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Abstract

Surface soil moisture retrieval from L-band brightness temperature has been developed

for the past decades due to multiple beneficial characteristics of 1-2 GHz frequency bands

for remote sensing of the environment. Numerous microwave emission models have been

proposed for tower and satellite-based operations with successful retrieval of surface soil

moisture and vegetation water content. As a result of the development of cost-effective and

low-mass microwave L-band radiometers such as the Portable L-band Radiometer (PoLRa),

surface soil moisture surveying traditionally developed by satellite missions SMOS and

SMAP can now be developed at local scales, bringing these operations to commercial small

unmanned aerial systems (sUAS) providing high detail resolution retrievals at low ele-

vation (7 m or lower depending on canopy height). Due to its cost and limited access,

low-altitude, sub-orbital L-band dual polarization radiometry operations for soil moisture

retrieval still need further exploration. This study used an sUAS-mounted L-band ra-

diometer and a multispectral camera to model surface soil moisture over irrigated alfalfa

cropland in New Mexico’s Rio Grande Valley. This setting allowed varying soil and veg-

etation moisture conditions, validating with commercial soil moisture probes. This work

compared dual and single polarization algorithms using the single scattering Tau-Omega

(τ -ω) model with a conventional dielectric mixing scheme, a semi-empirical HQN roughness

model and NDVI derived τ to retrieve soil moisture. The calibrated high resolution (4.5

m footprint) dual-polarization retrievals presented superior accuracy for estimating ground

truth moisture under dry conditions with RMSE values between 0.03-0.054 cm3/cm3, and

0.068-0.115 cm3/cm3 after irrigation. Horizontal polarization single retrievals performed

favorably against vertical. This study identified improvements for commercial applications

and highlighted the potential of sUAS to achieve competent soil moisture and vegetation

water content retrievals in semi-arid lands for low canopy land covers.
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Chapter 1

Introduction

Surface soil moisture is critical for understanding soil characteristics, biogeochemical cy-

cles and land-atmosphere interactions, soil suitability for human activities, and floods and

droughts. Several measuring techniques have been proposed for scales ranging from plot to

continental scale, but the highly intricate spatial variability requires complex instruments

and methodologies (Susha et al., 2014). Within this context, remote sensing has advantages

in covering vast areas, reducing manual labor, and accessing difficult locations.

Microwave remote sensing is a valuable method for measuring environmental and object

characteristics using microwaves (Karthikeyan et al., 2017a). This technique has numerous

applications in meteorology, hydrology, forestry, agriculture, and oceanography (Schwank

et al., 2018). Its capability to sense through clouds, smoke, and atmospheric interfer-

ence makes it significant for weather forecasting, climate monitoring, and environmental

research (Calla et al., 2008). Moreover, it can detect features not visible to optical sen-

sors, including atmospheric water vapor, sea surface salinity (Bao et al., 2019), and soil

moisture. These technologies use microwave radiometers or radars on tower, satellite, or

aircraft systems that measure the intensity of the microwaves emitted or reflected by the

Earth’s surface (Karthikeyan et al., 2017b). The collected data is used to create imagery

and other products that can be analyzed to extract information about the observed objects

and environment. L-band radiometers have been identified as a promising approach for

soil moisture retrievals due to their advantageous remote sensing characteristics in the 1-2

GHz frequency range relative to higher frequency bands like X-band and C-band. L-band

frequencies can penetrate deeper into the soil (up to 5 cm) and are sensitive to soil mois-

ture for vegetation water contents up to 5 kg/m2 while protected against electromagnetic
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interference (EMI) by international law (Entekhabi, Njoku, et al., 2010). Unlike radars,

L-band radiometers are relatively insensitive to surface roughness and vegetation scattering

and offer better performance, though at the cost of coarser spatial resolution (Entekhabi,

Njoku, et al., 2010).

Numerous Microwave Emission Models (EM) exist for retrieving various environmen-

tal variables using L-band’s brightness temperature (Tb) data (Karthikeyan et al., 2017a;

Schwank et al., 2018). These models have been successfully applied to different remote

sensing systems for retrieving surface soil moisture, ice wetness, vegetation optical depth,

and vegetation water content (Das et al., 2019; Houtz et al., 2021; Konings et al., 2016;

Srivastava, 2017). Two widely used EM models are the tau-omega (TO) and the L-band

Microwave Emission of the Biosphere (L-MEB), both based on the EM model by Mo et al.

(1982) (Chan et al., 2012; Wigneron et al., 2007). These models are incorporated into the

retrieval algorithms of Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active

Passive (SMAP) missions, respectively. The TO EM model describes the signal measured

in terms of soil, vegetation, atmosphere, and sky emissions. This study utilized the sim-

plest version of the model, which only includes soil and vegetation components used by

the SMOS and SMAP missions. The HQN roughness model initially developed by Wang

and Choudhury (1981) that models surface roughness effects is incorporated, with modifi-

cations made to account for polarization mixing effects (Q), angular effects on reflectivity

(N), and intensity of roughness effects (H). Additionally, the model includes a dielectric

mixing model for precise soil moisture retrievals. Since the 1980s, numerous studies have

been conducted to understand and model the electrical properties of soil, with Topp et al.

(1980) being one of the key authors in this field. Other models have been proposed for

different soil properties and instruments, such as those presented by Karthikeyan et al.

(2017a), Matzler and Murk (2010), and Srivastava et al. (2015).

In recent years, technological advancements have enabled soil moisture measurements at

local scales using drones equipped with low-mass L-band radiometers such as The PoLRa:

Portable L-band Radiometer (Houtz et al., 2020a). The PoLRa provides higher preci-
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sion and maneuverability compared to previous fixed-wing ultra-light radiometers (Acevo-

Herrera et al., 2009; Dai et al., 2016; Dai et al., 2021; McIntyre & Gasiewski, 2007; Valencia

et al., 2008). This has opened up new possibilities for high-resolution soil moisture mapping

with spatial resolution under 6 m, depending on canopy height. However, using L-band ra-

diometry for ground-based soil moisture retrieval in arid regions still needs to be explored,

and further research is needed to realize its full potential.

This Master’s thesis tested soil moisture retrieval models that accurately estimated

surface soil moisture (up to 12 cm depth) using L-band Tb readings in semi-desert soils

under varying humidity conditions with short crops and irrigation schedules. The models

included the assimilation of vegetation-related reflectances from multi-spectral cameras to

enhance the retrievals. The study used dual-polarization L-band data from multiple aerial

missions over a cultivated field in the Rio Grande Valley near El Paso (TX) - Las Cruces

(NM) corridor. Surface soil moisture retrievals were validated with volumetric soil moisture

measurements and compared with 12 cm depth in-situ readings. Additionally, the study

included the retrieval of Vegetation Optical Depth (τ) and Vegetation Volumetric Water

(VWC) content from NDVI, which are linearly correlated. The parameterization schemes

that better captured the spatial variability of soil moisture were recommended based on

the model validation results.
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Chapter 2

Research Questions, Hypothesis, and

Objectives.

2.1 Science Questions

1. How can the retrieval of high-resolution soil moisture from Unmanned Aerial System

(UAS) L-band brightness temperature readings be improved so that an operative model

accurately works across various soil moisture conditions?

2. To what extent can incorporating visible and near-infrared bands to L-band radiometry

operations enhance our understanding of the spectral emissions of the environment and

their relationship with water content in soil and vegetation?

2.2 Hypothesis

The retrieval of high-resolution soil moisture and vegetation water content from Unmanned

Aerial System (UAS) L-band brightness temperature readings can be accomplished across

varying moisture conditions through the calibration of the Tau-Omega (TO) EM roughness

parameters and the utilization of diverse dielectric mixing models. There is a combination

of parameters and models that best retrieve soil water content across multiple moisture con-

ditions and perform well beyond training (i.e., validation). Using an optimization scheme

within the retrieval algorithm will provide a basis for analyzing the sensitivity of the model

performance to each model parameter, allowing to recommend further improvements in

retrievals. Additionally, visible and near-infrared information can: (1) Facilitate the un-
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derstanding of the dual-polarized separation of the Tb and (2) Provide encoded information

to the microwave retrievals during certain (or all) soil moisture condition ranges.

2.3 Objectives

The primary objective of this research is to evaluate the efficacy of Unmanned Aerial

System (UAS) L-band brightness temperature readings, specifically the tuning of Tau-

Omega (TO) EM roughness parameters, in enhancing the retrieval of high-resolution soil

moisture under various water content scenarios. Furthermore, this study investigates the

potential utility of complementary visible and near-infrared observations in estimating soil

moisture. This investigation additionally endeavors to identify areas where various factors

may adversely impact the retrievals and evaluate the capacity of UAS-based data to improve

such retrievals. Ultimately, the research aims to enhance understanding of water dynamics

across spatial and temporal scales.

By achieving these objectives, the study contributes to developing more robust methods

for monitoring soil and vegetation water dynamics, improving the utility and reliability of

satellite-based products.
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Chapter 3

Methods & Data

3.1 Study Area

This study collected soil, meteorological, and multi-spectral data from several aerial mis-

sions and ground sampling stations during different soil moisture conditions within a 49

x 49 m area (Figure 3.1) in an irrigated farm in Chamberino, Doña Ana County, New

Mexico, U.S.A. The selection of this location was favored for its proximity to the UTEP

Campus and the use of a seasonal irrigation scheme. These conditions introduce diverse

soil moisture scenarios, presenting an opportunity for various evaluation values.
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Figure 3.1: Location of the region of interest (ROI), UAS Flight-path lines and
probe manual sampling points (1 to 49) at Doña Ana County, New
Mexico.
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3.2 Instruments

Table 3.1: Specifications of the UAV sensor payloads.

Payloads

Sensors:
Micasense

RedEdge

Portable L-band

Radiometer

DJI Phantom

4 Pro V2.0

camera

Frequency/ Wavelength:

Visible (RGB),

Red Edge,

Near Infrared (NIR)

L-band

(1400–1427 MHz)
Visible (RGB)

Observation Mode:
Snap shot

1280 x 960

Dual-linear

polarizations (H&V)

Snap shot

5472×3648

Nadir angle: Nadir 35.5° to 40.5° Nadir

Beam width: 47.2° H, 35.4° V 36° 84° diagonal

Spatial resolution:
0.08 m

(GSD at 120 m)

4.5 m footprint

at 7 m AGL

0.03 m

(GSD at 120 m)

Table 3.2: Specifications of the moisture sampling equipment.

Moisture sampling

Sensor: HydroSense II Handheld Soil

Accuracy: ±3% VWC in mineral soils

Probe: CS659 (12 cm)
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Two UAVs were used to collect airborne data over the irrigated lands; the DJI hexacopter

M600 Pro carried the L-band radiometer and the multi-spectral camera separately (one

mission each), capturing point data and 5-band images. The quad-copter DJI Phantom

4 Pro V2.0 was used to collect auxiliary RGB pictures. Two portable HSII Campbell

scientific loggers with CS659 12cm soil moisture reflectometer probes were used to capture

volumetric soil moisture values along the sampling points. Table 3.1 presents the primary

payload sensors’ specifications in this study and table 3.2 depicts the specifications of the

moisture sensors used. Additionally, two project measuring stations were used to monitor

15-minute weather variables (GeoSenSE Chamberino 22; Ambient Weather WS-2902), and

5-minute system temperatures and soil moisture(GeoSenSE Chamberino 23; HOBO MX

2303 & MX 2307), to ensure diverse moisture and vegetation scenarios.

3.2.1 DJI Phantom IV and RGB Camera

The Phantom 4 Pro V2.0 is a professional quad-copter developed by DJI with a 1-inch

CMOS sensor camera and an 8.8 mm focal length that collects high-quality imagery for

filming and surveying. This drone has a maximum wind resistance of 10 m/s and an

estimated flight time of 30 minutes. The GPS has a 0.5 m vertical and 1.5 m horizontal ac-

curacy. The system can operate between 0 and 40 Celsius and has a maximum transmission

distance of 6 km in the 5.725-5.850 GHz and the 2.400 GHz-2.483 GHz bands.

3.2.2 DJI M600 Pro sUAS

The Matrix 600 Pro is a professional hexa-copter developed by DJI (see Figure 3.2) with a

5.5 kg payload capability that allows high-quality performance for filming and surveying.

This drone has a maximum wind resistance of 8 m/s and has an estimated flight time of 26

minutes carrying the PoLRa. The 3-antenna GPS has a 0.5 m vertical and 1.5 m horizontal

accuracy. The system can operate between -10 and 40 degrees Celsius and has a maximum

transmission distance of 5 km in the 5.725-5.825 GHz and the 2.400 GHz-2.483 GHz bands.
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3.2.3 Dual Polarization Microwave Radiometer

The Terrarad Tech Portable L-Band Radiometer (PoLRa) shown in Fig 3.2 (a), is a dual-

polarization L-band radiometer that can measure microwave radiation at a frequency of

1.4 GHz. This instrument has a compact, low-mass, stable, simple, and low-power design

that enables its deployment on various platforms such as UAVs, vehicles, towers, poles,

or buildings. It provides calibrated antenna temperatures with 0.14 K resolution at 1 s

integration and 0.6–1.5 K total uncertainty that can be utilized to estimate soil moisture,

sea ice thickness, or other environmental processes (Houtz et al., 2020b). The instrument

weighs 3.8 kg and is mounted on an M600 Pro hexacopter with a total mass of 13.3 kg.

As shown in Fig 3.2 (b), the PoLRa is installed below the drone’s main body with an

inclination of approximately 40◦ to achieve an incidence angle between 30◦ and 50◦.

Figure 3.2: Patch array antenna (a) mounted on the tower during sky measurement;
(b) mounted on the multi-copter drone during flight measurements.
Source: Houtz et al. (2020b).

3.2.4 Multi-spectral Camera

The MicaSense RedEdge-MX is a 12-bit depth multi-spectral camera with five 1.2 MP

imagers and a 5.4 mm focal length. It captures imagery with a horizontal and vertical

Field of View of 47.2 and 35.4 degrees, respectively. It has five bands: Blue, Green, Red,
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Red Edge, and Near-infrared (NIR) with center wavelengths of 475, 560, 668, 717, and 842

nm and bandwidths of 32, 27, 16, 12, and 57 nm. At an altitude of 120 m above the ground

level (AGL), this sensor provides a ground sample distance (GSD) of 8 cm.

3.2.5 HS12 Campbell Scientific Soil Moisture Probe

Four (4) HydroSense II handheld soil moisture sensors with a 0.05 % resolution and 3 %

accuracy (for electrical conductivity below 6.5 dS/M) were employed for in-situ validations.

These sensors use CS659 12 cm dual rod probes. A preliminary evaluation of these probes

was done during UTEP Geospatial Sensing and Sampling of the Environment (GeoSenSE)

laboratory’s Jornada Experimental Range (JER) 2022 campaigns (see 3.3).

Figure 3.3: Comparison of 5 cm surface soil moisture measurement using gravimet-
ric method against 12 cm HSII readings for seven campaigns conducted
during summer 2022 within the USDA Jornada Experimental Range
study site 575 led by PI Moreno.
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3.3 Data

The sensor setup explained in section 3.2 was used in seven missions between August and

October 2023 to obtain airborne data during a wide range of soil moisture values over

different stages of alfalfa growth (10-75 cm), spanning from dry to wet soils (7-45% surface

soil moisture). 2023 campaign dates were Aug. 16th and 24th; Sept. 4th, 13th and 20th;

and Oct. 2nd and 13th. Constant communication was maintained with the land manager

regarding visiting the area during various moisture conditions. The mission crew consisted

of an FAA Part 107 pilot, an observer, and a ground data collector. The linear pattern

shown in 3.1 was designed using the Litchi software, a pioneering UAV way-point mission

planning platform, taking into account the payload characteristics to guarantee multiple

overlaps with the soil sampling scheme.

The DJI Matrice hexacopter was used to collect horizontal and vertical L-band bright-

ness temperature at 7 m AGL (4.5 m footprint); the point data represents the center of the

projected antenna’s footprint. The HSII soil moisture probes were used to collect 12-cm

volumetric water content measurements at 49 points within the measurement grid (Figure

3.1); a second DJI Matrice hexacopter flight plan was used to collect multi-spectral pictures

of the site at 120 m AGL (0.08 m Ground Sampling Distance -GSD). The soil water content

measurements occurred before the initial hexacopter mission and between the subsequent

multi-spectral imaging mission. Additionally, a weather station and an arrangement of

soil sensors were installed to monitor precipitation and irrigation events, soil moisture, and

temperature (soil, canopy, and air) before and during the study period.

3.3.1 Temperature Equilibrium

Diurnal air, canopy, and soil temperature curves were developed to determine the most

appropriate time frame for the microwave retrievals (see Figure 3.4). 15-minute mean

temperature data from July 2023 to October 2023 were analyzed to compute the project’s

best flying hour and temperature. On average, southern New Mexico’s site conditions
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present thermal equilibrium between canopy and soil around 8:43 am, generating a flying

window between 7:33 am and 10:03 am. Therefore, L-band surveying was performed during

this time to optimize the TO EM retrievals. The SMAP and SMOS teams use this approach

to ascertain the time of day when the atmospheric temperature (Tatm), surface temperature

(Tc), and soil temperature (Tg) are approximately equivalent.

Figure 3.4: Mean diurnal temperature across all media from July to Octo-
ber 2023 at the study site. Data was extracted from installed
GeoSenSE Chamberino22 weather station with air sensors at 2m,
canopy at 10cm and soil at 12cm.

3.3.2 Surface Soil Moisture Surveying

A grid of 7 x 7 sampling points within the 49 m x 49 m study area was used to collect

surface soil moisture. These probe readings integrated the volumetric water content from

the surface to 12 cm depth. At least two stable vertical probe readings were averaged

around each sampling point. The insertions were performed to evade cracks in the soil over
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the dominating soil/vegetation conditions around each location. The mean bulk density of

the ROI was 1.5 g/cm3; as indicated by the manufacturer, the sensor was used in general

soil calibration.

3.3.3 Structure from Motion Photogrammetry

Structure from motion (SfM) is a technique that consists of determining the 3D location

of an object using 2D images taken from different locations or multiple cameras (Özyeşil

et al., 2017). One of the precursors for this set of computer vision algorithms is the 8-point

algorithm by Longuet-Higgins (1981). This set of algorithms can be compared to LiDAR

products for forestry applications (Iglhaut et al., 2019). The RGB and multi-spectral

images were processed using the photogrammetry software Agisoft Metashape, obtaining

orthophotos and digital surface models (DSMs) in five bands for every field day.

3.3.4 Multi-spectral Reflectance

During the summer campaigns, multi-spectral imagery was collected using the RedEdge MX

system, with 75 % or higher image overlap. The ground sample distance ranged from 8 to

6 cm, achieving higher resolution due to the absence of obstacles. The multi-band imagery

was processed using Agisoft Metashape photogrammetric tools based on SfM algorithms

with rectification. The images were calibrated using a known reflectance panel before and

after each flight and a Downwelling Light Sensor (DLS) to account for light changes during

the flight.

Furthermore, the red and infrared reflectances were used to compute the Normalized

Difference Vegetation Index (NDVI), a vegetation index widely used to characterize dif-

ferent crop conditions and to estimate the vegetation microwave opacity (NDVI-τ) for

Equation 3.3. NDVI was computed using Equation 3.1. This data is expected to correlate

with τ retrievals from the dual-channel algorithm explained in section 3.5 and can be used

for single moisture retrievals under no electromagnetic interference (EMI) conditions.
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NDVI =
(NIR− Red)

(NIR + Red)
(3.1)

3.3.5 Microwave L-band Measurements

L-band dual-band brightness temperatures were collected using the PoLRa. These readings

were time matched with the sUAS data linearly interpolating inertial measurement unit

(IMU) and global positioning system (GPS) unit data to match the radiometer’s higher

frequency capture, and then projected over the surface using the radiometer’s incidence

angle. The radiometer faced southeast in all measurements.

3.4 Data Processing and Splitting for Train/Test

Using the L-band data as the parting points in Figure 4.6, soil moisture from Figure 4.5 was

spatially matched using the closest probe reading within the footprint of the radiometer (4.5

m diameter) recording the distance value. The NDVI data was spatially joined, grouping

all the raster cell values within the footprint and obtaining the mean of this index.

After analyzing in-flight angle variability, data from October 2nd was removed due to

its greater variance and unique distribution curve (see Figure 3.5). The radiometer’s mean

and mode incidence angle were 37.9◦ and 37.5◦, respectively. Angles below 34.8◦ (5th

percentile) or above 41.4◦ (95th percentile) were excluded to reduce high inclination and

potentially biased data. The processed data from August 24th and September 13th were

used as validation days due to nadir angle similarities with the SMAP satellite (mean flight

angle close to 40◦) and their difference in soil moisture, for a total of two out of six days for

validation, one moist (on average 0.38 m3/m3) and one dry (on average 0.14 m3/m3). The

rest of the days (four out of six) were used for model training and parameter calibration

as shown in section 3.6, accounting for a Train/Test split of 67/33.
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Figure 3.5: Kernel density estimate of the radiometer’s incidence angle for each
field sampling day.

Following the matching, processing, and splitting of the measurements from the various

sources, data post-processing used the retrieval algorithm described next.

3.5 Retrieval Algorithm

This study utilized a dual channel algorithm (based on SMAP’s mission Dual Channel

Algorithm DCA) to retrieve the top 12 cm surface soil moisture and vegetation opacity

from dual-polarization {H,V} brightness temperature and multi-spectral observations using

the simplest version of the TO EM model, which only accounts for soil and vegetation

components, as utilized by the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture

Active Passive (SMAP) missions (Chan et al., 2012; Wigneron et al., 2007). No other

variations of the TO model are considered in this study. Kerr and Njoku (1990), Mo et al.

(1982), and Njoku and Entekhabi (1996) developed the fundamentals of this model.
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The single scattering Tau Omega model (TO EM) is a radiative transfer framework that

simulates the horizontal and vertical polarizations brightness temperature of a vegetated

soil surface using two parameters: single scattering albedo (ω) and optical depth (τ) (Park

et al., 2020; Shen et al., 2022). The model assumes that multiple scattering is negligible

(Shen et al., 2022), and is widely used to estimate soil moisture from microwave remote

sensing data (Park et al., 2020; van de Griend et al., 1996).

As stated by Njoku and Entekhabi (1996), the fundamental association between bright-

ness temperature TB of a thermally radiating object and its actual temperature T is ex-

pressed by the equation TB = eT , where e represents the emissivity of the object and TB

is measured in Kelvins. This equation can determine the brightness temperature of the

Earth’s surface at any particular location with a uniform subsurface temperature profile,

given the surface temperature T and emissivity e. As a particular case, for a black body,

the emissivity (e) is equal to 1.

Assuming no interference, TB measured by a UAS-mounted radiometer originates from

four different sources: the cosmic background emission, the atmosphere, the vegetation (as

a layer), and the ground surface. The reflection and attenuation of these contributions are

pictured in Figure 3.4. where TB1: brightness temperature (TB), Sk: sky, atm: atmosphere,

c: canopy, and g: ground. According to Chan et al. (2012), the atmospheric contributions

(TBatm) and sky brightness (TBSk) are typically on the order of 2.7 K. Furthermore, the

transmissivity of the atmosphere is high, with an optical depth of approximately zero

(τatm ≈ 0). As a result, the TO EM model neglects atmospheric and cosmic signals.

1This study depicts brightness temperature as TB . The abbreviation TB is used to mantain consistency

with the symbology by Kerr et al. (2012) .
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Figure 3.6: Contributions to the observed brightness temperature TB (TB as de-
picted in this study) from orbit. Image shows multiple TB beam traces
for sky (Sk), atmosphere (atm), canopy (c), and ground (g). Opacity
(τ), temperature (T), emissivity (e) and single scatering albedo (ω) are
depicted. Source: Kerr et al. (2012).

The TO EM is an approximation of the radiative transfer equation with three terms

that account for (i) Emissions from the soil attenuated by the canopy layer, (ii) Direct

emissions from the vegetation and (iii) Emissions from the vegetation reflected by the soil.

Brightness temperature TB is expressed as
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T p
B = ep · Tg · exp

(
−τ

cos(α)

)
(i)

+ (1− ω)Tc

(
1− exp

(
−τ

cos(α)

))
(ii)

+ (1− ω) · (1− ep) · Tc

[
1− exp

(
−τ

cos(α)

)]
exp

(
−τ

cos(α)

)
(iii)

(3.2)

where:

• p is the polarization H, V.

• ep is the emissivity of the soil surface.

• Tg is the effective temperature of the

soil.

• τ is the vegetation opacity.

• ω is the single scattering albedo.

• α is the incidence angle.

• Tc is the vegetation temperature.

Conversely, the ep emissivity of the soil surface can be expressed by Kirchoff’s reciprocity

theorem in terms of the reflectivity sp,r as ep = (1 − sp,r). This equation shows how

the brightness temperature depends on various factors such as soil properties, vegetation

characteristics, and sensor geometry. Using such expression for dual polarization {H,V}

and some assumptions or empirical relationships makes it possible to invert it and retrieve

the soil moisture content SM (see 3.5.2 and 3.5.3) and vegetation opacity τ (see 3.5.1) from

TB measurements.

3.5.1 Vegetation Parameters

Microwave radiation interacts with vegetation through absorption, emission, and scattering

processes. A common simplification is representing the vegetation as a homogeneous layer

overlying the soil. At lower frequencies, the scattering effects at the interface between air

and vegetation and within the vegetation volume are negligible and can be ignored (Njoku &

Entekhabi, 1996). The model’s vegetation parameters are canopy temperature Tc, isotropic

single-scattering albedo ω, and opacity τ . This work used vegetation parameters: ω = 0.05,

Stem Factor = 3.5, and b = 0.110. from the SMAP-Sentinel L2 Radar/Radiometer Soil
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Moisture (Active/Passive) data products: L2 SM SP (Das et al., 2019), see Tables A.1-

A.3. Dual SM and τ retrievals are possible with the minimization of dual polarization

model cost function under no EMI conditions. Nonetheless, this effort only uses single SM

retrievals and τ (referred to as NDVI-τ when derived from NDVI) is estimated using the

methodology established by the Chan et al. (2013) with UAV multi-spectral data using the

equation 3.3

VWC =
(
1.9134 · NDVI2 − 0.3215 · NDVI

)
+ stem factor · NDVImax − NDVImin

1− NDVImin

τ = b ∗ VWC

(3.3)

where:

• VWC is the vegetation water content

in kg/m2.

• NDVI is the Normalized difference veg-

etation index from flights.

• NDVImax is the annual maximum

NDVI.

• NDVImin is the annual minimum

NDVI, and a global constant value of

0.1 is suggested Chan et al. (2013).

• stem factor is the estimate of the peak

amount of water in the stems, taken

from Table A.1.

• b is a proportionality value that de-

pends on vegetation structure and mi-

crowave frequency.

• τ is the vegetation opacity or optical

depth (referred to as NDVI-τ when de-

rived from NDVI).

Vegetation water content (VWC) correlation with opacity was deeply described by

Jackson and Schmugge (1991). Finally, canopy temperature Tc is estimated assuming

Tatm ≈ Tc ≈ Tg, see section 4.2.
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3.5.2 Roughness Parameters

The semi-empirical HQN roughness model developed by Wang and Choudhury (1981), best

explained by Schwank et al. (2018), which is used in the existing SMOS and SMAP retrieval

algorithms, simulates the effect of soil surface-roughness using the following reflectivity

equations for both polarizations {H,V}.

sH,r = [sH,f · (1− qG) + (qG · sV,f )] · e−hG·cosn
H
G (α)

sV,r = [sV,f · (1− qG) + (qG · sH,f )] · e−hG·cosn
V
G (α)

(3.4)

where sV,f and sH,f are the Fresnel reflectivities for the ϵG soil permittivity and the α

nadir angle defined by the expression

sV,f =

∣∣∣∣(A−B
√
ϵG)

(A+B
√
ϵG)

∣∣∣∣2 sH,f =

∣∣∣∣(A√ϵG −B)

(A
√
ϵG +B)

∣∣∣∣2 (3.5)

with A = cos(α) and B =

√
1−

(
1−A2

ϵG

)
.

The HQN parameters were optimized, minimizing the cost function discussed in the

next section. The starting HQN values were retrieved from SMAP, SMOS, and literature

for similar land covers.

3.5.3 Dielectric mixing model

Soil dielectric models are mathematical equations describing how soil’s electric permittivity

depends on water content and other factors. There are different types of soil dielectric

models. Traditional approaches were proposed by Topp, Mironov, Dobson, Wang and

Schmugge, and Hallikainen (Topp et al., 1980; Yayong et al., 2019). More modern works

have been proposed by Karthikeyan et al. (2017a), Matzler and Murk (2010), and Srivastava

et al. (2015).

The accurate estimation of soil electrical properties is essential for the effectiveness of

this methodology. However, complex models demand detailed soil characterization, which
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may not be feasible in short UAV missions. Therefore, this study adopted Topp’s current

global reference (see Equation 3.6) as an initial approach due to its efficient simplicity for

a broader range of soils without requiring excessive information for general mineral soils.

ϵG = 3.03 + 9.3SM + 146SM2 − 76.7SM3 (3.6)

where ϵG is the soil permittivity and SM is the surface soil moisture measured in m3/m3.

3.6 Training and Testing

The dual-channel algorithm uses T V
B and TH

B observations to retrieve soil moisture by mini-

mizing the loss function (Eq. 3.7). By exploiting the two observations’ unique sensitivity to

this variable, the algorithm is an effective methodology for estimating surface soil moisture.

The loss function is defined as

FSM = (T V observed
B − T Vmodeled

B )2 + (THobserved
B − THmodeled

B )2 (3.7)

Conversely, the single-channel algorithms minimize the function FSM = (T observed
B −Tmodeled

B )2

for each polarization.

Where the retrieved SM values are given by SM = argminFSM. To perform the in-

version, an iterative approach was employed to search for the minimum squared difference

between simulated brightness temperatures Tmodeled
B and measured brightness tempera-

tures T observed
B . Iteration boundaries for SM were set using the field data presented in

section 3.3.2. The iteration used the L-BFGS-B Algorithm, a limited memory algorithm

for bound-constrained optimization developed by Byrd et al. (1995) and Zhu et al. (1997)

adapted into the SciPy library. This algorithm is an iterative method that minimizes a

nonlinear function (the loss function, in this case) with n variables and different n upper

and lower bounds, using a quasi-Newton approach to approximate the Hessian matrix of

the loss function using a generalized secant method (Byrd et al., 1995).
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The retrieval algorithm was evaluated with the root mean squared error RMSE evalu-

ated as:

RMSE =

√√√√ 1

n

n∑
i=1

(
SMmodeled

i − SMobserved
i

)2
(3.8)

Two thousand five hundred eighty-three (2,583) combinations of the roughness param-

eters H, Q, and N were used during the training for dual-band, horizontal, and vertical

retrievals. H was evaluated between 0 and 2 in steps of 0.05, Q between 0 and 1 in steps

of 0.05, and N was evaluated for N = 0, 1, 2. The calibrated model was selected based on

the minimum RMSE obtained during training and validated for Aug. 24th and Sept. 13th,

as explained in Section 3.4, obtaining the following results.
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Chapter 4

Results

4.1 Field Campaigns Results

Table 4.1 and Figure 4.1 summarize the characteristics of the seven campaigns in terms

of significant environmental and sensing variables. While Figure 4.1 illustrates boxplots

and average values (crosses) of the distributions of several quantitative variables during

each campaign, Table 4.1 averages those values for alternative interpretation. Generally,

T V
B > TH

B , with values between 270 K and 300 K for vertical and 260 K and 290 K for

horizontal. Nadir angles were recorded for every L-band measurement, with values between

30◦ and 45◦. Two flooding cycles and two alfalfa cutting cycles were recorded during the

campaigns, ensuring diverse moisture and vegetation cover conditions. A 4 K decrease

in the soil temperature due to the end of the summer was recorded between the start

and the end of the campaigns. Between Aug. 16th and Sept. 20th, rain events were

recorded within a week of the flights, which increased vegetation water content. NDVI

values rapidly increased with the alfalfa height, reaching means above 0.9 for heights above

19 cm, potentially overestimating NDVI-τ for lower stages of growth.
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Figure 4.1: Time series of study variables. Vertical L-band brightness tempera-
ture (T V

B ), horizontal L-band brightness temperature (TH
B ), inclina-

tion of the radiometer (Nadir Angle), HSII volumetric soil moisture
(Moisture) and normalized difference vegetation index (NDVI) are rep-
resented with box plots for every day. Mean alfalfa height (Alfalfa),
mean soil temperature at 12cm (TG), days from last precipitation (Last
Rain) and days from last irrigation (Last irrigation) are represented
with scatter plots.
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Table 4.1: Study variables and statistics for the seven conducted field campaigns.
Mean values are presented for vertical and horizontal L-band brightness
temperature (T V

B and TH
B ), soil temperature (Tg), nadir angle, NDVI,

and 12 cm soil moisture. Values are averaged spatially and temporally
for each flight.

Date

Variable Units 08/16 08/24 09/04 09/13 09/20 10/02 10/13

T V
B * [K] 278.36 281.92 287.31 284.00 283.11 283.17 278.17

TH
B * [K] 267.20 272.90 280.17 278.24 268.18 275.64 270.66

Nadir angle * [°] 37.16 38.20 37.10 41.07 36.27 36.85 39.13

Soil moisture 12cm * [m3/m3] 0.28 0.38 0.16 0.14 0.34 0.16 0.12

NVDI* 0.92 0.93 0.93 0.81 0.92 0.94 0.52

Alfalfa height [cm] 19 45 74 15 30 55 10

Tg [K] 297.15 297.15 294.15 295.15 293.15 295.15 293.15

Last rain [days] 1 1 6 1 3 10 21

Last irrigation [days] 6 5 16 25 5 17 28

* Spatially averaged variables.

Figure 4.2 portrays the correlation between the study variables when matched spatially

and temporally. T V
B presented a greater positive correlation with NDVI and alfalfa height,

while TH
B had a greater magnitude, negative correlation with surface soil moisture from the

HSII probes. The irrigation date had a higher magnitude correlation with most variables,

highlighting the importance of the flooding schedule for the vegetation variables and the

soil moisture.
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Figure 4.2: Correlation matrix of the processed data presented for vertical and
horizontal L-band brightness temperature (T V

B and TH
B ), nadir angle

(View angle), 12cm soil moisture (SM), NDVI, alfalfa height (alfalfa),
soil temperature (Tg), days from last precipitation (Last Rain) and days
from last irrigation (Last irrigation).

4.1.1 Precipitation and Irrigation Timing and Magnitude

Stations GeoSenSE Chamberino 22 and GeoSenSE Chamberino 23, containing a rain gauge

and a 12 cm soil moisture probe, respectively, were installed to record the soil moisture

variations and the rain events over the paddocks as shown in Figure 4.3. During the study

period, the field was irrigated three times and nine rain events were measured. Significant
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water intercepted by the vegetation was observed during the field dates near rain events.

Besides the increase in vegetation water content, most rain events did not significantly

affect the volumetric soil moisture measured by the probe.

Figure 4.3: Time series of total precipitation (blue), and 12 soil moisture (green)
from the installed stations. Field days are symbolized with vertical gray
lines. Dotted vertical lines indicate precipitation and irrigation events.

4.1.2 Surface Soil Moisture

The integrated mean 12 cm surface soil moisture was collected each campaign for the 49

grid points following the methodology in Section 3.3.2 with the probes presented in Section

3.2.5. Figure 4.4 illustrates the distribution of each field day’s HSII-measured soil moisture
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values.

Figure 4.4: Kernel density estimate of the paddock’s 12 cm soil moisture for each
field sampling day.

The highest moisture recorded was on Aug. 24th with a volumetric content of 0.412

cm3/cm3 only five days after the previous irrigation and one day after the preceding rain

event, while the driest measurement was 0.08 cm3/cm3 on Oct. 13th, 28 days after the

conducted irrigation. Three campaigns were performed within a week of the field flooding:

Aug. 16th, Aug. 24th, and Sept. 20th; two campaigns were performed within three weeks of

the irrigation: Sept. 4th and Oct. 2nd; and two campaigns were within five weeks after the

last irrigation: Sept. 13th and Oct. 13th. Spatial variations of soil moisture remained low,

as expected for a shared paddock with interquantile range IQR < 0.05 m3/m3 for all days.

Sample points 1 and 14 were greater in moisture than most of their neighbors for most

days, signaling a local maximum for all the campaigns at the north extreme of the grid.

Points 47, 46, and 44 remained lower than their neighbor points for most days, signaling a

local minimum for all the campaigns.
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Figure 4.5: Map of the HSII 12cm surface soil moisture measurements for each field
campaign of this study.

4.1.3 Multi-spectral and Microwave Sensing

During the campaigns of this study, L-band microwave brightness temperature readings

(point data) were obtained using the PoLRa explained in Section 3.2.3. Five band re-

flectances were also obtained using UAS imagery with the Micasense imager from section

3.2.4. The L-band data was collected in the morning (see section 3.3.1), and the multi-

spectral bands were collected between 11 am and 1 pm (LST).

The spatial distribution of the L-band brightness temperatures is presented in figures

4.7 and 4.6, where each point represents the center of the radiometer’s projected footprint.
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Minimum L-band temperatures were recorded on Aug. 16th, and maximum temperatures

were recorded on Aug. 24th for horizontal polarizations, and Aug. 24th and Oct. 13th for

the vertical polarizations. Overall, the horizontal polarization temperatures varied more

throughout the campaigns than the vertical.

Figure 4.8 presents the arrangement of false color infrared orthophotos. The high GSD

(6-8 cm) facilitates the identification of tractor and human tracks on the imagery. Generally,

alfalfa grew slower at the bottom row of the grid (points 7, 8, 21, 22, 35, 36 and 49). The

methodology in section 3.3.4 was used to compute the NDVI from the red and NIR bands

and presented in figure 4.9. The NIR reflectances increased drastically with the growth of

the alfalfa, achieving its maximum (0.9) at 19 cm of height.
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Figure 4.6: Map of L-band horizontal polarization brightness temperature obser-
vations. Each point represents the center of the projected radiometer
footprint with a 4.5 m diameter.
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Figure 4.7: Map of L-band vertical polarization brightness temperature observa-
tions. Each point represents the center of the projected radiometer
footprint with a 4.5 m diameter.
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Figure 4.8: False color infrared orthophotos over the study area for the campaigns
conducted from August to October 2023 at the Chamberino, New Mex-
ico’s alfalfa crops. Maps near IR, red, and green are red, green, and
blue (RGB).
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Figure 4.9: Map of NDVI observations over the study site (alfalfa) during the field
campaigns conducted from August to October 2023 at Chamberino,
New Mexico.

4.2 Model Training

The single channel and dual channel algorithms were tuned using the volumetric soil mois-

ture data from section 4.5 and τ derived from multi-spectral imagery (NDVI-τ) shown in

Figure 4.9, finding through 2,583 different iterations of roughness parameters HQN, the

combinations that minimized the loss function (Equation 3.7) for every brightness tem-

perature measurement. Two groups of models with the best RMSE for soil moisture were
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selected. A first group, where the roughness parameters were iterated freely (see Figure

4.10), and a second batch of models (see Figure 4.11) where the roughness intensity effects

(H) were more significant than the polarization mixing effects (Q), common assumption in

similar modeling efforts (Dai et al., 2021; Ye et al., 2024). The testing scores for the mod-

els are presented in Table 4.2. Unrestricted calibrations outperformed restricted models

for dual and horizontal polarization retrieval and equaled the metrics for vertical antenna

retrievals. Additional metrics such as the unbiased root mean square error (ubRMSE), the

bias, the mean absolute error (MAE), the Kling-Gupta Efficiency (KGE), the correlation

coefficient (R), and the coefficient of determination (R2), were included to provide addi-

tional understanding of the model behavior and limitations. Using additional metrics such

as the ubRMSE provides insights into the model’s ability to replicate soil moisture’s time

variability even under biased mean estimations or dynamic ranges (Entekhabi, Reichle,

et al., 2010).

Table 4.2: Testing metrics for all the calibrated soil moisture retrieval models.
Best statistic of each row in bold.

H>Q no restriction

Metrics Units Best score Dual-pol H-pol V-pol Dual-pol H-pol V-pol

Bias cm3/cm3 0 -0.049 -0.076 0.001 -0.023 -0.043 0.001

MAE cm3/cm3 0 0.055 0.078 0.052 0.043 0.049 0.052

RMSE cm3/cm3 0 0.066 0.087 0.065 0.054 0.059 0.065

ubRMSE cm3/cm3 0 0.044 0.042 0.065 0.049 0.039 0.065

R2 - 1 0.715 0.503 0.717 0.807 0.773 0.717

R - 1 0.934 0.947 0.850 0.926 0.947 0.850

KGE - 1 0.800 0.699 0.731 0.775 0.825 0.731

While the V-polarization retrieval model performed identically with the restriction,

the Dual-polarization and the single H-polarization performances decreased (relative to
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RMSE). Vertical models were the least biased and had greater errors due to more dispersed

retrievals. Dual and H polarization models underestimated moisture for all the campaign

dates except by Oct. 10th. All non-restricted models performed better for dry days (below

0.2 cm3/cm3) as depicted in Figures 4.12 and 4.13 . Table 4.3 summarizes the best HQN

parameters for the best-performing models.

Table 4.3: Calibrated roughness parameters for best-fit soil moisture retrievals sep-
arated by two groups, a set of models with H >Q and a set of unre-
stricted roughness parameters.

H >Q no restriction

Roughness parameters Dual-pol H-pol V-pol Dual-pol H-pol V-pol

H 0.40 0.30 0.50 0.05 0.00 0.50

Q 0.35 0.25 0.00 1.00 0.75 0.00

N 2.00 2.00 1.00 0.00 0.00 1.00

Generally, lower values of roughness intensity converged with higher values of polar-

ization mixing effects. H maintained between 0.3 and 0.5 for restrained models, but its

non-restricted counterparts had lower roughness intensity values, behaving like smooth sur-

faces with a higher mixing effect. The angular effects in reflectivity did not significantly

affect the models’ performance, and all N = 0, 1, 2 values were present at least in one of

the best-performing models. Restricted models had higher roughness angular effects.
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Figure 4.10: Observed vs. modeled 12cm soil moisture retrievals with the non-
restricted calibrated radiative transfer models, color-coded by density.
Vertical kernel density functions of modeled soil moisture by day.
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Figure 4.11: Observed vs. modeled 12 cm soil moisture retrievals with (H>Q) cali-
brated radiative transfer models, color-coded by density. Vertical kernel
density functions of modeled soil moisture by day.
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Figure 4.12: Observed 12 cm soil moisture vs Cost function value (equation 3.7) for
the best RMSE dual polarization model retrievals.
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Figure 4.13: Vertical kernel density functions of 12 cm soil moisture error distri-
bution grouped by field days. Errors for the best performing Dual
(Dual-pol), and single horizontal (H-pol) and vertical (V-pol) trained
models.

4.3 Model Testing

Figure 4.14 presents the spatial distribution of the retrievals for all unrestricted trained

performing models. Generally, horizontal polarization models presented dryer retrievals on

the dryer days and wetter retrievals on the higher moisture days, compared to V and Dual

models. Horizontal retrievals presented more spatially homogeneous data, while vertical

and dual retrievals had more local spatial variations.
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Figure 4.14: Map of three retrieved 12 cm soil moisture for the best performing
Dual (Dual-pol), single horizontal (H-pol) and vertical (V-pol) trained
models, and measured 12cm soil moisture.

Table 4.4 presents the assessment metrics for each day, split, and overall. Specifically,

the days Sept. 4th, Sept. 13th, and Oct. 13th presented better bias, mean absolute error

(MAE), root mean square error (RMSE), and unbiased RMSE (ubRMSE) compared to Aug.

16th, Aug. 24th, and Sept. 20th. Overall, the combined evaluation of multiple days, such as

in training, testing, or considering all days together, consistently outperformed individual

day evaluations. This trend suggests that the model excels in predicting variations over

time rather than capturing spatial differences within the same day.

42



The model performed well in testing, with a slight underestimation indicated by a bias

of -0.023 cm3/cm3. Accuracy metrics, including mean absolute error (MAE) and root

mean square error (RMSE), were low at 0.043 cm3/cm3 and 0.054 cm3/cm3, respectively,

highlighting accurate predictions. The unbiased RMSE (ubRMSE) was 0.049 cm3/cm3,

signifying consistent performance. A strong correlation between predicted and observed

values was evidenced by a R2 value of 0.807, while the correlation coefficient (R) was high

at 0.926. The Kling-Gupta Efficiency (KGE) index was 0.775, indicating robust overall

performance. The model demonstrated a reliable and accurate representation of underlying

data patterns during testing. Although the horizontal polarization model performed best

in the testing split for ubRMSE, R, and KGE, the H-pol model performance dropped below

the Dual-pol when the entirety of the data was evaluated. The dual polarization model with

HQN = 0.05, 1.00, 0.00 presented the minimum ubRMSE of the study when evaluating the

data for all the campaigns.
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Table 4.4: Evaluation metrics by day for soil moisture retrievals with the best
performing dual polarization model with HQN = 0.05, 1.00, 0.00. Aug.
16th, Sept. 4th, Sept. 20th and Oct. 10th were used for training. Aug.
24th and Sept. 13th were used for testing, for a 66.66%, 33.33% split.

Fieldtrip Bias MAE RMSE ubRMSE R2 R KGE

08-16 0.047 0.058 0.069 0.050 -2.932 0.008 -0.007

08-24 -0.052 0.058 0.068 0.043 -19.432 -0.114 -0.954

09-04 -0.013 0.043 0.054 0.052 -2.082 -0.033 -0.093

09-13 0.007 0.027 0.034 0.033 -2.409 0.278 -0.085

09-20 -0.109 0.109 0.115 0.036 -25.438 0.205 0.018

10-13 0.010 0.023 0.030 0.028 -3.352 0.112 -0.202

All -0.017 0.051 0.066 0.064 0.615 0.803 0.757

Testing -0.023 0.043 0.054 0.049 0.807 0.926 0.775

Training -0.013 0.056 0.071 0.070 0.420 0.704 0.692

Units cm3/cm3 cm3/cm3 cm3/cm3 cm3/cm3 - - -

4.4 Model Parameter Sensitivity Analysis

To determine the sensitivity of both polarization brightness temperatures, the historical

six years (2016-2022) of SMAP products (see Figure 3.1) were analyzed to set iteration

boundaries for a one-at-a-time OAT sensitivity analysis displayed on a sensitivity tornado

(see Figure 4.15). Based on the results, soil moisture was the variable that contributes the

most to changes in brightness temperature values, supporting the model’s suitability for

retrieving soil moisture from L-band TB. The impact of the incidence angle on measure-

ments had a crucial consideration, as it significantly affected the accuracy of the modeled

data. However, for UAS operations, this variable represented a challenging and uncon-

trolled condition due to the system’s large size that made using a generic gimbal infeasible.
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Moreover, real-time correction of inclinations resulting from wind gusts was not possible,

further complicating the management of this factor.

Figure 4.15: One at a time TB sensitivity to model parameters (in red: min-
imum values from SMAP/SMOS, in black: maximum values from
SMAP/SMOS). With base conditions: soil moisture (SM) = 0.17, vege-
tation opacity (τ) = 0.03, nadir angle (α) = 44◦, soil temperature (ST)
= 303.15, Roughness parameters (HQN), hG = 0.11, qG = 0.1, nGv =
0, nGh = 0.

The impact of vegetation opacity on the accuracy of polarization readings was a crucial

factor to consider. Horizontal polarization readings were more susceptible to this effect than

their vertical counterparts. Conversely, the sensitivity of vertical polarization readings to

variations in the roughness semi-empirical parameter H was greater than that of horizontal

polarization. Therefore, proper consideration and interpretation of these distinct effects
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is recommended for accurate measurements in scenarios where vegetation and roughness

conditions play a significant role.

4.5 Effects of roughness

Calibrating the roughness parameter is deemed crucial for obtaining reliable soil moisture

retrievals. Utilizing the Portable L-band Radiometer (PoLRa) without calibration based

on lookup parameters from the Soil Moisture Active Passive (SMAP) algorithm can lead

to retrievals with high errors. Figures 4.16 and 4.17 depict changes in model testing per-

formance for various combinations of roughness intensity (H), polarization mixing effect

(Q), and angular dependency (N) values. A comparison with the bias is also included in

figure A.1.

For the dual and horizontal polarization model, there was an observed trend of per-

formance improvement with the decrease of H and the increase of Q. The relationship

between the coefficient of determination (R2). H exhibited a bell-shaped curve that be-

came steeper with the decrease of N values and attained its maximum with the increase of

Q relative to H. Conversely, the R2 for vertical polarization models exhibited two peaks,

one for H >Q and another for Q >H. This behavior, as described by the relations in

Equation 3.4, demonstrates the dominant contribution of the vertical component of the

Fresnel reflectivity for achieving better-performing retrievals.
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(a) Dual polarization.

(b) Horizontal polarization.

(c) Vertical polarization.

Figure 4.16: H vs R2 during the training phase for (a) dual polarization, (b) sin-
gle horizontal and (c) vertical soil moisture retrievals with N = 0,1,2,
colored by H−Q to distinguish trends for different relations between H
and Q.
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(a) Dual polarization.

(b) Horizontal polarization.

(c) Vertical polarization.

Figure 4.17: H vs RMSE during the training phase for (a) dual polarization, (b)
single horizontal and (c) vertical soil moisture retrievals with N = 0,1,2,
colored by H−Q to distinguish trends for different relations between H
and Q.
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Chapter 5

Discussion

This study presented a high-resolution ground truth validated tau-omega microwave emis-

sion modeling effort for soil moisture retrievals with a UAS-mounted L-band radiometer

and multi-spectral camera over alfalfa fields. It is a novel approach that used low-altitude

( 7 m AGL) hexacopter microwave readings with a non-interpolated radiometer’s footprint

resolution of 4.5 m, validated with a 7 m separation grid 12cm surface soil moisture and

utilizes the Portable L-band Radiometer (PoLRa). Due to the limited availability of similar

approaches, comparison with prior studies reveals differences in various factors, including

the type of platform used (satellite, aircraft, or fixed-wing UAS), the radiometer employed,

the complementary data integrated (multi-spectral, thermal, hyper-spectral), spatial and

temporal resolution, altitude, land cover, the number of flights, and the model and algo-

rithm architecture utilized. For instance, Ye et al. (2024) used a low-elevation (225 m)

aircraft to simulate UAV missions, validated with top 5 cm, and obtained a RMSE of 0.05-

0.06 cm3/cm3 for 38.5° nadir L-band at a 75 m grid. This study also retrieved moisture from

thermal-optical with an RMSE of 0.05-0.09 cm3/cm3. Similarly, Sanchez et al. (2014) used

a low-elevation small aircraft with a novelty approach that linearly mixed surface tempera-

ture, vegetation indexes from hyper-spectral imagery, and L-band brightness temperature.

At a 3.5 m spatial resolution, correlations above 0.76 and an RMSE below 0.07 cm3/cm3

were achieved. Furthermore, Dai et al. (2021) presented a comprehensive similar approach

with a fixed-wing radiometer, achieving a correlation coefficient of 0.69 with 10 cm soil

moisture. The theoretically estimated errors of the experiment were between 5.41% and

7.33% for different land covers. Pioneering the UAS microwave surveying, Acevo-Herrera

et al. (2010) used a fixed-wing L-band (100 m footprint) radiometer to estimate 5 cm soil
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moisture with absolute errors between 1-6% and 1-9% for two different sites. Generally, an

ubRMSE ≤ 0.04m3/m3 and a R ≥ 0.7 is expected for both the SMAP and SMOS satellite

missions (Chen et al., 2019; Panciera et al., 2009). With grid sizes of 33 km and 35-50

km, and incidence angles of 40◦ and 0-55◦ (Chan et al., 2012; Kerr et al., 2012). This

performance is guaranteed for vegetation water content ≥ 5 kg/m2(for SMAP) and can

vary depending on local variables, flags, and calibration schemes.

5.1 Retrieval Accuracy

During the testing phase, this study achieved a RMSE 0.054 cm3/cm3, a ubRMSE of 0.049

m3/m3, and a correlation of 0.807. The model better predicted the average soil moisture

for dry days (Sept. 4th, Sept. 13th, Oct. 13th). However, it overestimated the moisture on

Aug. 16th and underestimated it on Sept. 20th and Aug. 24th (wet days). Despite having

a significant amount of outliers each day, the overall trend of the retrievals in Figure 4.10

expresses the ability of the model to capture the mean surface soil moisture under various

moisture and vegetation conditions. As expected, the models’ retrievals inherit the noise

present in remotely sensed data. Figure 5.1 shows the spatial distribution of the best-

performing model in the study where the noise inherited from brightness temperature data

is noticeable in all the readings. Additionally, the water intercepted by the vegetation

during the precipitation events of Aug. 24th and Aug. 16th could potentially generate noise

as indicated by Kerr et al. (2012). Furthermore, the probe validation data could present an

unaccounted noise in conditions of high vertical variability, thus accentuating the difference

for days with high surface soil moisture in which the existence of shallow water can affect

the penetration of the remote sensing retrievals.

Figure 5.2 illustrates the correlation between the study variables’ daily mean and stan-

dard deviation and the model’s retrieval performance metrics for each day. A notable neg-

ative correlation of -0.81 exists between the mean measured soil moisture and the model’s

R2, indicating that the model estimates moisture on drier days with ease compared to high
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moisture days. Additionally, a positive correlation of 0.80 between the mean daily HSII

readings and the root mean square error (RMSE) and a positive correlation of 0.72 between

the HSII mean daily readings and the mean daily NDVI. The variables with the highest

(absolute value) correlation to the mean daily HSII readings were last irrigation day (-0.94),

mean NDVI (0.75), and horizontal L-band brightness temperature (-0.64). Implementing

data-driven machine learning algorithms to estimate soil moisture using highly correlated

variables could potentially present a feasible alternative approach to the semi-empirical

effort developed in this study, bypassing the complexity of the microwave emission models.

Figure 5.1: Map of measured ground truth moisture over best-performing model
retrieval: Dual-polarization, with HQN = {0.05, 1.00, 0.00}.
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Figure 5.2: Correlation matrix of the study variables’ daily mean and standard
deviation, and the daily evaluation metrics. The day of the year
(Fieldtrip), L-band brightness temperature vertical (T V

B ) and horizontal
(TH

B ), nadir angle (α), 12 cm soil moisture (HSII), NDVI, alfalfa height
(Alfalfa), 12 cm soil temperature (TG), days from last precipitation
(Last Rain), days from last irrigation (Last irrigation) were spatially
aggregated or assumed constant for each day.
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5.2 Limitations & Recommendations

This study was performed under the assumptions of isotropic conditions and the homo-

geneous spatial distribution of scattering, soil and vegetation temperature, soil roughness,

and dielectric properties. This study likewise assumed the nonlinear relationship between

NDVI and VWC proposed by Chan et al. (2013). Nonetheless, Ye et al. (2024) demon-

strates that a simple linear relationship can be used for sUAS operations, and these findings

should be considered for future endeavors. Additionally, studies like Sanchez et al. (2014)

demonstrate the utility of alternative vegetation indexes from hyperspectral imagery to ob-

tain low-elevation sUAS water content retrievals. The methodology developed under this

effort should include unique site calibrations when transposed to other regions of interest

with different vegetation and soil conditions. Ground truth validation of vegetation water

content with destructive methods is encouraged for future applications of this technology.

Thermal infrared imagers should be included to capture the spatial variations in surface

temperature when dealing with complex landscapes. The same principles proposed here

could be extended to applications using lower frequency radiometers, such as the P-band

radiometer used by Brakhasi et al. (2024), and modeling efforts such as Fluhrer et al.

(2024) could be used to estimate deeper profiles. Nonetheless, L-band and P-band re-

trievals should suffice for root-zone soil moisture retrieval, even under higher conditions of

vegetation water content.

Although the study did not extensively explore the effects of mission design on the

Polarized L-band Radiometer’s (PoLRa’s) readings, it offered insights into the challenges

associated with optimizing path design, flight speed, and inclination to suit this sensor.

Additionally, it highlighted the limitations in spatial accuracy that need to be considered.

The one-second precision in synchronizing UAV navigation data with the radiometer’s

readings introduced a spatial uncertainty of 5.5 m under a cruise speed of 5.5 m/s (cruise

speed for this study). This uncertainty can be mitigated by adjusting the elevation pro-

portionally to the footprint, with the trade-off of coarser resolution. Alternatively, flying
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at a slower speed at a constant elevation can address the issue, albeit at the cost of in-

creased flown distance. While treating the problem through single-angle or multi-angle

modeling can yield diverse results, the PoLRa’s fixed-angle installation introduced noise

to the captured data. The accuracy of the time-matching process between drone Inertial

Measurement Unit (IMU) data and the radiometer was a limiting factor when fast fluctua-

tions occurred. Sudden angle changes (< 1 second) caused by copter movement, wind, and

direction changes generated challenging-to-track noise. Implementing a gimbal or fixing a

constant inclination angle from the flight planner could significantly reduce noise due to

uncontrolled angle changes. Direct communication between the payload and the drone may

diminish uncertainties related to time matching. Again, reducing flight speed decreases the

spatial uncertainty of microwave readings but comes at the expense of flight time, battery

usage, and coverage. Electronically synchronizing the UAV and payload can potentially

minimize the time difference, enhancing accuracy.

The generation of validation data for the drone is costly, as volumetric sampling re-

quired at least 5 minutes per sample, translating to around 4 hours to sample 49 points.

This limitation hinders the extensive use of gravimetric samples for validation and cali-

bration, making the calibration process resource-intensive regarding both probes and time.

Despite the improvement in the sensor’s surveying efficiency, achieving precise readings still

demands substantial infrastructure resources for calibration. Due to the extensive demands

in the calibration effort, this soil moisture modeling technology may perform best under

high-yield crop conditions. Vegetation water content below 5 kg/m2 is recommended for

traditional approaches(Das et al., 2019; Kerr et al., 2012), but recent promising estimations

have been achieved with corn crops up to 22 kg/m2 by Brakhasi et al. (2024). Alternatively,

this approach could benefit from already installed infrastructure such as water wheels, trac-

tors, mowers, and cranes, and due to the passive emissions of the environment, it could also

be applied to greenhouse operations. For outdoor applications, using sUAS dock platforms

can reduce the need for a pilot or crew to optimize the efficiency of the retrievals.
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Chapter 6

Conclusions

Despite the numerous studies employing microwave radiometry for soil moisture retrieval,

the application of copter Unmanned Aerial Vehicle (UAV) operations for high-resolution

retrievals still needs to be explored. This study presented an alternative approach to

soil moisture surveying techniques, achieving state-of-the-art accuracy using airborne data

from commercial platforms. This study employed the single soil moisture retrieval TO

EM algorithm and estimated vegetation opacity through UAV multispectral imagery. Due

to the model’s robustness and the instrument’s versatility, L-band brightness temperature

can be modeled to retrieve soil moisture with single or dual polarization readings for 12 cm

surface soil moisture retrieval while demanding substantial resources for calibration and

validation. Vegetation opacity (τ) from UAV obtained NDVI provided a high resolution

(6-8 cm GSD) source of mean vegetation water content that concurred with the observed

vegetation cover. The retrieval of surface soil moisture was evaluated with an RMSE of

0.054 cm3/cm3 for moisture values within 0.08 and 0.42 cm3/cm3 over different stages

of the alfalfa crop cycle with mean elevation and footprint area of 7m and 31.31 m2,

respectively. This study suggested the inclusion of ground truth vegetation water content

validation, complimentary IR temperature surveying, a gimbal mount, and an electronic

shutter inclusion for the Portable L-band radiometer (PoLRa). These modifications could

reduce the uncertainties of the experiment and increase overall performance.

This endeavor highlighted the potential of commercial UAVs equipped with L-band

radiometers and multispectral imagers to achieve state-of-the-art soil moisture retrievals

in semi-arid lands and vegetation water content retrievals for low canopy croplands (and

potentially grasslands, shrublands, or similar land covers).
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Appendix A

Appendix

Table A.1: Table of Algorithm Parameters by IGBP Class. Source: Chan et al., 2012.

ID MODIS IGBP land classification s h b w Stem factor

0 Water Bodies - 0 0 0 –

1 Evergreen Needleleaf Forests 1.60 0.160 0.100 0.070 15.96

2 Evergreen Broadleaf Forests 1.60 0.160 0.100 0.070 19.15

3 Deciduous Needleleaf Forests 1.60 0.160 0.120 0.070 7.98

4 Deciduous Broadleaf Forests 1.60 0.160 0.120 0.070 12.77

5 Mixed Forests 1.60 0.160 0.110 0.070 12.77

6 Closed Shrublands 1.00 0.110 0.110 0.050 3.00

7 Open Shrublands 1.10 0.110 0.110 0.050 1.50

8 Woody Savannas 1.00 0.125 0.110 0.050 4.00

9 Savannas 1.00 0.156 0.110 0.080 3.00

10 Grasslands 1.56 0.156 0.130 0.050 1.50

11 Permanent Wetlands 1.00 0 0 0 4.00

12 Croplands Average 1.08 0.108 0.110 0.050 3.50

13 Urban and Built-up Lands - 0 0.100 0.030 6.49

14 Crop-land/Natural Vegetation Mosaics 1.30 0.130 0.110 0.065 3.25

15 Snow and Ice – 0 0 0 0

16 Barren 1.50 0.150 0 0 0
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Table A.2: Stem factors for different MODIS IGBP land cover types. Source:
(Chan et al., 2013).

IGBP Land Cover Stem Factor

1 Evergreen needleleaf forest 15.96

2 Evergreen broadleaf forest 19.15

3 Deciduous needleleaf forest 7.98

4 Deciduous broadleaf forest 12.77

5 Mixed forest 12.77

6 Closed shrublands 3.00

7 Open shrublands 1.50

8 Woody savannas 4.00

9 Savannas 3.00

10 Grasslands 1.50

11 Permanent wetlands 4.00

12 Croplands 3.50

13 Urban and built-up 6.49

14 Cropland/natural vegetation mosaic 3.25

15 Snow and ice 0.00

16 Barren or sparsely vegetated 0.00
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Table A.3: Vegetation single scattering albedo ω provided by four independent
scientific teams. The MDCA omega values were adopted after evalu-
ation of the proposed omega values from the four independent teams
[SMAP L2, SMAP L4, Multi-Temporal Dual Channel Algorithm (MT-
DCA from MIT) and SMOS-IC].Source: Chan et al., 2012.

.

ID
MODIS IGBP

land classification

SMAP

SCA

SMAP

L4
MTDCA SMOS-IC

SMAP

MDCA

0 Water Bodies 0 – 0 0 0

1 Evergreen Needleleaf Forests 0.050 0.11 0.07 0.07

2 Evergreen Broadleaf Forests 0.050 0.07 0.08 0.06 0.07

3 Deciduous Needleleaf Forests 0.050 0.11 0.06 0.06 0.07

4 Deciduous Broadleaf Forests 0.050 0.09 0.07 0.06 0.07

5 Mixed Forests 0.050 0.10 0.07 0.06 0.07

6 Closed Shrublands 0.050 0.09 0.08 0.10 0.08

7 Open Shrublands 0.050 0.09 0.06 0.08 0.07

8 Woody Savannas 0.050 0.12 0.08 0.06 0.08

9 Savannas 0.080 0.13 0.07 0.10 0.10

10 Grasslands 0.050 0.06 0.06 0.10 0.07

11 Permanent Wetlands 0 0.13 0.16 0.10 0.10

12 Croplands Average 0.050 0.10 0.10 0.12 0.06

13 Urban and Built-up Lands 0.030 0.10 0.08 0.10 0.08

14
Crop-land/

Natural Vegetation Mosaics
0.065 0.14 0.09 0.12 0.10

15 Snow and Ice 0 0.09 0.11 0.10 0.08

16 Barren 0 0.07 0.02 0.12 0.05
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(a) Dual polarization.

(b) Horizontal polarization.

(c) Vertical polarization.

Figure A.1: H vs bias during the training phase for (a) dual polarization, (b) sin-
gle horizontal and (c) vertical soil moisture retrievals with N = 0,1,2,
colored by H−Q to distinguish trends for different relations between H
and Q.
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