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Chapter 1

Introduction

As the prevalence of data-driven healthcare continues to grow, the role of machine learning

in medical diagnosis has become increasingly pivotal. This study introduces an innovative

approach dedicated to enhancing and fine-tuning predictive models for medical diagnoses

through the application of various optimization techniques. The aim is to advance the ac-

curacy and efficiency of diagnostic processes, contributing to the ongoing evolution of data-

driven healthcare practices. Machine learning enables us to employ algorithms designed

to mimic human learning patterns and enhance their precision. This method primarily

concentrates on refining and optimizing parameters of widely used machine learning algo-

rithms in medical diagnosis, encompassing logistic regression, support vector machines, and

neural networks. Function diagnosis =f(p1, p2, ..., pnf
) can be approximated by using many

approximation techniques (neural networks, various nonlinear regression models, etc.). To

find optimal result of the algorithm f it is possible to extrapolate values of the function

f and find possible new optimal value. Through the strategic application of optimization

techniques, we meticulously navigate the parameter space of these algorithms to uncover

the most optimal setups. Furthermore, by representing algorithms as computational graphs

and leveraging their relationships with diagnostic outcomes, we can project the ideal char-

acteristics of existing algorithms. This has the potential to steer the development of new,

exceedingly accurate diagnostic tools. The integration of machine learning and optimization

models provides a systematic, data-driven framework for enhancing existing algorithms and

uncovering inventive solutions, ultimately resulting in improved medical outcomes. This

approach’s effectiveness is showcased in a case studies involving logistic regression, where

parameters like the regularization strength inverse (C) are carefully fine-tuned. The results

1



from the logistic regression were refined and expanded using graph neural networks, ulti-

mately enhancing medical diagnosis. Furthermore, we applied this method to various other

ML models like K-nearest neighbors (KNN), graph neural networks (GNN), Support Vector

Machine (SVM), and others, all with the primary aim of advancing medical diagnosis.

Accurate medical diagnosis is the cornerstone of effective healthcare, yet diagnostic er-

rors remain a widespread concern. In the dynamic realm of healthcare, the incorporation

of state-of-the-art technologies plays a pivotal role in enhancing diagnostic accuracy. No-

tably, machine learning emerges as a powerful instrument with the capability to transform

medical diagnoses through the utilization of data-driven algorithms. The convergence of

artificial intelligence and healthcare holds significant promise, particularly in addressing the

enduring issue of diagnostic precision. Every year, millions of patients worldwide receive

incorrect diagnoses, resulting in significant consequences for patient well- being and health-

care expenses. These errors can stem from various factors, such as the complexity of medical

conditions, variability in clinical presentations, and the limitations of conventional diag-

nostic techniques.[10] The National Academy of Medicine acknowledges diagnostic errors,

characterized as “the failure to establish an accurate and timely explanation of a patient’s

health problem(s) or to communicate that explanation to the patient,” these errors encom-

pass delayed, incorrect, or overlooked diagnoses. Despite the personal and societal impli-

cations of diagnostic errors, they are frequently overlooked and not adequately addressed

in patient safety initiatives and healthcare quality metrics and guidelines. To highlight

the seriousness of this issue, consider situations where critical conditions, particularly in

their early stages, may go unnoticed even by highly experienced healthcare professionals.

These scenarios emphasize the immediate requirement for more robust, dependable, and

unbiased diagnostic tools. This research delves into the integration of machine learning

and optimization models, presenting a comprehensive approach to tackle this urgent chal-

lenge. Harnessing the synergies between these two domains, our objective is to elevate

the precision of medical diagnoses, leading to a tangible enhancement in patient care and

outcomes. Furthermore, we aim to enhance our diagnostic processes through the applica-
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tion of meta-learning. This comprehensive strategy leverages the combined strengths of

AI, computer science, and meta-learning to advance the frontiers of diagnostic precision,

ushering in a new era of enhanced healthcare outcomes. This approach empowers software

applications to assimilate insights from both data and algorithms, mimicking the learning

mechanisms inherent in human cognition. Through this iterative learning process, software

can continually refine its performance and accuracy, adapting to diverse inputs and chang-

ing circumstances. Meta-learning involves the ability to acquire the skill of learning itself,

encompassing tasks such as adjusting hyper-parameters within established learning algo-

rithms and effectively utilizing existing models and knowledge to address novel challenges.

This meta-learning proficiency plays a crucial role in enhancing the adaptability and flexi-

bility of current AI systems, enabling them to efficiently address previously unencountered

tasks. Bridging the gap between human performance and the current capabilities of AI

systems, the development of successful collaborations in this domain holds the promise of

yielding innovative ideas and substantial progress. The ability of meta-learning to empower

AI systems to generalize knowledge and swiftly adapt to new scenarios positions it as a cor-

nerstone in advancing the frontier of artificial intelligence. Meta-learning algorithms have

the capacity to leverage optimal predictions derived from machine learning algorithms,

thereby enhancing their own predictive capabilities. The exploration and development of

meta-learning concepts in computer science date back to the 1980s, gaining widespread

recognition and popularity following the influential contributions of Jürgen Schmidhuber

and Yoshua Bengio on the subject. The field of meta-learning, or learning-to-learn, has

seen a dramatic rise in interest in recent years, along with methods as transfer learning.

Contrary to conventional approaches to AI where tasks are solved from scratch using a

fixed learning algorithm, meta-learning aims to improve the learning algorithm itself, given

the experience of multiple learning episodes. We will expand on the topic on chapter three,

where we go over our methods and materials.

The concept of the neural network can be attributed to the collaboration between

logician Walter Pitts and neuroscientist Warren McCulloch in 1943, as they sought to elu-
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cidate the decision-making mechanisms inherent in human cognition and neural networks

[21]. Fast forward to 1957, where American psychologist Frank Rosenblatt introduced the

perceptron, marking the inaugural neural network designed to emulate human thought pro-

cesses. Noteworthy developments in machine learning during the 1950s were characterized

by pioneering research focusing on elementary algorithms. An illustrative example is Arthur

Samuel’s IBM program, which, employing the alpha-beta pruning algorithm, demonstrated

machine learning capabilities by playing checkers. These algorithms extrapolated from his-

torical data to anticipate new outcomes [17]. With technological advancements in recent

decades, ML has facilitated significant breakthroughs across diverse fields, encompassing

image processing and autonomous vehicles. The introduction and subsequent reempha-

sis of backpropagation in the 1960s and 1980s respectively fine-tuned neural networks for

commercial applications, uncovering hidden layers between input and output.[17] Machine

learning employs mathematical and statistical techniques to train algorithms, resulting in

a comprehensive grasp of data and enabling accurate classifications or predictions. This

process unveils valuable insights and refines data representation. Within the expansive

field of artificial intelligence (AI), machine learning, deep learning, and neural networks are

intricately connected. Neural networks, in particular, constitute a subset of machine learn-

ing, and deep learning (DL) is a subset encapsulated within the broader realm of machine

learning. It is noteworthy that deep learning goes beyond conventional machine learning

by engaging various types of neural networks. It involves a precise process of optimizing

hyper-parameters, features, and other network parameters to attain the most effective rep-

resentation of the underlying database, as expounded by [13]. Artificial neural networks

(ANNs) serve as the backbone of these methodologies, comprising layers of nodes that in-

clude an input layer, one or more hidden layers, and an output layer. The classification

of a neural network as either a basic neural network or a deep learning algorithm depends

on the number of layers it encompasses. Specifically, a neural network with more than

three layers is categorized as a deep neural network, while one with three layers or fewer is

deemed a basic neural network. This study integrates the theoretical foundations of neural
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network methodology with the practical applications of machine learning, especially in the

domain of deep learning, to scrutinize real-world data. The research seeks to introduce

advancements in network optimization for machine learning models, such as the incorpo-

ration of a meta-learning model, with a specific emphasis on enhancing the precision of

medical diagnoses. The proposed work aims to contribute to the ongoing refinement and

advancement of accurate diagnostic processes within the medical domain.

For a concise overview of machine learning, it employs two main techniques: Supervised

learning involves training a model on known input and output data to predict future out-

puts. Unsupervised learning focuses on discovering hidden patterns or intrinsic structures in

input data and can be categorized further. Supervised learning methods encompass neural

networks, linear regression, logistic regression, random forest, among others; as for unsu-

pervised learning methods we have typically the Hierachical clustering, K-NN (k nearest

neighbors) and others. Additionally, there is semi-supervised learning, striking a balance

between supervised and unsupervised approaches. This method utilizes a smaller labeled

dataset to guide classification and feature extraction from a larger, unlabeled dataset. In

our machine learning research, we’ve employed diverse algorithms on historical and contem-

porary datasets, encompassing medical diagnoses and other domains within AI and ML.

Among the prevalent ML algorithms are neural networks, mimicking the intricacies of the

human brain through an extensive network of interconnected processing nodes. Renowned

for their pattern recognition capabilities, neural networks find application in various do-

mains, including speech recognition, natural language translation, and image recognition.

We also looked into various machine learning algorithms employed in our dataset for classi-

fication purposes, one being logistic regression. This supervised learning technique predicts

outcomes for categorical response variables, such as yes/no responses to questions. While

applicable to various data types, logistic regression is most commonly used with cross-

sectional data and has roots in the biological sciences dating back to the early twentieth

century. The logistic regression model can be derived or viewed in three different ways:

Binary logistic regression: The response variable can belong to one of two categories.
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Multinomial logistic regression: The response variable can belong to one, three, or

more categories, with no inherent ordering among them. Ordinal logistic regression:

The response variable can belong to one of three or more categories, and there exists a

natural ordering among these categories.

In the realm of deep learning, the emergence of modern Convolutional Neural Net-

works (CNNs) in the 1990s was heavily influenced by the neocognitron. Yann LeCun et

al., in their seminal paper ”Gradient-Based Learning Applied to Document Recognition”

(cited 17,588 times) [28], showcased the efficacy of a CNN model in progressively integrat-

ing simpler features into more complex ones, leading to successful handwritten character

recognition, with similar success KNN.[28] We introduced the K-nearest-neighbor (KNN)

model and applied our meta-learning approach to enhance KNN for medical diagnosis. Our

previous research involved using a multi-layer perceptron, commonly referred to as a neural

network, to identify instances of financial market crashes and predict credit card default

payments for a financial institution’s clients and implemented imputation techniques using

ML and other range of algorithms. This exploration into neural networks sparked the idea

of integrating graph neural networks into our optimization meta-learning model. Looking

forward, our objective is to apply these methodologies to medical diagnosis datasets, fo-

cusing on classification objectives. We also aim to future propose numerical optimization

techniques to further refine the precision of medical diagnoses.

1.1 Data Analysis

Data science and data analytics are critical components of modern businesses and organi-

zations. They involve the systematic process of extracting valuable insights from raw data

to aid in decision-making. Data science is a multidisciplinary field that encompasses vari-

ous techniques, algorithms, and tools to uncover patterns, trends, and correlations within

data. It incorporates elements of statistics, mathematics, programming, and domain exper-

tise to extract meaningful insights. Data scientists are responsible for developing models,
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algorithms, and conducting in-depth analyses to address complex business -task speicfic

problems.

On the other hand, data analytics is a subset of data science that focuses on the process

of cleaning, transforming, and processing raw data to derive actionable and pertinent infor-

mation. This involves tasks such as data cleaning, data transformation, exploratory data

analysis, and the application of statistical techniques to draw meaningful conclusions. The

procedure aids in mitigating inherent risks in decision-making by offering valuable insights

and statistics, often presented through charts, images, tables, and graphs. Initially, we

delineate the type of data, which falls into two categories. Qualitative data is expressed

in verbal or narrative form and is gathered through methods such as focus groups, inter-

views, open-ended questionnaire items, and less structured situations. Qualitative data is

essentially information represented in the form of words. On the other hand, Quantita-

tive data is numerical, with values that could be large or small, corresponding to specific

categories or labels. When analyzing a given dataset within a scientific investigation, [41]

and [5] recommend adhering to two steps: Exploratory Data Analysis, aiming to uncover

key statistical properties through simple graphical and numerical studies. Confirmatory

Data Analysis, involving the evaluation of evidence using traditional statistical tools like

significance, inference, and confidence.

Following data analysis, we proceed to modeling; multivariate models having more pa-

rameters than univariate ones, introduce additional sources of error as each parameter needs

estimation. Outliers can exert a greater impact on multivariate predictions. Variables not

only depend on their past values but also exhibit interdependency, which is leveraged for

forecasting future values. Given the gathered information, we recognize the importance of

reframing datasets. This allows the application of standard linear and nonlinear machine

learning algorithms to address specific challenges. In a research project at Los Alamos Na-

tional Laboratory in the summer of 2019, we worked with a multivariate dataset containing

missing values. Addressing these missing values was a crucial step in data preparation be-

fore proceeding with any modeling applications. Imputation methods must be applied
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before moving forward with the training dataset and predictive techniques. The follow-

ing section we will introduce some of the methods that we have applied to our research

throughout the Los Alamos National Laboratory project.

1.2 Missing values

In our summer research of 2019, we confronted the issue of missing values. When dealing

with large raw datasets, it is not unusual to encounter gaps in the information. There are

two approaches to addressing incomplete data:

• omit the entire record that does not contain information.

• Impute the missing information.

Avoiding the omission of data is crucial because it can introduce bias and compromise

the representativeness of results. In statistics, imputation comes into play, involving the

substitution of missing data with estimated values. ”Unit imputation” is employed when

substituting for a data point, while ”item imputation” is utilized for replacing a component

of a data point. Non-time-series-specific imputation methods, such as mean, median, and

mode imputation, calculate the appropriate measure and replace missing data (NA) with

values.[32] Imputation serves as a technique for filling in missing values with estimates,

aiming to leverage established relationships found in the valid values of the dataset to

estimate the missing ones. As mentioned earlier, Mean/Mode/Median imputation stands

among the most commonly used methods. This involves replacing the missing data for

a specific attribute with the mean or median (for quantitative attributes) or mode (for

qualitative attributes) of all known values of that variable. It’s crucial to recognize different

types of missing data: (MCAR) Missing Completely at Random, where the likelihood of

an observation being missing is unrelated to its value or any other values in the dataset;

Missing at Random (MAR), indicating that the probability of an observation being missing

is related to the values of some other observed variables; and (MNAR) Missing Not at
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Random, suggesting that the probability of an observation being missing is linked to its

value.

Missing data can lead to three main issues: bias, increased complexity in data han-

dling and analysis, and reduced efficiency. Imputation addresses these problems by replac-

ing missing values with estimates based on available information. Post-imputation, the

dataset can be analyzed using standard techniques, including machine learning and neural

networks. It’s essential to note that the goal of imputation is not to predict individual

missing values, as some may mistakenly believe. This misconception may arise from the

hot deck imputation method, which aims to find the best match for each missing case by

replacing it with an observed response from a similar unit.

Obtaining a more accurate estimate for each missing value does not necessarily trans-

late to a better overall estimate for the parameters of interest [32]. Rubin provides a

counterexample: consider a biased coin with a known truth model A (0.6 heads, 0.4 tails)

and an alternative model B (asserting two heads). Using model A for imputations results

in a hit rate of 0.52, while model B yields a hit rate of 0.6. However, this does not imply

that model B is superior for handling missing values. Utilizing model B leads to invalid

statistical inference, predicting all future coin tosses as heads, contradicting the estimand

Q (fraction of heads). Model A provides consistent estimates for such scientific estimands.

Various imputation methods, ranging from simple to complex, exist. While maintaining

the full sample size, advantageous for bias and precision, they may introduce different types

of bias. When a single imputation strategy is employed, the standard errors of estimates

tend to be underestimated. The underlying concept is that there is substantial uncertainty

surrounding the missing values. Opting for a single imputation assumes knowledge of the

true value with certainty, which may not accurately reflect the reality of missing data across

multiple variables in an analysis. [32].

Various imputation methods, ranging from simple to complex, exist. While maintaining

the full sample size, advantageous for bias and precision, they may introduce different types

of bias. When a single imputation strategy is employed, the standard errors of estimates
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tend to be underestimated. The underlying concept is that there is substantial uncertainty

surrounding the missing values. Opting for a single imputation assumes knowledge of the

true value with certainty, which may not accurately reflect the reality of missing data

across multiple variables in an analysis. In such cases, establishing a model for a single

partially observed variable y given a set of fully observed X variables is not sufficient.

Instead, the dataset should be viewed as a multivariate outcome, where any component

can be missing. A direct approach to imputing missing data in multiple variables involves

fitting a multivariate model to all variables with missing values. This approach extends to

allow both the outcome Y and the predictors X to be vectors. The primary challenge of

this approach lies in the significant effort required to establish a reasonable multivariate

regression model. The most commonly used distributions for this purpose are multivariate

normal or t distributions for continuous outcomes, and a multi-normal distribution for

discrete outcomes. Concluding this chapter, with our motivation for research encompasses

harnessing the strengths of machine learning methodologies and optimization methods to

comprehensively address the issue of misdiagnosis, aiming for a deeper understanding and

improvement in medical diagnosis.

1.3 Motivation

In current times, the terminology associated with artificial intelligence (AI), machine learn-

ing (ML), and deep learning has permeated various sectors, including business, healthcare,

industries, and the military. Across these domains, the importance of precise data pre-

diction and analysis remains paramount, regardless of the volume of collected data. The

pivotal role of AI initiates with the analysis of large datasets using scientific techniques,

particularly within the realm of machine learning. AI and deep learning applications have

revolutionized the identification of decision-making patterns, significantly reducing the need

for human intervention and minimizing errors. This research is driven by the objective of

elevating the accuracy of medical diagnoses in the healthcare sector, employing machine
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learning and proposing optimization methods to refine existing approaches. Throughout

my tenure at the University of Texas at El Paso (UTEP), I have immersed myself in

the realms of machine learning and artificial intelligence, focusing on their applications in

healthcare. Our research endeavors aim to present machine learning models that incor-

porate feature optimization, enhancing diagnostic outcomes. Additionally, we propose an

extension of Graph Neural Networks as our meta-learning model, refining the algorithm

to achieve optimal results. Our exploration is motivated by the persistent challenge in

healthcare—diagnostic errors. These errors, whether inaccurate or delayed, have been a

blind spot in healthcare, prompting the need for advancements in machine learning and AI.

The subsequent narrative delves into the impact of these technological advancements on

healthcare, particularly addressing concerns related to over-diagnosis. This phenomenon

involves assigning diagnostic labels to certain conditions that may not significantly impact

an individual’s health and well-being, as highlighted in [10]. Machine learning and AI

play a crucial role in uncovering hidden insights in clinical decision-making, facilitating

connections between patients and resources for self-assessments. The significance of these

advancements has been particularly evident in our recent experiences with the COVID-

19 pandemic, showcasing the growth and potential of these technologies in the healthcare

landscape.

Our research is dedicated to enhancing the precision of medical diagnoses by employing

advanced machine learning techniques and optimization methods. The chapters follow a

structured approach: Chapter two introduces a brief background to our research in machine

learning methodologies applications. Chapter three will cover methods and material, chap-

ter four presents research datasets, elaborated on in chapters four detailing applications and

simulations of our summarizing findings/results to medical diagnosis contributions. Chap-

ter five concludes the study by summarizing closing remarks and motivation for future work.

The primary goal is to evaluate the possibility of producing valuable predictions through

the application of machine learning methodologies, harnessing their diverse capabilities to

enhance medical diagnosis.
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Chapter 2

Background Research

2.1 Los Alamos National Laboratory Research

The prevalence of missing data poses a common challenge in statistical analysis, intelligent

techniques have become increasingly integral in addressing critical and recurring issues

across industrial, commercial, and academic domains. Artificial Intelligence (AI) has expe-

rienced significant dissemination and practical application in recent years, demonstrating

continuous and remarkable growth. In collaboration with Claire McKay Bowen, Ph.D.

(Postdoctoral Research Associate) of the Statistical Sciences Group (CCS-6) and Joanne

R. Wendelberger, Ph.D., Lead of the Statistical Sciences Group (CCS-6) at Los Alamos

National Laboratory (LANL), during the summer of 2019. We engaged in research that ini-

tially focused on time series forecasting within financial datasets. This exploration extended

to forecasting environmental crashes and credit card defaults in multivariate data using ma-

chine learning methodologies. This collaboration led to the conceptualization of my LANL

summer project titled ”Analyzing the Effects of Missing Data with Machine Learning Al-

gorithms.” The identified problem revolves around educational and career datasets, which

commonly exhibit missing data, particularly as data collection spans from K-12 to college

and graduation, exacerbating the issue.

Benefiting from the resources generously provided by the Computational Statistical

Group (CCS-6) at LANL, I successfully undertook my project. I extend my sincere appre-

ciation to Los Alamos and, particularly, to Claire and Joanne for their invaluable support

and inspiration for future research endeavors.

12



Figure 2.1: Table of imputation methods

2.2 Introduction to missing data

As missing data is common problem in real-world settings which has lead to significant

attention in the statistical literature. There are flexible frameworks based on formal opti-

mization to impute missing values. Research has shown that these frameworks can readily

incorporate various predictive models such as K-nearest neighbors, Support Vector Ma-

chines, and Decision tree based methods, and can be adapted for multiple imputation.

With missing data phenomena is arguably the most common issue encountered by machine

learning practitioners when analyzing real-world data (raw data). As we know that for

many statistical models and machine learning algorithms rely on complete data sets, it be-

comes extremely important to handle the missing values appropriately. Below you will find

a table of imputation methods for deeper perception on methodologies and their references.

There are some machine learning studies done, that have shown some algorithms natu-

rally account for missing data and there is no need for preprocessing. In particular, CART

and K-means have been adapted for problems with missing data (Breiman et al.., 1987;

Wagsta, 2004). But as for many other situations, missing values need to be imputed prior

13



to any statistical analyses on the complete data set. Going forward lets assume that we

are given data,

X = {x1, ..., xn}

with missing entries xid, (i, d) ∈ M. The objective is to impute the values of the missing

data that mirror the underlying complete data as closely as possible. From this point, one

may apply pattern recognition using machine learning methods on the imputed data and

results should be complementary to the complete data given.

2.3 Educational data description

On this study data we started with a subset data description,which lead us with an initial

simulation of data before moving forward. Our multivariate data had some dependent

variables and Independent variables, with the total of 14 variables, some discrete others

continuous. Below figure for visual of data description. So before moving forward with our

imputation, we needed a simulated data-set. In order to simulated a data-set, the sample

data used for prediction is given by csv file of 1000 random generated students. Now for a

more complex data we have simulated a data-set of 1000 students with name for columns

for input given by :

• Gender: female=1; male=0.

• Race: white=1; African-American (black)=2; Asian =3; American Indian or Alaskan

Native =4, Native Hawaiian or other Pacific Islander , ethnicity: non-hispanic white

=1; hispanic or latino =2 ; non-hispanic Black =3; Chinese=4; European=5 ; Arab

=6 ; Indigenous=7; Filipino = 8.

• Immigrant: Yes=1, No=0

• High school-age=numeric from 14-15

• Rank

14



• Dual-credit, Ap credit

• Combined SAT and ACT scores

• Parents highest education received

• Family gross income

The variable that will be used for forecasting will be the output of degree completion.

In order to test effectiveness of the methods presented in the Educational data I gener-

ated test data with different properties. It is also possible to predict missing data by using

different mathematical techniques along with statistical tools. I effectively used existing

statistical software for missing data (MICE, missForest, MI, ). The results for methods

well executed in this chapter. As research shows that in order to predict missing data it is

possible to apply machine learning techniques (neural networks), this application of simu-

lation and prediction will also be showcased below. Through the usage of neural networks a

module was developed to simulate the process described above. We simulated independent

paths of our model using different time steps for the data sets.

2.4 Imputation methods

In our analysis of missing data in an Educational dataset using R, the MICE (Multivari-

ate Imputation via Chained Equations) package was employed. MICE is a commonly

used package that generates multiple imputations, addressing uncertainty in missing values,

unlike single imputation methods such as the mean. It operates under the assumption that

missing data are Missing at Random (MAR), implying that the probability of data being

missing depends only on observed values and can be predicted using them. MICE imputes

data on a variable-by-variable basis, utilizing specific imputation models for each variable.

[18]
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Figure 2.2: Data description
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MICE-Results Employing the MICE imputation method, we effectively simulated ed-

ucational data, resulting in a comprehensive dataset with well-balanced imputation weights.

Subsequent sections showcase simulations of datasets, incorporating the application of neu-

ral networks with MICE as the chosen imputation method.

2.4.1 Amelia

We studied the method Amelia II, which is a tool for multiple imputation that employs a

bootstrapping-based algorithm, delivering results comparable to standard approaches like

IP or EM but with significantly faster processing and the capability to handle numerous

variables. It extends existing methods by accommodating trends across observations within

a cross-sectional unit and allowing for the incorporation of expert beliefs through priors

on missing values.[11] The program provides diagnostics for assessing the fit of multiple

imputation models.

In the context of Amelia, multiple imputation entails generating m imputed values for

each missing cell in the data matrix, resulting in m completed datasets. These datasets

maintain consistent observed values but differ in the imputed values, reflecting uncertainty

about the missing data. After imputation, Amelia saves the m datasets, allowing the

application of statistical methods to each set and subsequent combination of results.

The default imputation count (m=5) is typically sufficient unless the missingness rate

is exceptionally high. In contrast to other methods like list-wise deletion or mean substitu-

tion, multiple imputation, when done properly, avoids bias or inefficiency, preserving data

relationships while incorporating all observed data in partially missing rows. [19].

2.4.2 missForrest

missForest serves as a nonparametric imputation method suitable for diverse types of data.

It demonstrates adaptability in handling mixed-type variables, nonlinear relationships, in-

tricate interactions, and scenarios with high dimensionality (where the number of variables,
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Table 2.1: Data for MICE

gender race ethnicity immigrant highschool age

1 7 8 2 14.5

0 2 2 0 14

0 1 1 0 14

1 6 6 2 13.8

0 1 1 0 14

0 1 1 0 14

1 5 6 2 13.8

0 2 2 0 14

1 5 6 2 13.8

0 3 3 1 14

0 2 2 0 14

1 6 6 2 13.8

0 4 4 1 14

1 6 7 2 15

1 5 6 1 13.8

0 4 4 1 14

0 3 3 0 14

1 5 5 1 14

0 2 3 0 14

0 2 3 0 14
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Table 2.2: Missing data for MICE

gender race ethnicity immigrant highschool age

1 1 7 8 2 14.5

2 0 2 2 0 14

3 NA 1 1 0 14

4 1 6 6 2 13.8

5 0 1 1 NA 14

6 NA 1 1 0 14

7 1 5 6 2 13.8

8 NA 2 2 0 14

9 1 5 6 2 13.8

10 0 3 3 NA 14

11 0 NA NA 0 14

12 1 6 6 2 13.8

13 NA 4 4 1 14

14 1 6 7 2 NA

15 1 5 6 1 13.8

16 0 4 4 1 14

17 0 3 3 0 14

18 NA 5 NA 1 14

19 0 2 3 0 14

20 0 2 3 0 14
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Table 2.3: Data after imputation for MICE

X gender race ethnicity immigrant highschool age

1 1 1 7 8 2 14.5

2 2 0 2 2 0 14

3 3 0 1 1 0 14

4 4 1 6 6 2 13.8

5 5 0 1 1 0 14

6 6 0 1 1 0 14

7 7 1 5 6 2 13.8

8 8 0 2 2 0 14

9 9 1 5 6 2 13.8

10 10 0 3 3 0 14

11 11 0 1 1 0 14

12 12 1 6 6 2 13.8

13 13 0 4 4 1 14

14 14 1 6 7 2 15

15 15 1 5 6 1 13.8

16 16 0 4 4 1 14

17 17 0 3 3 0 14

18 18 1 5 6 1 14

19 19 0 2 3 0 14

20 20 0 2 3 0 14

20



Table 2.4: Data for Amelia

gender race ethnicity immigrant highschool age

1 7 8 2 14.5

0 2 2 0 14

0 1 1 0 14

1 6 6 2 13.8

0 1 1 0 14

0 1 1 0 14

1 5 6 2 13.8

0 2 2 0 14

1 5 6 2 13.8

0 3 3 1 14

0 2 2 0 14

1 6 6 2 13.8

0 4 4 1 14

1 6 7 2 15

1 5 6 1 13.8

0 4 4 1 14

0 3 3 0 14

1 5 5 1 14

0 2 3 0 14

0 2 3 0 14
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Table 2.5: Sample Missing Data for Amelia

gender race ethnicity immigrant highschool age

1 1 7 8 2 14.5

2 0 2 2 0 14

3 NA 1 1 0 14

4 1 6 6 2 13.8

5 0 1 1 NA 14

6 NA 1 1 0 14

7 1 5 6 2 13.8

8 NA 2 2 0 14

9 1 5 6 2 13.8

10 0 3 3 NA 14

11 0 NA NA 0 14

12 1 6 6 2 13.8

13 NA 4 4 1 14

14 1 6 7 2 NA

15 1 5 6 1 13.8

16 0 4 4 1 14

17 0 3 3 0 14

18 NA 5 NA 1 14

19 0 2 3 0 14

20 0 2 3 0 14
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Table 2.6: Data after imputation for Amelia

X gender race ethnicity immigrant highschool age

1 1 1 7 8 2 14.5

2 2 0 2 2 0 14

3 3 0.399867 1 1 0 14

4 4 1 6 6 2 13.8

5 5 0 1 1 0.291427 14

6 6 0.120429 1 1 0 14

7 7 1 5 6 2 13.8

8 8 -0.01615 2 2 0 14

9 9 1 5 6 2 13.8

10 10 0 3 3 0.890275 14

11 11 0 1.805109 1.731756 0 14

12 12 1 6 6 2 13.8

13 13 0.256045 4 4 1 14

14 14 1 6 7 2 14.17264

15 15 1 5 6 1 13.8

16 16 0 4 4 1 14

17 17 0 3 3 0 14

18 18 0.702625 5 4.300979 1 14

19 19 0 2 3 0 14

20 20 0 2 3 0 14
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p, greatly exceeds the number of observations, n). An essential requirement for missForest

is that observations (rows of the supplied data frame) need to be pairwise independent.

This algorithm leverages the random forest approach, relying on the R implementation

randomForest by Andy Liaw and Matthew Wiener. In simple terms, for each variable,

missForest fits a random forest model on the observed data and predicts the missing values

iteratively. This process is repeated until a stopping criterion is met or a user-specified

maximum number of iterations is reached.

To provide additional insights, Stekhoven and Bühlmann’s work [39] offers further de-

tails on the methodology behind missForest. It’s crucial to note that missForest operates

iteratively, continually updating the imputed matrix variable-wise, and evaluates its perfor-

mance between iterations. This iterative nature ensures a dynamic and evolving imputation

process, enhancing the accuracy and reliability of the imputed values. For a comprehensive

understanding of missForest’s functionality, it’s recommended to refer to the user guide by

Buuren [11].
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Table 2.7: Description of columns

1 gender

2 race

3 ethnicity

4 immigrant

5 highschoolage

6 highschool rank

7 dual credit

8 ap credit

9 combined sat

10 parent mother

11 parent father

12 gross income

13 degree completion
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Table 2.8: Sample input data

0 1 1 0 14 2 0 0 0 1 1 37368 0

0 3 4 1 14 2 0 0 1 1 1 59473 1

1 6 7 2 15 3 1 1 2 3 3 88947 2

1 7 8 2 14.5 3 1 1 2 4 4 100000 2

1 6 7 2 15 3 1 1 2 3 3 92631 2

0 4 4 1 14 2 0 0 1 1 1 63157 1

0 3 3 1 14 2 0 0 1 1 1 55789 1

0 2 3 0 14 2 0 0 0 1 1 48421 0

1 7 8 2 14.5 3 1 1 2 4 4 96315 2

0 2 2 0 14 2 0 0 0 1 1 41052 0

0 1 1 0 14 1 0 0 0 1 1 30000 0

1 5 6 1 13.8 2 1 1 1 2 1 77894 1

1 5 6 2 13.8 2 1 1 2 2 2 81578 2

0 3 3 0 14 2 0 0 0 1 1 52105 0

1 5 5 1 14 2 1 1 1 2 1 74210 1

1 4 5 1 14 2 1 1 1 1 1 70526 1

1 6 7 2 15 3 1 1 2 2 2 85263 2

0 2 2 0 14 2 0 0 0 1 1 44736 0

1 4 5 1 14 2 1 1 1 1 1 66842 1

0 1 1 0 14 1 0 0 0 1 1 33684 0
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Similar results it is possible to get by using different software packages.

2.4.3 MI

The mi package in R offers a plethora of features designed to provide users with a compre-

hensive understanding of the imputation process and facilitate the evaluation of resulting

models and imputations. These features encompass various aspects, offering flexibility and

transparency in the imputation procedure.

Predictor, Model, and Transformation Options: Users have the liberty to make informed

decisions by selecting predictors, models, and transformations for the chained imputation

models. This empowers them to tailor the imputation process to the specific characteristics

of their dataset, ensuring a more nuanced and contextually relevant imputation. Residual

Plots for Model Fit Assessment: The package incorporates both standard and binned resid-

ual plots that serve as valuable tools for assessing the fit of conditional distributions used

during imputation. These plots offer visual insights into the goodness of fit, allowing users

to identify patterns, trends, or potential discrepancies in the imputation models. Chained

Imputation Models: mi facilitates the creation of chained imputation models, a versatile

approach where the imputation of missing values is performed iteratively, considering the

dependencies between variables. This method enhances the accuracy of imputations by

capturing complex relationships within the data. Transparent Imputation Process: The

package emphasizes transparency in the imputation process, enabling users to delve into

the details of the chosen predictors, models, and transformations. This transparency is

crucial for building confidence in the imputed results and understanding the underlying

mechanisms of the imputation models. Reference: The features and methodologies em-

ployed by mi are detailed in the reference [40], providing users with a comprehensive guide

to leverage the capabilities of the package effectively. This reference serves as a valuable

resource for understanding the theoretical foundations and practical applications of mi in

the realm of missing data imputation. In summary, the mi package in R stands out for

its user-friendly features that empower users to customize and assess the imputation pro-
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Table 2.9: Sample data with missing values.

1 0 1 1 0 14 2 0 0 0 1 1 37368 0

2 0 NA 4 1 14 2 0 0 1 1 1 59473 1

3 1 6 7 2 15 3 1 1 2 3 3 88947 2

4 1 7 NA 2 14.5 3 1 1 2 4 4 100000 2

5 1 6 7 2 15 NA 1 NA 2 3 3 92631 2

6 0 4 4 1 14 2 NA 0 1 NA 1 63157 1

7 0 3 3 1 14 NA 0 0 NA NA 1 55789 1

8 0 2 3 0 14 2 NA 0 0 NA 1 48421 0

9 1 7 8 2 14.5 3 NA 1 2 4 4 96315 2

10 0 NA 2 0 14 2 0 0 0 1 1 41052 0

11 0 1 1 0 14 1 0 0 0 1 1 30000 0

12 1 5 NA 1 13.8 2 1 1 1 2 1 77894 1

13 1 5 6 2 13.8 2 1 1 2 2 2 81578 2

14 0 3 3 0 14 NA 0 0 0 1 1 52105 0

15 1 5 5 1 NA 2 1 1 1 2 1 74210 1

16 1 4 5 1 14 NA 1 1 1 1 1 70526 1

17 1 6 7 2 15 3 1 1 2 2 2 85263 2

18 0 2 2 0 14 2 0 0 0 1 1 44736 0

19 1 4 5 1 14 NA 1 1 1 1 1 NA 1

20 0 1 1 0 14 1 NA 0 0 1 1 33684 0
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Table 2.10: Data after imputation

1 1 0 1 1 0 14 2 0 0 0 1 1 37368 0

2 2 0 3.493 4 1 14 2 0 0 1 1 1 59473 1

3 3 1 6 7 2 15 3 1 1 2 3 3 88947 2

4 4 1 7 7.53 2 14.5 3 1 1 2 4 4 100000.0 2

5 5 1 6 7 2 15 2.933 1 1 2 3 3 92631 2

6 6 0 4 4 1 14 2 0.25 0 1 1.05 1 63157 1

7 7 0 3 3 1 14 1.997 0 0 0.553 1.04 1 55789 1

8 8 0 2 3 0 14 2 0 0 0 1.03 1 48421 0

9 9 1 7 8 2 14.5 3 1 1 2 4 4 96315 2

10 10 0 1.576 2 0 14 2 0 0 0 1 1 41052 0

11 11 0 1 1 0 14 1 0 0 0 1 1 30000 0

12 12 1 5 5.242 1 13.8 2 1 1 1 2 1 77894 1

13 13 1 5 6 2 13.8 2 1 1 2 2 2 81578 2

14 14 0 3 3 0 14 1.932 0 0 0 1 1 52105 0

15 15 1 5 5 1 13.941 2 1 1 1 2 1 74210 1

16 16 1 4 5 1 14 1.985 1 1 1 1 1 70526 1

17 17 1 6 7 2 15 3 1 1 2 2 2 85263 2

18 18 0 2 2 0 14 2 0 0 0 1 1 44736 0

19 19 1 4 5 1 14 1.965 1 1 1 1 1 70331.232 1

20 20 0 1 1 0 14 1 0.04 0 0 1 1 33684 0
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cess. From choosing predictors and models to evaluating model fit through residual plots,

mi facilitates a thorough exploration of the imputation journey, contributing to informed

decision-making in handling missing data.

2.4.4 Finding Missing Data with Neural Network

Given the heightened interest in deep learning over the past decade, it becomes increasingly

crucial to establish cohesive tools that empower practitioners to handle missing data seam-

lessly using diverse neural networks. Artificial Neural Networks (ANNs) employ nonlinear

mathematical equations to iteratively establish meaningful connections between input and

output variables through a learning process. In our approach, we utilized backpropagation

networks, complemented by various optimization methods, for data classification. The typ-

ical structure of backpropagation networks comprises an input layer, one or more hidden

layers, and an output layer, each housing numerous neurons. ANNs exhibit a remarkable

ability to adeptly handle the nonlinear and interactive effects of explanatory variables.

However, a notable drawback is the challenge in deriving a simple probabilistic formula for

classification.[11]

One innovative aspect of our methodology involves feeding neural networks with miss-

ing data. We introduce model uncertainty regarding missing attributes through probability

density functions, eliminating the necessity for direct completion (imputation) using singu-

lar values. The theoretical underpinning of this approach ensures a nuanced treatment of

missing data, aligning with the complexity inherent in neural network architectures. This

not only enhances the adaptability of neural networks to missing data scenarios but also

aligns with the overarching goal of establishing unified tools for practitioners working with

artificial neural networks in the realm of deep learning.
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Table 2.11: Sample data with missing values (10%) for MI.

1 0 2 2 0 14 2 0 0 0 1 1 44482 0

2 1 7 7 2 15 3 1 1 2 3 3 92758 2

3 0 1 1 0 14 1 0 0 0 1 1 30000 0

4 0 1 1 0 14 2 0 0 0 1 1 37241 0

5 1 5 6 2 13.8 2 1 1 2 2 1 78275 2

6 1 6 7 2 15 3 1 1 2 2 2 85517 2

7 1 6 7 2 15 3 1 1 2 3 3 87931 2

8 0 2 2 0 14 2 0 0 0 1 1 42068 0

9 1 NA 6 2 13.8 2 1 1 2 2 2 83103 2

10 0 1 2 0 14 2 0 0 0 1 1 39655 0

11 0 1 1 0 14 1 0 0 0 1 1 34827 0

12 0 3 3 1 14 2 0 0 1 1 1 54137 1

13 1 5 6 2 13.8 2 1 1 2 2 2 80689 2

14 0 2 2 0 14 2 0 0 0 1 1 46896 0

15 0 4 4 1 14 2 0 0 1 1 1 63793 1

16 0 3 4 1 14 2 0 0 1 1 1 NA 1

17 1 5 6 1 13.8 2 1 1 1 2 1 75862 1

18 1 7 8 2 14.5 3 1 1 2 4 4 97586 2

19 0 4 4 1 14 2 0 0 1 1 1 61379 1

20 1 4 5 1 14 2 1 1 1 1 1 66206 1

21 1 5 5 1 14 2 1 1 1 2 1 73448 1

22 1 7 8 2 14.5 3 1 1 2 4 4 100000 2

23 0 3 3 1 14 2 0 0 1 1 1 56551 1

24 0 2 3 0 14 2 0 0 0 1 1 49310 0

25 1 4 5 1 14 2 1 1 1 1 1 71034 1
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Table 2.12: Sample data after imputation (10%) for MI.

0 2 2 0 14 2 0 0 0 1 1 44482 0

1 7 7 2 15 3 1 1 2 3 3 92758 2

0 1 1 0 14 1 0 0 0 1 1 30000 0

0 1 1 0 14 2 0 0 0 1 1 37241 0

1 5 6 2 13.8 2 1 1 2 2 1 78275 2

1 6 7 2 15 3 1 1 2 2 2 85517 2

1 6 7 2 15 3 1 1 2 3 3 87931 2

0 2 2 0 14 2 0 0 0 1 1 42068 0

1 6 6 2 13.8 2 1 1 2 2 2 83103 2

0 1 2 0 14 2 0 0 0 1 1 39655 0

0 1 1 0 14 1 0 0 0 1 1 34827 0

0 3 3 1 14 2 0 0 1 1 1 54137 1

1 5 6 2 13.8 2 1 1 2 2 2 80689 2

0 2 2 0 14 2 0 0 0 1 1 46896 0

0 4 4 1 14 2 0 0 1 1 1 63793 1

0 3 4 1 14 2 0 0 1 1 1 58965 1

1 5 6 1 13.8 2 1 1 1 2 1 75862 1

1 7 8 2 14.5 3 1 1 2 4 4 97586 2

0 4 4 1 14 2 0 0 1 1 1 61379 1

1 4 5 1 14 2 1 1 1 1 1 66206 1

1 5 5 1 14 2 1 1 1 2 1 73448 1

1 7 8 2 14.5 3 1 1 2 4 4 100000 2

0 3 3 1 14 2 0 0 1 1 1 56551 1

0 2 3 0 14 2 0 0 0 1 1 49310 0

1 4 5 1 14 2 1 1 1 1 1 71034 1
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Layer for processing missing data

The methodology for feeding neural networks with missing data, representation of missing

data point is denoted by (x, J), where x ∈ RD and J ⊂ {1, ..., D} the set of attributes with

missing values. Upon each missing point (x, J) we associate the subspace consisting all of

the points which coincide with x on known coordinates J
′
= {1, ..., N}/J :

S = Aff [x, J ] = x+ span(eJ),

where eJ = [ej]j∈J and ej is the jth vector in RD.

Assumption made is that the values that at the missing attributes come from the un-

known D-dimensional probability distribution F. Then we can model the unobserved values

of (x, J) by restricting F to subspace S = Aff [x, J ]. Now it is possible that the values of

incomplete data point (x, J) are described by the conditional density function [36]

FS : S−→R

given by:

FS(x) =


1∫

F (s)ds
F (x), for x ∈ S,

0, otherwise.

Predicting One Missing Variable with Neural Network

To process probability density functions (representing missing data points) by neural net-

works, we generalize the neuron’s activation function. We define the generalized response

(activation) of a neuron n : RD−→R on FS as the mean output:

n(FS) = E[n(x)|x ∼ FS] =

∫
n(x)FS(x)dx.

From the neurons response we move back to same step size as before first layer while

the rest of network architecture can remain unchanged. Basic requirement is the ability of

computing expected value with respect to FS.
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Recall that the ReLU neuron is given by,

ReLUw,b(x) = max(wTx+ b, 0),

where w ∈ RD and b ∈ R are the bias.

With TRUE vales being = 0, 0, 1, 1, 1 . As we can see our neural network was able to

forecast to the closest value of given TRUE value to data.

Summary of the accuracy of prediction is given below.

100 epochs

Number of Errors=476

Number of rows=1000

Number of correct answers in percent=52.4

Number of errors in percent=47.6

200 epochs

number of Errors=184

Number of rows=1000

Number of correct answers in percent=81.6

Number of errors in percent=18.4

500 epochs

Number of Errors=100

Number of rows=1000

Number of correct answers in percent=90.0

Number of errors in percent=10.0

1000 epochs

Number of Errors=0

Number of rows=1000

Number of correct answers in percent=100.0

Number of errors in percent=0.0
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2.4.5 Classification of Credit Card Default

For a brief introduction to our dataset, regarding the default of credit card problem, this

case of information of customers default payments come from Taiwan. We will us default

binary result of classification - credible or not credible clients. Our indicates that payment

date was on October of 2005; Taiwan bank collected a cash and credit card issuer. There is

a total of 25,000 observations, 5529 observations (22.12%) are the cardholders with default

payment. The dataset will be set employed as a binary variable, default payment (Yes =

1, No=0), as the response variable. Within our dataset we have used the following of 23

variables as explanatory variables denoted as:

• X1: Amount of the given credit (NT dollar): it includes both the individual consumer

credit and his/her family (supplementary) credit.

• X2: Gender (1 = male; 2 = female).

• Education (1 = graduate school; 2 = university; 3= high school; 4 = others).

• X4: Marital status (1 = married; 2 = single; 3 = others).

• X5: Age (year).

• X6-X11: History of past payment. We tracked the past monthly payment records

(from April to September, 2005) as follows: X6 = the repayment status in Septem-

ber, 2005; X7 = the repayment status in August, 2005 ; . . .; X11 = the repayment

status in April, 2005. The measurement scale for the repayment status is: -1 = pay

duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8

= payment delay for eight months; 9 = payment delay for nine months and above.

• X12-X17: Amount of bill statement (NT dollar). X12 = amount of bill statement

in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 =

amount of bill statement in April, 2005.
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• X18-X23: Amount of previous payment (NT dollar). X18 = amount paid in Septem-

ber, 2005; X19 = amount paid in August, 2005; . . .; X23 = amount paid in April,

2005.

The delinquency crisis of credit card debt increased in recent years in Taiwan. As

observed on variables from data were collected year of 2005, based on Taiwan recent studies

they were expecting a peak in the third quarter of year 2006 ( crisis on credit card debt).

For Taiwan to increase their market share, the card-issuing banks of Taiwan over issued

credit cards to unqualified candidates. Another factor that would have to be dealt with

is the fact that most cardholders, irrespective of their repayment ability and lead to an

overused credit card, this accumulates to a heavy credit card and cash debts. This crisis

(crash) leads to major importance to business and banks, on having the ability predict

customers’ credit risk, and reduce the damage and uncertainty. Such methods are describe

to be statistical methods, which are used to classifying applicants for credit into ”good” and

”bad” classes. Throughout the growth of Artificial Intelligence and machine learning these

types of models/methods have become increasingly important with the dramatic growth in

consumer credit in the past years.

Moreover, for the default data, we use the logistic model by defaulting on the credit

card debt. For example, the probability of default given balance may be written as:

Pr(default = Y es|balance),

we will denote for not the above probability by p(balance) for convenience. Moving on, we

now see how we should model this relationship between X and Y with gathered information

from pervious chapters. As for the binary classification problem,

p(X) = Pr(Y = 1|X)

as for X, recall from perviously stated, that the linear regression model

p(X) = β0 + β1X,
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where the goal is to use the default = Yes to predict balance.

For a quick intuition on the modeling perspective, we copy p(X) using a function that gives

outputs between 0 and 1 for all values of X, where

p(X) = β0 + β1X.

We use the logistic function,

p(X) =
eβ0+β1X

1 + eβ0+β1X .
(2.1)

To fit a model in equation (2.1) we use least square method, after some manipulation of

equation (2.1),
p(X)

1− p(X)
= eβ0+β1X (2.2)

Taking the log of equation (2.2) gives us,

log

(
p(X)

1− p(X)

)
= β0 + β1X,

where the left hand side is called the log-odds or logit. With further production estimating

the coefficients we note that:

• β0 and β1 in equation (2.1) are unknown and must be estimated using the training

data.

• Using the method of least squares to fit the coefficients as shown previously [2].

On the figure 2.3 a figure on the credit card clients, for data visuals.

Data was randomly divided into two groups, one for model training and the other to

validate the model. The training data is based on error rates, in our research we will show

how the artificial neural network (ANN) is the best models in the classification methods,

along with other CNN and RNN. We have the following Mathematica code, Mathematica

as other softwares, has been growing in machine learning AI community. It is able to read

the data from the csv file.

Appropriate code in Mathematica is given below.
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DataMatrix = Import["defaultofcreditcardclients.csv"];

NumberOfRows = Dimensions[DataMatrix][[1]];

TrainingSet = Table[DataMatrix[[i, 1 ;; 23 ]] -> DataMatrix[[i, 24 ]],

{i, 1, NumberOfRows}];

Prediction = Classify[TrainingSet, Method -> "NeuralNetwork"]

Prediction[{20000, 2, 2, 1, 24, 2, 2, -1, -1, -2, -2, 3913, 3102, 689, 0, 0, 0,

0, 689, 0, 0, 0, 0}]

Prediction[{50000, 1, 2, 1, 57, -1, 0, -1, 0, 0, 0, 8617, 5670, 35835, 20940,

19146, 19131, 2000, 36681, 10000, 9000, 689, 679}]

To move forward with the application of Artificial neural network (ANN) we have the

following scatter plot to represent our data prediction.

Artificial neural networks perform classification more accurately than the others. In the

predictive accuracy of probability of default, artificial neural networks have shown the best

performance based on R2 (0.9647, close to 1), regression intercept (0.0145, close to 0), and

regression coefficient (0.9971, close to 1). The predictive default probability produced by

ANN is the only one that could be used to represent real probability of default.

Table 2.13: Classification accuracy

method (ErrorRate
Training

) Validation

k-nearest neighbor 0.18 0.45

Logistic regression 0.20 0.44

Neural networks 0.19 0.54

Näive Bayes 0.21 0.21

As the perspective from risk control, when it comes to estimating the default is more

meaningful than classifying clients into binary results - risky and non-risky. Therefore,

artificial neural networks should be employed to score clients instead of other data mining

techniques, such as logistic regression.
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Chapter two effectively demonstrated the versatility of neural networks in adapting to

various imputation methods in past studies done while studying the capabilities behind

machine learning, showcasing their inherent capability to perform imputation tasks based

on the specific network setup. The chapter highlighted successful simulations and imputa-

tions conducted on an educational dataset, a key focus of the summer research project in

collaboration with Los Alamos National Laboratory and other research projects. Building

on this foundation, the research extended its exploration into the realm of machine learning

methods. This progression allowed for a deeper understanding of how these methods can be

applied to medical diagnosis, addressing the critical need for accurate disease classification

and mitigating the urgency surrounding misdiagnosis.

In Chapter four, we will present two medical datasets used in our optimized graph meta-

learning model. The chapter will also explore the application of machine learning models

and optimization techniques discussed in Chapter three. The goal is to extract valuable in-

sights from medical data, contributing to the ongoing efforts to enhance diagnostic accuracy

and healthcare outcomes using machine learning.
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Figure 2.3: Sample data set.
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Chapter 3

Methodologies

Machine learning is a vast field that intersects information technology, mathematics, statis-

tics, probability, artificial intelligence, psychology, neurobiology, and numerous other dis-

ciplines. When presented with a sufficiently detailed dataset, AI tools excel at detecting

patterns and trends. This capability empowers medical professionals to promptly and accu-

rately reach a verdict on how to address a specific medical emergency. Neural networks, a

key component of machine learning, demonstrate adaptability to changing input, enabling

the generation of optimal results without the need for redesigning output criteria.[15] The

application of machine learning methods for classification is driven by the intuition that

machine learning can deliver intricate, non-linear models. Fundamentally, machine learn-

ing revolves around crafting algorithms that enable computers to learn extensively and

adapt to evolving information. Learning is a dynamic process involving the discovery of

statistical regularities and patterns within data. Certain algorithms also offer insights into

the relative difficulty of learning in diverse environments [12]. Presently, a multitude of

machine learning algorithms has been developed [9], continually refined and enhanced. No-

tably, the latest advancements in machine learning include the capacity to automatically

apply intricate mathematical calculations to large datasets, resulting in significantly faster

computation of results.

Adaptive programming, particularly prevalent in machine learning, allows applications

to recognize patterns, learn from experience, abstract new information from data, and

optimize the accuracy and efficiency of processing and output. To delve into this, let’s begin

by discussing sequence problems. The most straightforward machine learning problem

involving a sequence is a one-to-one problem, illustrated in Figure 3.1. As we advance
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through Chapter 2, we will persist in introducing machine learning methodologies applied

to our medical datasets. This includes the materials employed for the optimization of

predictive models. Furthermore, we will introduce the Graph Neural Networks model to

augment and optimize results before delving into subsequent analyses.

3.1 Simple Neuron

Lets start with the introduction to a neuron with a single scalar input and no bias is

shown below 3.1.

Figure 3.1: One to one system

The scalar input p undergoes transmission through a connection, where its strength is

multiplied by the scalar weight w, resulting in the product w · p, which is once again a

scalar. In this context, the only parameter of the transfer function f is the weighted input

w ·p, leading to the production of the scalar output a. The neuron on the right is equipped

with a scalar bias, denoted as b. The bias can be conceptualized as either a simple addition

to the product wp through the summing junction or as a shift of the function f to the

left by an amount b. The bias functions similarly to a weight, with the distinction that it

maintains a constant input of 1.

42



The transfer function net input n, again a scalar, is the sum of the weighted input

wp and the bias b. This sum is the argument of the transfer function f . Three of the most

commonly used functions are shown Fig 3.2 below. Sigmoid transfer function is commonly

used in backpropagation networks, in part because it is differentiable [8].

Figure 3.2: Commonly used transfer/activation functions.

3.1.1 Neuron With Vector Input

A neuron with a single R-element input vector is shown Fig 3.3 below. Here are the

individual element inputs

p1, p2, ..., pR,

are multiplied by the weights

w1,1, w1,2, ..., w1,R

and the weighted values are feed to the summing junction. Their sum is simply W · p, the

dot product of the (single row) matrix W and the vector p.

The neuron has a bias b, which is summed with the weighted inputs to form the net

input n. This sum, n, is the argument of the transfer function f .

n = w1,1p1 + w1,2p2 + ...+ w1,RpR + b.

This expression can, of course, be written in as

n = W · p+ b
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Figure 3.3: Neuron With Vector Input

3.1.2 A Layer of Neurons

Here fig 3.4 shows a one-layer network with R input elements and S neurons as follows. In

Figure 3.4: A Layer of Neurons

this network, each element of the input vector p is connected to each neuron input through

the weight matrix W . The ith neuron has a sum that gathers its weighted inputs and bias,

to form its own scalar output n(i). The various n(i) taken together form an S-element net,

input vector n. Finally, the neuron layer outputs form a column vector a.

The input vector elements enter the network through the weight matrix W .
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W =


w1,1 w1,2 ... w1,R

w2,1 w2,2 ... w2,R

...

wS,1 wS,2 ... wS,R


The row indices on the elements of matrix W indicate the destination neuron of the

weight, and the column indices indicate which source is the input for that weight. Thus, the

indices say that the strength of the signal from the second input element to the first (and

only) neuron is. The S neuron, R input one-layer network also can be drawn in abbreviated

notation. Here p is an R length input vector, W is an S × R matrix, with a and b are

S length vectors. As defined previously, the neuron layer includes the weight matrix, the

multiplication operations, the bias vector R, the sum and the transfer function boxes.[18]

a = f(Wp+ b). (3.1)

3.1.3 Multiple Layers of Neurons

Expanding into a larger network involves incorporating multiple layers, each consisting of

a weight matrix W , a bias vector b, and an output vector a. To differentiate between

these components for each layer, we adopt a layer notation. This layer notation is evident

in the illustration of a three-layer network figure 3.5 and in the equations presented. In a

multilayer network, the layers assume distinct roles, where a layer responsible for generating

the network output is termed the output layer. Conversely, all other layers are designated

as hidden layers. In the previously illustrated three-layer network, one layer functions as

the output layer (layer 3), while two layers act as hidden layers (layer 1 and layer 2).

Although some authors might consider the inputs as a fourth layer, we opt not to adopt

this designation.

The same three-layer network discussed earlier can also be represented using our abbre-

viated notation.
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Figure 3.5: Multiple Layers of Neurons

We have the output of the neural network that can be calculated in the following way

y = a3 = f 3(LW 3,2f 2(LW 2,1f 1(IW 1,1p+ b1) + b2) + b3), (3.2)

where IW 1,1 is the weight matrix of the layer 1, LW 2,1 is the weight matrix of the layer 2,

and LW 3,1 is the weight matrix of the layer 3. Biases of the layers are b1, b2, b3. Multi-layer

neural network are powerful models with non-convex objective functions. Although our

convergence analysis does not apply to non-convex problems, we empirically found that

Adam optimizer often outperforms other methods in such cases. Which later application

will be shown along with a neural network model with two fully connected hidden layers

(we can change number and analysis results) hidden units each and ReLU activation are

used for this experiment with mini-batch.

Model Definition and Description- Neural Network

A neural network is a highly adaptable mathematical and statistical model employed across

diverse tasks, encompassing both regression and classification. In regression scenarios, a

single output unit, denoted as Yi, is employed when X = 1. For n-class classification tasks,
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the top layer of the neural network consists of G units, with each unit (kth unit) modeling

the probability of belonging to class K.

The intermediate layers of the neural network, positioned between the input and output

layers, play a crucial role. These layers contain hidden units, and the derived features they

calculate are known as Zm. These features are termed ”hidden” because their values,

denoted as Zm, are not directly observed during the training or inference process. The

incorporation of hidden layers allows neural networks to capture complex relationships and

patterns within the data, enabling them to learn intricate representations that contribute

to improved performance in various tasks [18].

Additionally, it’s worth noting that neural networks can be customized in terms of

architecture, activation functions, and optimization strategies based on the specific re-

quirements of the problem at hand. The adaptability of neural networks has contributed

to their widespread use in fields such as image recognition, natural language processing,

and many other domains where complex data relationships need to be learned and utilized

for predictive or analytical purposes.

The derived features Zm are created from linear combinations of the inputs, and then

the target Yk is modeled as a function of linear combinations of the Zm as follows [18]:

Zm = σ
(
α0m + αT

mX
)
,m = 1, . . . ,M (3.3)

Tk = β0k + βT
k Z, k = 1, . . . , K (3.4)

fk(X) = gk(T ), k = 1, . . . , K (3.5)

here Z = (Z1, Z2, . . . , ZM) , and T = (T1, T2, . . . , TK). The nonlinear function σ() in

(3.3) is called the activation function. In practice, different activation functions are used for

different problems. The output function gk(T ) allows a final transformation of the vector

of outputs T. For regression, we used the identity function gk(T ) = Tk and for K-class

classification, the soft-max function defined in (3.6) is used. Figure 3.2 shows some of the

most commonly used activation functions.
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gk(T ) =
eTk∑K
ℓ=1 e

Tℓ

. (3.6)

Model Fitting - Neural Network

The neural network model comprises unknown parameters commonly referred to as weights.

Our objective is to find optimal values for these weights that ensure the model fits the

training data effectively. The entire set of weights is denoted by θ, encompassing[18]:

{α0m, αm;m = 1, 2, . . . ,M}M(p+ 1) weights,

{β0k, βk; k = 1, 2, . . . , K}K(M + 1) weights.
(3.7)

For regression and classification, we use sum-of-squared errors and cross-entropy (de-

viance) as our measure of fit, respectively defined in (3.8) and (3.9):

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk (xi))
2 (3.8)

R(θ) = −
N∑
i=1

K∑
k=1

yik log fk (xi) (3.9)

Typically, the solution is obtained by minimizing the function R(θ). However, this pro-

cess may result in potential overfitting of the data. To mitigate this issue, regularization is

introduced, either directly through a penalty term or indirectly via early stopping [18]. The

conventional approach for minimizing R(θ) involves gradient descent, commonly referred to

as back-propagation in this context, as discussed by Rumelhart et al. [33]. In our research,

we introduce the concept of meta-learning and investigate its efficacy in minimizing func-

tions. Specifically, we explore the capabilities of a meta-learning model in this context. In

essence, a neural network is characterized by its architecture, activation functions, weights

and biases, loss function, optimization algorithm, and tailored design choices adapted to

the specific problem it aims to solve. The training process entails iteratively adjusting

these parameters to enable the network to discern and internalize intricate patterns and

relationships present within the given dataset. This adaptability and capacity for learning
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make neural networks powerful tools across a spectrum of applications, from image and

speech recognition to natural language processing. Figure 3.6 showcases a fully connected

neural network.

Figure 3.6: The Architecture of a Neural Network

3.1.4 Linear Regression

Linear regression is a fundamental and widely used technique in machine learning for pre-

dicting a continuous outcome variable based on one or more predictor variables. The goal

of linear regression is to find the best-fitting linear relationship (a line) that minimizes the

difference between the predicted and actual values. The supervised learning model used as

a classification method. Start off with stating training data: {(x1, g1), (x2, g2), ..., (nN , gN)},

with the feature vector X = (X1, X2, ..., Xp),where each variable Xj is quantitative. The

response variable G is categorical. G ∈ G = {1, 2, ..., K}, from a predictor G(x) to predict

G based on X. For a quick simple and most commonly used example we have email spam

G has only two values, say 1 denoting a useful email and 2 denoting a junk email. X is a

57-dimensional vector, each element being the relative frequency of a word or a punctuation

mark. G(x) divides the input space (feature vector space) into a collection of regions, each

labeled by one class.
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Figure 3.7: Linear Regression Classification problem.

On figure 3.7 the left plot shows some data from three classes, with linear decision

boundaries found by linear discriminant analysis. The right plot shows quadratic de-

cision boundaries. These boundaries were obtained by fining linear boundaries in the

five-dimensional space X1, X2, X12, X
2
1 , X

2
2 . Linear inequalities in this space are quadratic

inequalities in the original space. For linear methods we have two class problem, the de-

cision boundary between the two classes is a hyperplane in the feature vector space. A

hyperplane in the p dimensional input space is the set:{
x : α0 +

p∑
j=1

αjxj + 0

}
.

The two regions separated by a hyperplane:{
x : α0 +

p∑
j=1

αjxj > 0

}
,

and {
x : α0 +

p∑
j=1

αjxj < 0

}
.

Linear regression finds application in diverse domains, such as predicting house prices,

stock prices, and scenarios characterized by a linear relationship between input features
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and the target variable. Despite its simplicity, this model is prized for its interpretability

and straightforward implementation, rendering it a valuable and frequently employed tool

within the machine learning toolkit.

3.1.5 Logistic Regression

Logistic regression, despite its name, is a statistical method predominantly utilized in

machine learning for binary classification problems, where the outcome variable possesses

two distinct classes. This method is well-suited for scenarios wherein the relationship

between input features and the probability of belonging to a specific class is presumed to

be approximately linear.

In logistic regression, the model assesses the impact of multiple independent variables

presented concurrently to predict the membership of one of the two dependent variable

categories. While the term ”regression” in its name may be somewhat misleading, it stems

from the fitting of a linear model to the feature space. This involves a more probabilistic

perspective on classification, wherein the logistic regression model determines the likelihood

of an instance belonging to a particular class.[18] Despite its nomenclature, logistic regres-

sion is fundamentally a classification technique, not a regression method, and its efficacy lies

in its ability to model the probabilities associated with categorical outcomes. Quickly lets

go over the different ways of expressing probability, lets consider a two-outcome probability

space, where:

p(O1) = p,

p(O2) = 1− p = q.

We can express probability of O1 as:

Then we have the following functions from probability to log odds,

logit function:

z = log

(
p

1− p

)
,
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Table 3.1: Logistic regression

notation range equivalents

standard probability p 0, 0.5, 1

odds p/q 0, 1, +∞

log odds (logit) log(p/q) (−∞, 0, +∞)

logistic function:

p =
ez

1 + ez
=

1

1 + e−z
.

Using a logistic regression model we have a model which consists of a vector β in d-

dimensional feature space. For point x in feature space, we have β to convert it into a real

number z in the range −∞ to +∞ then,

z = α + β · x = α + β1x1 + ...+ βdxd.

We map z to the range 0 to 1 using the logistic function p = 1
(1+e−z)

. Training a logistic

regression model we take fourth the need to optimize β so the model gives the best possible

reproduction of training set labels. This is usually done by numerical approximation of

maximum likelihood, and on really large data set, we may use the gradient descent. As we

can see the logistic regression can be considered a special case of linear regression models.

A logistic regression model specifies that an appropriate function of the fitted probability of

the event is a linear function of the observed values of the available explanatory variables.

The Logistic regression model has one major advantage of being able to produce a simple

probabilistic formula of classification, on the contrary a weakness is that it cannot properly

deal with problems of non-linear and interactive effects of explanatory variables.

For instance, a sophisticated machine learning program could classify flowers based on

photographs. Our aspiration is more modest, are going to classify an example of a Iris

flowers based on the length and width measurements of their sepals and petals. The Iris

genus entails about 300 species, but our program was able to simulate and classify the
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following three:

• Iris Setosa

• Iris Virginica

• Iris Versicolor

This data set, iris training.csv, is a plain text file that stores tabular data formatted as

comma-separated values (CSV). Use the head -n5 command to take a peak at the first five

entries:

120,4,setosa,versicolor,virginica

6.4,2.8,5.6,2.2,2

5.0,2.3,3.3,1.0,1

4.9,2.5,4.5,1.7,2

4.9,3.1,1.5,0.1,0

From this view of the data set, we notice the following:

1. The first line is a header containing information about the data set:

• There are 120 total examples. Each example has four features and one of three

possible label names.

2. Subsequent rows are data records, one example per-line, where:

• The first four fields are features: these are characteristics of an example. Here,

the fields hold float numbers representing flower measurements.

• The last column is the label: this is the value we want to predict. For this data

set we have an integer value of 0, 1, or 2 that corresponds to a flower name.

Each label is associated with string name (for example, ”setosa”), but machine learning

typically relies on numeric values (binary). Here we find ourselves with more than two

variables to classify. The label numbers are mapped to a named representation, such as:
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Figure 3.8: A neural network with features, hidden layers, and predictions.

• 0: Iris Setosa

• 1: Iris Versicolor

• 2: Iris Virginica

The selection of an appropriate algorithm for modeling and training is crucial in ma-

chine learning, given the multitude of algorithms designed to recognize patterns and make

intelligent decisions based on input data. One of the primary challenges in machine learning

lies in understanding and adapting to the behavior of inputs, which necessitates training

the model with observed examples to ensure effectiveness and sensitivity in producing out-

puts. In the context of solving the Iris classification problem, a neural network proves to

be a viable choice. Neural networks are adept at identifying intricate relationships between

features and labels. They are characterized by a highly-structured graph organized into

one or more hidden layers, each containing one or more neurons. This program specifically

employs a dense network, also known as a fully-connected neural network, where neurons

in one layer receive input connections from every neuron in the preceding layer.

Illustrated in Figure 3.8, the dense neural network implemented here comprises an input
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layer, two hidden layers, and an output layer. This architecture allows the neural network

to capture and process complex patterns in the Iris dataset, showcasing its capability to

handle the classification task effectively.

Python code based on Tensor-flow may be found in Appendix A.

3.2 Convolutional Neural Networks (CNN)

The Convolutional Neural Network (CNN) is the preferred model for image classification,

adopting a feed-forward architecture similar to traditional neural networks, encompassing

input, hidden, and output layers. What sets CNNs apart are distinctive elements like pool-

ing and fully connected layers. Notably, CNNs often include a greater number of hidden

layers, showcasing their enhanced ability to extract features from input data. Through

the simultaneous use of multiple convolutional filters, CNNs efficiently process and lever-

age correlations in multivariate time series data. This is achieved with fewer parameters,

leading to accelerated learning and reduced data requirements. In contrast to fully con-

nected networks, CNNs focus on small image patches, fostering a deeper understanding

analogous to scrutinizing a book through a magnifying glass—one patch at a time. The

foundational principle of convolutional neural networks revolves around local connectivity,

where each node establishes a link to a specific region in the input, termed its receptive

field. This is realized by replacing the weighted sums in traditional neural networks with

convolutions.[26]

At each layer of a convolutional neural network, the input undergoes convolution with

a weight matrix (filter) to produce a feature map. The weight matrix traverses the input,

computing the dot product with each region. Unlike regular neural networks, all values in

the resulting feature map share the same weights, indicating their collective detection of a

specific pattern. This local connectivity and weight-sharing characteristic in CNNs reduce

the count of trainable parameters, leading to more efficient training.

The core idea of a convolutional neural network is to learn a weight matrix in each layer
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capable of extracting the necessary, translation-invariant features from the input. Overall,

CNNs excel in image-related tasks by capturing hierarchical patterns through their unique

architecture and parameter-sharing strategy.

Figure 3.9: Typical CNN architecture.

CNNs, as a form of regularization, are modified versions of multi-layer perceptrons,

with the term ”multi-layer perceptrons” typically referring to fully connected networks

where each neuron in one layer connects to all neurons in the next layer. The inherent

”fully-connectedness” of these networks makes them susceptible to overfitting data, often

mitigated by regularization techniques like incorporating weight magnitudes into the loss

function.

In contrast, CNNs approach regularization differently by capitalizing on the hierarchical

patterns in data, synthesizing more intricate patterns through smaller and simpler ones.

Consequently, in terms of connectedness and complexity, CNNs lean towards the lower

extreme. The inspiration for convolutional networks draws from biological processes, par-

ticularly the organization of the animal visual cortex. The connectivity pattern between

neurons in CNNs mirrors the arrangement found in the visual cortex, where individual

neurons respond to stimuli within a limited region known as the receptive field. These

receptive fields overlap, collectively covering the entire visual field.

Lets consider a 256 × 256 image, CNN can efficiently scan it chunk by chunk, say

a 5 × 5 window. The 5 × 5 window slides along the image (usually left to right, and
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top to bottom), as shown below. Example, a stride length of 2 means the 5 × 5 sliding

window moves by 2 pixels at a time until it spans the entire image. A convolution is

a weighted sum of the pixel values of the image, as the window slides across the whole

image. Turns out, this convolution process throughout an image with a weight matrix

produces another image (of the same size, depending on the convention). Convolving is

the process of applying a convolution, as the sliding-window methodology happens in the

convolution layer of the neural network. A typical CNN has multiple convolution layers.

Each convolutional layer typically generates many alternate convolutions, so the weight

matrix is a tensor of 5 × 5 × n, where n is the number of convolutions. For example, say

we have an image which goes through a convolution layer on a weight matrix of 5× 5× 64.

It then generates 64- convolutions by sliding a 5 × 5 window. Therefore, this model has

5×5×64(= 1, 600) parameter, which is remarkably fewer parameters than a fully connected

network, 256× 256 = 65, 536. The following is showcased on the following fig 3.10.

Figure 3.10: CNN classifier.

This leads us to the best part of the CNN, which is that the number of parameters is
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independent of the size of the original image. You can run the same CNN on a 300× 300

image, and the number of parameters will not change in the convolution layer. The CNN

model will learn a function that maps a sequence of past observations as input to an output

observation. As such, the sequence of observations must be transformed into multiple

examples from which the model can learn. On a later chapter the application of the CNN

will be displayed on our data.

In summary, CNNs are specialized neural networks designed for image-related tasks,

featuring architectures that effectively capture hierarchical patterns and spatial relation-

ships in visual data. Their success has extended to various fields beyond computer vision

due to their ability to automatically learn relevant features from raw input.

3.2.1 Support Vector Machines

The support vector machine (SVM) extends the concept of the support vector classifier [18].

A SVM stands out as a potent supervised learning algorithm utilized for both classification

and regression tasks. Its strength lies in its effectiveness in high-dimensional spaces, making

it well-suited for scenarios where distinct margins of separation between classes exist.

The Lagrange dual function is expressed as [18]

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′ ⟨h (xi) , h (xi′)⟩ (3.10)

here h (xi) is a transformed feature vector. The solution can be written as

f(x) = h(x)Tβ + β0

=
N∑
i=1

αiyi ⟨h(x), h (xi)⟩+ β0 (3.11)

where αi, β0 can be determined by solving yif (xi) = 1 in (13) for any xi for which

0 < αi < C where C is the cost parameter which regulate the level of miss classifications
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allowed. Both (3.10) and (3.11) involve h(x) only through inner products, therefore the

transformation h(x) is not needed, only the knowledge of the kernel function [18]:

K (x, x′) = ⟨h(x), h (x′)⟩ (3.12)

that computes inner products in the transformed space.

SVMs are valued for their ability to handle complex decision boundaries, high-dimensional

data, and their robustness in different domains. However, they may require careful tuning

of parameters, and their performance can be impacted by large datasets. Overall, SVMs

are a versatile and effective tool in machine learning for both classification and regression

tasks.

3.2.2 k-Nearest Neighbors

The k-Nearest Neighbors (kNN) algorithm is a widely utilized learning method for super-

vised tasks, encompassing both classification and regression. Despite its simplicity and

effectiveness, the primary challenge in practical applications lies in the sensitivity of kNN

to hyper-parameter settings. These settings include the crucial choice of the number of

nearest neighbors (k), the distance metric employed, and the weighting scheme applied

during prediction. In essence, kNN, falling under the instance-based learning category,

predicts outcomes by considering the majority class or average value of its k nearest neigh-

bors within the feature space. Its straightforward yet powerful nature makes it a versatile

tool in supervised machine learning, addressing a spectrum of tasks [9].

The procedure for kNN learning is as follows. Suppose a training dataset D(xt, yt)
N
t=1

is given for a supervised learning task, where xt and yt are the input vector and the

corresponding label vector of the t − th instance. yt is assumed to be a one-hot vecotr in

the case of a classification task and a scalar value in the case of a regression task. In the

training phase, the dataset D is just stored without any explicit learning from the dataset.

In the inference phase, for each query instance x, kNN search is performed to retrieve kNN
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instances N (xt) = (x
(i)
t , y

(i)
t )

k

i=1 that are closest to x based on a distance function d. Then,

the predicted label ŷ is obtained as a weighted combination of the labels y(1), ..., y(k) based

on a weighting function w along with the distance function d as follows:

ŷ = f(x;D) =
∑k

i=1w(d(x, x
(i)))ẏ(i)∑k

i=1 w(d(x, x
(i))).

It computes the average or weighted average of the target values associated with the

parameter K. The choice of the parameter k (number of neighbors) is crucial. A smaller k

can lead to a more flexible model, but it may be sensitive to noise, while a larger k may

provide a smoother decision boundary but might ignore local patterns. Additionally, the

parameter p, which represents the power parameter employed in the Minkowski distance

metric. The Minkowski distance or Minkowski metric is a metric in a normed vector

space which can be considered as a generalization of both the Euclidean distance and the

Manhattan distance. The Minkowski distance of order p (where p is an integer) between

two points.

X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) ∈ ℜnis defined as:

D(X, Y ) = (
n∑
i

|xi − yi|p)1/p.

Minkowski distance is typically used with p being 1 or 2, which correspond to the Man-

hattan distance and the Euclidean distance. This parameter influences the shape of the

decision boundaries in the k-nearest neighbors (kNN) algorithm,[9] allowing for customiza-

tion based on the specific characteristics of the data and problem at hand. First prediction

is predicted with default parameters and this result is used for comparing. After that, best

value of every parameters are found and are discussed their effects on result. Through

GridSearch and Meta-learning algorithms are used to find best values of each parameters.

So results can be compared each other in the conclusion part. To purpose of this kernel,

understanding parameters of kNN Classifier algorithm and gain experience about hyper-
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parameter tunings.

We introduce our approach as we have other models studied, the kNN learning approach,

seamlessly integrating a graph neural network. This method adeptly learns a task-specific

kNN rule from the training dataset using a graph neural network. The process involves

constructing a kNN graph for each instance and its kNN counterparts, with nodes rep-

resenting label information and edges conveying distance details. Subsequently, a graph

neural network is deployed to leverage the kNN graph, predicting labels for each instance.

The graph neural network essentially functions as a data-driven implementation of implicit

weight and distance functions, significantly boosting kNN’s prediction performance without

the need for meticulous hyper-parameter tuning [42, 7].

Crucially, the proposed method extends its applicability to diverse supervised learning

tasks, encompassing both classification and regression. Furthermore, it streamlines the

prediction process for new data by eliminating the need for an additional optimization

procedure, thereby enhancing computational efficiency. In summary, k-Nearest Neighbors

stands out as a versatile and intuitive algorithm, well-adapted to specific data character-

istics and applications. Its simplicity and lack of assumptions render it a valuable tool,

particularly in scenarios where the inherent data structure is ambiguous or when inter-

pretability holds paramount importance.

3.3 Graph Neural Networks

Graph Neural Networks (GNNs) represent a specialized class of neural networks metic-

ulously crafted to operate on data structured as graphs. This architecture has garnered

substantial attention and demonstrated its prowess across diverse domains, particularly

excelling in tasks entailing relational data and structured information. Key applications of

GNNs encompass node classification, link prediction, and graph classification, showcasing

their versatility in handling interconnected data structures. A set of objects, and the con-
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nections between them, are naturally expressed as a graph. The conceptual roots of Graph

Neural Networks trace back to 2005, underscoring their enduring presence in the field of

neural networks. However, it is in the last five years that they have truly gained prominence.

This surge in popularity can be attributed to the growing recognition of the significance of

leveraging graph structures for more effective machine learning solutions. Neural networks

have been adeptly adapted to harness the inherent structure and properties embedded

within graphs, facilitating more nuanced and powerful learning outcomes.[34]

In delving into the construction of a Graph Neural Network, several integral components

come to the forefront. These include mechanisms for node classification, link prediction,

and overall graph classification. The design choices behind these components are motivated

by the inherent structure of graphs, aiming to unlock new optimization algorithms that can

more effectively capture and leverage intricate relationships within the data.

As the adoption of Graph Neural Networks continues to expand, researchers and prac-

titioners alike explore novel optimization algorithms, seeking to unravel the full potential

of this architecture. The intersection of neural networks and graph theory offers a rich av-

enue for advancements in various fields, from social network analysis to molecular biology

and recommendation systems. With ongoing research and development, the capabilities of

GNNs are poised to evolve, unlocking new frontiers in the realm of machine learning and

artificial intelligence. [23, 38]

Key Concepts of Graph Neural Networks:

• Graph Structure: GNNs are particularly adept at handling data that can be repre-

sented as a graph, where entities are nodes, and relationships between entities are

edges. This structure allows GNNs to capture complex dependencies and patterns in

relational data.

• Node Embeddings: GNNs learn embeddings for each node in the graph, representing

the nodes in a continuous vector space. These embeddings encode both the node’s own

features and information from its neighboring nodes, enabling a holistic understanding
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of the graph.

• Message Passing: GNNs employ a message-passing mechanism, where each node ag-

gregates information from its neighbors and updates its own representation iteratively.

This enables the model to capture global graph structure.

• Graph Convolutional Networks (GCNs): GCNs are a popular variant of GNNs that

use a convolutional-like operation to aggregate information from neighboring nodes.

They have been successful in tasks such as node classification and link prediction.

• Graph Attention Networks (GAT): GATs introduce attention mechanisms to assign

different weights to neighboring nodes, allowing nodes to selectively attend to more

relevant neighbors during message passing.

• Meta-Learning with GNNs: GNNs have been explored as meta-learning models, es-

pecially in few-shot learning scenarios. Meta-learning involves training models on a

variety of tasks so that they can quickly adapt to new, unseen tasks with minimal

examples.

•

Forecasting Information with GNNs:

• Temporal Graphs: GNNs can be extended to handle temporal graphs, where nodes

and edges change over time. This makes them suitable for tasks such as temporal

link prediction and forecasting evolving graph structures.

• Event Prediction: In social networks, GNNs can predict events such as friendships

forming or breaking based on the evolving relationships within the graph.

Applications and Endeavors in Deep Learning:

• Drug Discovery: GNNs have shown promise in drug discovery by predicting molecular

properties and understanding chemical relationships in molecular graphs.
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• Recommendation Systems: GNNs can be used in recommendation systems to model

user-item interactions and provide personalized recommendations based on the graph

of user preferences.

• Social Network Analysis: GNNs are extensively used in social network analysis to

predict user behavior, identify communities, and forecast connections between users.

• Traffic Forecasting: GNNs can be applied to traffic flow prediction in transportation

networks by modeling the relationships between different locations.

• Meta-Learning:

GNNs as meta-learning models have shown promising results in few-shot learning sce-

narios, where the model learns to quickly adapt to new tasks with limited examples.[35]

To start in simplest terms, a graph is a combination of nodes (or vertices) and edges.

Let’s establish what a graph is shown in fig. 3.11.

Figure 3.11: Basic Graph representation

Setup of graph we assume a graph

• G, then define objects: nodes, vertices → N,

• interactions: links and edges → E

• system: networks, graphs → G(N,E).
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• Assuming we have a graph G:

• V is the vertex set

• A is the adjacency matrix (assume binary)

• X ∈ Rm×|V |.

Graph neural network (GNN) is a deep model for graph representation of learning.

One advantage of GNN is its ability to incorporate node features into the learning process

such as social networks, biological networks and Gene expression profiles, gene functional

information ,etc. One also has the abililty to include the non-features as indicator vectors

(one-to-one encoding of a node(s)) and the constant vector of 1: [1,1,1,...]. Furthermore, lets

explore more on why graphs? Graphs may be looked as a general language for describing

and analyzing entities with relations/interactions. We most commonly have modern data

bases such as images and text/speech shown in fig. 3.12.

Figure 3.12: Deep learning toolbox with fixed sized grids and sequences as line graphs.

We can additionally specialize graphs by associating directionality to edges (directed,

undirected). The computational graph is a directed graph that is used for expressing and

evaluation mathematical expressions. Figure 3.13
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An undirected graph is graph, i.e., a set of objects (called vertices or nodes) that are

connected together, where all the edges are bidirectional, is sometimes called an undirected

network. An undirected graph is when each node has a reciprocal connection. Say A is

connected to B and B is connected to A, for a real world example of this is when you add

a friend on Facebook. Each user now has full access to the other user’s public content fig.

3.14.

One key feature of a graph network is in the Deep Graph Library (DGL), the dgl.graph

function is used to create a graph object. Pre-training Graph Neural Networks (Hu et al.,

2019)) This function takes various parameters to define the structure of the graph. Here

are some key parameters commonly used in dgl.graph:

• num nodes: Specifies the number of nodes in the graph.

• edges: Represents the edges of the graph. It can be a tuple of source and destina-

tion node IDs, or it can be a tensor with two columns representing the source and

destination nodes.

• ntype and etype: Node type and edge type, respectively. These parameters are

used when dealing with heterogeneous graphs, where nodes and edges can belong to

different types.

• device: Specifies the device on which to create the graph (e.g., CPU or GPU).

• idtype: Specifies the data type of the node and edge IDs.

• readonly: If set to True, the resulting graph is read-only, meaning you cannot modify

its structure.

• parent: If specified, this is another graph whose structural information is used as a

scaffold to build the new graph.

• multigraph: If set to True, the graph allows multiple edges between the same pair of

nodes.
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Figure 3.13: Graph which represents arbitrary computations.

Figure 3.14: Facebook undirected graph
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Node and Graph Embeddings: DGL allows for the learning of node and graph embed-

dings, which can capture important features of medical entities or entire medical records.

These embeddings can be used as input for downstream tasks like diagnosis prediction.

Our contribution to advancing medical diagnosis involves harnessing the capabilities of

embeddings. We have introduced Meta-learning through a graph network and are actively

researching ways to extend this approach to include Transfer Learning with Pre-trained

Models. Transfer Learning in DGL facilitates transfer learning, allowing models pre-trained

on large graph datasets to be fine-tuned on medical data. This is especially useful when

labeled medical datasets are limited. It’s important to note that while DGL provides a pow-

erful framework, the success of applying it to medical diagnosis tasks also depends on the

availability and quality of labeled medical data, ethical considerations, and collaboration

with domain experts in healthcare.[22]

By amalgamating these attributes, graph neural networks emerge as a comprehensive

and flexible framework for medical diagnosis, effectively navigating the intricate and inter-

connected landscape of healthcare data challenges. The machine learning and statistical

methodologies mentioned earlier find practical application in our simulations. Following

this, we embark on a succinct introduction to the optimization techniques seamlessly inte-

grated into our machine learning models, aiming to elevate the precision of medical diag-

noses.
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3.4 Optimization Methods

Machine learning is an iterative endeavor wherein the acceleration of model training is vi-

tal to streamline the iterative cycle, considering the numerous parameters to fine-tune and

mathematical techniques to enhance. Optimization stands at the core of machine learn-

ing, as the majority of machine learning challenges essentially boil down to optimization

problems. The overarching aim in machine learning is to craft a model that excels in

performance, delivering accurate predictions across a specific set of scenarios. Attaining

this objective hinges on the application of optimization techniques in machine learning.

These methods assume a pivotal role, facilitating models to learn from data and enhance

their proficiency by pinpointing the optimal set of parameters or weights. This optimiza-

tion process seeks to minimize a designated loss function, capturing the disparity between

model predictions and actual outcomes. The process begins by formulating a model for

the desired problem, selecting a suitable family of models, and preparing data amenable to

modeling. Subsequently, the model is typically trained by addressing a core optimization

problem that optimizes the variables, parameters, and features of the model in relation to

the chosen loss function, possibly incorporating a regularization function. In the course of

model selection and validation, the fundamental optimization problem is often iteratively

solved to ascertain the most favorable results.

In summary, within the realm of machine learning, the effectiveness of an optimiza-

tion algorithm is measured by certain desirable properties. These properties underscore

the integral role of optimization methods in efficiently training machine learning models.

The judicious selection of an appropriate optimization algorithm, coupled with meticulous

tuning of hyper-parameters, profoundly influences a model’s performance and its ability to

generalize well to new data.

• good generalization,

• scalability to large problems
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• good performance in practice in terms of execution times and memory requirements

• exploitation of problem structure

• fast convergence to an approximate solution of model, robustness and numerical sta-

bility for class of machine learning models attempted.

Therefore, optimization algorithms such as stochastic gradient descent, backpropagation

(gradient descent), and the Adam optimizer, among others, play a crucial role, along with

other features within. These methods are instrumental in enhancing the learning accuracy

of our neural network. We will introduce our proposed optimization approach, incorporat-

ing a meta-learning model and integrating it with graph neural network.

3.4.1 Backpropagation (Gradient descent) and generalizations

Through supervised learning of an artificial neural networks using gradient descent. Its

value of the neural network can be computed. (3.2). Given an artificial neural network and

an error function, the method calculates the gradient of the error function with respect to

the neural networks weights. Then we let x be a vector of input values and ŷ = f(x,W, b)

is a vector of the output values. For every initial values x(1), x(2), ..., x(n) it is possible to

compare experimental output y(1), y(2), ..., y(n) and the values given by the neural network

ŷ(1), ŷ(2), ..., ŷ(n). The goal of the learning process is minimization of the error.

E =
n∑

i=1

∥y(i) − ŷ(i)∥2 =
n∑

i=1

m∑
j=1

(y
(i)
j − ŷ

(i)
j )2 (3.13)

The gradient descent is the simplest case of finding minimum error.

We use the basic formulation and structure of the gradient descent,

xi+1 = xi − γ∇E(xi),

where γ is some constant.
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By iteratively traversing multiple passes and adjusting the weights in a direction that

reduces the overall error between the target and predicted values, we aim to approach

the local minimum on the gradient surface [18]. In the presented problem, the vector

of parameters, denoted as x, encompasses the weight matrix and the bias matrix. To

determine the minimum of the error E, it is essential to compute the derivatives with

respect to the weight matrix W and the bias vector b.

The Partial derivatives of error with respect to weight matrix are as follows,

∂E

∂wi,j

=
n∑

i=1

m∑
j

∂

∂wi,j

(y
(i)
j − ŷ

(i)
j )2 =

n∑
i=1

m∑
j

2(y
(i)
j − ŷ

(i)
j )

∂

∂wi,j

(y
(i)
j − ŷ

(i)
j ) =

∂E

∂wi,j

= −
n∑

i=1

m∑
j

2(y
(i)
j − ŷ

(i)
j )

∂ŷ
(i)
j

∂wi,j

.

Partial derivatives of error with respect to bias,

∂E

∂bi
=

n∑
i=1

m∑
j

∂

∂bi
(y

(i)
j − ŷ

(i)
j )2 =

n∑
i=1

m∑
j

2(y
(i)
j − ŷ

(i)
j )

∂

∂bi
(y

(i)
j − ŷ

(i)
j ) =

∂E

∂bi
= −

n∑
i=1

m∑
j

2(y
(i)
j − ŷ

(i)
j )

∂ŷ
(i)
j

∂bi
.

Derivatives
∂ŷ

(i)
j

∂wi,j
,

∂ŷ
(i)
j

∂bi
can be found by using the formulas below. The output values y can

be calculated by using the formula (3.1)

p(k+1) = f (k)(W (k)p(k) + b(k)),

where p(k+1) are values in the layer k+1, W (k) is the weight matrix of the layer k, b(k) is a

bias of the layer k, p(k) is an input value of the layer k, and f (k) is an activation function

of the layer k.

∂p(k+1)

∂wi,j

=
∂

∂wi,j

f (k)(W (k)p(k) + b(k)) =

= f ′(k)(n(k))

(
∂W (k)

∂wi,j

p(k) +W (k) ∂p
(k)

∂wi,j

)
,
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where n(k) = W (k)p(k) + b(k).

If wi,j is in W (k) then
∂p(k)

∂wi,j

= 0 and

∂p(k+1)

∂wi,j

= f ′(k)(n(k))
∂W (k)

∂wi,j

p(k).

If wi,j is not in W (k) then
∂W (k)

∂wi,j

= 0 and

∂p(k+1)

∂wi,j

= f ′(k)(n(k))W (k) ∂p
(k)

∂wi,j

.

If wi,j is in W (k−1) then
∂p(k−1)

∂wi,j

= 0 and

∂p(k)

∂wi,j

= f ′(k−1)(n(k−1))
∂W (k−1)

∂wi,j

p(k−1),

then

∂p(k+1)

∂wi,j

= f ′(k)(n(k))W (k) ∂p
(k)

∂wi,j

= f ′(k)(n(k))W (k)f ′(k−1)(n(k−1))
∂W (k−1)

∂wi,j

p(k−1).

If wi,j is not in W (k−1), then
∂W (k−1)

∂wi,j

= 0,

∂p(k)

∂wi,j

= f ′(k−1)(n(k−1))W (k−1)∂p
(k−1)

∂wi,j

.

Now it is necessary to find the derivative
∂p(k−1)

∂wi,j

, by using similar calculations.

Similar calculations can be applied to be bias.

∂p(k+1)

∂bi
=

∂

∂bi
f (k)(W (k)p(k) + b(k)) =

= f ′(k)(n(k))

(
W (k)∂p

(k)

∂bi
+

∂b(k)

∂bi

)
,

where n(k) = W (k)p(k) + b(k).

If bi is in b(k) then
∂p(k)

∂bi
= 0 and

∂p(k+1)

∂bi
= f ′(k)(n(k))

∂b(k)

∂bi
.
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If bi is not in b(k) then
∂b(k)

∂bi
= 0 and

∂p(k+1)

∂bi
= f ′(k)(n(k))W (k)∂p

(k)

∂bi
.

If bi is in b(k−1) then
∂p(k−1)

∂bi
= 0 and

∂p(k)

∂bi
= f ′(k−1)(n(k−1))

∂b(k−1)

∂bi
,

∂p(k+1)

∂bi
= f ′(k)(n(k))W (k)∂p

(k)

∂bi
= f ′(k)(n(k))W (k)f ′(k−1)(n(k−1))

∂b(k−1)

∂bi
.

If bi, is not in b(k−1) then
∂b(k−1)

∂bi
= 0 and

∂p(k)

∂bi
= f ′(k−1)(n(k−1))W (k−1)∂p

(k−1)

∂bi
.

Similarly, we can calculate the derivative of
∂p(k−1)

∂bi
.

3.4.2 Least square method

The least squares method is a foundational mathematical technique applied in regression

analysis to determine the optimal-fitting curve or line through a set of points. It achieves

this by minimizing the sum of the squares of the vertical deviations (residuals) between the

observed and predicted values. Widely employed for estimating the parameters of linear

models, the least squares method serves as a fundamental tool in statistical modeling

and data analysis. Renowned for its simplicity and mathematical elegance, it provides a

systematic approach to parameter estimation and model fitting in various fields.[18]

To apply the ordinary least squares (OLS) method, we apply the below formula to find

the equation:

m =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
,
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b = ȳ −m ∗ x̄.

Where x = independent variables and x̄ = average of independent variables, with y= de-

pendent variables, and ȳ = average of dependent variables. Lets solidify the basic concepts

in least squares regression, suppose we have some simple data set, {(xi, yi), i = 1, ..., n},

where xi and yi are real numbers. Say our model of y is related to x which is given by

y = f(x;w) + e,

f(x;w) = w
′
ϕ(x).

Where ϕ : R−→Rd is a specified function which maps to x to a d-dimensional ı̈¿œfeaturëı¿œ

vector, ϕ(x) = (ϕ1(x), ..., ϕd(x))
′
; w is a d-dimensional parameter vector w = (w1, ..., wd)

′
; e

is the prediction error, which we do not model explicitly. We will use w
′
to denote the

transpose of any vector w. In order to determine the least squared prediction error,

J(w) =
1

n

∑
i

(yi − f(xi;w))
2.

Solution to this problem is ŵ = (X
′
X)−1X

′
y, where X = (ϕ(x1), ..., ϕ(xn))

′
is a n × d

matrix whose first row is ϕ1(x1), ..., ϕd(x1) and the last row is given by ϕ1(xn, ..., ϕd(xn);

The output vector y is defined as y is defined as y = (y1, y2, ..., yn)
′
. Assumption made on

matrix (X
′
X) is invertible so that the problem is well-posed, (i.e. there exists a unique

minimizer). This holds true for feature vectors ϕ(x1), ..., ϕ(xn) associated with the training

examples span the d− dimensional feature space. As the feature vectors are long and the

number of training points n is small. Now, for the estimate of ŵ the resulting prediction

errors êi = yi − f(xi; ŵ) should be ”uncorrelated” with features:

1

n

∑
i

êiϕk(xi) = 0, k = 1, ..., d.

As these conditions are obtained by taking the derivative of J(w) with respect to each

wi, i = 1, .., d, and setting them to zero. Make a note that the prediction error needs not
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to be zero mean unless one of the features is a constant, i.e., say ϕ1 = 1 for all x, so that

1

n

∑
i

êϕ1(xi) =
1

n

∑
i

êi = 0.

3.4.3 Parameters and hyper-parameters of the model

In machine learning, achieving optimal accuracy and performance hinges on effectively man-

aging both parameters and hyper-parameters. Parameters, the internal variables learned

from training data, and hyper-parameters, external configuration settings set before train-

ing, collectively shape the model’s capabilities. Consequently, the optimization of these

elements is vital for superior model accuracy. The process of optimization encompasses

a blend of manual tuning and automated methods, leveraging techniques such as grid

search, random search, or sophisticated optimization libraries. A profound comprehension

of the specific problem domain further enhances the effectiveness of hyper-parameter tun-

ing, ensuring the model generalizes well to new and unseen data. In essence, the intricate

interplay between parameter and hyper-parameter optimization is fundamental for maxi-

mizing the accuracy of machine learning models. In the process of fine-tuning our model,

hyper-parameter optimization becomes imperative as we seek the optimal combination of

values. This strategic optimization allows us to systematically reduce errors, constructing

a model of unparalleled accuracy. Enhancing the model’s performance necessitates the

precise tuning of hyper-parameters.[18]

Following each iteration, a crucial step involves comparing the model’s output with the

expected results, evaluating accuracy, and, if required, refining the hyper-parameters. This

iterative process can be executed manually or, alternatively, leveraging various optimization

techniques, especially beneficial when dealing with substantial datasets. Let’s delve into

their definitions and roles:

• Parameters: Definition: Parameters are the internal variables that the model learns

from the training data. They are the coefficients in linear regression, weights in neural
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networks, or split points in decision trees.

– Training: During the training phase, the model adjusts its parameters to mini-

mize the difference between predicted and actual outcomes.

– Impact on Accuracy: Properly tuned parameters are essential for achieving high

accuracy. Optimal values ensure the model generalizes well to new, unseen data.

• Hyper-parameters: Definition: Hyper-parameters are external configuration settings

that are not learned from the data but are set before the training process. Examples

include the learning rate, the number of hidden layers in a neural network, or the

depth of a decision tree.

– Tuning: Hyper-parameters are set prior to training and need to be tuned to

find the best configuration for a specific problem. This is often done through

techniques like grid search or random search.

– Impact on Accuracy: The choice of hyper-parameters significantly influences the

model’s performance. Proper tuning helps prevent overfitting or underfitting and

maximizes accuracy on unseen data.

• Hyperparameter Tuning:

– Grid Search: Involves defining a grid of hyper-parameter values and evaluating

the model’s performance for each combination.

– Random Search: Randomly samples hyper-parameter combinations, offering a

more efficient alternative to grid search.

– Cross-Validation: Techniques like k-fold cross-validation help assess how well a

model with a particular set of hyper-parameters generalizes to different subsets

of the data.

• Impact on Model Selection: Model Selection: Different models may have different

sets of hyperparameters. For instance, a random forest and a support vector machine
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have distinct hyperparameters.

• Ensemble Models: In ensemble models like boosting or bagging, the choice of base

models and their respective hyperparameters can significantly impact accuracy.

• Automated Hyper-parameter Tuning: Hyper-parameter Optimization: Techniques

like Bayesian optimization, genetic algorithms, or specialized libraries (e.g., scikit-

learn’s GridSearchCV or RandomizedSearchCV) automate the hyperparameter tun-

ing process.

• Efficiency: Automated methods are particularly useful when dealing with a large hy-

perparameter search space, improving efficiency in finding optimal configurations.[18]

3.4.4 GridSearchCV

One of the simplest algorithm that can be used as an example of meta-learning is Grid-

SearchCV. GridSearchCV is the process of performing hyper-parameter tuning in order to

determine the optimal values for a given model. As mentioned above, the performance

of a model significantly depends on the value of hyper-parameters. Note that there is no

way to know in advance the best values for hyper-parameters so ideally, we need to try

all possible values to know the optimal values. Doing this manually could take a consider-

able amount of time and resources and thus we use GridSearchCV to automate the tuning

of hyper-parameters [6]. GridSearchCV is a function that comes in Scikit-learns (or SK-

learn) package. So an important point here to note is that we need to have the Scikit learn

library installed on the computer. This function helps to loop through predefined hyper-

parameters and fit your estimator (model) on your training set. So, in the end, we can

select the best parameters from the listed hyper-parameters. In this case for given machine

learning algorithm f it is possible to find a set of discrete values {x0, x1, ..., xn} (these are

values of parameters of the algorithm f). Approximate value of the minimum/maximum

of the function f can be find in the following way,
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fmax ≈ argmax
x∈{x0,x1,...,xn}

f(x).

From mathematical point of view this method assumes constant approximation of func-

tion f(x) in some neighborhood of points x0, x1, ..., xn. Accuracy of this method depends

of the accuracy of the approximation,

fmax ≈ argmax
x∈{x0,x1,...,xn}

f(x).

Where N(xi) is some neighborhood of the point xi. It is possible to improve accuracy

of presented method by improving accuracy of the approximation fapprox,xi
.

In summary, GridSearchCV is a powerful tool for automating the process of hyper-

parameter tuning, helping machine learning practitioners find the optimal configuration

for their models.

3.4.5 Optimization of function by using subsequent approxima-

tions and related predictions

The concept of ”Optimization of function by using subsequent approximations and related

predictions” seems to describe a general approach to optimization problems, and several

techniques in optimization and machine learning may align with this description. However,

for a more precise and detailed understanding, it would be helpful to break down the

elements of the phrase. Here’s a general overview:

• Optimization of Function: Optimization involves the process of finding the best so-

lution, often the maximum or minimum, of a given objective function. This function

could represent, for example, a cost to be minimized or a utility to be maximized.

• Subsequent Approximations: The term ”subsequent approximations” suggests an

iterative approach to optimization. Instead of finding the optimal solution directly,
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the method involves making successive approximations, refining the solution with

each iteration.

• Related Predictions: The phrase ”related predictions” could imply that the optimiza-

tion process involves making predictions or estimations related to the function being

optimized. This could be particularly relevant in machine learning contexts where

models are trained to make predictions.

• Iterative Optimization: Many optimization algorithms, such as gradient descent, op-

erate iteratively by making small adjustments to the solution in the direction that im-

proves the objective function. This process is repeated until convergence is achieved.

• Machine Learning Context: In machine learning, optimization is a crucial step during

the training of models. The objective is often to minimize a loss function, and iterative

methods are commonly used to adjust the model’s parameters for better predictions

on the training data.

• Prediction and Modeling: The optimization process is often intertwined with the pre-

diction aspect in machine learning models. As the model parameters are optimized,

the model’s predictions on new or unseen data are expected to improve.

• Example: For instance, in training a machine learning model, the iterative opti-

mization process involves adjusting the model’s weights or parameters based on the

difference between the predicted outcomes and the actual outcomes. Subsequent

iterations refine the model’s predictions until convergence.

There are many optimization algorithms which use various approximations techniques

in order to approximate minimum/maximum of function. In sequential linear programming

objective function f(x) is approximated by a linear approximation.

fapprox,xi
(x) = f(x0) + f ′(x0)(x− x0),
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to find approximation of the maximum of function in some neighborhood N(x0) of given

point x0.

xmax,N(x0) = argmax
x∈N(x)

f(x) ≈ argmax
x∈N(x)

fapprox,x0(x) (3.14)

fmax ≈ f(xmax,N(x0)).

In the next iteration it is necessary to approximate function f(x) in the point xmax,N(x0)

assume that x0 = xmax,N(x0) and repeat calculations.

In the sequential quadratic programming nonlinear function f(x) is approximated by

the quadratic Taylor’s approximation,

fapprox,x0(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2

and then then it is necessary to repeat the procedure [14].

In summary, the expression ”Optimization of function by using subsequent approxi-

mations and related predictions” corresponds to iterative optimization strategies, notably

in the realm of machine learning. This iterative process involves refining models through

successive iterations to enhance their predictive capabilities. In a broader context, various

approximation methods, such as neural networks, polynomials, and other machine learn-

ing algorithms, can be employed to approximate the minimum or maximum of general

nonlinear functions.

3.4.6 Meta-Learning

Meta-learning, also referred to as ”learning to learn,” resides within the realm of statistical

science and stands as a subset of the broader field of machine learning. While conventional

machine learning models typically necessitate extensive training with a substantial dataset,

humans exhibit a remarkable capacity too rapidly and efficiently acquire new knowledge

and skills.[31] Meta-learning aids researchers in discerning which algorithms yield superior

predictions or insights from databases. It is used to improve the results and performance
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of the learning algorithm by changing some aspects of the learning algorithm based on the

results of the experiment. Meta-learning algorithms utilize metadata from learning algo-

rithms as their input, subsequently generating predictions and offering insights into the

performance of these learning algorithms. For instance, in a learning model involving im-

ages, metadata may encompass details like size, resolution, style, creation date, and owner.

Each learning algorithm operates on a set of assumptions about the data, known as its in-

ductive bias, or sometimes referred to as the learning bias of the algorithm. Meta-Learning

leverages metadata such as algorithm properties (performance metrics and accuracy) or

previously derived patterns from the data. This is employed to learn from, select, modify,

or combine various learning algorithms effectively for a given learning task. The fundamen-

tal goal of meta-learning is to create our own machine learning model with the ability to

rapidly grasp new concepts and skills with minimal training examples. The most critical

challenge in meta-learning lies in the systematic design of experiments.[31]

Formalizing Meta- Learning model

In conventional machine learning approaches, the effectiveness of the model depends on

manually designed feature extraction. In contrast, deep learning combines both feature

and model learning, resulting in notable performance improvements. Meta-learning within

neural networks takes this a step further by integrating the learning of collective features,

models, and algorithms.

In traditional supervised machine learning, we are provided with a training dataset D =

{(x1, y1), ..., (xN , yN)}, consisting of pairs (input image, output label). We can then train

a predictive model ŷ = f(θ(x)) with parameters θ, by solving for the optimal parameter

values: θ∗ = argminθL(D; θ, ω).

Meta learning algorithm objective function can be mathematically expressed as:

ω∗ = argminω

M∑
i=1

Lmeta(θ∗
i

(w), w,Dval(i)

source)
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s.t. θ∗
i

(ω) = argminθ Ltask(θ, ω,Dtrian(i)

source )

Where L: a function that measures the match between true labels and those predicted

by f(θ).

θ : parameter for inner algorithm

D: the Data-set under consideration.

ω: meta-knowledge to denote dependence on θ and class of labels.

A robust meta-learning model should undergo training across a range of learning tasks

and be optimized for optimal performance across a distribution of tasks, potentially en-

compassing unseen tasks as well.[29] We introduced our meta-learning model to a range

of different learning tasks. The optimal value (max), in our case, is medical diagnosis;

summary of our model Iterations: Below is the algorithm for our Meta-learning model 1.

Algorithm 1 Meta-Learning: Model-Agnostic Meta-Learning (MAML)

Require: p(τ) : distribution over tasks

Require: α, β: step size hyper-parameters

1. Randomly initialize θ

2. while not done do

3. Sample batch of tasks τi ∼ p(τ)

4. for all (τi) do

5. Evaluate ∇θLτi(fθ) with respect to K examples

6. Compute adapted parameters with gradient descent : θ′i = θ − α∇θLτi(fθ)

7. end for

/// Note: the meta-update is done using the test sets

8. Update θ ← θ − β∇θΣτ i p(T )Lτi(fθ′i)

9. end while
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Our Graph Meta- learning Algorithm

Leveraging insights from hyper-parameter tuning and inspired by the Model-Agnostic Meta-

Learning (MAML) model, we embarked on the development of a bespoke meta-learning

algorithm that seamlessly integrates a graph neural network. Building upon the previously

mentioned dgl.graph features, our approach harnesses the power of graph structures to

enhance the learning process. In the realm of hyper-parameter tuning, we meticulously

fine-tuned model parameters to optimize performance. This iterative process allowed us to

identify configurations that significantly contribute to the effectiveness of our meta-learning

algorithm.

The incorporation of the MAML model further augmented our meta-learning frame-

work. MAML, known for its ability to quickly adapt to new tasks with limited data,

provided a solid foundation for our algorithm. We adapted its principles to accommodate

the unique characteristics of graph-structured data, allowing our model to capture intricate

relationships and dependencies present in medical datasets.

Central to our innovation is the utilization of the dgl.graph feature from the Deep

Graph Library (DGL). This feature enabled us to represent and process medical data in a

graph structure efficiently. The graph neural network within our meta-learning algorithm

leverages this representation, capturing complex interactions between various medical en-

tities. This inclusion of graph structures contributes to the algorithm’s adaptability and

effectiveness in handling diverse medical datasets to higher performance to unseen data.

Graph Meta-learning (our algorithm)

1. Iteration 1

Use base-algorithm (Logistic regression, kNN, SVM), to generate initial training set Dm,1 for meta-

learning algorithm

Dm,1 = {(xtr,1, y1), (xtr,1, y1), ..., (xtr,n1,tr
, yn1,tr

)}

where y1 = BaseAlgorithm(xtr,1, D),
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yn1,tr
= BaseAlgorithm(xtr,n1,tr

, D),

n1,tr is the number of data points (simulations),

D is the data set of the base-model,

xtr,0, xtr,1, ..., xtr,n1,tr
are parameters of the base model,

and y0, y1, ..., yn1,tr
are appropriate medical diagnosis.

Find ymax,1 = max{y0, y1, ..., yn1,tr
}.

2. Train meta-learning algorithm (neural network, polynomial regression, graph neural networks, etc.)

on the meta-learning training set Dm,1

W ∗
1 = argmax

W
Loss(MetaAlgorithm,Dm1

,W )

where W is a matrix of parameters of the meta-learning algorithm, W ∗
1 is a matrix of parameters of

meta-learning algorithm after training, Loss is some loss function (cross-entropy loss, MSE, Huber

loss, L1 loss, etc.)

3. Find the set of parameters which corresponds to maximum predicted value.

xmax,pr,1 = argmax
xpr∈Xpr,1

MetaAlgorithm(xpr,W
∗
1 )

where Xpr,1 is a set of parameter used in prediction. In this step it is possible to apply many existing

optimization algorithms (gradient descent, search, etc.).

4. Iteration 2

Generate new training set Dm,2 around the point xmax,pr,1.

Dm,2 = {(xtr,0, y0), (xtr,1, y1), ..., (xtr,n2,tr
, yn2,tr

)}

Update ymax,2 based on the new data.

5. Re-train meta-learning algorithm.

W ∗
2 = argmax

W
Loss(MetaAlgorithm,Dm1

, Dm2
,W )
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6. Find prediction of the new optimal value.

xmax,pr,2 = argmax
xpr∈Xpr,2

MetaAlgorithm(xpr,W
∗
2 )

7. Iteration 3

Generate new training set Dm,3 around the point xmax,pr,2.

Dm,3 = {(xtr,0, y0), (xtr,1, y1), ..., (xtr,n3,tr
, yn3,tr

)}

Update ymax,3 based on the new data.

8. Re-train meta-learning algorithm.

W ∗
3 = argmax

W
Loss(MetaAlgorithm,Dm1

, Dm2
, Dm3

,W )

9. Find prediction of the new optimal value.

xmax,pr,3 = argmax
xpr∈Xpr,3

MetaAlgorithm(xpr,W
∗
3 )

10. Continue calculations until convergence.

|ymax,i − ymax,i+1| < ε

11. The result of the optimization process is a pair (xmax, ymax).

ymax = BaseAlgorithm(xmax)

ymax is maximum value generated by the base algorithm,

xmax is a set of optimal parameters of the base algorithm which generate the maximum value ymax.

Our meta-learning algorithm, enriched by hyper-parameter tuning, MAML principles,

and the expressive power of graph neural networks through dgl.graph, stands as a testament
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to the synergy achieved by merging advanced machine learning techniques. This holistic

approach not only optimizes the learning process but also positions our algorithm as a

promising candidate for addressing the challenges posed by medical diagnosis tasks, where

nuanced relationships and dependencies play a pivotal role in accurate predictions.

3.4.7 Universal approximation theorem

The Universal Approximation Theorem is a significant result in the field of artificial neural

networks, particularly in the context of neural network theory. It was first formulated by

George Cybenko in 1989 and later independently proven and extended by Kurt Hornik in

1991. The theorem demonstrates the universal approximation capabilities of feedforward

neural networks with a single hidden layer.[20]

Here are key points about the Universal Approximation Theorem:

• Approximation Power: The theorem states that a feedforward neural network with a

single hidden layer containing a sufficient number of neurons (or units) can approxi-

mate any continuous function on a compact subset of Rn, given appropriate activation

functions and parameter settings.

• Single Hidden Layer: The remarkable aspect of the theorem is that it specifically

applies to networks with just one hidden layer. The hidden layer is where the network

learns to map input data to a higher-dimensional feature space.

• Activation Functions: The Universal Approximation Theorem doesn’t prescribe a

specific activation function, but it assumes the use of activation functions that are

non-constant, bounded, and continuous. Commonly used activation functions like

sigmoid and rectified linear unit (ReLU) satisfy these conditions.

• Sufficiency of Neurons: The theorem doesn’t provide an exact formula for the number

of neurons needed in the hidden layer but establishes that, theoretically, there exists

a sufficient number of neurons to approximate any continuous function.
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• Compact Subset: The approximation holds on a compact subset of ℜn. A compact

set is a closed and bounded subset of Euclidean space.

• Practical Implications: While the Universal Approximation Theorem demonstrates

the theoretical capability of neural networks, it doesn’t provide guidance on practical

network architecture, training, or generalization to unseen data. In practice, the

choice of architecture, regularization techniques, and training strategies plays a crucial

role.

• Extensions and Variations: The theorem has been extended to include other archi-

tectures and variations, such as networks with multiple hidden layers (deep networks)

and different types of activation functions.

• Caveats: While the theorem underscores the universality of neural networks in ap-

proximating functions, it doesn’t guarantee efficiency or ease of training. In practice,

network training can be challenging, especially for deep architectures.

The Universal Approximation Theorem states that neural networks have the capability

to serve as a universal approximation model for a wide range of functions. This means

that given a large enough neural network with appropriate parameters, it is possible to

approximate a diverse set of relationships between variables, which is crucial in various

optimization tasks.

Theorem 1. Let C(X,Rm) denote the set of continuous functions from a subset X of a

Euclidean Rn space to a Euclidean space Rm.

Let σ ∈ C(R,R.)

Note that (σ ◦ x)i = σ(xi), so σ ◦ x denotes σ applied to each component of x.

Then σ is not polynomial if and only if for every n ∈ N, m ∈ N, compact subspace

K ⊆ Rn, f ∈ C(K,Rm), ε > 0 ∃k ∈ N, A ∈ Rk×n, b ∈ Rk, C ∈ Rm×k such that

supx∈K ∥f(x)− g(x)∥ < ε. Where g(x) = C · (σ ◦ (A · x+ b)).
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Furthermore, non-continuous activation functions can serve to approximate a sigmoid

function, enabling the extension of the aforementioned theorem to encompass these func-

tions. For instance, the step function is a viable choice. This revelation highlights that

a perceptron network with a solitary infinitely wide hidden layer possesses the capability

to approximate arbitrary functions. The same construction employed for the first layer

can be applied to approximate the identity function in subsequent layers, allowing for the

approximation of a broader class of functions with a network of greater depth.[20]

In summary, the Universal Approximation Theorem is a fundamental result highlighting

the expressive power of neural networks with a single hidden layer. It underscores the uni-

versality of these networks in representing a wide range of functions, laying the theoretical

foundation for the widespread use of neural networks in various applications.[20]

3.4.8 Epochs

In the realm of artificial neural networks, an epoch signifies a complete cycle through

the entire training dataset, marking a pivotal and transformative period in the model’s

learning history. It represents a point in time that encapsulates significant developments

and notable changes. Training a neural network typically extends beyond a few epochs,

involving the repeated exposure of the network to the training data in varied patterns. In

essence, the number of epochs is a hyper-parameter crucially defining how many times the

learning algorithm iterates through the entire training dataset. Each epoch provides an

opportunity for the neural network to update its internal model parameters, contributing

to improved generalization when faced with new, unseen input (test data). While it might

seem counterintuitive initially, the significance lies in the iterative exposure of the entire

dataset, enhancing the network’s ability to discern patterns and nuances. Here are key

points about epochs:

• Definition: An epoch represents one complete cycle through the entire training dataset.

During each epoch, the model updates its parameters based on the information in
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the training data.

• Training Process: In machine learning, especially in deep learning tasks like training

neural networks, learning occurs through an iterative process. The model processes

batches of training data, makes predictions, computes the error, and updates its

parameters to minimize this error.

• Multiple Epochs: Training a model typically requires multiple epochs. The number

of epochs is a hyper-parameter that the user must specify before training begins. It

determines how many times the model will work through the entire training dataset.

• Underfitting and Overfitting: Underfitting may occur if the model is too simple and

cannot capture the underlying patterns in the data even after multiple epochs. On

the other hand, overfitting may occur if the model becomes too specialized to the

training data, performing poorly on new, unseen data.

• Validation Data: To monitor the model’s performance during training and prevent

overfitting, a portion of the dataset is often set aside as validation data. The model’s

performance on the validation set is evaluated after each epoch.

• Early Stopping: Early stopping is a technique where training is halted if the model’s

performance on the validation set stops improving. This helps prevent overfitting and

can be based on criteria such as the accuracy or loss on the validation data.

• Batch Size: The concept of epochs is closely related to the batch size, which represents

the number of training examples utilized in one iteration. The number of batches in

one epoch is determined by the total number of training examples divided by the

batch size.

In summary, epochs are a critical aspect of the training process in machine learning,

providing a measure of how many times a model has seen the entire training dataset.
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Properly selecting the number of epochs is essential to achieve effective model training

without underfitting or overfitting.

3.5 Activation functions with Neural Networks

Activation functions stand as vital components within artificial neural networks, acting as

mathematical operations applied to the output of each neuron or node. They play a pivotal

role in introducing non-linearity to the network, a key factor enabling the model to grasp

intricate patterns and relationships in data. Now, let’s swiftly delve into the significance of

activation functions in machine learning and neural networks. Serving as crucial elements,

these functions contribute to the non-linear transformation applied to the input of neurons

or nodes. By introducing non-linearity, they empower the network to effectively learn from

and model complex patterns within the data. The following outlines key facets of activation

functions in the context of neural networks.

• Linearity vs. Non-Linearity: Activation functions introduce non-linearity to the net-

work. Without non-linear activation functions, a neural network would essentially

reduce to a linear model, and the ability to model complex relationships in data

would be severely limited.

• Common Activation Functions: Fig. 3.2

– Sigmoid (Logistic): It squashes input values between 0 and 1, making it use-

ful in binary classification problems. However, it has drawbacks like vanishing

gradients.

– Hyperbolic Tangent (tanh): Similar to the sigmoid but ranges from -1 to 1,

addressing the vanishing gradients issue to some extent.

– Rectified Linear Unit (ReLU): It outputs the input for positive values and zero

for negative values, offering simplicity and often faster convergence. However, it

suffers from the ”dying ReLU” problem where neurons can become inactive.
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– Leaky ReLU: It addresses the dying ReLU problem by allowing a small negative

slope for negative input values.

– Parametric ReLU (PReLU): Similar to Leaky ReLU but with the negative slope

as a learnable parameter.

– Exponential Linear Unit (ELU): A variant of ReLU that smoothens the transi-

tion for negative input values.

– Scaled Exponential Linear Unit (SELU): A self-normalizing activation function

that can improve convergence in deep networks.

• Choice of Activation Function: The choice of activation function depends on the

nature of the problem, network architecture, and potential challenges like vanish-

ing gradients or dead neurons. ReLU and its variants are widely used due to their

simplicity and effectiveness.

• Output Layer Activation: The choice of activation function in the output layer de-

pends on the nature of the task:

– Sigmoid: Used for binary classification problems, where the network outputs

probabilities.

– Softmax: Used for multi-class classification problems, converting network out-

puts into probability distributions.

• Vanishing and Exploding Gradients: Some activation functions, like sigmoid and

tanh, can suffer from vanishing gradients, making it challenging for deep networks to

learn. Others, like ReLU, may lead to exploding gradients. Techniques like weight

initialization and batch normalization can help mitigate these issues.

• Adaptive Activation Functions: Some research explores adaptive activation functions

that can learn the activation behavior during training, adapting to the specific char-

acteristics of the data.
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In essence, selecting the appropriate activation function for neural networks is a piv-

otal design choice, influencing the network’s learning capacity, convergence speed, and its

capability to model intricate relationships within data. Ongoing research endeavors aim to

introduce novel activation functions and refine existing ones to enhance the overall perfor-

mance and stability of neural networks.

3.6 Data Splitting

Classification stands as a cornerstone task in machine learning, aiming to forecast the

categorical class or label of an input by leveraging its distinctive features. This essential

function finds extensive application across diverse domains, including image recognition,

spam detection, medical diagnosis, and sentiment analysis. Machine learning, a pivotal

methodology within this realm, constitutes a primary avenue for categorizing the multi-

faceted sciences. It delves into the mechanisms of autonomously acquiring the ability to

make precise predictions based on historical observations. In the realm of artificial neural

networks, recognizing the inevitability of incomplete raw data is crucial. Given that these

networks typically demand a comprehensive dataset for accurate classification, addressing

the issue of incomplete data becomes imperative. Through imputation and data completion

strategies, we pave the way for the effective classification of data, ensuring the artificial

neural network’s capability to learn and predict remains robust. The simpler model, while

carrying more bias, exhibits less sensitivity to the specific instances encountered during

training, mitigating the risk of overfitting. In the context of training, especially in arti-

ficial neural networks, suboptimal generalization is often manifested as over-training. To

circumvent this, a prevalent technique is to employ hold-out cross-validation, effectively

preventing over-training and enhancing the model’s ability to generalize to unseen data. In

most of the applications, simple random sampling is used. Nevertheless, there are several

sophisticated statistical sampling methods suitable for various types of data sets. In the

case of supervised learning, a computational model is trained to predict outputs of an un-
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known target function. The target function is represented by a finite training data set T

of examples of inputs and the corresponding desired outputs: T = [ x1, d1], ..., [ xn, dn],

where n > 0 is the number of ordered pairs of input/output samples (patterns). At the

end of the training process, the final model should predict correct outputs for the input

samples from T , but it should also be able to generalize well to previously unseen data.

Cross-validation techniques [4] belong to conventional approaches used to ensure good gen-

eralization and to avoid over-training. K-fold cross-validation maximizes the use of the

data. The basic idea is to divide the data set T into two subsets ı̈¿œ one subset is used

for training while the other subset is left out and the performance of the final model is

evaluated on it. K-fold divides data randomly into k folds (subsets) of equal size, then we

train the model k − 1 folds (i.e. use one fold for testing). Repeat this process k times so

that all folds are used for testing, which then we compute the average performance on the

k test sets. This effectively uses all the data for both training and testing, typically k = 10

is used.

Some of the methods are simple and widely used, although they suffer from high variance

of the model performance. For classification problems, we we measure the performance of

a model in terms of its error rate: percentage of incorrectly classified instances in the

data set. Building a model, we want to use it to classify new data. Hence we are chiefly

interested in model performance on new (unseen) data. The re-substitution error (error

rate on the training set) is a bad predictor of performance on new data. The model was

build to account for the training data, so might over-fit it, i.e., not generalize to unseen

data. Moveover, the more data available, more training which equals better model. The

more test data, the more accurate the error estimate.

3.7 Classification method

Classification serves as a fundamental task in machine learning, striving to predict the

categorical class or label of an input by utilizing its unique features. This essential func-
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tion finds extensive application across diverse domains, including image recognition, spam

detection, medical diagnosis, and sentiment analysis. Machine learning, a pivotal method-

ology within this realm, constitutes a primary avenue for categorizing the multifaceted

sciences. It delves into the mechanisms of autonomously acquiring the ability to make pre-

cise predictions based on historical observations. In the realm of artificial neural networks,

recognizing the inevitability of incomplete raw data is crucial. Given that these networks

typically demand a comprehensive dataset for accurate classification, addressing the issue

of incomplete data becomes imperative. Through imputation and data completion strate-

gies, we pave the way for the effective classification of data, ensuring the artificial neural

network’s capability to learn and predict remains robust.[18]

Classification methods based on Neural Networks, take a single neuron (processing

element- PE) with inputs and outputs. Once more we have a set of training observation

(x1, y1), ...., (xn, yn) that we can use to build a classifier. With classifying examples into

given sets of categories.

Examples of Classification problems we have the following:

• fraud detection

• optical character recognition

• machine vision (e.g., face detection)

• market segmentation (e.g., predict if customer will respond to promotion)

• bioinformatics (e.g., classify proteins according to their function)

Classification is the most widely used Machine learning technique that involves sepa-

rating the data into different segments which are non-overlapping. Hence classification is

the process of finding a set of models that describe and distinguish class label of the data

object. Classification can be performed on structured or unstructured data. Classification
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Figure 3.15: Graphical representation of the gradient decent method.

Figure 3.16: Classification.
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is a technique where we categorize data into a given number of classes. The main goal of a

classification problem is to identify the category/class to which a new data will fall under.

Building an accurate classifier is always what we are working towards, for good test per-

formance, we need 1) enough training examples, 2) good performance on training set and

3) classifier that is not ”too ı̈¿œcomplex”̈ı¿œ (̈ı¿œOccamı̈¿œs razor̈ı¿œ). With classifiers

having to be ”as simple as possible, but no simpler”. We have ”simplicity” closely related

to prior expectation. Before moving forward a few terminologies needed when dealing with

classification method.

• Classier: An algorithm that maps the input data to specific category.

• Classification model: A classification model tries to draw some conclusion from the

input values given for training. It will predict the class labels/categories for the new

data.

• Feature: A feature is an individual measurable property of a phenomenon being

observed.

• Binary Classification: Classification task with two possible outcomes. Eg: Gender

classification(Male/Female)

• Multiclass classification: Classification with more than two classes. In multi class

classification each sample is assigned to one and only one target label. eg: An animal

can be cat or dog but not both at the same time

• train the classifier: All classifiers in sciit-learn uses a fit (X, y) method to fit the

model(training) for the given train data X and train label y.

• Predict the target: Given an unlabeled observation X, the predict(X) returns the

predicted label y.
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3.7.1 Regression method

Regression is a supervised learning task in machine learning that focuses on predicting a

continuous numerical value or a real-valued output based on input features. The goal is

to establish a relationship between the input variables and the target variable, allowing

for the prediction of quantitative outcomes. Here are key aspects of regression methods in

machine learning:

• 1. Objective: The primary objective of regression is to model the relationship between

the independent variables (features) and the dependent variable (target) to make

accurate predictions of continuous values.

• 2. Types of Regression:

– Linear Regression: Assumes a linear relationship between the input features and

the target variable. It seeks to find the best-fitting line that minimizes the sum

of squared differences between predicted and actual values.

– Multiple Regression: An extension of linear regression that involves multiple

independent variables to predict a single dependent variable.

– Polynomial Regression: Allows for capturing non-linear relationships by intro-

ducing polynomial terms of the input features.

– Ridge Regression and Lasso Regression: Variants of linear regression with regu-

larization terms to prevent overfitting.

– Support Vector Regression (SVR): An extension of support vector machines for

regression tasks, which aims to find a hyperplane that best represents the data.

– Decision Tree Regression: Utilizes a decision tree structure to make predictions

based on the input features.

– Random Forest Regression: An ensemble method that combines multiple deci-

sion trees to improve accuracy and robustness.
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– Gradient Boosting Regression: Builds a sequence of weak learners (usually de-

cision trees) to progressively correct errors made by the preceding models.

– Neural Network Regression: Applies neural networks to regression problems,

employing multiple layers of interconnected neurons to learn complex patterns.

• 3. Training and Evaluation:

– Training: Regression models are trained on labeled datasets, where the algorithm

learns to map input features to continuous target values.

– Evaluation: Model performance is typically evaluated using metrics such as

mean squared error (MSE), mean absolute error (MAE), R-squared, or other

relevant metrics depending on the nature of the problem.

• 4. Handling Overfitting: Overfitting can be a concern, especially in complex models.

Techniques like regularization and cross-validation are employed to mitigate overfit-

ting and ensure better generalization.

• 5. Feature Importance: Some regression algorithms, such as decision trees and ran-

dom forests, provide insights into the importance of different features in making

predictions.

• 6. Interpretability: Linear regression models are often more interpretable than com-

plex models like neural networks, making them valuable when understanding the

relationship between variables is essential.

• 7. Deployment: Once trained and validated, regression models can be deployed for

making predictions on new, unseen data.

• 8. Use Cases: Regression is used in various applications, including predicting stock

prices, estimating house prices, forecasting sales, and modeling the relationship be-

tween variables in scientific research.
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Regression methods stand as pivotal components in the realm of quantitative analysis,

offering indispensable capabilities for modeling and predicting continuous outcomes across

a spectrum of diverse fields. These methods, serving as foundational tools, play an instru-

mental role in both statistical modeling and machine learning, contributing significantly to

our understanding and interpretation of relationships within datasets.

In conclusion, Chapter Two serves as a foundational exploration into the methodolo-

gies underpinning our study, with a particular focus on the analysis of medical datasets.

We embarked on a journey through an introductory overview of the methods employed,

laying the groundwork for a deeper understanding of our research. Additionally, a succinct

introduction to the optimization techniques applied within our machine learning models

was provided. This chapter establishes the framework for subsequent discussions, setting

the stage for a comprehensive exploration of our study’s methodologies and their implica-

tions in the realm of medical data diagnosis. Chapter three will cover briefly our starting

projects in the realm of machine learning and applications across different fields; along with

some appendix work and introduction to the data sets applied to our simulations on our

proposed method.
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Chapter 4

Medical Diagnosis

4.1 Medical Diagnosis

Medical diagnosis involves identifying the disease or condition that explains a person’s

symptoms and signs. This process relies on a health history, physical examination, and

various tests, including blood tests, imaging tests, and biopsies, to establish an accurate

diagnosis [3]. It is crucial to avoid wasting time on an incorrect course of treatment.

Determining the cause of an illness is complex due to the similarity of symptoms among

many diseases. Physicians interpret information from clinical interviews, physical exams,

and diagnostic tests, ranging from blood tests to medical imaging such as X-rays, MRI,

ultrasound, or CAT scans. Consultation with specialists may be required to interpret

results and plan treatments.

Machine learning plays a vital role in enhancing and expediting the diagnosis process.

It not only improves efficiency but also reduces the risk of misdiagnosis, thereby avoiding

potentially severe consequences associated with incorrect diagnoses. The Society to Improve

Diagnosis in Medicine (SIDM) highlights the prevalence of diagnostic errors, with over

12 million American adults receiving incorrect diagnoses annually [8]. Notably, women’s

heart problems are particularly challenging to detect compared to cardiac issues in men.

Physicians may sometimes dismiss genuine symptoms as being ”all in the patient’s head”

if test results do not provide an obvious answer visible to the naked eye. In light of

this, medical diagnosis can be viewed as a classification problem. Classification involves

determining the category or sub-population to which an observation or observations belong.

To classify data one can use the threshold function f(x1, ..., xn) where x = (x1, ..., xn)
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is a feature vector.

• If f(x) > 0, then x ∈ C1.

• If f(x) < 0, then x ∈ C2

C1, C2 are different classes (in this case diagnosis).

Figure 4.1: Decision boundary.

With the conceptualization of medical diagnosis as a classification problem, we can now

delve into the applications of machine learning in this domain. The impact of machine

learning on medical diagnosis and healthcare applications has been extensively studied.

In its early stages, machine learning has demonstrated significant potential for enhancing

diagnostic accuracy, resulting in notable advancements in saving time, reducing costs, and

most importantly, saving lives [16]. Machine learning proves particularly influential in

cancer diagnosis, leveraging data from medical imagery to detect, measure, and analyze

tumors. Its computational prowess allows for faster and more efficient data and imagery

analysis compared to the capabilities of individual human medical professionals. Notably,

a study from China revealed that an AI system outperformed certain doctors in diagnosing

common childhood diseases, emphasizing the remarkable diagnostic capabilities of machine

learning in healthcare applications.

[30] The study trained a deep-learning system on 101 million data points generated

from the electronic records of 1.3 million patient visits to a medical center in Guangzhou.
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Studies found that the AI system was able to meet or outperform two groups of junior

physicians in accurately diagnosing a range of ailments, from asthma and pneumonia, to

sinusitis and mouth-related diseases. The AI was also able to meet or exceed diagnostic

performance with some groups of senior physicians, for instance, in the category of upper

respiratory issues.machine learning could complete screenings in less time. This could

reduce referral wait times for high-risk patients. Machine learning could also broaden

health care access. Some regions and populations in the United States have limited access

to medical professionals. This emerging technology could automate certain tasks, which in

turn could reduce clinical workloads and empower non-specialists to perform complicated

tasks, such as cardiac imaging and analysis. This could allow medical professionals to reach

larger segments of the population in at-home care or smaller clinical settings, and provide

more patients with access to care. [23] Thus, the motivation behind this proposed work

stems from observed cases wherein diagnostic accuracy has notably increased, reaching

percentages as high as 90 to 95. In the subsequent sections, we will delve into our study

involving a medical dataset, presenting precise medical diagnoses achieved through the

application of various machine learning models. These models are implemented within our

proposed optimized meta-learning framework.

4.2 Data Background - Pediatric Pneumonia Chest

X-Ray Data Images

The first medical data set applied to the machine learning methodologies was for the classifi-

cation of pediatric pneumonia, data provided by Kermany and Goldbaum [24]. Pneumonia,

a severe lung infection, is a leading cause of mortality in young children, accounting for

14% of childhood deaths under 5 years old (Troeger et al., 2018). Sample image of a pe-

diatric pneumonia image 4.2. For a quick overview on Pneumonia, it is an infection that

inflames the air sacs in one or both lungs. The air sacs may fill with fluid or pus (pu-
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rulent material), causing cough with phlegm or pus, fever, chills, and difficulty breathing

(ref. Mayoclinic.org/diseases-conditions). Pneumonia can range in seriousness from mild

to life-threatening. It is most serious for infants and young children, people older than age

65, and people with health problems or weakened immune systems.[23]

Figure 4.2: Pneumonia and lung infections.

Data initially collected was a total of 5,232 chest X-ray images from children, includ-

ing 3,883 characterized as depicting pneumonia (2,538 bacterial and 1,345 viral) and 1,349

normal.[25]

The model was then tested with 40 normal images and 14 pneumonia images (8 bacterial

and 6 viral) from 34 patients. After the pre-trained model of 100 epochs (iterations through

the provided dataset) of the model, we were able to see good accuracy in classification. With

later iterations of the model, we increase sizes on both training and testing, as validation

sets.

There are two groups of pictures.

• Group 1 – healthy people

• Group 2 – sick people
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Figure 4.3: Chest X-ray image 1 healthy lung

Dataset is divided into 3 subsets.

• Training (healthy, sick)

• Testing (healthy, sick)

• Validation (healthy, sick)

In this specific framework in which we trained a neural network with the data of con-

ventional approaches (convolutional neural network). The development of convolutional

neural network layers has allowed for significant gains in the ability to classify images and

detect objects in a picture [27].

Step 0:

loss = 0.587146103382 train acc = 0.9296875 val acc = 0.600000023842
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Figure 4.4: Chest X-Ray of person 378, bacteria infection

train acc = 0.9765625 val acc = 0.800000011921

Step 10: loss = 0.157285600901 train acc = 0.9765625

val acc = 0.800000011921

Step 20: loss = 0.0681663155556

train acc = 1.0 val acc = 0.759999990463

loss = 0.0681663155556

train acc = 1.0 val acc = 0.759999990463

Step 30: loss = 0.0513591244817

train acc = 1.0 val acc = 0.759999990463

Step 30: loss = 0.0513591244817 train acc = 1.0 val acc = 0.759999990463

When the model was trained with a much smaller number of images (about 100), it

retained high performance in accuracy, sensitivity, specificity, and area under the ROC

curve for achieving the correct diagnosis and referral, thereby illustrating the high efficacy

on using the CNN for image classifications, even with a limited training dataset.

Step 350: loss = 0.00186197937001

train acc = 1.0 val acc = 0.759999990463
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Figure 4.5: Chest X-Ray of person1, virus6 infection

Step 350: loss = 0.00186197937001 train acc = 1.0

val acc = 0.759999990463

Step 360: loss = 0.00185873173177

train acc = 1.0 val acc = 0.759999990463

Step 360: loss = 0.00185873173177 train acc = 1.0

val acc = 0.759999990463

Step 399: loss = 0.00168729701545 train acc = 1.0

val acc = 0.759999990463

Best validation accuracy = 80.0000011921
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Final test accuracy = 88.8888895512

Total Model Runtime: 1min, 8.46sec

Furthermore, we have seen that the performance of this model would likely be en-

hanced when tested with a larger ImageNet dataset. As perhaps, with more advanced

deep-learning techniques and architecture the rapid progression and development of med-

ical image classification with the usage of convolutional neural networks has shown great

results. AI beyond diagnosis or classification of images and into the realm of making treat-

ment recommendations is a promising area of future investigation. The CNN represents a

generalized platform that can potentially be applied to a wide range of medical imaging

techniques (e.g., chest X-ray, MRI, computed tomography) to make a clinical diagnostic

decisions, which enchances one of the concerned areas in the medical field behind image

diagnoses and the accuracy behind the medical diagnoses.

4.3 Breast Cancer

The second medical dataset we studied is sourced from the UCI Machine Learning Repos-

itory, specifically the Breast Cancer Wisconsin (Diagnostic) Data. Before delving into the

dataset specifics, it’s essential to provide a brief overview of breast cancer. Breast cancer

stands as the most prevalent cancer among women in the United States, excluding skin

cancer. Statistically, approximately 30% of all newly diagnosed female cancers each year

are attributed to breast cancer, illustrating its significant impact on women’s health.[37]

Breast cancer is a complex and diverse disease with various subtypes, necessitating

comprehensive research and diagnostic efforts. The dataset derived from the UCI Machine

Learning Repository focuses on diagnostic information related to breast cancer in Wiscon-

sin. In the upcoming section, we will explore the intricacies of this dataset and leverage

different machine learning models within our optimized meta-learning framework to en-

hance our understanding of breast cancer diagnosis and contribute valuable insights to the
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field of medical research.

The American Cancer Society’s estimates for breast cnacner in the United

States for 2022 alone are:

• About 287,850 new cases of invasive breast cancer (IDC) will be diagnosed in women.

• Breast cancer mainly occurs in middle-aged and older women. The median age at

the time of breast cancer diagnosis is 62.

• About 43,250 women will die from breast cancer in 2022.[37]

Having the ability to accurately identifying and categorizing breast cancer subtypes

is an important clinical task. With construction of an automated method(s) this may

be used to save time and reduce error, again being one of many highlights on applying

machine learning algorithms. Identifying significant risk factors contributing to diseases

and other health conditions is a crucial breakthrough we eagerly anticipate. Through

dedicated effort, we aim to make meaningful contributions to this vital area of research.

The models under consideration span from simple logistic regression to kNN and SVM,

encompassing the application of our meta-learning model. This diverse approach holds the

potential to transform patient care, streamline administrative processes, and significantly

impact healthcare goals and needs, particularly in the diagnostics of diseases like Breast

cancer, Heart disease, and Lung cancer. This includes the task of developing new medical

procedures, as stated before the handling of patient data and records and along with the

treatment of chronic diseases.

As we strive to reduce diagnostic failure rates, which remain relatively high, the spec-

trum of medical AI applications encompasses diagnosis, disease screening, treatment, and

prognostication. The ultimate goal is to optimize patient care by improving efficiency and

enhancing areas such as imagery diagnosis, which serves as the inspiration for this research

topic.
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4.3.1 UCI Machine Learning Repository. Breast Cancer Wiscon-

sin (Diagnostic) Data set.

For some description of our Breast Cancer Wisconsin (Diagnostic) data set which falls in

the multivariate characteristics, with 569 number of instances and 32 attributes.

Attribute Information:

• ID number

• Diagnosis (M= malignant, B = benign)

Ten real-valued features are computed for each cell nucleus:

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness

• compactness

• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (”coastline approximation”-1)
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Prediction results of the Logistic Regression

Let’s assume that f is a method for finding medical diagnosis by using logistic regression

with some specific dataset [1]. Logistic regression has various parameter x. In presented ex-

ample only one parameter is used x = C, where C is an inverse of regularization strength.

The presented function was approximated using the meta-learning model implemented

through a neural network, as illustrated by the extrapolated green line in Fig. 4.6. Predic-

tion indicates that the values of the function f are increasing. In the next iteration bigger

values of x will be considered; for verification purposes exact values of the function f were

calculated (orange line) in the Fig.4.7). Next two iterations and related predictions are

shown below, results given by the following neural network values of medical diagnosis as

a function of parameter x are shown on figures 4.6 & 4.7.

Figure 4.6: Approximation and prediction of the results of the logistic regression
(iteration 1)

After every iteration the model is retrained and the accuracy of the prediction increases.

The following result is the 10-iterations on the Figure 4.8.

This suggests that the model employed a quadratic equation to estimate the associa-

tion between the variables. In this scenario, envision the data as naturally represented in
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Figure 4.7: Approximation and prediction of the results of the logistic regression
(iteration 2)

Figure 4.8: Approximation and prediction of the results of the logistic regression
(iteration 10)

a graph, with nodes representing data points and edges indicating relationships or connec-

tions. Utilizing this graph structure, a graph neural network can discern how data points

interact and influence one another. This led us to explore the amalgamation of polynomial
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regression with a graph neural network. One is essentially allowing the model to benefit

from both the polynomial features (which capture local interactions) and the global graph

structure (which captures broader dependencies). This fusion of techniques can lead to

more nuanced and accurate predictions.

Logistic regression, a prominent model in our study, it encompasses various parame-

ters denoted by x. In our specific example, we focused on a singular parameter, namely

x = C, where C represents the inverse of the regularization strength. The function we pre-

sented and approximated using a meta-learning model implemented through a graph neu-

ral network, and this process is exemplified by the extrapolation. Significantly, the model

demonstrated outstanding adaptability to graph neural networks (GNN), underscoring its

versatility in navigating intricate relationships within the data. Additionally, it leveraged

polynomial regression as a meta-learning model for interpreting the data structure.

4.3.2 Graph representation of learning model for logistic regres-

sion

To create a graph representation of logistic regression it is possible to use the following

Python code (file: ’dgl.py’).

\begin{footnotesize}

import network as nx

import matplotlib.pyplot as plt

G = nx.Graph()

G.add_node(’C’, pos=(0, 2))

G.add_node(’T’, pos=(1, 1))

G.add_node(’S’, pos=(2, 1))

G.add_node(’P’, pos=(3, 2))
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G.add_node(’I’, pos=(4, 1))

G.add_edge("C","T")

G.add_edge("T","S")

G.add_edge("S","P")

G.add_edge("P","I")

plt.title("Graph representation of logistic regression")

nx.draw(G, nx.get_node_attributes(G, ’pos’), with_labels=True)

plt.savefig(’lr-graph.png’)

A = nx.adjacency_matrix(G).todense()

print(A)

\end{footnotesize}

The final result is given in on the following picture 4.9.

Figure 4.9: Graph represntation of logistic regression

In the graph the following nodes were included:
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• C - quantitative variable, label ’C’

• tol - quantitative variable, label ’T’

• solver - cathegorical variable, label ’S’

• penalty - cathegorical variable, label ’P’

• intercept scaling - quantitative variable, label ’I’

Preseted graph has the following adjacency matrix.

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


(4.1)

In meta-lerning it is possible to use any parameter of the logistic regression.

• penalty‘l1’, ‘l2’, ‘elasticnet’, None, default=’l2’

• dualbool, default=False

• tolfloat, default=1e-4

• C float, default=1.0

• fit interceptbool, default=True

• intercept scalingfloat, default=1

• class weightdict or ‘balanced’, default=None

• random stateint, RandomState instance, default=None

• solver‘lbfgs’, ‘liblinear’, ‘newton-cg’, ‘newton-cholesky’, ‘sag’, ‘saga’, default=’lbfgs’

• max iterint, default=100
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• multi class‘auto’, ‘ovr’, ‘multinomial’, default=’auto’

• verboseint, default=0

• warm startbool, default=False

• n jobsint, default=None

• l1 ratiofloat, default=None

Code for prediction of medical diagnosis by using graph neural networks

import dgl

import torch

import torch.nn as nn

import torch.optim as optim

import numpy as np

import scipy.sparse as sp

import networkx as nx

fileData = open(’training-data-2.csv’, ’r’)

fileDataLineArray = fileData.readlines()

xInput = []

yInput = []

for line in fileDataLineArray:

lineArray = line.split(’,’)

number1Str = lineArray[0]

number2Str = lineArray[1]

number1Float = float(number1Str)

number2Float = float(number2Str)

xInput.append(number1Float)

yInput.append(number2Float)

fileData.close()
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# Create a set of graphs with features

num_graphs = len(xInput)

graph_list = []

numberOfFeatures = 1

for i in range(num_graphs):

#num_nodes = np.random.randint(5, 15)

num_nodes = 5

graph = dgl.graph(([0, 1, 2, 3, 4], [1, 2, 3, 4,0]))

graph.ndata[’features’] = torch.tensor([[xInput[i]], [1], [1], [1], [1]])

#graph.ndata[’features’] = torch.randn(num_nodes, numberOfFeatures) # 5-dimensional node features

print(graph.ndata[’features’])

graph_list.append(graph)

print(graph)

print(graph.ndata[’features’])

# Convert the graph to a NetworkX graph

nx_graph = graph.to_networkx()

# Get the adjacency matrix from the NetworkX graph

adjacency_matrix = nx.adjacency_matrix(nx_graph).todense()

print("Adjacency Matrix:")

print(adjacency_matrix)

# Create graph labels

#graph_labels = torch.randint(0, 2, (num_graphs,)) # Binary labels

#graph_labels = torch.tensor([1., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

graph_labels = torch.tensor(yInput)

print(’graph_labels’)

print(graph_labels)

# Define a Graph Neural Network (GNN) model for graph classification

class GNNGraphClassification(nn.Module):

def __init__(self, in_dim, hidden_dim, out_dim):
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super(GNNGraphClassification, self).__init__()

self.conv1 = dgl.nn.GraphConv(in_dim, hidden_dim)

self.conv2 = dgl.nn.GraphConv(hidden_dim, out_dim)

def forward(self, graph_list, features_list):

predictions = []

for g, features in zip(graph_list, features_list):

x = self.conv1(g, features)

x = torch.relu(x)

x = self.conv2(g, x)

g.ndata[’h’] = x

hg = dgl.sum_nodes(g, ’h’)

predictions.append(hg)

return torch.stack(predictions)

# Instantiate the GNN model

gnn_model = GNNGraphClassification(in_dim=numberOfFeatures, hidden_dim=10, out_dim=1) # 1-dimensional output for binary classification

# Define loss function and optimizer

#criterion = nn.BCEWithLogitsLoss() # Binary Cross-Entropy loss

criterion = nn.MSELoss()

optimizer = optim.Adam(gnn_model.parameters(), lr=0.01)

# Training loop

num_epochs = 500

for epoch in range(num_epochs):

optimizer.zero_grad()

predicted_labels = gnn_model(graph_list, [g.ndata[’features’] for g in graph_list])

predicted_labels = predicted_labels.view(-1) # Reshape to match expected shape

loss = criterion(predicted_labels, graph_labels.float())

loss.backward()

optimizer.step()

if (epoch + 1) \% 10 == 0:
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print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}")

# Make predictions on new graphs

new_graph = dgl.graph(([0, 1, 2, 3,4], [1, 2, 3, 4,0])) # Example new graph with 3 nodes

new_graph = dgl.add_self_loop(new_graph) # Add self-loops to the new graph

new_graph.ndata[’features’] = torch.tensor([[0.00020999999999999998], [1], [1], [1], [1]])

with torch.no_grad():

predicted_label = gnn_model([new_graph], [new_graph.ndata[’features’]])

print("Predicted Label for New Graph:", predicted_label)

Learning Curve of meta-learning model gnn

Figure 4.10: Learning curve for graph neural network

Prediction

In presented example computational graph related to logistic regression was represented

by the graph 4.10. Node C represents inverse of regularization strength. Training set DT
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of the graph neural network has the following structure

DT = {(graph1, label1), (graph2, label2), ..., (graphn, labeln)} (4.2)

Labels are equal to medical diagnosis.

Graph neural network can compute/predict value of medical diagnosis (labeli = diagnosisi)

for given computational process represented by the graphi

diagnosisp1 = labelp1 = GNN(graph1,W )

diagnosisp2 = labelp2 = GNN(graph2,W )

...

diagnosispn = labelpn = GNN(graphn,W )

Predicted labels labelp1, label
p
2, ..., label

p
n can be compared to labels from the data set

label1, label2, ..., labeln and appropriate Loss function can be constructed.

During the training process weight matrix W is computed based on the training set.

W ∗ = argmax
W

Loss(GNN,W,DT ) (4.3)

There are many options for the Loss function (cross-entropy, mean squared error, mean

absolute error, hinge-loss, etc.)

For given computational graph graphs and to train graph neural network with known

weight matrix W ∗ it is possible to calculate prediction diagnosiss.

diagnosiss = GNN(graphs,W
∗) (4.4)

Value diagnosiss can be re-applied in meta-learning.

In presented example for computational graph with value C = 0.000209999 the following

diagnosis was predicted 0.7035.

In presented example medical diagnosis was calculated by using logistic regression (data

set [1]). Computational graphs visually represent the sequence of operations in an algorithm
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or mathematical model. Each node in the graph signifies a distinct operation, and the edges

delineate the flow of data or computations. Subsequent predictions were made utilizing

these meta-learning representations where xInput[i] is a value of parameter C in logistic

regression. Table 4.1 showcases observation of the relationship between epochs and loss

performance (time optimization), which shows to be crucial in training machine learning

models. Initially, as the model learns patterns from the training data, the loss typically

decreases. However, there’s a risk of overfitting if the model becomes too specialized to the

training data. Monitoring loss over multiple epochs helps practitioners understand when

the model has reached a suitable level of generalization and can make accurate predictions

on new, unseen data; giving us a great implication for our meta-learning model.

Table 4.1: Epochs’ relation on Loss Performance for Meta-learning model

Epochs Loss

470/500 0.00038865587

480/500 0.00039655691

490/500 0.0003965569

500/500 0.0003998697

This procedure shown by used meta-learning, predicted label for new graph diagno-

sis([[0.6162]]), the actual predicted label of diagnosis was 0.72.51, once the model ran

through the entirely epoch cycles, we showcased improvement of loss function and higher

accuracy of medical diagnosis. The described procedure is a form of meta-learning, which

as perviously mentioned it involves training a model on a diverse set of tasks or datasets,

enabling it to quickly adapt and perform well on new, unseen tasks. In this case, the GNN

is meta-trained on various computational graphs, allowing it to generalize its learning to

different medical diagnoses. According to numerical results graph neural networks can be

successfully applied in prediction of values of medical diagnosis.
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4.3.3 Prediction of the results of the k-Nearest Neighbors (kNN)

Medical diagnosis (data set [1]) can be computed by the k-Nearest Neighbours method

(kNN). In this example, ′x′ signifies the number of neighbors, a pivotal parameter in the

k-Nearest Neighbors (kNN) method used for medical diagnosis. kNN relies on assessing

the similarity of cases in a dataset to generate predictions. In conjunction, we employed

polynomial regression as a meta-learning model—a potent technique adept at capturing

nuanced data relationships, particularly in scenarios where linear models may prove inad-

equate. The application of polynomial regression served as the most straightforward and

effective approach for implementing both KNN and the meta-learning model.[43]

By incorporating a graph neural network as a meta-learning model, we tap into the

inherent structure of medical data, leading to more precise and informed diagnoses. This

amalgamation of kNN, polynomial regression, and GNNs creates a robust tool for im-

proving medical diagnosis and treatment strategies. This comprehensive approach offers

personalized care rooted in the collective knowledge embedded in the medical graph.

Figure 4.11 showcases the outcomes of these predictions, offering a visual depiction of

how effectively the models forecasted medical diagnoses based on the selected parameters

and methodologies.

Figure 4.11: Approximation and prediction of the results of the kNN by polynomial
regression meta-learning model
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In the next example parameter x was equal to power parameter for the Minkowski metric

Fig.4.12 distance metrics for machine learning. The case where p = 1 is equivalent to the

Manhattan distance and the case where p = 2 is equivalent to the Euclidean distance.[43]

Figure 4.12: Approximation and prediction of the results of the kNN by using polynomial

kNN, with the Minkowski power parameter playing a pivotal role, exhibited intriguing

results when integrated into the meta-learning model alongside the base model. This seam-

less integration demonstrated a smooth transition, aligning well with polynomial regression

and extending into the domain of computational graphs, yielding noteworthy outcomes.

Following this approach, we extended the simulation to our graph neural network meta-

learning model. As illustrated in Figure 4.13, the learning curve depiction through our

base model, kNN, underscores its remarkable adaptability in learning new tasks through

our meta- learning model.

In the context of a computational graph with a specified value of n = 10, the k-nearest

neighbors model provided a diagnostic prediction of 0.9582. Our meta-learning model

involved training model on a variety of tasks (features), allowing it to learn how to learn

effectively. In the case of the computational graph and kNN model, integrating this meta-

learning component could mean refining the model’s ability to adapt and make accurate

predictions based on the specific characteristics and patterns present in different datasets

or scenarios. The meta-learning model (MtL) essentially captures higher-level knowledge
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Figure 4.13: Learning curve for graph neural network (base model - kNN)

from the base model, enabling more efficient learning and prediction in diverse situations.
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4.3.4 Prediction of the results of Support Vector Machine

As our study focuses on the critical impact of hyper-parameter values on the predictive

performance of machine learning algorithms. We move on to our third base model applied

to our meta-learning model. The importance of hyper-parameter tuning, while beneficial,

often incurs high computational costs, particularly on larger datasets, and may not con-

sistently outperform default values.[43] The research has proposed a recommender system

based on meta-learning specifically designed to determine optimal scenarios for using de-

fault values versus tuning hyper-parameters for Support Vector Machine base model on

new unseen datasets. The results demonstrate the system’s effectiveness in accurately pre-

dicting when hyper-parameter tuning significantly enhancing model performance. Notably,

SVMs are primarily influenced by four hyper-parameters: kernel function (k), its width

(γ) or polynomial degree (d), and the regularized constant(C). Leveraging Meta-learning

(MtL), the system proves capable of reducing the overall tuning cost without substantial

loss in predictive performance.

A search consists of:

• an estimator (regressor or classifier such as sklearn.svm.SVC());

• a parameter space;

• a method for searching or sampling candidates;

• a cross-validation scheme; and

• a score function.

The best parameters for using this model is (’C’: 1000, ’gamma’: 0.01, ’kernel’: ’rbf’).

accuracy.score

0.9473684210526315
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Figure 4.14: Prediction of diagnosis for higher order polynomials (SVM base model)

kernel max.score

linear 0.875

neuralnet 0.880

rbf 0.905

Table 4.2: best GridSearch parameters SVM model

Figure 4.15: Learning curve of meta-graph learning mode (base model: SVM)
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The results of medical diagnosis for Support Vector Machine (SVM) indicate that the

parameter influencing the outcomes is the degree of the polynomial kernel. Notably, the

highest diagnosis accuracy, reaching 0.988304, is achieved when the degree is set to 1.

The application of meta-learning in this context justifies this observation as the function

demonstrates a decreasing trend.

For SVM in a computational graph with a specified value of p = 10 (degree of the

polynomial kernel), the predicted diagnosis is 0.8142. This information suggests a potential

decrease in diagnosis accuracy compared to the optimal setting observed with a degree of

1. The influence of different polynomial degrees in SVM models highlights the significance

of hyper-parameter tuning in achieving optimal predictive performance through our meta-

learning model.

4.4 Results

In our exploration of medical diagnosis, we initially examined the performance of Support

Vector Machines (SVM), k-Nearest Neighbors (KNN), and logistic regression models. While

these models provided valuable insights, we recognized the potential for further optimiza-

tion and improvement. The present findings encompass the performance of models prior

to the implementation of meta-learning model. [24] [1] Table 4.3 showcases the exploration

on the impact (time optimization) of epochs on loss function performance.

Table 4.3: Comparative Performance Metrics Across Different Base Models

Test-Accuracy Loss

Logistic regression 0.8138 0.3419

K-nearest neighbors 0.7797 0.4107

Support vector machine 0.6998 0.4769

To enhance our predictive modeling capabilities, we integrated advanced techniques,
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including feature extraction, and applied our meta-learning models. Through the integra-

tion of feature extraction and meta-learning, our objective is to achieve superior results

in medical diagnosis compared to the initial models. The optimized predictive model re-

sults are presented in Table 4.4, showcasing the advancements made through our integrated

approach.

Table 4.4: Optimized Predictive models results.

Test-Accuracy Loss

Logistic regression 0.9415 0.03794

K-nearest neighbors 0.87076 0.20197

Support vector machine 0.8801 0.3183

In conclusion, the results observed in our study demonstrate considerable improvements

in the outcomes of predictive modeling. This advancement underscores the growing im-

portance of data-driven approaches in the healthcare domain, particularly in the context

of medical diagnosis. The enhanced performance highlights the potential and value that

sophisticated data analysis and modeling techniques bring to the forefront, contributing to

more effective and accurate healthcare decision-making processes. As we conclude Chap-

ter Five, we will summarize our findings and outline future avenues for exploration and

improvement.
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Chapter 5

Conclusions

Medical diagnosis, essentially a classification problem, can be represented as a computa-

tional graph using classification algorithms. Our investigation underscores a substantial

enhancement in medical diagnosis achieved through the innovative use of a pre-training,

meta-learning model approach. The demand for precise and reliable diagnostic outcomes

is paramount in improving patient care, treatment strategies, and overall healthcare out-

comes. In an era where technology continues to advance, the fusion of machine learning

methodologies with medical databases offers a transformative opportunity to elevate diag-

nostic accuracy to unprecedented levels. The significance of this multifaceted approach is

underscored by its potential to reshape the landscape of healthcare. From introducing in-

novative medical procedures to addressing the complexities of chronic disease management,

this approach strives to bring about positive transformations. As we confront the challenge

of high diagnostic failure rates, the integration of AI in healthcare not only aims to enhance

accuracy but also to establish a comprehensive framework that positively influences patient

outcomes. The ultimate aspiration is to create a healthcare environment that is not only

technologically advanced but also optimized for precision, efficiency, and improved patient

care. In figure 5.1 showcases the benefits of healthcare AI products across different services.

This dissertation has presented applications of neural networks and modern machine

learning methods, to the problem of prediction in customer credit card default classifica-

tion, and with 9 different countries financial stock market and SP500 properly forecasted.

With our summer research that consisted of imputation methods and finding the missing

values with the use of neural networks. These results contained some findings which are

counter-intuitive and should be investigated further. Our contribution involved a thorough
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Figure 5.1: Benefits of health-care artificial intelligence products.
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and careful demonstration of how a meta-learning model can be seamlessly integrated with

advanced machine learning algorithms. Through a precise and skillful mathematical and

statistical combination of these methods, we successfully realized our ultimate objective of

improving medical diagnosis. This integration allowed us to harness the strengths of both

meta-learning and advanced machine learning, resulting in a more robust and effective ap-

proach to medical diagnosis. It investigates a range of algorithms and advanced techniques

for approximating functions, with the goal of finding the best configurations. Specifically,

optimizing a function with n variables can be framed as optimizing a graph with n inputs

and 1 output value. Our current contribution emphasizes in the crucial task of accurately

identifying and categorizing breast cancer subtypes in a clinical setting. An automated

method can save time and reduce errors, showcasing the application of machine learning

algorithms (future plans). The investigation aims to contribute to identifying significant

risk factors for diseases, enhancing medical diagnosis. This diverse approach involves var-

ious machine learning algorithms, including logistic regression, kNN, and SVM, with the

integration of a meta-learning model. The significance of this approach extends to trans-

forming patient care, streamlining administrative processes, and impacting healthcare goals

on improving medical diagnosis. The incorporation of polynomial regression with a graph

neural network opens new possibilities for predicting properties and enhancing diagnostic

accuracy. Logistic regression, a key model, is explored with a focus on the regularization

strength parameter C. The meta-learning model demonstrates adaptability to graph neural

networks and leverages polynomial regression for interpreting data structure.

The study also delves into computational graphs, representing the sequence of opera-

tions in algorithms. Meta-learning representations are employed for predictions, and given

illustrations of the relationship between epochs and loss performance during training (time

optimization). Just as hyper-parameter tuning’s showcased critical impact on predictive

performance was discussed, and a recommender system based on meta-learning is proposed

for Support Vector Machine models. Results from SVM models show the influence of the

polynomial kernel degree on diagnosis accuracy. The meta-learning model helps reduce
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tuning costs without significant performance loss. The study concludes with noteworthy

improvements in predictive modeling outcomes, emphasizing the growing importance of

data-driven approaches in healthcare and contributing to more effective decision-making.

Future avenues for exploration and improvement are outlined.

5.1 Future plans

For future and currently exploring the idea of self creating an ”autonomous” mega-meta-

learning model, referring to a machine learning model that will have the capability of

operating with a significant degree of independence and automation in various stages of

the machine learning lifecycle. I have currently studied the autonomy is achieved through

the integration of automated processes and algorithms that enable the model to perform

tasks without continuous human intervention. Which is key when being applied specially

to health-care field, this giving medical experts the ability to be more hands on with other

high demanding medical issues that are in need of such human interaction. To briefly give

some key aspects of an autonomous ML model include:

• Automated Training: The model can automatically learn from data without explicit

programming. Automated machine learning (AutoML) tools are often used to opti-

mize algorithms, hyper-parameters, and feature selection.

• Feature Engineering: The model can automatically extract relevant features from raw

data, eliminating the need for manual feature engineering. This is particularly useful

in scenarios with large and complex datasets.

• Adaptability: Autonomous ML models can adapt to changing data distributions and

patterns over time, ensuring that they remain effective in dynamic environments.

• Model Deployment and Monitoring: These models can handle deployment to produc-

tion environments automatically and continuously monitor their performance, making

adjustments as needed.
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• Decision-Making: Some autonomous models are designed to make decisions and take

actions based on their predictions without external approval, especially in autonomous

systems like self-driving cars or automated trading platforms.

The goal of autonomous ML models is to reduce the need for manual intervention,

streamline the machine learning process, and improve the efficiency and effectiveness of

model development and deployment. AutoML tools and frameworks play a crucial role

in achieving autonomy by automating repetitive tasks and allowing data scientists and

engineers to focus on higher-level aspects of the machine learning pipeline. My future plans

are driven by my summer job experience in 2021 with the Office of Naval Intelligence (ONI).

Initially, I applied my expertise in machine learning and mathematics to contribute to this

government institute. The experience exposed me to an exceptionally diverse dataset,

serving as a catalyst for pursuing my Ph.D. and focusing on a project tailored to the

specific needs of the Navy branch.

The project aims to address challenges within the TAC-55 data science group, empha-

sizing the application of advanced mathematical and statistical techniques. The primary

goal is to innovate and enhance the group’s capabilities in predicting and classifying in-

formation with minimal human interaction. The project aligns with the critical need for

high-level analytics and automation in naval intelligence operations. Overall, this endeavor

represents a strategic contribution to advancing data science capabilities within the Navy.
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Chapter 6

Timeline

Table 6.1: Timeline

Timeline Task

Aug. – Dec.

2020

Investigate and analyze the effects of missing data with

Machine learning algorithms. Examine and explore the

Imputation methos (MICE, Ameila) for application to

large dataset (seldom data). Look into Machine learn-

ing algorithms along with imputation methods. Apply

methodologies to the missing Educational dataset and

analyze its best fit for classification information. Com-

pletion of methodologies missing data, machine learn-

ing. Acknowledgements: Statistical Science Group, Los

Alamos National Lab.
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Jan. – May 2021 Establish a Classification model via Classification and

Regression Tree (CART), a predictive algorithm used in

machine learning. Investigate the type of classification

algorithm for CART and implement to dataset on Food

and Housing Insecurity among college students enrolled

at a public Hispanic Serving Institution (HIS). Identify

groups in the data with desirable characteristics, analyz-

ing specific sets of variables that create a “path” lead-

ing to Food Insecurity (FI) and Housing Insecurity (HI)

among current students.

Aug. – Dec.

2021

Develop a machine learning process via neural network.

Utilization of Convolutional Neural Networks (CNN) for

automatically detecting important features. Applying

CNN to CT images with Keras Project for dataset on

image classification of brain tumor via CT scans. Inves-

tigate applications ofmachine learning techniques, neural

networks, self-supervised learning, clustering; for patients

with brain tumors and with pneumonia by imagine clas-

sification. Motivation is to optimize algorithm directly.
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Jan. – May 2022 Comprehensive review of currently used machine learn-

ing techniques for classification of medical data related

to datasets. Investigate (Neural networks, Logistic re-

gression, Random forest, Classification and Regression

Tree (CART), decision tree etc.). Identification of sig-

nificant parameters and algorithms which can be used

in optimal configurations. Tested various approaches for

finding optimal machine learning algorithm (evolutionary

programming, computational graph optimization etc.).

Jun. – Aug.

2022

Investigate the Invasive ductal carcinoma (IDC) breast

cancer in UCI Machine Learning Repository.

Breast Cancer Wisconsin (Diagnostic) Data set.

Apply logistic regression a significant machine learning

algorithm. Assign predictor variables to dataset (‘ra-

dius mean’, ‘perimeter mean’, ‘area mean’, ‘compact-

ness mean’ and ‘concave points mean’) with outcome

variable ‘diagnosis’.

Aug. – Dec.

2022

Submit dissertation proposal Aug. 30,2022. Ex-

pand logistic regression method, with addition of Multi-

classifiers. Integrate Deep Convolutional neural networks

and Random Forest Classifiers for classification of breast

cancer. Successfully presented at NMSU/UTEP 2022

Fall workshop. Narrowing machine learning algorithms

for optimization. Continue to algorithm for graph neural

network optimization method.
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Jan. – Mar.

2023

Applying classification models developed to new medical

diagnosis, datasets (lung cancer, brain tumors, heart dis-

ease etc..). Showcase results for Deep Convolutional neu-

ral networks and random forest classifiers. Compare

results with pervious breast cancer dataset. Record re-

sults on medical diagnosis and machine learning method-

ologies.

April – May 2023 Collect and revise recorded information and results.

Submit draft for paper publication ”Machine Learning

Methodologies with Applications to Medical Diagnosis”.

Jun.- July 2023 Finish paper and attend 2023 Hawaii University Interna-

tional Conferences Science, Technology and Engineering,

Mathematics and Education Prince Waikiki Resort, Hon-

olulu, Hawaii. -Start modeling our built in meta-learning

model to machine learning methods. -Start graph meta-

learning simulations.

Aug. – Oct.

2023

Application of optimization method proposed Meta-

learning. Collect results and summarize observations,

new title for defense: ”Integrating Machine Learning

and Optimization Methods for Medical Diagnosis”. -

Present Slides at the UTEP/NMSU 2023 Mathematical

and Computational Sciences Workshop. - Gather infor-

mation on self built meta-learning model. -Continue to

work on dissertation defense.

136



Nov. – Dec.

2023

Finish gathering results and writing for dissertation, con-

tinue to transfer information onto slides presentation.

Work on publishing new paper with current research ap-

proach of computational graphing and meta-learning. -

Defend dissertation. Future work: continue to improve

current built predictive model, ultimate goal is to extend

our current model to an ”autonomous” ML model.

137



References

[1] Diagnostic wisconsin breast cancer database. https://archive.ics.uci.edu/

dataset/17/breast+cancer+wisconsin+diagnostic.

[2] Math works, introducing machine learning.

[3] National cancer institute, 2023.

[4] C. Arlot and A. Celisse. A survey of cross-validation procedures for model selection.

2010.

[5] E. Barany, M.P. Beccar Varela, I. Florescu, and I. Sengupta. Detecting market crashes

by analysing longmemory effects using high-frequency data. Quantitative Finance,

12(4):623–634, 2012.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

[7] James Bergstra, Daniel Yamins, and David D. Cox. Practical hyperparameter op-

timization methods for machine learning. In Proceedings of the 24th International

Conference on Neural Information Processing Systems, pages 1203–1211, 2013.

[8] Joseph Berkson. Application of the logistic function to bio-assay. Journal of the

American Statistical Association, 39(227):357–365, 1944.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[10] A. Bohr and K. Memarzadeh. The rise of artificial intelligence in healthcare applica-

tions. Artificial Intelligence in Healthcare, 2020.

[11] S.V. Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained

equations in r. Journal of Statistical Software, 45(3), 2011.

138



[12] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised

learning algorithms. In Proceedings of the Twenty-third International Conference on

Machine Learning (ICML 2006), 2006.

[13] Kai Chen, Chen Liang, Jiaxin Wang, and Ce Zhang. Neural databases. arXiv preprint

arXiv:2010.06973, 2020.

[14] Ole Christensen and Khadija Laghrida Christensen. Approximation Theory: From

Taylor Polynomials to Wavelets. Applied and Numerical Harmonic Analysis.
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