a normal (Gaussian) distribution,

with more stories close to the average story length. This finding suggests that stories generated by

the DifStoryGen model reflect real-world narrative structures more accurately, making them more

suitable for various downstream applications.

6.2.3 Impact of distributed attention in DifStoryGen

Table 6.1 compares the baseline models against two versions of DifStoryGen, one with and the

other without distributed attention. The table provides story quality metrics using Hit@10, Hit@30,

Hit@50, Dispersion Coefficient, and Story Evolution Coefficient using BERT vectors compressed
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Figure 6.4: The different lengths of stories generated by different models

to lengths of 32, 64, and 128 using an encoder-decoder neural network. In the previous section

(Section 6.2.2), we used vectors of length 128.

As shown in Table 6.1, DifStoryGen performs better with and without distributed attention

in Hit@K evaluation with k=10, 30, and 50. DifStoryGen without distributed attention performs

slightly better than DifStoryGen with distributed attention, which is to be expected because the

attention mechanism ensures content overlap with past documents of the storyline generated

thus far in the process, resulting in slightly lesser content overlap between consecutive pairs of

documents.

When embedding vectors of length 32 are used, DifStoryGen exhibits the highest dispersion

(0.92 for DifStoryGen without attention and 0.83 with attention.) Computationally, we desire to

design methods that will provide superior results using smaller vectors, and DifStoryGen seems to

provide better dispersion with short vector lengths. As the vector size increases to 64 and 128,

DifStoryGen, without attention, exhibits an equal or higher dispersion coefficient than BERT.

However, DifStoryGen, with attention, exhibits a slightly lower dispersion coefficient but still

reasonably high values (0.82 with a vector length of 64 and 0.84 with a vector length of 128).

Similar trends are observed with SEC. At a vector length of 32, DifStoryGen with and without

attention is superior. With increased vector size, BERT starts to exhibit higher evolution scores.

Note that BERT’s content overlap (Hit@K) values are quite small compared to DifStoryGen’s,
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indicating that DifStoryGen is the superior model in terms of balancing all the quality metrics.

6.2.4 DifStoryGen Downstream Applications

In this subsection, we want to analyze the impact of incorporating the DifStoryGen model into

downstream tasks such as classification and clustering. In this way, we can show the capabilities

of DifStoryGen to support downstream tasks.

In this subsection, we analyze the impact of integrating the DifStoryGen model on downstream

tasks, including classification and clustering. We highlight DifStoryGen’s potential to strengthen

these tasks. This analysis will demonstrate how DifStoryGen enhances the performance and

efficiency of downstream applications, proving its utility in supporting a range of analytical

techniques.

First, we store all stories generated from initial documents. Then, we identify the adjacent

articles for each document to develop a new embedding vector composed of the original contextual

embedding vector and the average contextual embedding of these neighbors. A neural network

is designed to map each document’s embedding to these new embedding vectors containing the

information from neighbors. During the classification and clustering process, we generate these

vectors for every document in a dataset. In the following subsections, we show that this approach

boosts the performance of different models by leveraging the enriched context of each document’s

neighbors.

6.2.4.1 Experiments on Classification

In our study, we deployed the DifStoryGen algorithm to augment the contextual embeddings

of documents with the goal of boosting the performance of various classification models. Our

experiments utilized the PubMed dataset, which contains 50,000 abstracts from the biomedical

and life sciences literature. Given its rich collection of biomedical literature, the PubMed dataset

was an excellent choice for evaluating the impact of our embedding augmentation approach in an

area where precision is important.
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Table 6.2: Accuracy, Precision, Recall, and Accuracy for different classification models with and

without incorporating DifStoryGen algorithm

Accuracy Precision Recall F1

DifStoryGen embedding w/o w/ w/o w/ w/o w/ w/o w

SVM 0.80 0.84 0.71 0.82 0.80 0.84 0.74 0.82

KNeighbors Classifier 0.77 0.82 0.74 0.81 0.77 0.82 0.75 0.81

Decision Tree 0.79 0.82 0.71 0.80 0.79 0.82 0.75 0.80

Logistic Regression 0.79 0.85 0.73 0.82 0.79 0.85 0.74 0.83

Gaussian Naive Bayes 0.78 0.82 0.73 0.80 0.78 0.82 0.74 0.81

Stochastic Gradient Descent 0.79 0.84 0.71 0.82 0.79 0.84 0.73 0.82

Random Forest 0.78 0.84 0.75 0.82 0.78 0.84 0.76 0.82

Gradient Boosting 0.79 0.83 0.74 0.81 0.79 0.83 0.75 0.81

First, we selected 10,000 articles from this dataset for story generation using DifStoryGen,

which were used to train our encoder-decoder model. This model was then employed to predict

the embedding vectors for the neighboring articles of the remaining 40,000 articles, which were

used for classification and clustering tasks. We used a split ratio of 75% for training and 25% for

testing in our classification experiments. The enhanced embeddings, derived from the neighbors

within the stories generated by DifStoryGen, were merged with the original context embeddings

produced by LLMs.

This fusion was designed to create a more comprehensive representation of the textual doc-

uments in our dataset, incorporating additional historical context of the text. Our innovative

embedding strategy was aimed at providing more precise and reliable classification results in our

experiments.

In this study, we evaluated eight diverse classification models to determine their performance,

with and without integrating the DifStoryGen algorithm. These models were selected due to their

wide range of applicability across different classification tasks. The configurations and parameters

for each model were carefully selected to optimize performance, and all used Min-Max Scalar to
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Table 6.3: False-positive, true-positive, false-negative and True-negative rates for all classification

models with and without DifStoryGen

FPR TPR FNR TNR

DifStoryGen embedding w/o w/ w/o w/ w/o w/ w/o w

SVM 0.19 0.12 0.28 0.43 0.72 0.57 0.80 0.88

KNeighbors 0.21 0.17 0.38 0.51 0.62 0.48 0.79 0.83

Decision Tree 0.14 0.11 0.24 0.37 0.76 0.63 0.86 0.87

Logistic Regression 0.24 0.14 0.30 0.48 0.70 0.52 0.76 0.86

Gaussian Naive Bayes 0.27 0.16 0.33 0.46 0.66 0.53 0.73 0.84

Stochastic Gradient Descent 0.25 0.11 0.30 0.41 0.70 0.59 0.75 0.89

Random Forest 0.19 0.13 0.36 0.46 0.64 0.54 0.80 0.87

Gradient Boosting 0.20 0.15 0.31 0.48 0.69 0.52 0.80 0.85

normalize the input features. These models are detailed as follows:

• Support Vector Machine (SVM) with RBF Kernel: This model utilizes the Radial Basis

Function (RBF) kernel, known for its effectiveness in handling non-linear data.

• K-Neighbors Classifier: Set with three neighbors for its classification.

• Decision Tree Classifier: It is configured with a maximum depth of 3 to prevent overfitting.

• Logistic Linear Regression Classifier: This model applies a logistic regression approach

and is optimized for binary classification tasks.

• Gaussian Naive Bayes Classifier: Leveraging the assumptions of Gaussian distributions in

feature likelihoods.

• Stochastic Gradient Descent (SGD) Classifier: Employing a linear Support Vector Ma-

chine (SVM) loss function for an efficient classification.

97



• Random Forest Classifier: With 100 estimators and a minimum sample split of 2, this

ensemble model combines multiple decision trees to improve classification accuracy and

control over-fitting.

• Gradient Boosting Classifier: Set with a maximum depth of 1 and 100 estimators, this

model focuses on boosting weak learners, optimizing for both bias and variance.

Each model was selected to represent a range of machine learning approaches, from simple to

complex and from linear to non-linear classifiers. By applying these models to the same dataset

and comparing their performances with and without DifStoryGen’s augmented embeddings, we

aimed to measure the impact of enriched contextual information on classification accuracy across

various algorithmic strategies.

Table 6.3 shows the performance metrics of incorporating the DifStoryGen algorithm with

various classification models such as Accuracy, Precision, Recall, and F1 score. The results high-

light notable improvements across all metrics when the models are integrated with DifStoryGen.

Specifically, the accuracies of the classification models were enhanced up to 0.06, precisions were

increased up to 0.11, recalls were increased up to 0.06, and F1 scores improved up to 0.09 in some

experiments. It is important to note that these classification models were already fine-tuned, where

the original accuracies were around 0.80 even before utilizing DifStoryGen. These enhancements

are significant considering the already high performance of the models and show the impact of the

DifStoryGen model in various classification models. This demonstrates not only the effectiveness

of DifStoryGen in enriching the models’ input data but also highlights its potential to refine the

accuracy of highly tuned classification models.

Table 6.3 presents the results of incorporating DifStoryGen into different classification models,

focusing on the False Positive (FP), False Negative (FN), True Positive (TP), and True Negative

(TN) rates. The results from these experiments indicate that applying DifStoryGen across all

tested classification models leads to improvements in both TP and TN rates up to 18% in

some classification models while concurrently decreasing FP and FN rates in some models by

20%. Such enhancements in these rates are significant in fields where precision and recall are
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Figure 6.5: The impact of different embedding sizes in True-positive and False-positive True-

negative, and False-negative rates in Classifier models

critical, highlighting the importance of DifStoryGen’s contribution. By enriching the models with

additional information, DifStoryGen not only helps in accurately identifying relevant instances

(TP) and correctly rejecting irrelevant ones (TN) but also minimizes the instances of mistakenly

flagged irrelevant instances (FP) and overlooked relevant instances (FN). This improvement in

performance metrics highlights DifStoryGen’s value, especially in applications where the cost of

errors is high, and the quality of classification decisions is crucial.

6.2.4.2 Time and Space Complexity of DifStoryGen

The DifStoryGen framework integrates different components to construct cohesive and coherent

narratives. Notably, BERT is essential to constructing contextual embedding vectors for texts.

This feature optimizes the computational efficiency of DifStoryGen by employing a pre-trained

Large Language Model instead of training a Deep Neural Network for generating embedding

vectors. The time complexity for this operation is denoted as O(L×N2 × d), where L represents

the number of layers in the BERT model (set at 16), N represents the maximum number of tokens
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in the input sequence, and d indicates the dimensionality of the hidden states within the BERT

model. This approach reduces the computational load, as generating contextual embeddings costs

O(N2), which is significantly less than training a neural network for the same purpose.

Deep neural networks, such as the TF-IDF generator and the conditional diffusion model, are

employed throughout the storytelling process to generate the most appropriate candidates from a

corpus. Despite the significant training expenses associated with the diffusion model, its inclusion

in DifStoryGen is crucial as it connects temporal distant documents to enhance the coherence of

the generated stories.

The time complexity of the TF-IDF generator involves both encoding and decoding stages,

with costs of O(Lenc ×N) and O(Ldec ×M), respectively. M and N are the sizes of input and

output vectors, and L is the number of layers in each component. This complexity directly depends

on the size of the embedding vectors, which can be minimized due to the model’s capability to

encode information in shorter vectors.

The conditional diffusion model is the most process-consuming component in this model, but

it is an essential component due to its importance in bridging the gaps in temporally distanced

documents. The time complexity of the training stage is S×E×N×(O(Lenc×N)+O(Ldec×M)),

where N is the size of the training dataset, M is the size of the latent representation, E is the

number of epochs, S is the number of steps to add noises, and Lenc and Ldec are the number

of layers in encoder and decoder. The time complexity to generate a new embedding vector is

O(S × (O(Lenc×N) +O(Ldec×M))), less than the training step.

It is essential to mention that applying DifStoryGen for data analysis typically focuses on

analyzing the entities offline. Given the critical nature of these applications, the priority is to

improve the accuracy of the story chains rather than the processing time. This approach guarantees

that the narratives align with sensitive applications’ needs.

Also, the distributed attention similarity component, which includes past documents during

the candidate selection process, offers flexible parameters to balance the depth of context and

processing efficiency. This parameter can be adjusted to optimize its current DifStoryGen’s time

complexity of O(N2).
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We analyzed the impact of embedding size on these models’ performances to analyze the time

and space complexity of DifStoryGen incorporated into downstream classification and clustering

tasks. Figure 6.5 shows the True Positive Rate (TPR) and False Positive Rate (FPR) across

three different classification models, with embedding sizes ranging from 128 to 4. The figure

shows that the TPR and FPR for models employing contextual embeddings are near those of

DifStoryGen embeddings incorporated when the embedding size is 256. However, a significant

difference appears as the embedding size is reduced. These experiments highlight the strength of

DifStoryGen models in maintaining performance even with reduced embedding sizes compared

with models relying just on contextual embedding vectors.

This discovery is essential, especially for applications constrained by computational resources

or storage capacities. The DifStoryGen model’s ability to retain effectiveness with smaller

embeddings makes it advantageous for scenarios requiring efficiency without compromising model

accuracy. This characteristic of DifStoryGen models opens up new possibilities for deploying

advanced classification models in environments where utilizing larger embedding vectors might

not be feasible.

6.2.4.3 Experiments on Clustering

In this part, we focus on the performance of clustering algorithms using contextual document

embedding vectors produced by BERT compared to those augmented with DifStoryGen embedding

vectors. Figure 6.6 shows the silhouette scores for k-mean clustering at embedding sizes of 512

and 256. Recognizing the variability of clustering outcomes. In this experiment, we performed

each clustering ten times for various values of k and presented the results in a boxplot format to

capture the range of outcomes.

The results indicate that clustering with DifStoryGen embedding vectors achieves significantly

higher silhouette scores for all cluster sizes (k) in both embedding sizes, 512 and 256. This

enhancement indicates that DifStoryGen embedding vectors contribute to a more defined and

cohesive cluster structure, improving the contextual embedding vectors generated by LLMs alone.

These findings highlight the value of the DifStoryGen algorithm outcome in the domain of
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Figure 6.6: Comparison Silhouette of original and DifStoryGen embeddings. The left figure

compares the average silhouette scores for different clustering K for embedding size 512. The

right figure is using embedding 256 in clustering

clustering by showing that it significantly enhances the clustering structure. This improvement

suggests that augmenting DifStoryGen embedding vectors makes the representation more helpful

in capturing the underlying patterns and relationships within the data, making them essential

for tasks that rely on the quality and interpretability of cluster formations, such as document

categorization and data organization.

6.2.5 Ablation study

To analyze the effectiveness of different components of DifStoryGen, we compare it with several

of its variations: without distributed attention, without diffusion-based generative model, and

without the dynamic keyword set. Table 6.4 shows Hit@K with k=10, 30, and 50, overall

average dispersion coefficient, and overall average SEC. DifStoryGen without distributed attention

similarity has the highest average values in all evaluation metrics. The embedding vectors had a

length of 128 for this ablation study.

DifStoryGen, without a diffusion-based generative model, exhibits lesser evaluation values

than DifStoryGen in terms of all Hit@K and SEC but not in dispersion coefficient. DifStoryGen
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Table 6.4: Evaluation with different variants of DifStoryGen. H@K in the table refers to Hit@K.

Variations H@10 H@30 H@50 disp SEC

w/o Attention 0.42 0.69 0.86 0.95 0.94

w/o Diffusion 0.33 0.61 0.79 0.90 0.86

w/o keyword set 0.16 0.34 0.55 0.95 0.96

DifStoryGen 0.40 0.64 0.81 0.84 0.87

without a diffusion-based generative model has a 0.9 dispersion coefficient compared to 0.84 of

DifStoryGen. This is because the number of longer stories was reduced when we inactivated the

diffusion from DifStoryGen. The diffusion-based document vector helps connect two documents

to generate longer stories. Therefore, the model without diffusion with a slight improvement in

the dispersion coefficient and deteriorating Hit@K and SEC is undesirable.

The approach without the dynamic keyword set has lower Hit@K but a higher dispersion

coefficient and SEC compared to DifStoryGen. Despite its higher dispersion coefficient and SEC

values, its extreme lack of content coherence (the lowest Hit@K values) makes the removal of the

dynamic keyword set undesirable.

Table 6.4 suggests that DifStoryGen has the best evaluation metrics without distributed

attention. The inclusion of attention (which is the regular DifStoryGen) will reduce the values a

bit. The purpose of distributed attention in the story is to ensure that the overall content seen so far

is not forgotten during the story generation process.

To examine the impact of attention in DifStoryGen, we need another measure that reflects

content remembrance as the story progresses. We use average Hit@K with the start document

for each document in the story to measure the content remembrance of a story. With K=10, 30,

and 50 for Hit@K, DifStoryGen (with attention) exhibits average Hit@K values of 0.28, 0.64,

and 0.91, respectively, whereas its attention-removed version has the values 0.17, 0.53, and 0.88.

That is, DifStoryGen carries the content themes more toward the story’s end than its distributed

attention-less version. Depending on requirements, an analyst might choose to use DifStoryGen
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with distributed attention or without attention.

Figure 6.7: The length of stories generated by different variants of the proposed model

Figure 6.7 shows the story length distribution produced by different model versions. The

variant without a diffusion network generates shorter stories, primarily because it terminates the

narrative when essential documents are missing from the dataset, or there is a temporal gap in

the story coverage. This results in shorter stories generated by a storytelling algorithm without a

diffusion component. Contrarily, the model version that does not utilize a keyword set constructs

narratives without adhering to a specific set of entities. This approach leads to longer stories as it

lacks commitment to the presence of entities and characters in the story.

The DifStoryGen and DifStoryGen without distributed attention similarity construct diverse

and comprehensive stories, leading to more reliable narratives. However, the stories from DifSto-

ryGen generally have a higher average length than those from DifStoryGen without distributed

attention. This is due to the constraints applied by the distributed attention similarity component in

DifStoryGen, which focuses the narrative more narrowly on the previous documents of the story.

Figure 6.8 shows that the version of the storytelling algorithm that does not include keyword

sets loses its focus on the evolution of entities, concentrating mainly on document embedding. This

approach leads to poor performance in the Hit@K metrics across various entities and characters,

although it does enhance the embedding coherence between consecutive documents. This outcome
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Figure 6.8: The hit@k, k= 10, 30, 50 for different variants of DifStoryGen

illustrates the critical role of incorporating keyword sets in maintaining a balanced focus on entity

evolution and embedding consistency.

Figure 6.9 illustrates the performance of our TF-IDF generator in capturing keywords from

a document’s contextual embedding. It shows the overlap between keywords from the original

text and the keywords for the exact text generated from document embeddings for over 2000

documents. The plot indicates that, as the top K words increase, there is a notable rise in overlap,

which signifies that many keywords from the embeddings align with the original text. The terms

that do not match are often synonyms or semantically related to the main topic, indicating that

the contextual embedding effectively captures related concepts, even if not a direct match. The

boxplot elements also suggest a variance in the keyword overlap for different documents, which is

natural considering the diversity of language and context across various texts.

The following subsection provides an example of how distributed attention impacts a story

with the same start.
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Figure 6.9: Keyword overlap between Original TF-IDF and generated TF-IDF vectors from

document embedding vectors for different ranges of K

6.2.6 Case study with topic – Russia-Ukraine

In this case study, we create two stories using DifStoryGen with and without distributed attention.

The seed document we selected covered an article from the New York Times, published on January

10, 2022, about the start of the Russia-Ukraine War, originally titled ”Can the West Stop Russia

From Invading Ukraine?” The word cloud of the document is reflected on the left of both the

stories in Figure 6.10. Figure 6.10 (top) shows that the last document of the story generated by

DifStoryGen without distributed attention was published on September 13, 2022, which was way

after the start of the war. The original title of the end document in the story is ”Challenges for

Russia and China Test a ‘No-Limits’ Friendship.”

On the other hand, Figure 6.10 (bottom), which DifStoryGen generates with distributed

attention, ends with an article published on February 21, 2022, titled ”The U.S. still sees an

invasion as imminent, dimming hopes for a Biden-Putin summit”. The story ended three days

before the war started on February 24, 2022.

Since the topic of the starting document was about stopping the war and involving NATO and

the West, the attention mechanism stopped the story when there was no more continuation of what
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Figure 6.10: Word clouds of documents in two stories using DifStoryGen without and with

distributed attention. The first documents are the same in both stories. The last document of

the story generated by DifStoryGen is an intermediate document in the story without distributed

attention.

had been propagated from the start. The story at the top, which did not include distributed attention,

continued through the start of the war and many other documents, ending with a document seven

months later.

Depending on the application, whether the user or the analyst needs to progress through a story

or not, DifStoryGen can deactivate or activate its distributed attention mechanism.

6.2.7 Case study with large language model – Explanatory by LLM

This case study highlights the impact of Large Language Models (LLMs) like the Generative Pre-

trained Transformer (GPT). These models understand, generate, and summarize text, exhibiting

unparalleled capabilities that can radically change content creation and curation processes.

LLMs can generate concise, coherent, and engaging summaries of complex narratives fed
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Table 6.5: Stories generated by different algorithms from same initial document

a) Storytelling algorithm: DifStoryGen without Attention

NYT23941(2022-01-10)→ NYT24459(2022-01-13)→ NYT25005(2022-01-18)→ NYT25770(2022-01-24)→ NYT26008(2022-01-25)→ NYT26622(2022-01-30)→

NYT11389(2022-02-02)→ NYT11852(2022-02-05)→ NYT12216(2022-02-08)→ NYT12696(2022-02-11)→ NYT13145(2022-02-14)→ NYT13234(2022-02-15)→

NYT14054(2022-02-20)→ NYT14149(2022-02-21)→ NYT14497(2022-02-24)→ NYT15080(2022-02-28)→ NYT521(2022-03-03)→ NYT785(2022-03-05)→

NYT1453(2022-03-10)→ NYT1544(2022-03-11)→ NYT2273(2022-03-16)→ NYT2644(2022-03-18)→ NYT3046(2022-03-22)→ NYT3308(2022-03-24)→

NYT3731(2022-03-27)→ NYT4175(2022-03-30)→ NYT7445(2022-04-02)→ NYT7970(2022-04-06)→ NYT8138(2022-04-07)→ NYT9071(2022-04-14)→

NYT9429(2022-04-18)→ NYT9787(2022-04-20)→ NYT10179(2022-04-23)→ NYT10396(2022-04-25)→ NYT20030(2022-05-09)→ NYT20165(2022-05-10)→

NYT21055(2022-05-16)→ NYT21468(2022-05-19)→ NYT22015(2022-05-24)→ NYT22841(2022-05-30)→ NYT28233(2022-06-12)→ NYT28764(2022-06-15)→

NYT29611(2022-06-21)→ NYT30183(2022-06-24)→ NYT30843(2022-06-29)→ NYT15412(2022-07-02)→ NYT15484(2022-07-03)→ NYT16265(2022-07-10)→

NYT16450(2022-07-12)→ NYT17542(2022-07-19)→ NYT18942(2022-07-30)→ NYT31533(2022-08-03)→ NYT32194(2022-08-08)→ NYT32601(2022-08-11)→

NYT33543(2022-08-18)→ NYT33940(2022-08-22)→ NYT34566(2022-08-27)→ NYT34979(2022-08-31)→ NYT5787(2022-09-12)→ NYT5909(2022-09-13)

b) Storytelling algorithm: DifStoryGen

NYT23941(2022-01-10)→ NYT24459(2022-01-13)→ NYT25005(2022-01-18)→ NYT25579(2022-01-21)→ NYT25830(2022-01-24)→ NYT26008(2022-01-25)→

NYT26622(2022-01-30)→ NYT11297(2022-02-02)→ NYT11852(2022-02-05)→ NYT12216(2022-02-08)→ NYT12696(2022-02-11)→ NYT13145(2022-02-14)→

NYT13357(2022-02-15)→ NYT14066(2022-02-20)→ NYT14149(2022-02-21)

c) Storytelling algorithm: BERT

NYT23941(2022-01-10)→ NYT26544(2022-01-29)→ NYT11630(2022-02-04)→ NYT28461(2022-06-14)→ NYT16873(2022-07-14)→ NYT32899(2022-08-13)→

NYT4724(2022-09-04)

d) Storytelling algorithm: doc2vec

NYT23941(2022-01-10)→ NYT24912(2022-01-18)→ NYT26567(2022-01-29)→ NYT11252(2022-02-01)→ NYT11447(2022-02-03)→ NYT12562(2022-02-10)→

NYT14358(2022-02-23)→ NYT979(2022-03-07)→ NYT1791(2022-03-12)→ NYT7288(2022-04-01)→ NYT9729(2022-04-20)→ NYT10030(2022-04-22)→

NYT21517(2022-05-19)→ NYT28379(2022-06-13)→ NYT29449(2022-06-20)→ NYT30133(2022-06-24)→ NYT15555(2022-07-05)→ NYT16545(2022-07-12)→

NYT31257(2022-08-02)→ NYT32684(2022-08-11)→ NYT4907(2022-09-06)

e) Storytelling algorithm: Entity-set based

NYT23941(2022-01-10)→ NYT24421(2022-01-13)→ NYT24772(2022-01-16)→ NYT25579(2022-01-21)→ NYT25770(2022-01-24)→ NYT25963(2022-01-25)→

NYT26358(2022-01-28)→ NYT11277(2022-02-01)→ NYT11789(2022-02-04)→ NYT11896(2022-02-06)→ NYT12640(2022-02-10)→ NYT13145(2022-02-14)→

NYT13652(2022-02-17)→ NYT14054(2022-02-20)→ NYT14189(2022-02-22)→ NYT14895(2022-02-25)→ NYT15065(2022-02-27)→ NYT495(2022-03-03)→

NYT784(2022-03-05)→ NYT1340(2022-03-09)→ NYT1734(2022-03-11)→ NYT1938(2022-03-14)→ NYT2689(2022-03-19)→ NYT3037(2022-03-22)→

NYT3587(2022-03-25)→ NYT3818(2022-03-28)→ NYT3992(2022-03-29)→ NYT7443(2022-04-02)→ NYT8003(2022-04-06)→ NYT8403(2022-04-09)→

NYT8751(2022-04-12)→ NYT9165(2022-04-15)→ NYT9276(2022-04-16)→ NYT9561(2022-04-19)→ NYT10241(2022-04-24)→ NYT10479(2022-04-26)→

NYT11125(2022-04-30)→ NYT19356(2022-05-03)→ NYT19499(2022-05-04)→ NYT19855(2022-05-07)→ NYT20542(2022-05-12)→ NYT20860(2022-05-14)→

NYT21055(2022-05-16)→ NYT21675(2022-05-20)→ NYT21807(2022-05-22)→ NYT22307(2022-05-25)→ NYT22841(2022-05-30)→ NYT27086(2022-06-02)→

NYT27224(2022-06-03)→ NYT28176(2022-06-11)→ NYT28309(2022-06-13)→ NYT28769(2022-06-15)→ NYT29314(2022-06-19)→ NYT29786(2022-06-22)→

NYT30183(2022-06-24)→ NYT30568(2022-06-28)→ NYT15412(2022-07-02)→ NYT15550(2022-07-04)→ NYT15823(2022-07-07)→ NYT16368(2022-07-11)→

NYT16498(2022-07-12)→ NYT16917(2022-07-15)→ NYT17708(2022-07-20)→ NYT18093(2022-07-23)→ NYT18149(2022-07-24)→ NYT18661(2022-07-28)→

NYT18942(2022-07-30)→ NYT31726(2022-08-04)→ NYT32122(2022-08-07)→ NYT32510(2022-08-10)→ NYT32908(2022-08-13)→ NYT33051(2022-08-15)→

NYT33317(2022-08-17)→ NYT33940(2022-08-22)→ NYT34412(2022-08-25)→ NYT34534(2022-08-26)→ NYT34979(2022-08-31)→ NYT4401(2022-09-01)→

NYT4882(2022-09-06)→ NYT5379(2022-09-08)→ NYT5814(2022-09-12)→ NYT5933(2022-09-13)→ NYT6383(2022-09-16)→ NYT6804(2022-09-20)
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Table 6.6: ID, Date, and Title of News articles selected by DifStoryGen as a story from seed

document 23705.

ID Date Title

23705 2022-01-07 The Anguish of Afghans in Sacramento

11394 2022-02-02 Over a Million Flee as Afghanistan’s Economy Collapses

12804 2022-02-11 Taliban Free 2 Westerners Working for U.N., Days After Quiet Detention

9362 2022-04-17 Death Toll From Pakistani Airstrike Rises to 45, Afghan Officials Say

19060 2022-05-01 With Spate of Attacks, ISIS Begins Bloody New Chapter in Afghanistan

32859 2022-08-12 We Can’t Claim Mission Accomplished’: A Long Road for Afghan Refugees

34605 2022-08-27 Judge Recommends Rejecting Bid by Sept. 11 Families to Seize Frozen Afghan Funds

Figure 6.11: Word clouds of documents in a story generated by DifStoryGen to use in LLMs. This

story was generated from seed document 23705 covering the events after the U.S. withdrew its

forces from Afghanistan
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Table 6.7: The first level of summaries generated out of 7 documents

Summaries generated by GPT model by using stories from DifStoryGen

Summary level 1

In the wake of the United States’ withdrawal from Afghanistan in the summer of 2021, a series of reports have

emerged, chronicling the profound impact on Afghans both within and outside their homeland. These stories,

published between January and August 2022, provide a window into the varied experiences of Afghan individuals

navigating a new reality post-U.S. exit. Yousafzai, a refugee who has made a new home for himself and his family

in the Sacramento suburb of Elk Grove, embodies the resilience and adaptation of Afghans resettling in the U.S.

Despite establishing a successful insurance business, Yousafzai and his community feel the acute pain of

separation from loved onesstill in Afghanistan, compounded by a collapsing banking system that hampers their

ability to provide financial support. The dire economic situation in Afghanistan has forced individuals like Najaf

Akhlaqi to undertake perilous journeys in search of a better life, highlighting the desperation that drives many to

flee their homeland. Meanwhile, incidents of Taliban detaining foreign and Afghan workers, despite subsequent

releases, underscore the volatile security situation and the unpredictable governance by the Taliban. Abdul Sultani,

another refugee who found sanctuary in London, represents the hope and determination of Afghans to rebuild their

lives abroad, even as they contribute back to their families and communities still facing uncertainty in Afghanistan.

Cross-border tensions between Afghanistan and Pakistan have escalated, with Pakistan urging the Taliban to

control militant activities, reflecting the broader regional security implications of the Taliban’s return to power.

The resurgence of terrorist attacks, notably by the Islamic State’s affiliate targeting civilians, signals a troubling

escalation of violence, threatening the fragile peace that followed the Taliban’s takeover. Abdul Wajed Ahadi’s

story of escape and subsequent anxiety over his family’s safety back in Afghanistan encapsulates the personal

toll and ongoing crisis faced by those who served alongside U.S. forces, now vulnerable to Taliban reprisals.

Together, these reports paint a complex picture of hope, resilience, despair, and ongoing challenges for Afghans,

as they navigate the aftermath of a two-decade-long conflict and the sudden shift in their country’s fate.
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Table 6.8: The second level of summaries generated out level one summarize by GPT model total

129 words

Summaries generated by GPT model by using stories from DifStoryGen

Summary level 2

Following the U.S. withdrawal from Afghanistan in 2021, stories from January to August 2022 reveal the diverse

challenges and adaptations of Afghans, both within their country and as refugees abroad. Afghans like Yousafzai

in Sacramento and Abdul Sultani in London have built new lives, yet remain deeply connected to those they’ve

left behind, facing a collapsed economy and limited means to offer support. The economic desperation has pushed

individuals to dangerous migrations, while the Taliban’s unpredictable governance raises concerns over security

and freedom. Cross-border tensions with Pakistan and a resurgence of terrorist attacks underscore the region’s

volatile security landscape. Despite these adversities, stories of hope and resilience emerge as Afghans abroad

strive to rebuild and support their communities, reflecting a complex narrative of struggle, adaptation, and the

enduring spirit of the Afghan people in the face of ongoing crisis.

Table 6.9: The third level of summaries generated out level two summarize by GPT model total 70

words

Summaries generated by GPT model by using stories from DifStoryGen

Summary level 3

After the U.S. withdrawal from Afghanistan in 2021, Afghans face varied challenges. Resettled Afghans like

Yousafzai and Abdul Sultani adapt to new lives abroad but grapple with concerns for relatives in an economically

crippled Afghanistan. Migrations, Taliban governance issues, regional security tensions, and terrorist attacks

highlight the ongoing instability. Despite hardships, the resilience and hope among Afghans persist, showcasing

their efforts to rebuild and support their communities amidst the crisis.
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with a series of documents produced by a storytelling algorithm. This ability revolutionizes how

content is consumed and curated, making it easier for users to access and engage with a vast

collection of stories without dedicating the time required for long-form reading. Hence, this

enhances discoverability and engagement, offering quick and informative summaries for content

consumers and providing content creators with an effective tool to present their work to wider

audiences.

The integration of LLMs into storytelling platforms marks the beginning of a new chapter

in content consumption, where the efficiency of algorithmic summarization is integrated with

storytelling algorithms. Our case study includes a demonstration, represented in Figure 6.11

and Table 6.6, showing how a document chain generated by the DifStoryGen algorithm can be

effectively summarized at three different levels. The results of summarizing a story in three

different levels by a GPT model are present in Tables 6.7, 6.8, and 6.9. These results show the

models’ capability to maintain text coherency and continuity across varying summarization levels,

illustrating the potential of LLMs to enhance the storytelling domain.

In this scenario, a chain of documents generated by DifStoryGen has different lengths, ranging

from 151 to 348 words. The analysis of entity overlap, explicitly focusing on the top 75 keywords

across each document and each summarization level, revealed overlaps of 0.19, 0.11, 0.08, 0.09,

0.13, 0.17, and 0.08 for the first level, indicating an acceptable level of keyword retention for a

summary with a size of 342 words. The second level of summarization showed overlaps of 0.09,

0.04, 0.05, 0.08, 0.09, 0.08, and 0.08 as the size of the summary decreased to 139 words, while

the third level presented overlaps of 0.09, 0.05, 0.04, 0.07, 0.04, 0.05, and 0.07, with a more brief

summary of just 70 words.

The stories produced by DifStoryGen displayed significant keyword overlap with the GPT-

generated summaries: 0.85 with the first level, 0.52 with the second, and 0.41 with the third. This

suggests a strong coherence between the original documents and the most detailed GPT summary,

with reduced overlap as the summaries become more concise.

The keywords overlap with different documents in the story, and summary levels decrease

with a similar ratio, indicating the importance of each document generated by DifStoryGen.
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This demonstrates that no redundant text exists in the story and highlights the capability of both

DifStoryGen and GPT models to generate coherent and relevant summaries of narratives.

6.3 Conclusions

Our proposed model introduces a storytelling framework, DifStoryGen, for constructing a story

chain from an archive of timestamped documents. This framework leverages a contextual em-

bedding mechanism, a diffusion-based generative model, and a distributed attention technique to

generate coherent and evolving stories. Experiments demonstrate the effectiveness of DifStoryGen

in building stories from a corpus and incorporating it in downstream tasks such as clusterings and

classifications.
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Chapter 7

Concluding Remarks

Current research focuses on enhancing storytelling algorithm techniques to produce more coherent

and cohesive narratives. This trend extends significant opportunities across various domains. (1) In

intelligence analysis, storytelling algorithms play a crucial role in identifying potential threats by

uncovering hidden connections between entities and events. (2) In the field of scientific research,

these algorithms assist in discovering previously unrecognized evolutions among studies. (3)

Moreover, within trend analysis, they are instrumental in forecasting future events by tracking the

evolution of a particular entity or event. The growing field of storytelling algorithms promises

to improve classification and clustering in downstream tasks, highlighting the critical role of

storytelling models in different domains.

This dissertation has achieved notable progress in tackling existing challenges and filling the

research gaps in storytelling algorithms. It introduces innovative techniques, including utilizing

contextual embedding from large language models, presenting the role-based aspects of words,

bridging data collection gaps with generative diffusion models, and employing distributed attention

mechanisms to effectively control a story’s narrative. These advancements offer a new perspective

on storytelling and language model utilization for future research.

7.1 Key achievements of this dissertation

In this dissertation, I introduce an innovative approach to storytelling by leveraging advanced

computational models to enhance narrative coherence and thematic consistency. The following

points present the main contributions of this work:

1. Contemporary Context with BERT: Utilizing the Bidirectional Encoder Representations
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from Transformers (BERT), this approach captures the contemporary context of every word,

significantly improving the ability to trace a story’s evolution over conventional models.

2. Role Identification of Words: By analyzing the localized distribution of words within

documents and the vector similarities of their neighbors, I create localized, cluster-based

contexts that define the roles of words within the narrative, adding depth and precision to

the story’s structure.

3. Lesser number of user-settable parameters: My models require less user intervention,

with just a single set of user-settable parameters to be defined. This simplicity enables ease

of use without compromising the algorithm’s effectiveness.

4. Dynamic Storytelling Mechanism: The proposed algorithms dynamically generate narra-

tives by integrating neural network embeddings with a newly designed storytelling search

process, ensuring seamless temporal progression without the need for any post-processing

techniques.

5. Intermediate Document Generation: To bridge gaps between documents, DifStoryGen

employs a diffusion-based document generation model. This innovative component gener-

ates intermediary texts, enabling the discovery of omitted concepts in a story even when

direct connections are not apparent in the existing corpus.

6. Distributed Attention Similarity for Theme Consistency: In the storytelling process,

DifStoryGen uses distributed attention similarity to maintain thematic consistency, ensuring

that the evolving narrative remains coherent and focused. This mechanism engages all

documents belonging to a story in the search process based on their contribution to the

story’s core.

7. Smooth Transition Between Documents: The transition between documents is facilitated

by evaluating both embedding similarities and the overlap of generated keywords, which

are derived not directly from the document’s text but through an encoder-decoder model.
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This dual similarity approach ensures a natural flow and logical progression between story

segments.

Together, these features represent a significant advancement in automated storytelling algo-

rithms. By addressing the limitations of previous models and introducing mechanisms for deeper

contextual analysis, role identification, generative diffusion model, distributed attention similarity,

and dynamic narrative construction, my dissertation sets a new standard for automated storytelling

systems.

7.2 Limitations

Storytelling models are great tools in data mining and machine learning. However, like other

models in these fields, they have some limitations. If we want to use these models to extract

knowledge from text, track the evolution of an entity or event, or integrate them into other

downstream tasks, it’s essential to understand their limitations.

• Parameter sensitivity: Storytelling models often depend on user-defined parameters,

which can be challenging to optimize and may need to adapt better to different datasets or

applications. I introduced two storytelling models that are less dependent on user-defined

parameters in this dissertation. However, having an expert in the field is still crucial to

fine-tuning these parameters for specific tasks. Incorrect parameter settings can result in

poorly constructed narratives.

• Limited scalability: Many storytelling models have difficulty managing large datasets

due to computational limitations or inefficiencies in processing large volumes of text.

The CoRBS and DifStoryGen models use pre-trained large language models to create

contextual embeddings, which reduces time complexity and improves scalability. However,

the conditional diffusion model and role generator still pose challenges. We recommend

selecting a diverse, representative subset of data from extensive collections for the training

phase in these models to make them more compatible for a large scale of data collection.

116



• Ethical and bias challenges: The proposed models use large language models that may have

ethical and other types of biases inherent in their training. These biases can be transferred

to any task utilizing these embedding spaces. To mitigate these biases, we can employ

techniques like normalizing the space by adjusting the vectors or retraining these large

language models using diverse data.

• Ambiguity in natural language: In natural language processing, ambiguity presents a

significant challenge for storytelling algorithms. Words can have multiple meanings based on

their context, making it difficult to identify the actual meaning in a narrative. Additionally,

when trying to analyze or trace the evolution of an entity, collecting similar words or

synonyms will improve the task. These issues can impact the accuracy and coherence

of storytelling models, as they may struggle to distinguish between different senses of a

word or appropriately handle entities with overlapping characteristics. Addressing these

challenges is crucial for developing robust storytelling algorithms that can accurately capture

and convey narratives.

• Incorporating knowledge base: The CoRBS and DifStoryGen models do not utilize a

knowledge base for general tasks, which is a limitation. Incorporating additional information

from a knowledge base could enhance these models for specific applications. We recommend

using a knowledge base to optimize these models more efficiently for specialized tasks.

Addressing these limitations is crucial for improving the effectiveness and applicability of

storytelling models, enhancing their ability to generate coherent, engaging, and accurate narratives

from diverse document collections.

7.3 Future works

My research highlights the abilities of storytelling algorithms to construct more cohesive and

coherent document chains, which are crucial in analyzing the evolution of entities across a

narrative. The methods and components described in my dissertation significantly enhance the
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utility of storytelling models for various downstream tasks – clusterings, classifications, and

predictions–, proposing a robust framework for narrative analysis. Despite these advancements,

the field of automated storytelling algorithms, like all areas of scientific research, offers continuous

opportunities for further development and improvement. Potential directions for future research

and improvement are suggested:

• Segment-Based Storytelling Algorithms: Storytelling algorithms can achieve a finer

narrative by analyzing individual paragraphs or text segments and identifying connections.

This approach allows for more reliable text analysis, potentially leading to more applicable

and coherent stories by connecting segments in different documents.

• Enhanced Contextual Understanding: Incorporating other aspects of language, such

as sentiment analysis, entity recognition, and more, can significantly improve narrative

coherence and the tracking of entity evolution. Incorporating these linguistic features could

lead to a more profound understanding of the text, enabling algorithms to construct more

meaningful and engaging narratives.

• Scalability and Efficiency: Enhancing storytelling models’ scalability and computational

efficiency are crucial for handling larger datasets. This improvement would make narrative

analysis more feasible for big data applications.

• Integration of Multimodal Data: By incorporating various data types, including images,

videos, and audio, storytelling algorithms can offer a more enriched narrative outcome. This

integration could transform storytelling from a purely textual analysis into a comprehensive

multimodal narrative construction.

• Advanced Language Models Integration: Leveraging the latest developments in language

models and natural language processing technologies can further improve the precision and

depth of the narratives generated. Such integration promises to enhance the storytelling

process, making it more accurate and detailed.
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• Tuning Parameters for Storytelling Algorithms: For future work, we recommend ana-

lyzing different text sources to tune the parameters used in the CoRBS and DifStoryGen

models. These algorithms employ various parameters to balance different language aspects,

such as contextual semantics and role aspects of terms. Since these parameters vary across

different types of texts, such as news articles, medical literature, or cyber-security reports,

it’s crucial to identify the appropriate range of values for each specific context. A detailed

study examining how these parameters should be adjusted for different domains would

enhance the effectiveness and adaptability of storytelling algorithms in diverse applications.

• Expert Analysis for Future Storytelling Algorithm Research: For future work, we

suggest incorporating expert analysis into evaluating stories generated by the CoRBS and

DifStoryGen models. While quantitative metrics are currently used to assess the quality of

these narratives, feedback from subject matter experts in different fields could identify areas

where these models are underperforming. Researchers can improve storytelling algorithms

by addressing these shortcomings, ensuring they generate more accurate, coherent, and

contextually appropriate narratives across various domains.

• Ethical and Bias Considerations: It is necessary to address ethical issues and biases within

storytelling algorithms to ensure the fairness and inclusivity of narratives. By actively

mitigating biases and ethical concerns, the field can ensure that stories reflect diverse and

balanced views in describing events and entities.

Addressing these potential research and development areas expands storytelling algorithms’

technical capabilities and application domains. Future progress in these directions promises to

enrich automated storytelling, making it more reliable, inclusive, and effective in generating

coherent and comprehensive narratives for various purposes.
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[54] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous

space word representations. In Proceedings of the 2013 conference of the north american

chapter of the association for computational linguistics: Human language technologies,

pages 746–751, 2013.

[55] Sunny Mitra, Ritwik Mitra, Suman Kalyan Maity, Martin Riedl, Chris Biemann, Pawan

Goyal, and Animesh Mukherjee. An automatic approach to identify word sense changes in

text media across timescales. Natural Language Engineering, 21(5):773–798, 2015.

[56] Syrielle Montariol, Matej Martinc, Lidia Pivovarova, et al. Scalable and interpretable

semantic change detection. In Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics Human Language Technologies.

The Association for Computational Linguistics, 2021.

[57] Antonio Moreno and Teófilo Redondo. Text analytics: the convergence of big data and

artificial intelligence. IJIMAI, 3(6):57–64, 2016.

[58] Usman Naseem, Imran Razzak, Shah Khalid Khan, and Mukesh Prasad. A comprehensive

survey on word representation models: From classical to state-of-the-art word representa-

tion language models. Transactions on Asian and Low-Resource Language Information

Processing, 20(5):1–35, 2021.

126



[59] Yue Ning, Sathappan Muthiah, Ravi Tandon, and Naren Ramakrishnan. Uncovering news-

twitter reciprocity via interaction patterns. In Proceedings of the 2015 IEEE/ACM Interna-

tional Conference on Advances in Social Networks Analysis and Mining 2015, pages 1–8,

2015.

[60] Alireza Nouri and Mahmud Shahriar Hossain. Corbs: A dynamic storytelling algorithm

using a novel contextualization approach for documents utilizing bert features. 2023.

[61] Pascal Oser, Rens W van der Heijden, Stefan Lüders, and Frank Kargl. Risk prediction of
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