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Abstract

Traditional 2D animation remains a largely manual process where each frame in a video is

hand-drawn, as no robust algorithmic solutions exist to assist in this process. This project

introduces a system that generates intermediate frames in an uncolored 2D animated video

sequence using Generative Adversarial Networks (GAN), a deep learning approach widely

used for tasks within the creative realm. We treat the task as a frame interpolation problem,

and show that adding a GAN dynamic to a system significantly improves the perceptual

fidelity of the generated images, as measured by perceptual oriented metrics that aim to

capture human judgment of image quality. Moreover, this thesis proposes a simple end-to-

end training framework that avoids domain transferability issues that arise when leveraging

components pre-trained on natural video. Lastly, we show that the two main challenges

for frame interpolation in this domain, large motion and information sparsity, interact such

that the magnitude of objects’ motion across frames conditions the appearance of artifacts

associated with information sparsity.
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Chapter 1

Introduction

Traditional 2D animation remains a largely manual process, where most of the frames

in an animated sequence are hand-drawn. An average 23-minute animated TV episode

will contain between 3,000 and 10,000 distinct hand-crafted drawings [8]. The pipeline to

produce these drawings is usually divided into two stages: 1) drawing the key frames, which

serve as the landmarks for a shot (usually the beginning, middle, and end of motion), and 2)

drawing the in-between frames, which serve as intermediate frames that fill in the blanks

from key frame to key frame. Professional animators often describe the latter process,

a.k.a., in-betweening, as repetitive, monotonous, and creatively uninspiring work that is

frequently relegated to inexperienced animators or outsourced to overseas production houses

[24]. While the process of in-betweening has been largely automatized for other types of

animation, such as 3D animation, there is not currently a robust solution to facilitate this

process for traditional 2D animation.

Among the many challenges found in the automatization of in-betweening for 2D ani-

mation is the fact that professional 2D in-betweening is primarily done on sketches, that

Figure 1.1: Example of key frames and in-between frames in an animated shot
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is, uncolored drawings where the content of an image is conveyed only by lines [24]. Sketch

is a unique domain with a host of challenges, mainly related to the sparsity of information

(more discussion in 2.3.2). Furthermore, one of the preferred mediums for traditional 2D

animators remains paper and pencil. This medium preference restricts potential solutions

to the automatic in-betweening problem, as most of the research on sketches assumes the

availability of vectorized drawings [51]. A vectorized drawing includes information on the

direction and time of each stroke in the drawing, which can only be obtained if the drawing

is created digitally.

Nonetheless, recent advances in computer vision, particularly those leveraging deep

learning, a family of machine-learning approaches, have made strides in the automatization

of related tasks within the same domain. Automatic colorization of sketches is not only a

highly active area of research [37, 25, 45], but commercial implementations are now available

to professional animators [5]. Moreover, deep-learning assisted rough sketch clean-up has

been demonstrated to be feasible [39]. Furthermore, higher level tasks, such as character

generation also show promising results [20]. Deep learning approaches acquired popularity

relatively recently, therefore, most existing approaches to automatic 2D in-betweening are

not learning-based and rely instead on hand-engineered rules [10] [43] [11] that often fail

to generalize to diverse use cases. Moreover, the few deep-learning-based approaches for

2D in-betweening that have been published either require fully colored drawings [42] or

expect vectorized input [19]. This study introduces a system that generates in-between

frames for uncolored 2D animation using raster images (regular images), without the need

for vectorized input.

2



Chapter 2

Background and Related Work

2.1 Frame Interpolation

The problem of automatic in-betweening is highly similar to the problem of frame interpo-

lation, a widely studied problem in the computer vision community. Frame interpolation

consists of generating intermediate frames in a video file, with the objective of increasing

the video’s frame rate (i.e., the number of images shown per second of video). The problem

of frame interpolation can be formulated as finding a function S that takes two consecutive

frames, In and In+1, as input and outputs a predicted intermediate frame Î. To train a

frame interpolation system, the most common approach is to extract frame triplets, that

is, sequences of 3 frames (I0, I1/2, I1) from video files.

Figure 2.1: A typical video triplet, with consecutive frames I0, I1/2, I1

In a typical frame interpolation system, the end frames of the triplet, I0 and I1 are

used as input to make a prediction, Î, such that S(I0, I1) = Î. For learning-based systems,

3



during training, Î is then compared to the real intermediate frame of the triplet, I1/2, with

the training objective being to minimize some error measure between Î and I1/2 .

2.2 Optical Flow

One of the most prominent approaches to frame interpolation is the use of optical flow

estimation [33]. Optical flow refers to the optical displacement of objects in a sequence

of frames, which can also be thought of as the trajectory of the visual components in the

frames.

Figure 2.2: An example of optical flow vectors in an image. Each optical flow vector

describes the trajectory that a point in an object has from one frame to the next [1]

A typical optical flow estimation method will assess correspondences between pixels in

consecutive frames, In and In+1 and generate a map fn→(n+1) of optical flow vectors that

describe how each pixel in In needs to be displaced to reach its corresponding position in

frame In+1. A standard flow-based frame interpolation method uses the estimated flow,

fn→(n+1), to guide a warping operation on image In that generates the predicted interme-

diate frame, Î. More sophisticated frame interpolation systems that use optical flow have

a synthesis module that refines the initial prediction produced by the warping operation

[18], [38]. Learning-based optical flow estimation methods are usually trained separately

to the interpolation system by using annotated triplets with ground truth optical flow [9].

Nonetheless, there are also systems that extract the flow implicitly from non-annotated
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triplets and learn in a self-supervised fashion from the frame interpolation error alone [17].

Self-supervised training refers to training done without the need for human annotation of

the data. Given how expensive it is to obtain annotated flow data to train an optical

flow estimation module, interpolation systems will often leverage pre-trained optical flow

estimation networks [12, 42, 53].

2.3 Challenges of frame interpolation for 2D Animation

While state-of-the-art frame interpolation methods have achieved extraordinary results

[35, 2, 16] for natural videos (recordings of real life), their success does not transfer well to

the domain of 2D animation [30, 42]. There are several differences that can be pointed out

between the 2D animation and the natural video domains. We outline the two most well

documented challenges to performing frame interpolation for 2D animation, namely large

motion and information sparsity.

Figure 2.3: A comparison of the results of interpolation using DAIN [2] for natural video

(top) vs 2D animation (bottom). Severe artifacts can be observed for 2D animation.
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2.3.1 Large Nonlinear Motion

Large motion describes abrupt changes that can be observed when the objects being de-

picted show large displacement from one frame to the next. Large motion occurs substan-

tially more in 2D animated videos than it does in natural videos. The reason being that in

2D animation the frames are hand-crafted drawings, which makes them significantly more

expensive and time consuming to make than the photographic frames of a natural video.

As a result, a standard natural video with a 24 frames per second rate (24 fps), will have

24 distinct frames in one second, while a standard 24 fps 2D animated video, will have

between 6 to 12 distinct frames in one second. In other words, in 2D animation, each frame

will be shown up to 4 times, with 2 being the norm for Japanese animation.

Figure 2.4: An example of a triplet displaying small motion and a triplet displaying large

motion.

In addition, a key assumption that optical flow-based methods make is that the move-

ment between frames in a triplet is linear. In the context of frame interpolation, linear

movement means that objects in a video move in a straight line between two consecutive

frames [33]. Consider pixel a in frame I0 and flow vector given by f0→1(a) that maps a’s

trajectory to its corresponding position in I1. If a’s corresponding position in intermediate

frame, I1/2, can be found by multiplying f0→1(a) by some scalar, then the movement in

that triplet is linear. Therefore, when performing flow-based interpolation, the warping

6



operation places each pixel in Î at an intermediate point (usually the middle) along the

pixel’s displacement from In to In+1, given by fn→n+1. Due to the mechanical nature of

video cameras, which shoot at very precise intervals the photographs that comprise a video,

motion in natural video triplets can often be modeled linearly. Such is not the case for 2D

animation, where the movement of objects is subject to animators’ stylistic choices, which

often result in non-linear motion.

2.3.2 Information Sparsity

The other main challenge for traditional 2D animation interpolation is the information

sparsity inherent to uncolored drawings, or sketches [31]. In a natural image, every region of

the image is packed with local fluctuations of information corresponding to color, textures,

and other physical attributes of the photographed objects. In a sketch, on the other hand,

the information is extremely sparse, as the image consists of mostly white space, with a

minuscule portion of black pixels representing the lines that shape objects.

Figure 2.5: An illustration of information sparsity, where the left shows an image with

dense information, and the right shows an image with sparse information

2.3.3 Spectral Bias/Texture Bias of neural networks

The challenge of information sparsity has particular relevance to deep-learning based ap-

proaches. It has been documented, both empirically and analytically, that neural networks

favor the learning of one type of information over another. Empirically, it has been demon-

strated that convolutional neural networks (CNNs) trained on natural images exhibit a

7



bias toward learning information encoded at spatially smaller scales (i.e., textures) over

information encoded in larger scales (shapes and composition) [13]. In other words, CNNs

trained on natural images exhibit a ‘texture bias’. A proposed measure to alleviate this

texture bias in a given CNN, is to train the network with ‘shape cues’ or images where

texture information is not as abundant.

Figure 2.6: Illustration of the texture bias. When a neural network classifier is given

conflicting shape and texture information in an image, it tends to resolve in favor of the

texture information [13]

It was also demonstrated analytically, using tools from Fourier analysis, that networks

with ReLU activations fit higher frequency functions significantly faster than lower fre-

quency functions, thus exhibiting what was termed a “spectral bias” [34]. When transform-

ing the visual content of an image to the frequency domain, visually abrupt changes from

one region to the next, such as the edges of an object, yield high frequency values. Smoother,

more gradual changes, such as the surface of an object, yield low frequency values. The

sketch domain lacks any type of texture information, as the entirety of the information is

conveyed by the edges that shape objects (i.e., high frequency changes). Therefore, when

designing a frame interpolation system for 2D animation, leveraging networks pre-trained

on natural images will entail combating a learned texture/spectral bias.
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2.4 Proposed solutions to frame interpolation for 2D an-

imation

2.4.1 Color Segmentation

In colored 2D animation, colored regions are often uniformly flat, lacking the local color

fluctuations that give rise to the texture a natural image would have. Siyao et al. [42]

decided to use it as an advantage by segmenting the frames into color regions, matching

these regions, then using the matches to enrich the flow estimation. Color segmentation

is a significantly easier task for colored 2D animated images than it would be for natural

images. Their system then leverages a pre-trained flow estimation module that incorporates

the color segment correspondences to refine the flow estimates.

Figure 2.7: Figure 2.7 A diagram of Author Name’s interpolation system

2.4.2 Feature Extraction

Chen et al. [7] continued this line of research and proposed an alternative system that

exploits additional features of the colored 2D domain. In their system, Chen et al. use a pre-

trained classifier, ResNet-50 [15], as a feature extractor, and a pre-trained flow estimation

network, RAFT [44], to guide a warping operation. They then add a non-trainable in-

painting module to handle occlusions (when an object blocks another object) and pass

the results to a synthesis module (a UNet) that refines the predictions. Additionally, the

authors leveraged the line information present in 2D animated drawings through a module
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based on euclidean Distance Transform (DT), originally proposed by Narita et al. as a tool

in sketch animation interpolation [30] (further discussion in 2.4.3). This distance transform

module is executed concurrently, and its output is added to an additional synthesis module

along with the predictions of the main module to further refine the final prediction.

Figure 2.8: The interpolation system proposed by Chen at al. [7]

Approaches [42] and [7] achieve state-of-the-art results for colored 2D animation. They

address large motion by enriching their flow estimation with either color correspondence

information, or pre-trained feature matching. However, both approaches expect the images

to be colored. Using colored frames allows them to leverage feature extraction and flow

estimation models pre-trained on natural images, but makes them incompatible with the

production pipeline of 2D animation, in which the animation is usually done on uncolored

drawings.
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2.4.3 Distance Transform

Narita et al. introduced an interpolation system specifically designed for uncolored 2D

animated frames [30]. They alleviate the information sparsity issue by adding information

to the frames via a Distance Transform (DT). DT replaces each white pixel in a binary

image with the pixel’s Euclidean distance to the closest black pixel. They then feed the

transformed images to a pre-trained flow estimator. However, no training was performed

in that system. Instead, the set of initial predictions made by the pre-trained optical flow

estimator was evaluated directly.

Figure 2.9: An example of Distance Transform

2.5 Non-correspondence vulnerability of optical flow

Large Motion and Information Sparsity are the two main issues documented in the litera-

ture of frame interpolation for 2D animation. The approaches discussed so far implement

different strategies to address both. However, all these approaches use optical flow esti-

mation, an approach that involves mapping pixel-wise correspondences across frames. We

argue that, by nature, 2D animation frames will often lack the pixel-wise correspondences

that natural video frames tend to have.
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Figure 2.10: Mapping what pixels in the left column correspond to what pixels in the

right column is a task much more suited for natural video than it is for 2D animation

Most properties in the objects of a natural video are strictly preserved from frame to

frame. Animators draw each frame manually, and they use a much looser rendering criteria

in which not all the properties of objects need to be preserved from frame to frame. For

example, when drawing clothes, as long as the overall structure of the garment is conveyed,

many other properties such as the exact number of folds and their shape need not be strictly

preserved from one frame to the next, as observed in Figure 2.10.

Melvin et al. describe this type of frame to frame change common in 2D animation as a

topological change [10]. They point out that when mapping corresponding objects across

frames in 2D animation, it will be common for objects to be split into two or merged into

one, to appear or disappear from one frame to the next; in other words, to undergo changes

in their internal connectivity. They claim that a more strictly rendered object, such as one

animated with a 3D modeling software, does not commonly undergo such changes from

frame to frame.

We argue that this lack of consistency in objects’ properties across frames makes pixel-
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wise correspondence mapping, and by extension, optical flow, not the most well-suited

approach to solve frame interpolation for 2D animation.

With flexibility in mind, we opt for end-to-end training, and implement two frame

interpolation systems: 1) a stand-alone UNet-like autoencoder to be used as a baseline and

2) a framework based on Generative Adversarial Networks.

2.6 End-to-End Training for Sketches

End-to-end training, defined as the direct optimization of the entire system for a single task,

has the property of requiring an amount of training data that grows proportionally with

the complexity of the task. Thus, leveraging pre-trained models that have already been

optimized for a related task is a widely used strategy to circumvent computational resources

constraints. Nonetheless, for a domain as particular as sketch (uncolored) 2D animation,

models pre-trained on other domains, such as the natural video domain, posit severe domain

transferability challenges. These domain transferability challenges were discussed in depth

in 2.3. Furthermore, we argue there is a property of the sketch domain that makes end-to-

end training more feasible than it would be for the natural video domain. The information

sparsity (discussed in 2.3.2) inherent to the sketch domain might raise spectral/texture

bias issues, but it also produces a much smaller solution space. A natural RGB image

has 3 channels per pixel, and each channel may have 255 different values. A binarized 2D

sketch has only one channel, and 2 possible distinct values for that channel. Given that the

solution space for uncolored or sketch 2D animated frames is substantially smaller than the

solution space for natural video frames, we argue that end-to-end training is feasible, and

worth exploring as an alternative to using texture/spectrally biased components pre-trained

on natural images.
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2.7 UNet Autoencoder

In an auto-encoder architecture, one half of the network encodes an image into a low-

dimensional latent space, and the other half decodes this latent space into an image. UNet

[36] is by far the most influential and widely used autoencoder architecture. A typical

UNet has 4 contracting convolutional blocks that comprise the encoder, and 4 convolutional

expanding blocks for the decoder. In order to preserve relevant information in the deeper

layers of the network and avoid vanishing/exploding gradient issues common in deep neural

networks, residual connections link blocks of corresponding scales.

Figure 2.11: Typical UNet Architecture [36]

Residual connections have been shown to facilitate the learning of an identity function

to retain un-changed properties that would otherwise be hard to preserve after applying

a series of convolutional filters [15]. UNet was originally developed for medical image

segmentation. However, it has since been used for a wide variety of applications, including

frame interpolation [18, 35, 7]. In a frame interpolation scenario, UNet is usually just a
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component of the system. For example, it is common for UNet to be used as a synthesis

module, where a feature stack of optical flow features or other type of information gets

passed as input, and the output is the final frame prediction. We show that for uncolored

2D animation, a standalone UNet, trained end-to-end without additional modules, can

produce competitive frame interpolation results for small ranges of motion.

2.8 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first introduced in 2014 by Goodfellow et

al. as a tool to generate realistic looking images from noise [14]. The central idea behind a

GAN consists of having two neural networks, a generator G and a discriminator D, compete

against each other. The generator is trained to produce fake images, and the discriminator

is trained to distinguish the generator’s fake images from real images. The losses of both

generator and discriminator are setup in a zero-sum game, or minimax scenario, where

minimizing the loss in the generator implies maximizing the error, or loss value of the

discriminator, and vice-versa, the optimal state being a Nash equilibrium. As devised in

the original paper [14], a GAN network optimizes the following function:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

Where x is a real image, and D(x) is the discriminator network’s prediction for that

image, which ranges from 0 (fake) to 1 (real). G(z) is a fake image produced by the

generator given input z (in a typical GAN scenario z is a noise vector). Essentially,

(Ex∼pdata(x)[logD(x)]) measures, on average, how well the discriminator classifies real im-

ages as real, and (Ez∼pz(z)[log(1−D(G(z)))] measures how well it classifies fake images as

fake. The discriminator network, D, seeks to maximize the overall value of the function.

The generator network, G, on the other hand, seeks to minimize it. D(G(z)) is the discrim-

inator’s prediction for a fake image, and 1−D(G(z)) represents how well the discriminator

15



is fooled by the fake images. The generator wants D(G(z)) to be as close as possible to

1, as it would mean the discriminator is classifying its fake images as real. Therefore, the

generator improves by producing more realistic images that can fool the discriminator into

classifying them as real, and the discriminator improves by classifying the generator’s fake

images as fake and the real ones as real. Over the course of training, as both generator and

discriminator improve at their respective tasks, the fake images produced by the generator

start resembling the real images.

Several GAN-based architectures have been published since 2014 that can generate

images nearly indistinguishable from real images to the human eye [47, 48, 49].

Figure 2.12: Illustration of a GAN system [6]

2.8.1 Generative Adversarial Networks for Frame Interpolation

The success of GANs did not take long to reach the field of frame interpolation. Several

frame interpolation systems producing competitive results included a GAN-based compo-

nent [49, 48, 47]. A common structure in GAN-based frame interpolation systems, is to

use an auto-encoder architecture as the generator network, and a Convolutional Neural

Network (CNN) as the discriminator [23, 46, 28, 48]. In an auto-encoder architecture, one

half of the network encodes an image into a low-dimensional latent space, and the other half

decodes this low-dimensional latent space into an image. In this type of GAN setup, the
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auto-encoder receives the end frames of the triplet, I0 and I1, as input, and outputs a pre-

diction, Î, for the in-between frame. The discriminator receives Î and the real in-between

frame, I1/2, then provides an estimate of how realistic Î is. In addition, supervised ground

truth reconstruction error obtained by comparing Î and I1/2 directly is added to the gen-

erator’s loss function. The supervised reconstruction error combined with the adversarial

dynamic between the generator and the discriminator during training guides the generator

toward producing plausible in-between frames. We argue that, if performed end-to-end,

this approach to frame interpolation is less vulnerable to constraints such as the range and

linearity of motion, as well as the lack of pixel-to-pixel correspondences of the training

triplets.
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Chapter 3

Proposed Approaches

We introduce 2 systems: 1) a simple UNet-like autoencoder, and 2) a GAN interpolator.

Both systems are trained end-to-end, supervised by frame reconstruction error.

3.1 System 1: UNet Interpolator

3.1.1 Architecture

This system consists of a simple UNet-like autoencoder. We follow a typical UNet archi-

tecture with 4 contracting blocks for the encoder, and 4 expanding blocks for the decoder,

and residual connections between blocks of corresponding scales. Each contracting block

has 2 convolutional layers, followed by a max-pooling layer that halves the dimensions of

the feature map for the next block. Our expanding blocks consist of a bilinear up-sampling

transformation that doubles the size of the feature map and 3 convolutional layers. We use

bilinear up sampling as opposed to transposed convolutions to avoid checkerboard artifacts,

as suggested in [3]. Our autoencoder takes the end frames of a triplet I0 and I1, as input,

and outputs a prediction for an in-between frame, Î. Reconstruction error is obtained by

comparing Î to ground-truth intermediate frame, I1/2 .We use ReLU activations for all

inner layers, and Sigmoid for the last layer.
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Figure 3.1: UNet Interpolator architecture

3.1.2 UNet Loss Functions

To encourage the restriction of the solution space to that of a binary image, we turn the

reconstruction of each pixel into a classification problem, rather than a regression one. In

other words, we are only interested in whether a pixel is fully dark or fully white, and would

thus, need some measure of the binary accuracy of each pixel’s classification. To this end,

we optimize a Binary Cross Entropy (BCE) loss function, which is a differentiable proxy

for binary accuracy, and average across all pixels of the reconstructed image. BCE Loss is

defined as:

LBCE(x, y) = − 1

N

N∑
i=1

[yi · log(xi) + (1− yi) · log(1− xi)] (3.1)

Where N is the number of pixels in a binarized image, yi is the ground truth label of the

ith pixel (0 for black and 1 for white) and xi is the network’s prediction for the ith pixel’s

label (a value ranging between 0 and 1).
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In addition to BCE, we use another loss function that looks into additional statistics of

two images, termed Multi Scale Structural Similarity Index Metric (MS_SSIM), given by:

LMS_SSIM(x, y) = 1− ([lm(x, y)]
α

m∏
j=1

[csj(x, y)]
βj) (3.2)

Where x and y are the two images being compared. lm(x, y) is the luminance component

at the mth scale. csj(x, y) is the contrast-structure component function at the jth scale. α

and βj are the weights for the luminance and contrast-structure comparisons, respectively.

The luminance component function is defined as:

lm(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(3.3)

Where µx and µy are the means of x and y respectively. C1 is a constant to avoid instability

when the denominator is close to zero.

The contrast-structure component function is defined as:

csj(x, y) =
2σxy + C2

σ2
x + σ2

y + C2

(3.4)

Where σ2
x and σ2

y are the variances of x and y respectively. σxy is the covariance of x and

y.

Both of these losses are integrated into an overall loss function in the following way:

L = λ1 · LBCE + λ2 · LMS_SSIM (3.5)

Where λ1 and λ2 are hyper-parameters that assign the weight each individual loss function

has on the overall training objective.

3.2 System 2: GAN Interpolator

We follow a conventional GAN interpolator system with a UNet like autoencoder as the

generator (see Figure 3.1) and a CNN as the discriminator (see Figure 3.2). The generator
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combines a reconstruction loss by supervising its predictions with the ground-truth, and an

adversarial loss from the discriminator. The discriminator works on a classification loss by

comparing the generator’s predicted in-between frames against the ground-truth in-between

frames. In essence, the generator optimizes 2 objectives: 1) fooling the discriminator, and

2) reconstructing the ground truth in-between frames. The discriminator in turn optimizes

the regular classification objective between the generator’s fake frames and the ground

truth frames.

Figure 3.2: Our GAN Interpolator System

3.2.1 Discriminator Architecture

For the discriminator, we follow the typical classifier CNN structure of halving the di-

mensions of the feature map at every convolutional block, then aggregating the features

of the last convolutional layer with a dense layer before classification. To avoid over-
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parametrization, we keep the discriminator network light by using only a single convolu-

tional layer per block.

Figure 3.3: Discriminator Architecture

3.2.2 Discriminator Loss Function

The discriminator optimizes a Binary Cross Entropy (BCE) as defined in 3.1.2. However,

in this case, the classification is done over entire images, instead of over individual pixels,

and the labels are 0 for a fake image and 1 for a real image.

3.2.3 Generator Loss Function

The generator network is the part of the system that produces the frame. Our generator

network’s loss is divided into two parts optimizing the following objectives: 1) frame recon-

struction loss, obtained through supervision from the ground truth intermediate frames,

and 2) adversarial loss, obtained through the discriminator network’s classification results.

1. For our reconstruction objective, just like with the UNet system, we use LBCE (see

3.1.2) and LMS_SSIM (see 3.1.2).
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2. For our adversarial objective, Lavd, we use the discriminator’s classification results,

obtained after passing both the generator’s fake images, and the real intermediate

frames Î to the discriminator, as formulated in the original paper, (see 2.8), which

simplifies to the following expression for the generator:

Ladv(Î) = − 1

N

N∑
i=1

log(D(Îi)) (3.6)

The generator network in this GAN system integrates all sub-losses with the following

loss function:

LG = λ1 · LBCE + λ2 · LMS_SSIM + λ3 · Ladv (3.7)

Where λ1, λ2, and λ3 are hyper-parameters that assign the weight each individual loss

function has on the overall training objective. We found through experimentation that low

values of λ3 (>.05), that is, the weight assigned to the adversarial loss, Lavd, lead to more

accurate error-based reconstruction metrics, while higher values lead to better perceptual-

based metrics (more discussion in 4). Nonetheless, this parameter is highly sensitive, as

increments as low as 5% in λ3 can significantly interfere with model convergence.
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Chapter 4

Metrics & Dataset

Frame interpolation research has mostly been evaluated with image reconstruction metrics,

however, several of these measures have been shown to not necessarily align with human

perception of image quality. Evaluation of frame interpolation systems remains an active

research area, with new metrics being proposed continuously.

4.1 Reconstruction Metrics

Classical reconstruction metrics used by the frame interpolation community include Peak

Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM).

4.1.1 Peak Signal to Noise Ratio (PSNR)

PSNR is essentially a normalized version of Mean Squared Error (MSE), which is just the

squared of the error obtained after subtracting the pixel intensity values in one image from

the pixel intensity values in the other image and averaging the result. MSE between two

images is given by:

MSE(I, Î) =
1

n

n∑
i=1

(Ii − Îi)
2 (4.1)

Where Ii is the ith pixel intensity of the ground truth image, I1/2, that has n pixels, and

Îi is the ith pixel intensity of the predicted image Î with the same number of pixels. The

MSE of a testing dataset is just the average of the individual MSEs.

MSE is a very straightforward metric, however, the range of values it produces is not
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standardized, thus, interpreting them is highly subject to the domain and dataset on which

the metric is being used (natural images, spectral images, 3d renders, etc.). PSNR re-

scales MSE according to the images’ highest possible pixel value, performs a logarithmic

transformation and a simple algebraic manipulation that transform MSE from a distance

metric, where lower values are better, into a peak signal (highest possible pixel value) to

noise (error as measured by MSE) ratio, where higher values are better. PSNR is given by:

PSNR = 20 · log10
(

MAXI√
MSE

)
(4.2)

Where MAXI is the highest possible pixel value for the given dataset, which in our case

is a pixel intensity of 1, since we normalize our images from the 0 to 255 pixel intensity

range, to the 0 to 1 range.

4.1.2 Structural Similarity Index Measure (SSIM)

SSIM is a more involved metric that combines several statistics of 2 images, x and y, into

a single quantity in the following way:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.3)

Where µ is an image’s mean pixel intensity value, σ is the standard deviation, and c1,

c2, and c3 are just constants. The formula is derived from multiplying the following 3

components by each other: luminance ∗ contrast ∗ structure.

Luminance is defined as:

Lm(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(4.4)

Contrast is defined as:

ct(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(4.5)

Structure is defined as:

st(x, y) =
2σxy + c3
σxσy + c3

(4.6)
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It can be observed that the luminance component, Lm(x, y), penalizes the metric when

the mean pixel values of the images being compared are different from each other. Contrast,

ct(x, y), applies the same mechanism, but for the images’ standard deviations. Structure,

st(x, y) is plainly the correlation between all pixels in both images.

One of the sublosses employed by both our systems, LMS_SSIM (see 3.1.2) is a derivation

of this metric, which adds multi-scale comparisons and combines some of these components

with each other. Nonetheless, as an evaluation metric, SSIM is more commonly used than

MS_SSIM.

4.2 Perceptual Metrics

While impressive interpolation results have been achieved with classical reconstruction met-

rics like PSNR and SSIM, it has been recently shown that optimizing for these metrics does

not cleanly align with human judgments of perceptual quality [4]. Thus, the evaluation of

interpolation quality remains an open research problem. A widely adopted perceptual based

metric in frame interpolation and GAN research is the Learned Percceptual Image Patch

Similarity (LPIPS) [54]. LPIPS consists of passing the images being compared through a

pre-trained classifier network, such as VGG-19 [40] to obtain a representation vector from

the network’s convolutional feature maps, then computing the distance between the repre-

sentation vectors of the two images. While LPIPS has shown remarkable correlates with

human judgment of image reconstruction quality [54], most pre-trained classifier networks

being used to compute this metric were trained with natural images. We outlined our

reasons to avoid leveraging components pre-trained on natural images in section 2.3.

4.2.1 Chamfer Distance

Chamfer distance is a metric typically used to measure similarity between point clouds and

is popular in fields such as 3D rendering [32] [52]. For images, this metric uses objects’

edges to perform something akin to shape matching. Narita et al. proposed the use of this
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metric for the evaluation of frame interpolation for uncolored 2D animation [30]. Chen

at al. also used it as one of their metrics in their state-of-the-art interpolation system for

colored 2D animation [7].

The Chamfer Distance between two sets, X and Y , is given by:

Chamfer Distance(X, Y ) =
1

2|X|
∑
x∈X

min
y∈Y

|x− y|+ 1

2|Y |
∑
y∈Y

min
x∈X

|y − x| (4.7)

To adapt it to binary images, Narita et al use a Distance Transform (DT) on the images,

which replaces every white pixel in a binary drawing with the pixel’s distance to the closest

black pixel. See 2.4.3 for an illustration of DT. Using the same formulation as [30], we

perform DT on our predicted frame, Î, and our ground truth frame, I1/2, and obtain the

Chamfer Distance (CD) in the following way:

CD(Î , I1/2) =
1

2

(
I1/2 · DT(Î)

|I1/2|
+

Î · DT(I1/2)

|Î|

)
(4.8)

The DT is a non-differentiable operation, hence, it is not straight-forward to optimize

for this objective directly with a loss function. Chen at al. proposed performing DT for

both Î, and I1/2 without tracking the gradients of this operation, then optimizing the

Laplacian Pyramid loss between the DT of both frames [7]. We tested this loss, termed

LDT , however, we found via experimentation that it had minimal impact in any of our

systems’ Chamfer Distance.

4.3 Dataset

A positive aspect of the frame interpolation problem is that obtaining datasets to perform

supervised training is relatively easy, as triplets with ground truth in-between frames can

be extracted from practically any video. There are several tools such as shot-detection

algorithms that help to decompose a video into its constituent triplets.
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4.3.1 ATD_12K dataset

The authors’ of [42] assembled and annotated a dataset of 12,000 2D animation triplets,

namely, the ‘atd_12k’ dataset. The triplets were collected from a series of Western and

Japanese 2D animated movies. The criteria they used to collect this dataset was to consider

any set of three consecutive frames with a SSIM value within the range [0.65, 0.95] as a

triplet. This dataset has since been used as a benchmark for 2D animation interpolation

research [7] [26]. We train and test our model with the atd_12k dataset, splitting it into

9,000 triplets for training, 1,000 for validation, and 2,000 for testing.

Figure 4.1: Example of a triplet from the atd_12k dataset [movie: A Silent Voice]

4.3.2 Sketch Extraction

The atd_12k is a colored animation dataset, and our system is meant to perform interpo-

lation on uncolored 2D animation. To this end, we extract sketches, or uncolored frames,

from the atd_12k dataset by using sketchKeras [27], a model trained to extract the line

art from colored 2D illustrations.

Figure 4.2: Sketches of a triplet from the atd_12k dataset extracted using sketchKeras
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4.3.3 Augmentation

Data augmentation is the process of creating new training sample samples by applying

some transformation(s) to the original samples with the goal of increasing the diversity

and robustness of the dataset. For our dataset, we perform two simple augmentations:

horizontal flipping (inverting the image over the vertical axis), and reversing the order of

the triplet (from I0, I1/2, I1 to I1, I1/2, I0). The augmentation scheme is applied randomly

such that 50% of the training batches undergo any one or both of these transformations.
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Chapter 5

Results

System Chamfer Distance PSNR SSIM

UNet - full 1.673 14.048 0.789

GAN - full 0.984 15.081 0.852

Table 5.1: Performance of both systems. Note that lower values are better for Chamfer

Distance, and higher values are better for PSNR & SSIM. Chamfer Distance is scaled up

by a factor of 104 for illustration purposes.

We tested 2 systems: 1) a standalone UNet interpolator and 2) GAN based interpolator,

which adds an adversarial component to the UNet interpolator. Results show that adding

this adversarial component significantly improves the model performance both in terms of

perceptual and reconstruction-based metrics. Nonetheless, the performance improvement

is substantially more noticeable for the perceptual metric (42% better Chamfer Distance).

5.1 Perceptual-Reconstruction Metric Trade-off

In this project, a clear distinction was made between between perceptual-based evalua-

tion, which are designed to align more with human judgments of image quality (see 4.2),

and reconstruction-based evaluation, which more directly assess pixel-level errors in the

generation (see 4.1) We found during training in our GAN system, that as performance

on perceptual metrics increased, performance on reconstruction metrics decreased. This

reconstruction-perceptual metric trade-off has been documented in the literature [54]. The-

oretically, GANs are designed to produce more ‘realistic’ results to the human eye, which
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aligns with what perceptual metrics capture, but these perceptual metrics are often at

odds with classical reconstruction metrics. Results of our experiments fall in line with

this documented trade-off. Figure 5.1 shows how, in our GAN system, as the perceptual

metric, Chamfer Distance (CD), becomes better during training (lower is better for CD),

the reconstruction metric, MSE becomes worse (PSNR is derivative of MSE).

Figure 5.1: Perceptual-reconstruction metric trade-off. As Chamfer Distance (left)

becomes better, MSE (right) becomes worse

This trade-off, however, did not apply to both reconstruction metrics utilized in this

study. We found SSIM and Chamfer Distance (CD) to have a positive association across

our experiments. We observed that lower (better) CD values were associated with higher

(better) SSIM values across multiple experiments, both with the UNet and GAN systems.

In contrast to PSNR, which essentially measures normalized pixel-to-pixel error, SSIM

combines various image statistics into a single metric, which possibly makes it more robust

to comparisons with perceptually oriented metrics like CD.
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Figure 5.2: Chamfer Distance (lower is better) and SSIM (higher is better) are positively

associated
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5.2 Visualizing the effects of optimizing for perceptual

metrics

Figure 5.3: Interpolation results of UNet (middle column) and GAN (rightmost column).

It can be observed how the GAN system preserves details such as line structure and

sharpness more to the likeness of the ground-truth

As can be observed in Figure 5.3, for large motion triplets, the GAN interpolator preserves

certain aspects of the original drawing, such as line thickness, sharpness, and overall ge-

ometry that more closely resemble the original drawings. The UNet interpolator on the

other hand, is prone to blurring artifacts and deformations to line thickness and curvature.
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We argue these differences can be attributed to the distinct training objectives of both

systems: UNet’s loss function consists of purely of error-based measurements between its

generation and the ground truth. A GAN’s objective, on top of that same error based

objective, includes the adversarial component where a discriminator network dynamically

looks for the presence/absence of learned features that distinguish generated frames from

real frames.

5.2.1 Visualizing generated frames across ranges of motion

While the GAN-based system shows better overall testing performance over the UNet-

based system, this difference in performance is most observable to the human eye only

past some ranges of motion. Movement range, discussed in 2.3.1, is roughly defined as the

displacement length of objects across frames. When the movement in a triplet is small,

predicted in-between frames from both the UNet and the GAN interpolators do not display

clearly noticeable differences (see Figure 5.4). However, as the movement range increases,

there are clearly noticeable differences between the GAN reconstruction and the UNet

reconstruction (see Figure 5.5). We prepared a miniature example dataset entirely for

visualization purposes, comprised of 1 small motion triplet, 1 middle motion triplet, and 1

large motion triplet. We visualize the performance of the light models compared to that of

the full models, by showing each model’s reconstructions of these examples.
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Figure 5.4: Small motion: GAN vs UNet

As can be observed in Figure 5.4, for triplets with small motion, both models produce

generations that are virtually indistinguishable from each other to the naked eye. The

similarity of both generations is also reflected in their metric values, which are closely

aligned with each other.
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Figure 5.5: Medium motion: GAN vs UNet

For triplets with medium range of motion (see Figure 5.5), the differences between the

generated frames by the GAN and the UNet models become much more evident. The

GAN model produces crisper lines and an apparent geometry that’s more consistent with

the ground truth. The UNet model seems to default to blurring the lines, possibly as

a result of its training objective much more oriented toward minimizing the number of

incorrectly classified white pixels.
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Figure 5.6: Large motion: GAN vs UNet

For triplets where the range of motion is large, both approaches struggle to produce

convincing results (see Figure 5.6), while displaying different classes of artifacts. The GAN

system produces notably more disappearing artifacts, that is, entire regions incorrectly

left blank. The UNet system, on the other hand, produces more blurred regions, with

geometrically deformed lines. A potential explanation for this difference in artifacts is

that the discriminator network in the GAN system may learn to penalize the generator for

producing lines without the proper sharpness of curvature more heavily than it penalizes it

for an over-abundance of white space, seeing as a the ground truth frames are, on average,

97% white space. The UNet system, on the other hand, optimizes an exclusively error-

based objective, in which it tries to match both pixel-to-pixel values, as well as certain

statistics of both images. Thus, blurring entire regions is possibly an effective strategy to

minimize the pixel-to-pixel error, while maintaining some image statistics, like the mean
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pixel value, relatively consistent.

5.3 Training stability GAN vs UNet

5.3.1 GAN Training

One caveat of GANs is their notable lack of training stability, particularly of the discrim-

inator network (see Figure 5.7). Several strategies have been proposed to stabilize the

discriminator network during GAN training, one of them being Spectral Normalization

[29], which essentially re-scales the weights of an entire layer with the largest singular value

of the layer’s weight matrix. We use spectral normalization in all layers of our generator

and discriminator and find notable benefits in training stability. However, the stability was

highly conditioned to careful selection of hyper-parameters and loss functions. We found

that small variations in hyper-parameters, such as the lambda parameters corresponding

to the weights assigned to each sub-loss quickly lead to highly unstable training, even when

using spectral normalization.

5.3.2 UNet Training

Unlike GAN systems, simple auto-encoders, such as the UNet variations we used, enjoy

much more stable training. We found UNet training to be substantially less involved, as

most of our experiments reached convergence with much more stability (see Figure 5.8).

5.4 Balancing the perceptual-reconstruction trade-off

In the GAN-based system, the weight of the adversarial loss, Ladv, on the overall training

objective (see 3.2.3), is explicitly determined by the hyperparameter λ3. We found through

experimentation that increases to λ3 produce higher perceptual metric values at the expense

of reconstruction metrics, while low λ3 values (<0.05) facilitate convergence at lower recon-
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Figure 5.7: GAN training instability: the discriminator loss (right) fails to converge for

the training set (blue) and is extremely unstable in the validation set (orange)

Figure 5.8: UNet training stability: left shows training loss and right shows validation loss
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struction metrics, at the expense of perceptual based metrics, effectively serving as a tool

to regulate the perceptual-reconstruction trade-off (see 5.1). Nonetheless, in line with the

literature documenting the instability of GAN training [29], the λ3 parameter is extremely

sensitive, as fluctuations of as little as 5% can interfere with training loss convergence.

5.5 Periodic activation functions to alleviate the Spec-

tral Bias

An explicit measure developed to alleviate the Spectral Bias is the use of sine activation

functions, introduced by Sitzman et al. in their implicit neural representation networks,

termed Siren [41]. The authors report that the Siren networks they introduce are able to

fit images and functions in such a way that the first and second order derivatives of the

data are accurately fitted by the implicit neural representation of their network. In the

case of images, information concerning the edges of objects is conveyed strongly through

the derivative of the data’s representation (pixel value matrix) with respect to their spatial

coordinates (x, y). We used the sine activations reported in this paper, along with their

corresponding initialization scheme, as indicated by the authors. Nonetheless, while the

use of sine activations sped up the fitting of the training data for small datasets, it made

our models extremely vulnerable to mode collapse, thus failing to converge to competitive

metrics for most of our experiments. Mode collapse is a term used to describe the model

converging to fit one mode of the data distribution. For example, in our experiments, when

we used sine activations, the models defaulted to reconstruct one of the 2 input frames it

received, as opposed to the intermediate frame it is supposed to generate. These results

might be indicative of the need for a more carefully designed strategy to integrate sine

activations with Convolutional Neural Networks (CNNs). When introduced by Sitzman

et al., sine activations were used with a notably different type of network: implicit neural

representations, which are essentially networks that take an image’s coordinates as input,
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as opposed to its pixel values, and do not typically employ convolutions during image

generation.
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Chapter 6

Concluding Remarks

This study demonstrates the feasibility of using Generative Adversarial Networks, as well

as autoencoders in an end-to-end fashion to generate in-between frames for 2D anima-

tion, particularly for triplets with small to middle motion. It was observed that adding

an adversarial component to a UNet autoencoder siginificantly improves its performance,

particularly in terms perceptual metrics aimed at capturing human perceptions of image

quality.

Furthermore, we show that this perceptual improvement of the GAN system is most

observable in triplets with medium motion magnitude across frames. For triplets with small

ranges of motion, both approaches, the UNet-based system and the GAN-based system,

produce equally convincing results. For large motion, however, the GAN system produces

artifacts typically associated with information sparsity, such as disappearing objects. These

findings suggest that the two main challenges for frame interpolation in this domain, large

motion and information sparsity, interact in such a way that the negative effects of infor-

mation sparsity are exacerbated by increases in motion magnitude.

Therefore, we argue that range of motion is the main challenge to overcome. Future

research directions for this problem would benefit from modeling longer range dependencies

of the feature maps.

6.1 Significance of the Result

This study introduces the first deep learning system, to the authors’ knowledge, that per-

forms in-between frame generation on uncolored 2D animation from raster images that can
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be trained end-to-end. Furthermore, we show that adding an adversarial component to an

autoenconder architecture produces substantial improvements in the perceptual quality of

the interpolated results, while also improving reconstruction quality.

6.2 Limitations

The proposed methods in this study were not compared to other methods designed to

perform interpolation on uncolored 2D animation. This is partially due to computational

resources constraints, as several of these methods are comprised of substantially larger

networks than the ones we used. Additionally, the benchmark dataset used, atd_12k

[42] was manually filtered to contain only frame triplets with linear motion (see 2.3.1

for a definition and discussion of motion linearity). The proposed systems were designed

with versatility in mind, therefore, future studies should assemble a dataset unfiltered for

motion linearity to asses the systems’ ability to model non-linear motion. Additionally,

future studies should also compare these systems to other established frame interpolation

systems.

6.3 Future Work

To further alleviate the spectral bias neural networks are vulnerable to, also known as

texture bias, which the uncolored 2D animation domain is particularly vulnerable to, a

promising approach is the addition of positional encodings. This can be achieved through

the use of Fourier features that have been successfully applied in Transformer models and

implicit neural representations [50]. Similarly, it may be beneficial to experiment with

sine activations within the context of implicit neural representations, by replacing our

convolutional decoder with a Siren network [41]. This could potentially enhance the model’s

ability to deal with the sparse information inherent to uncolored 2D animation.

To tackle the challenge of large motion, a multi-scale training apprach could be em-
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ployed. This is a a standard approach used in state-of-the-art frame interpolation [35] [49]

as well as GAN research [21] [22] as it helps the model better understand and represent

large-scale movements in the frames. The downsampling operation required to perform

multi-scale training loses a lot of information when performed on uncolored 2D animated

frames, given the sparsity of the information in these frames. However, Distance Transform

could be used to increment the information present in the frames and make them more ro-

bust to down sampling, thus allowing for multi-scale training. Alternatively, the inclusion

of self-attention layers could assist with large motion handling. Self-attention mechanisms

have proven effective in various domains for capturing long-range dependencies and could

be particularly useful in this context.

In terms of data, collecting a larger dataset could significantly improve the model’s

performance and robustness. Findings in this study echo findings from prior studies [7]

in that naively collecting triplets from animated video hurts the models’ performance.

Therefore, a classifier network could be designed and trained to assist in filtering a larger

dataset collected from animated videos.
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