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Abstract 

 
Ecosystems are responding to a variety of human-induced, interlinked stressors that have 

emerged from changing climate, alteration to the global water cycle, sea-level rise, and land use 

and land cover change, among others. Quantifying these changes and their associated impacts on 

ecosystems requires a huge amount of long-term data. Due to advances in data collection 

techniques, such as remote sensing platforms, environmental sensors, synthesized datasets, and 

various software technologies, the volume and variety of long-term ecological data being 

collected has tremendously increased. Although there are several complex models and analyses 

that are increasingly parametrized with data from such sensors, there still exists a huge gap in 

managing, analyzing, visualizing, integrating, and sharing ecological data. The overarching goal 

of this dissertation is to develop ecoinformatics tools that will contribute to the advancement of 

global change science through: I) mitigating the challenges of new infrastructures for Big Data 

archiving, management and sharing, and analysis by developing a flexible system that supports 

multiple and novel data usage and visualization and II) attempt to utilize multi-sensor cross-

correlation to detect rare soil moisture events in temporal data using some Machine Learning and 

Deep Learning (DL) models. To actualize the first objective, we developed web–based analytic 

tools capable of integrating spectral reflectance data from multiple instruments in the NASA 

Arctic-Boreal Vulnerability Experiment (ABoVE) study region using an open-source software – 

R shiny. R-HyperSpectral will help to dynamically view, interact, and discover optical properties 

of boreal and tundra plant communities. We also developed a multi-data fusion tool called 

rDataFusion, which is capable of aggregating heterogeneous data sets collected from a range of 

automated and semi-automated sensors and manual observations over a decade-long period. 

rDataFusion was developed using R shiny. Lastly, to achieve the second objective, we deployed 

several Machine and Deep Leaning techniques for optimal rare soil moisture events detection in 

the Chihuahuan Desert, New Mexico. Specifically, the machine and deep learning techniques 

used for this study include both classification and regression methods, including a Decision Tree 

Classifier (DTC), Logistic Regression Classifier (LR), Random Forest Regression (RF), and the 

Long Short-Term Memory (LSTM) method of Artificial Neural Network (ANN). Of all these 

methods used, the DTC performed the best, with prediction accuracy of 88.8%, closely followed 

by LSTM model with 88%. The LR recorded a prediction accuracy of approximately 80%. 
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Lastly, through the tools we developed, data will be available for ecological and environmental 

science researchers to analyze and further understand ecosystem changes over multiple temporal 

scales and levels of biological organization and interaction. Furthermore, the analysis and 

prediction of rare soil moisture events in the dryland ecosystem unveils a pathway to 

understanding soil moisture events and the key drivers in drylands. 
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Chapter 1: Introduction 

1.1  Background and Rationale 

 

The rapid development of earth-observation systems and other platforms such as high-

performance computing have unveiled the vulnerable state of the biosphere being at a critical 

tipping point in terms of the preservation of biodiversity and ecosystem services (Barnosky et al., 

2012). The wide range of habitats found in different ecosystems are under a looming threat from 

a variety of human-induced, interlinking climate stressors emerging from a changing climate, 

alteration to the global water cycle, sea-level rise, and loss of ice-dependent organisms due to the 

impacts of climate change on sea-ice extents among others (Liu et al., 2105; Baird et al., 2015).  

However, discovering the changes in ecosystem functionalities and associated impacts requires 

huge amounts of data. Consequently, the volume and variety of data available for analysis 

continue to increase at a rapid pace because of increased availability of data from long-term 

ecological research, remote-sensing platforms, environmental sensors, synthesized datasets, and 

various software technologies (Porter, et al., 2009 & Hampton, et al 2017). The environmental 

science and ecological research communities are thus faced with the prospect of pursuing 

multidisciplinary scientific research across multiple scales, necessitating the need for synthetic 

research that can address critical environmental, ecological, data management, accessibility, and 

data fusion problems (Farley, et al., 2018, LaDeau, et al., 2017).  

The growth of data in all these identified dimensions challenges traditional approaches to data 

management and analysis (Peters, et al., 2014; Laney, 2013). Methods that work well at small 

scales such as sharing spreadsheets by email, may not scale up. According to Williams et al., 

2018; Dietze, 2017; Lynch, 2008 and Schnase et al., 2017, other notable challenges include 

complex relationships among extremely varied data sets that entail sophisticated data models, 

computationally intensive macroscale ecological forecasting, and the need for flexible system 

that support multiple and novel data use.  

These identified challenges have motivated the research community to rapidly learn and 

implement concepts, techniques and software analytical tools needed to act on this new era of 

‘big data’ and data intensive research. Big Data is defined by the first framework developed by 

the National Institute of Standards as data that either exceeds the capacity or capability of current 
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or conventional methods and systems (Farley et al., 2018). Because of this rapid rise in the 

availability of enormous amounts of data that expand both the temporal and spatial scale of 

observation, it becomes exigent to know the needs and expectations of ecological and 

environmental science researchers in the development of software technological tools for 

ecological and environmental data management, analysis, visualization, and sharing.  

Furthermore, there is a dire need among the ecological and environmental science research 

communities for software tools that aid data storage, management, integration, fusing of data 

from different research labs, and accommodating different instrumentation through spectral band 

interpolation, Additionally, a software tool that is capable of visualizing diverse streams of data 

and providing a standard set of quality control and assurance across a given network is required 

for gap filling and facilitating intra-site data integration and spatial comparison (Laney, 2013).  

It should also be noted that, due to these advances in data collection techniques, large (big) high 

resolution data sets with complex relationships have been produced across multiple spatial and 

temporal scales as mentioned earlier. Without a doubt, Machine Learning (ML) approaches are 

increasingly being used by researchers to model these complex relationships to detect anomalous 

behavior exhibited by these large data sets (Willcock, et al., 2018 & Olden et al, 2008). The 

strength and potential of ML has been demonstrated in the areas of precision agriculture to detect 

diseases, weeds, and pests (Hruska, et al., 2018), climate and weather applications such as 

automated warnings and notifying members of society of approaching weather extremes 

(Huntingford, et al., 2018) and real-time irrigation scheduling for sustainable and efficient water 

use for irrigated agriculture and healthy plant growth (Adeyemi, et al., 2018). While new 

solutions are emerging to these challenges, both within ecology and other disciplines; Centers 

like the National Center for Ecological Analysis and Synthesis (NCEAS) and National Socio-

Environmental Synthesis center (SESYNC) and others have allowed for data sharing and 

synthesis (Hampton and Parker, 2011; Baron et al., 2017). There is a need for more 

ecoinformatics tools that will undoubtedly facilitate optimal use of data and ensure data sharing 

among wider user groups.  

This dissertation will help address some of the data challenges mentioned above, with the 

overarching goal of developing ecoinformatics tools that will contribute to the advancement of 

global change science through; I) mitigating the challenges of new infrastructures for Big Data 
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archiving, management and sharing, and analysis by developing a flexible system that supports 

multiple and novel data usage and visualization and II) understanding complex relationships 

among variables in a data set. To achieve this goal, my objectives are to:  

I) Develop tools that will aid synthesis, analysis and discovery of spectral data collected 

from multiple sources, labs, and funding groups to enhance data reuse and availability 

to wider user group (Objective 1).  

II) Addressing challenges experienced by lab groups that collect multiple streams of data 

(climate, ecological, sensor, human observations/measurements) at one or several 

networked sites. To address what has been identified as a critical need in such a 

community (Laney et al. 2015), a new data fusion, quality checking, and visualization 

tool will be developed. This will hasten recognition that sensors are running as 

desired, ensure quality assurance and quality control (QA/QC), identify needs for and 

apply gap-filling or gap-fill data (Objective 2). 

III) Gain information about soil moisture anomalies or dynamics and how to detect them 

in the dryland ecosystem to better understand small and large-scale drought patterns 

(Objective 3).  

These objectives and associated research questions described below will be answered in the three 

data chapters. 

● Can we develop a tool that has the capability to calculate various or multiple spectral 

indices that are proxies to critical ecosystem properties and processes? (Chapter 2) 

● How can we develop or create a workflow or template for project-specific multi-data 

fusion? (Chapter 3) 

● Can we provide a standard set of quality control and assurance across the network, 

thereby facilitating site intercomparison and transfer lessons learned at one spot to 

another? (Chapter 3) 

● What are rare events and why are they important? (Chapter 4) 

● Why use ML in rare event detection? (Chapter 4) 

● What processes and mechanisms control soil moisture? (Chapter 4) 

● Can we improve our confidence or understanding of rare or extreme events by integrating 

data from multiple information sources to understand events that might be difficult to 
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measure directly, and given these inferential data sources, place a confidence interval 

around the probability that event has occurred? (Chapter 4) 

1.2 Project description (Study Area) 

The System Ecology Lab (SEL) located at The University of Texas at El Paso (UTEP) has been 

conducting ecological research for about 15 years at sites within the Alaskan Arctic and the 

Chihuahuan Desert. Researchers within the lab collect huge amounts of environmental and 

remote sensing data including hyperspectral reflectance data and other kinds of ecological data, 

with the purpose of understanding the biophysical factors controlling land-atmosphere exchange 

of carbon, water, and energy and how these factors contribute to global change. Five of the SEL 

sites (Utqiagvik (previously, Barrow), Atqasuk, Toolik Lake, Ivotuk, and Imnaviat Creek) will 

serve as reference sites for the development of R-HyperSpectral (Chapter 2), while the data from 

Jornada Experimental Range in southern New Mexico will serve as a case study site for the 

development of rDataFusion and to improve the detection of soil moisture dynamics (Chapter 3 

& 4), respectively. The detailed description of these locations is presented in the various 

chapters. 

1.3 Structure of the dissertation 

This dissertation comprises a total of five chapters. Chapters 2-4 are data chapters that highlight 

the research conducted that make up this work and will be submitted for publication. Chapters 2 

& 3 describe novel web-based ecological data management and visualization tools that look to 

help address the need of the ecological community in bringing to bear tools that are easy to use 

and highly accessible (Objective 1&2). Chapter 2 describes an open-source software tool that is 

designed to tackle the challenges of rapidly changing Arctic landscape, detailed field 

measurements of vegetation, particularly, hyperspectral reflectance measurement. The 

complexity of hyperspectral reflectance data contributes to the difficulty in managing, analyzing, 

visualizing, and sharing, yet few of these tools have been developed and those that have, have 

included a limited scope relative to the needs of the research that has utilized these tools. Chapter 

2 presents a new tool that attempts to remedy this situation and allows users to view the 

hyperspectral reflectance scans and explore common spectral indices at multiple temporal scales. 

Chapter 3 describes a multi-data fusion and data integration tool that aggregates heterogeneous 

data sets collected from a range of automated and semi-automated sensors and manual 
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observations over a decade-long period. This chapter provides a tool that can help solve an 

integral problem that ecologists face in limited availability of custom analytic tool that aids 

researchers with improved capacities for aggregating different streams of data from a single 

intensive site by providing an open-source multi-data fusion tool that facilitates data 

management, sharing, and analysis. Chapter 4 describes a Machine learning analysis that can 

assist in gaining information about soil moisture anomalies or dynamics and how to detect them 

in the dryland ecosystem to better understand small and large-scale drought patterns (Objective 

3). Chapter 5 summarizes the works in Chapters 2-4 and discusses how each of these chapters 

contributes to our further understanding of global change science. 
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Chapter 2: R-HyperSpectral: An Interactive Tool for the Discovery and Analysis of Near 

Surface Hyperspectral Reflectance Data Acquired through the NASA ABoVE Campaign 

Abstract 

Changes in climate variability over the past few decades have exacerbated many Arctic 

ecosystem changes that includes but is not limited to an increase in air temperature, sea ice loss, 

increased rates of coastal erosion, shifts in snow cover, permafrost thaw and degradation, species 

shifts, and land cover change. To better characterize and understand these changing northern 

ecosystems, NASA established the Arctic-Boreal Vulnerability Experiment (ABoVE) program to 

investigate links between changing land surface conditions and the vulnerability and resilience of 

the Arctic and Boreal ecosystems. To monitor changing Artic landscapes, detailed field 

measurements of near surface vegetation optical properties along with corresponding airborne 

and satellite remote sensing observations, particularly, hyperspectral reflectance measurements 

have been widely used by NASA investigators. However, due to the size and complexity of data 

produced by such approaches, managing, analyzing, data sharing, and visualization has posed a 

great challenge for most of the ABoVE projects. Here, we present R-HyperSpectral, a web-based 

discovery and analytic tool capable of integrating spectral reflectance data from multiple 

instruments using open-source software – R shiny. R-HyperSpectral has been designed with the 

intent of permitting users to dynamically view, interact, and discover the optical properties of 

boreal and tundra plant communities. Users can view the hyperspectral reflectance scans and 

explore common spectral indices over multiple temporal scales to aid species-landscape 

characterization, ecological scaling, and change detection. 

2.1 Introduction 

Arctic ecosystems encompass a rich dynamic of plant and animal species with their vegetation 

covering a major portion of the earth’s surface (Atkinson & Treitz, 2012). Arctic ecosystems are 

known for low soil temperatures, permafrost dominated landscapes, and a short growing season, 

with limited vegetation productivity (Langer, et al., 2023). They are generally considered to 

show sensitivity to disturbance (Reynolds & Tenhunen, 1996). These disturbances could lead to 

a change in vegetation caused by some external factors such as lightning induced fires, oil 

exploration, and climate change (Stow, et al., 2003, Foster, et al., 2022, Langer, et al., 2023 & 

IPCC, 2019). 
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Changes to Arctic ecosystems have been previously observed at plot to satellite scales using 

metrics such as vegetation phenology, vegetation biomass and cover, and shifts in species 

composition (IPCC, 2007 & 2019, Davidson, et al., 2016, Bjorkman, et al., 2018 & Myer-Smith, 

et al., 2020). Satellite remote sensing offers the possibilities to provide quality data for the 

assessment and monitoring of the patterns of vegetation that can be used to model or predict 

carbon fluxes, vegetation types, soil organic matter, soil moisture and nitrogen content, surface 

temperature, micro and macro topography, and thaw depth in the Arctic (Shaver, et.al., 2007, 

Davidson, et al, 2016). Furthermore, satellites can cover large areas at higher temporal frequency 

compared to human surveys. Remote sensing in the arctic is, however, subject to challenges, 

including satellite orbits that enable coverage at high northern latitudes, high spatial 

heterogeneity of landscape units, persistent cloud cover, terrain effects, low sun angles, and lack 

of standard band definitions among others (Stow, et al., 2003 & Gamon, et al., 2013).  

Some studies have shown that repeat high resolution imagery from unoccupied aerial vehicles 

and near-surface sampling at plot to landscape scales can help overcome and/or improve 

understanding of satellite derived products (Gamon, et al., 2013 & Goswami, et al., 2011). Near-

surface hyperspectral remote sensing studies can also help to understand fundamental ecosystem 

properties such as net ecosystem exchange of carbon fluxes and other biophysical factors 

(Boelman, et. al., 2003, Huemmrich, et al., 2013, and Zang, et al., 2013). The demand for high 

spatial and spectral resolution reflectance data is driving innovations in instrumentation and 

methodologies to process and analyze these data (Hilker, et al., 2010, Laney, 2013 & Wulder, et 

al., 2022).  

Key challenges to the advancement of near-surface hyperspectral remote sensing of ecosystems 

include but are not limited to capacities to discover and access data, conduct quality checking 

and assurance to ensure clean and accurate data, manage and visualize data, among others 

(Gamon, et al., 2013). Additionally, approaches by different research groups appear to lack 

consistency, which likely limits the adoption of transcending solutions across ecosystems. To 

better work with very large, complex data sets, (big data) researchers may benefit from free, 

open-source tools that perform basic analysis, visualize data, and analyze workflow processes 

(Granell, et al., 2010, Hampton, et al., 2017, La Deau, et al., 2016, McCord, et al., 2021). 

Recently, there has been several efforts to develop and share spectral libraries using open-source 
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technologies to enhance data archival, visualization, and accessibility to a wider-user remote 

sensing community. This includes the Spectral Workbench (https://spectralworkbench.org), 

created and hosted by the not-for-profit Public Lab. Spectral Workbench is an open-source, web-

based application, developed for the purpose of collecting, archiving, sharing, and analyzing 

spectral data (Padalia, et al., 2017). Also in this group is the Cornell Spectrum Imager (CSI) 

(Hovden, et al., 2013), which is a hyperspectral imaging software and a universal data analysis 

tool developed to extract hyperspectral signatures (Hovden, et al., 2013). There is also the United 

States Geological Survey (USGS) High Resolution Spectral Library that contains reflectance 

spectra, samples of minerals, rocks, plants, vegetation communities, micro-organisms, and man-

made materials (https://www.usgs.gov/centers/gggsc/science/usgs-high-resolution-spectral-

library). Others include ASTER, Spectral Library hosted by the Jet Propulsion Laboratory, is a 

library of both natural and man-made materials with over 2400 spectra (Baldridge, et al., 2008), 

the spectrum database SPECCHIO provides ready access to modelled data, spectral data, and 

existing spectral libraries (https://www.specchio.ch) (Bojinski, et al., 2003), among others. 

While these existing spectral libraries are an immediate solution to improving capacities to 

access and utilize spectral data, most appear to have been developed with proprietary solutions 

that lack a user-friendly web interface and require local installation, which can limit data 

integration, discovery, analyses, and sharing spectral data and solutions to a wider-user group. It 

is also important to note that commercial solutions for maintaining spectral databases do exist 

(e.g. the USGS Spectral Library), but they are expensive, and/or are hard to update and apply to 

crowd-sourced data, and generally, do not encourage community-driven innovation and 

customization, which is known for catalyzing innovation in science and engineering (Laney, et 

al., 2013). 

Importantly, none of the extant spectral libraries are uniquely dedicated to Arctic spectral data. 

These glaring limitations spurred us to develop R-HyperSpectral; a web-enabled, open-source 

multi-user collaborative tool for hyperspectral data with a focus on the Arctic. R-HyperSpectral 

accommodates spectral data from different instruments and can be used for visualizing, 

analyzing, and displaying metadata information. With a web-enabled application like R-

HyperSpectral, our goal was to optimize access, discovery and use of spectral data from the 

Arctic by a wide-ranging remote sensing user community. 

https://spectralworkbench/
https://www.specchio.ch/
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If spectral libraries that are modifiable, extensible, and have a full set of analytical and 

visualization tools are made available in a library common to ecologists, then data analysis may 

become more standardized and enhanced (Mineter, et al., 2003, Laney, et al., 2015). Instead of 

considering a new spectral library within the bounds of immediate research needs, R-

HyperSpectral software which is currently connected via an API – Application Programming 

Interface (a set of functions and procedures allowing the creation of applications that access the 

features or data of an operating system, application, or other service) to EcoSIS (Ecological 

Spectral Information System), a useful tool for finding spectral data (https://ecosis.org/), is an 

ideal software to enhance Hyperspectral data analysis and visualization. This will help to scale 

the application to allow for data from other researchers within the ABoVE region and beyond. 

The overall goal of this paper is to develop a custom and shareable analytic and open-source 

multi-user collaborative tool for hyperspectral data with an initial focus on Arctic terrestrial and 

aquatic ecosystems. This application coined R-HyperSpectral, which will aid researchers 

collecting and sharing similar data sets, was built using a package in R called shiny. The rest of 

the paper is organized as follows: Section 2 describes the materials and methods. Section 3 

presents our results. Discussions and the conclusion are given in Sections 4 and 5, respectively. 

2.2 Materials and methods 

2.2.1 Study Area 

The System Ecology Lab (SEL) located at The University of Texas at El Paso (UTEP) has been 

conducting ecological research in the Alaskan Arctic for more than 20 years. Researchers within 

the lab collect a large volume and variety of environmental and remote sensing data including 

hyperspectral reflectance data to understand how biophysical factors control land-atmosphere 

exchange of carbon, water, and energy. SEL has several research sites in the Arctic, but for the 

purpose of this paper and developing R-HyperSpectral using SEL data collected for the 

International Tundra Experiment (ITEX) and the NASA ABoVE (Arctic Boreal Vulnerability 

Experiment) campaign as a case study, data was selected from five key locations that are 

research hotspots in Northern Alaska. These locations were a contributor to the NASA-ABoVE 

program saddled with multi-scale data collection, study of environmental change and its 

implications for socio-ecological system, gaining better understanding of the vulnerability of the 

Arctic and Boreal ecosystems to environmental change in western North-America, and providing 

https://ecosis.org/
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the scientific basis for informed decision making to guide societal responses at local to 

international levels (https://above.nasa.gov/about.html?). These localities include sites near 

Utqiaġvik (previously, Barrow), Atqasuk, Toolik Lake, Ivotuk, and Imnaviat Creek), which are 

described below. 

2.2.2 SEL- Utqiaġvik, Atqasuk, Toolik lake, Imnaviat Creek, and Ivotuk 

The SEL research sites located on the North Slope of Alaska cover a longitudinal gradient from 

high Arctic Coastal Plain tundra to low Arctic foothill tundra (Walker, et al., 2003). Except for 

Ivotuk, the primary sampling sites are divided into transects located within 1km2 Arctic System 

Science Program (ARCSS) long-term monitoring grids that are adjacent to sites associated with 

the International Tundra Experiment (ITEX) (May et al., 2017). At Ivotuk, a remote site near the 

Brooks Range, sites are visited irregularly and there are no permanent ITEX sites. Sampling 

transects at each of the five locations are 50 m in length and span local moisture gradient and 

vegetation habitat types (Figure 1). Utqiaġvik (Barrow) (71°18’N, 156°40’W; 7 m above sea 

level (a.s.l.) experiences a maritime high Arctic climate due to its proximity to the Arctic Ocean. 

Utqiaġvik vegetation types range from dry heath to wet meadow, sedge-dominated tundra with a 

climate that is characterized by long, cold winters and short, cool summers during which the 

temperature can fall below 0°C on any given day (Oberbauer et al., 2007). Summers are 

generally cloudy, cool, wet, and windy (Brown et al., 1980; Oberbauer et al., 2007). The snow-

free period is variable, but generally begins in early June and continues until early September. It 

is during this snow-free period that most of the data for this research is collected. The Atqasuk 

(70°29’N, 157°25’W, 21m a.s.l.) transect site; experiences a continental climate and is located 

approximately 100 km south of Utqiaġvik. The transect spans plant habitat types ranging from 

dry heath, moist acidic tussock, to wet meadow sedge tundra. Compared to Utqiaġvik, low 

clouds and fog typically dissipate by early afternoon in Atqasuk (Oberbauer et al., 2007). 

Atqasuk has long, cold winters and short, moderate summers. The summer temperature can fall 

below zero degree centigrade on any given day with daily maximums that may exceed 20 

degrees centigrade (Oberbauer et al. 2007).  

The Toolik lake site (68°37’N, 149°36’W, 736m a.s.l) covers dry heath to deciduous shrub-

dominated tundra, to moist acidic tussock tundra and is located in the foothills of the Brooks 

Range. The climatic condition of Toolik lake is continental arctic with cold winters and 

https://above.nasa.gov/about.html
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relatively warm summers (Chapin and Shaver, 1985; Oberbauer et al., 2007). There is a highly 

variable snow period, with snowmelt occurring between mid-May to early June. Fall snow 

initiation is also highly variable, starting as early to mid-September or as late as December. It is 

also worth noting that snow can fall anytime in the summer. Imnaviat Creek (68°37’W, 

149°18’W, 927 m a.s.l.) is located close to Toolik lake but is almost 200 m higher in elevation 

and spans plant habitat types ranging from dry heath to moist acidic tussock, to wet acidic 

tundra. Ivotuk, on the other hand, is part of the western Alaskan transect that starts in the north at 

Utqiaġvik and goes south through Atqasuk and Oumalik (Walker, et al., 2003; Bratsch et al., 

2016). It is dominated by deciduous shrubs (Walker, et al., 2003). 

 

Figure 2.1: Map of the key five study sites - Barrow, Atqasuk, Imnaviat Creek, Toolik 

Lake, and Ivotuk. 
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2.2.3 Data Collection (spectral measurements) 

Spectral reflectance measurements were made using two different instruments in the snow-free 

summer months (June-September) during 2010-2019. The instruments include a SVC HR-1024i 

and a Dual Channel Unispec, PP Systems Amesbury MA, with spectral wavelength ranging from 

300-2500nm and 300-1100nm, respectively. Most measurements were made using the Unispec 

instrument. The SVC instrument was used in 2017 only. These measurements were made at each 

meter along a 50-meter transect running east to west across the landscape capturing a diverse 

range of plant communities (Gamon et al., 2013). It is also important to note that the in situ data 

were collected using fiber optics pointed with a Nadir attitude at targets of interest and calibrated 

using a 99% reflective Labsphere® Spectralon® target panel (http://www.labsphere.com) as a 

reference, to account for changing light conditions during sampling. Spectral reflectance was 

calculated by dividing the surface radiance against the irradiance using the signal from the 

reflective Labsphere® above as standard for calibration. 

Since the test data for this application is from two different measurement instruments and 

differing wavelengths, we used linear interpolation with an increment of 1 to interpolate the 

wavelengths of the two instruments. The wavelength for the data collected using the SVC 

instrument ranged from 338.1nm to 2516.3nm while that collected using Unispec ranged from 

303nm to 1053nm. The wavelength range after interpolation was 350nm to 1900nm. The 

maximum value of the wavelength was reduced to 1900nm because objects found after that 

wavelength were mostly water and ice and are insignificant for the purpose of this project. 

2.2.4 Why R-shiny 

Owing to the rise of automated data gathering and collection tools, data size and complexity of 

analysis have placed a limitation between research disciplines and the required data analysis 

(Kasprzak, et al., archive & Donoho, 2017). A data analytics software tool that utilizes common 

task frameworks and can help interpret, quantify, and possibly close methodological variations 

across disciplines is highly needed (Dondo, 2017). Following the review of data analytics 

software tools, we discovered that data analytics software tools such as Minitab (Arend, 2010), 

MATLAB (Moler & MathWorks, 2012), GenStat (Payne, et al., 2007), and SPSS (Landau & 

Everitt, 2004), have attempted to proffer solution to this problem by creating a more user-

friendly interfaces that either make coding easier to learn, or use drop down menus and radio 

button selections to bypass the command lines ((Kasprzak, et al., archive). These mentioned 

http://www.labsphere.com/
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analytical software have their limitations such as non-publication ready graphics, non-intuitive 

drop-down menus, restrictive interfacing with other software, pricing – including the cost of 

licensing the proprietary software. Others include the difficulties encountered by users when they 

attempt to run codes originating from the software on their platform (Kasprzak, et al., archive), 

among others. 

R programming language have grown to become one of the most popular programming 

languages for statistics, environmental, and biological data analytics with over 14,000 free 

packages designed to address varying range of data analytics issues (Kasprzak, et al., archive). 

One of these packages is shiny. Shiny provides a framework for creating web-based interactive 

applications (Ramalho & Segundo, 2020). It can generalize R code to all levels of users, by 

simplifying the use of complex methodologies for people of different specialties, at the level of 

proficiency appropriate for the end users (Ramalho & Segundo, 2020). Shiny appears to have 

better graphics, and customizable visualization capacities that allows users to dynamically 

change visualizations by adjusting parameters in some controlled variables using buttons, 

selection list or by direct clicks on the graphs (Ramalho & Segundo, 2020). Since R shiny web 

application is free and open source, it eliminates the burden of purchasing proprietary software 

which can be inflexible and expensive and often takes resources away from research (LaZerte et 

al., 2017). Shiny applications can easily be interfaced with other software through API, as well 

as easy code adaptation (LaZerte et al., 2017).  

The above important features of shiny and the flexibility of use, formed our decision in adopting 

shiny to build and develop R-HyperSpectral web application. The design of R-HyperSpectral 

utilized agile development approaches, including good architecture that allows the application 

logic to be broken down into smaller, independent parts, that are easier to maintain and verify. 

Also, included are testing the code, validating the data and app state, scaling, and performance. 

These are done to ensure quality assurance, validate the logic and the source code, including the 

test data, to minimize data quality issues, and the scalability and overall performance of the 

application. R-HyperSpectral drew functionality from similar applications like rHyperSpec 

(Laney, 2013), and followed best practices for shiny application development (Kasprzak, et al., 

archive).  
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The input data for R-HyperSpectral is currently available at EcoSIS, a useful tool for finding 

spectral data. There are currently at least 244, 966 spectral data at EcoSIS, contributed by over 

five organizations, including System Ecology Lab (SEL) with over 8,000 Spectra data 

contributions. The SEL spectra data serves as test case studies for the application and can be 

extended to data from other organizations in the future. During the development of R-

HyperSpectral, we focused on key issues like usability, functionality, and users’ perspective. 

These are based on feedback from presentations at lab meetings by peers, one on one with my 

research advisor and professors, and feedback from conferences. The plan is to launch it at scale 

as shiny apps are commonly run using multiple processes and servers.  

2.2.5. Overview of R-HyperSpectral 

 R-HyperSpectral was built with R version 4.04, released in 2021 using the shiny package 

developed by RStudio, Inc. (http://www.rstudio.com/shiny/), which was first released in 

November of 2012. It aids in turning an analysis into an interactive web application without the 

knowledge of CSS, HTML, or JavaScript (https://www.rstudio.com/products/shiny/). Shiny is an 

R wrapper for JavaScript – an interpreted programming language. The implementation of 

JavaScript in web browsers aids in controlling the browser and its content, and in turn allows for 

interactivity with the user of the web browser (Laney, et al., 2013). R-HyperSpectral contains 

more than one thousand three hundred lines of code (>1300). Shiny web app is made up of two 

major parts, the User Interface (ui.R) and the server part (server.R) 

(https://www.rstudio.com/products/shiny/). The ui.R is made up of the user interface code. It also 

controls the loading of different libraries, for example, the following libraries are loaded on the 

background when R-HyperSpectral starts. They include: shinydashboard, shinycssloaders, 

lubridate, reshape2, plyr, readxl, highcharter, ggplot2, among others. The server (server.R) on 

the other hand contains all functions required for data selection, metadata, table of calculated 

indices, data visualization, and provide functionality behind user interface controls. The codes 

for the ui.R and server.R can run on personal computers or on servers. Figure 2.2 below shows 

the flow diagram or visual map of R-HyperSpectral. 

http://www.rstudio.com/shiny/
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Figure 2.2: Flow chart or visual map of R-HyperSpectral 

2.3 Results 

2.3.1. R-HyperSpectral detailed Operation 

When R-HyperSpectral is run, it opens on a web browser showing the Introduction Page that 

briefly gives users a general overview of the application, including its capabilities, limitations, 

data source description, system features, and how end users can interact with it. The Data 

selection tab allows users to select data based on the choice of instruments, locations, year, Day 

of the year (DOY), and/or site. Once the selection is complete, users are prompted to apply the 

filters they have selected, and a data table will be displayed. It is also possible to download the 

selected data at this point. Note that the data is connected to the application via an API from the 

EcoSiS website where hyperspectral reflectance data from System Ecology Lab (SEL) used in 

this study are archived and are publicly available.  

R-HyperSpectral currently maps over 8,000 spectra spanning nearly eighteen observation sites 

across the ABoVE domain pertaining to multiple tundra vegetation species and communities. All 

these observations can be processed and analyzed within 7 minutes using R-HyperSpectral. This 

makes R-HyperSpectral a game changer as it presents a unique opportunity to the community as 
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a capable discovery tool for enhanced spectral analysis. It is important to highlight that this tool 

is not a replacement for desktop analysis using some sophisticated tools and approaches. R-

HyperSpectral was built so that it can be scaled to accommodate more instruments, satellite 

sensors and platforms, allow for data from other regions other than the Arctic. This will require a 

slight modification of the underlying codes in an agile or version control environment like 

GitHub where the codes are currently housed (https://github.com/SELDevTeam/R-

HyperSpectral). Figure 2.3 below shows a screen shot of R-HyperSpectral after a user clicks on 

Data selection tab. This allows the user to filter data by location, site, instruments, year, or Day 

of the year (DOY) and view a snapshot of the table of spectral data displayed based on the filters 

selected.  

 

Figure 2.3: Table of selected data after filters are applied. 

 

There is also a Metadata tab that links to the metadata of each project including the starting year 

of the project and the ending year. That metadata tab comes immediately after the data selection 

tab, so that users can interrogate the metadata to gain more understanding of the data. The 

metadata includes institution selection, the country where the site is located, measurement year, 

location, site name, and project title. Users can select from each of these based on available 

metadata and a metadata table will be displayed. Fig 3.2 below shows a metadata record based 

on user’s selection. 

https://github.com/SELDevTeam/R-HyperSpectral
https://github.com/SELDevTeam/R-HyperSpectral
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Figure 2.4 Data table showing metadata based on user's selection. 
 

2.3.2. Table of Calculated Indices 

The table of calculated Indices comes immediately after the metadata selection tab. The table of 

calculated indices displays all the spectral indices as calculated and printed by the R-

HyperSpectral within a few seconds. Table 2.1 below shows all the spectral indices used in this 

application and their formular. The spectral indices are further classified into different categories 

based on their similarities. The All-Index data sub-tab prints all the SIs calculated by the 

application. The Broadband Greenness, Narrowband Greenness, Canopy Water Content, Leaf 

Pigment, and Light Use Efficiency are the sub-categories classified based on their similarities 

and functions. Figures 2.5a, 2.5b, 2.5c, 2.5d, and 2.5e below show the snapshot of the spectral 

indices as displayed from the application. 

  



18 

Table 2.1. Hyperspectral indices that are included in R-HyperSpectral, from a list 

generated by C. Laney and others from different websites. The Expression column gives 

the specific equation for each index, where R followed by a numeric value indicates 

reflectance for that specific wavelength. References are given where available. 

 

Index Name Index 

Abbreviation 

Expression Reference 

Carotenoid 1 Cr1 (1/R510)-(1/R550) Gitelson A.A. et al. 

2002 

Carotenoid 2 Cr2 (1/R510)-(1/R700) Gitelson A.A. et al. 

2002 

Carter 1 Carter1 R695/R760 Carter, G.A. 1994 

Carter 2 Carter2 R695/R420 Carter, G.A. 1994 

Chlorophyll 1 A Chl1a (R740^2)/(R675*R800)  

Chlorophyll 1 B Chl1b (R740^3)/(R675*R695*R800)  

Chlorophyll 2 A Chl2a (R685^2)/(R675*R800)  

Chlorophyll 2B Chl2b (R685^3)/(R675*R695*R800)  

Curvature Index Curvature (R675*R690)/(R683^2) Zarco-Tejada, P.J. 

et al. 2002 

Datt 1 Datt1 R860/(R708*R550) Datt, B. 1998 

Gitelson 1 Gitelson1 (R800-R700)/(R800+R700) Gitelson, A.A. & 

Merzlyak, M.N. 

1994 

Gitelson 2 Gitelson2 (R750-R705)/(R750+R705) Gitelson, A.A. & 

Merzlyak, M.N. 

1994 

Gitelson 3 Gitelson3 (R750-R445)/(R700-R445) Gitelson, A.A. et 

al. 2003 

Gitelson 4 Gitelson4 (1/R550)-(1/R750) Gitelson, A.A. et 

al. 2003 

Gitelson 5 Gitelson5 (1/R700)-(1/R800) Gitelson, A.A. et 

al. 2003 

Greenness 1 Green1 (R554/R675)  

Modified 

Normalized 

Difference 

Vegetation Index 

mndvi (R750-R705)/(R750+R705-2*R445)  

Modified Simple 

Ratio 

msr (R750-R445)/(R705-R445) Sims, D. A. & 

Gamon, J. A. 2002 

Normalized 

Difference 1 

Nd1 (R682-R553)/(R682+R553) Gandia, S. et al. 

2004 

Normalized 

Difference 2 

Nd2 (R708-R546)/(R708+R546)  
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Normalized 

Difference 3 

Nd3 (R750-R705)/(R750+R705) Sims, D. A. & 

Gamon, J. A. 2002 

 Ndswi_lin (R460-R1000) /(R460+R1000)  

 Ndswi_log (log(R1000)-

log(R460))/(log(R1000)+log(R460)) 

 

Normalized 

Difference 

Vegetation Index 1 

Ndvi1 (R800-R680)/ (R800+R680)  

Normalized 

Difference 

Vegetation Index 2 

Ndvi2 (R800-R667)/(R800+R667)  

Normalized 

Difference 

Vegetation Index 3 

Ndvi3 (R750-R667)/(R750+R667)  

Normalized 

Difference 

Vegetation Index 4 

Ndvi4 (R774-R677)/(R774+R677)  

Optimized Soil 

Adjusted 

Vegetation Index 

osavi 1.16*(R800- 

R670)/(R800+R670+0.16) 

Rondeaux, G. et al 

1996 

Phytochrome 1 Phyt1 R730/(R730+R652)  

Phytochrome 2 Phyt2 (R730-R652)/(R730+R652)  

Phytochrome 3 Phyt3 R724/(R724+R654)  

Phytochrome 4 Phyt4 (R724-R654)/(R724+R654)  

Phytochrome 5 Phyt5 R730/(R730+R666)  

Phytochrome 6 Phyt6 (R730-R666)/(R730+R666)  

Photochemical 

Reflectance Index 

1 

Pri1 (R531-R570)/(R531+R570) Gamon, J. et al. 

1992 

Photochemical 

Reflectance Index 

2 

Pri2 (R530-R550)/(R530+R550) Sims, D. A. & 

Gamon, J. A. 2002 

Photochemical 

Reflectance Index 

3 

Pri3 (R531-R670)/(R531+R670) Gamon, J.A. et al. 

1997 

Photochemical 

Reflectance Index 

4 

Pri4 (R531-R667)/(R531+R667)  

Plant Senscence 

Reflectance Index 

psri (R680-R500)/R750 Merzlyak, M.N. et 

al. 1999 

Reflectance 

Phytochrome 

rphyto R730/(R730+R665)  

RFFR 1 rffr1 R730-R650  

RFFR 2 rffr2 (R730-R650)/(R685+R650)  

RF Green rfgreen R525-R550  

RF Red rfred R690-R650  
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RI ri (R678-R667)/(R678+R667)  

Structure 

Independent 

Pigment Index 

sipi (R800-R450)/(R800-R650) Peñuelas, J. et al. 

1995 

Simple Ratio 01 sr01 R430/R762  

Simple Ratio 02 sr02 R550/R430  

Simple Ratio 03 sr03 R550/R650  

Simple Ratio 04 sr04 R672/R550  

Simple Ratio 05 sr05 R685/R655  

Simple Ratio 06 sr06 R690/R655  

Simple Ratio 07 sr07 R705/R715  

Simple Ratio 08 sr08 R705/R930  

Simple Ratio 09 sr09 R708/R545  

Simple Ratio 10 sr10 R750/R550  

Simple Ratio 11 sr11 R750/R700  

Simple Ratio 12 sr12 R750/R705  

Simple Ratio 13 sr13 R752/R690  

Simple Ratio 14 sr14 R775/R675  

Simple Ratio 15 sr15 R800/R650  

Simple Ratio 16 sr16 R800/R680  

Simple Ratio 17 sr17 R800/R750  

Simple Ratio 18 sr18 R860/R550  

Vogelman Red 

Edge 1 

vog1 R740/R720 Vogelmann, J.E. et 

al. 1993 

Vogelman Red 

Edge 2 

Vog2 (R734-R747)/(R715+R726) Vogelmann, J.E. et 

al. 1993 

Vogelman Red 

Edge 3 

Vog3 (R734-R747)/(R715+R720) Vogelmann, J.E. et 

al. 1993 

Water Band Index wbi R900/R970 Claudio, H. et al. 

2006 
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Figure 2.5a: Table of calculated indices for all indices (showing a snapshot). 
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Figure 2.5b: Table of calculated indices for all indices (showing a snapshot). See table 2.1 

for the full names and the expressions of each of the SI used. 
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Figure 2.5c: Table of calculated indices for all indices (Showing a snapshot). See table 2.1 

for the full names and expressions of each of the SI used. 
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Figure 2.5d: Table of calculated vegetation indices for all indices classified under 

broadband greenness. See table 2.1 for the full names and expressions of the SI used. 
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Figure 2.5e: Table of calculated vegetation indices for all indices classified under 

narrowband greenness. See table 2.1 for the full names and expressions of each of the SI 

used. 

 

2.3.3. Data Visualization 

After filtering and viewing the table of calculated indices, users can then proceed to the data 

visualization tab. Here, users can have options to visualize hyperspectral reflectance data or SIs. 

Before clicking on the “show graph”, that allows users to see the visuals, they can filter the data 

by location, instruments, year, and site. It is also possible for users to choose a visualization type 

from a selection of plots that include options for a heatmap, boxplot, and/or regression scatter 

plot. These plots will enable users with more insights especially for the vegetation indices and 

appeals users interviewed from different user communities who have varied preferences for data 



26 

visualization. Fig.2.6 below shows a boxplot visualization for the selection of hyperspectral 

reflectance with all instruments, locations, sites, start and end year of 2017 and 2018, 

respectively, selected. This will allow the user community to see the values of reflectances from 

different locations, including the minimum, mean, and maximum values from each location. The 

expected production-ready plots will be made from desktop applications with customizations and 

annotation as required. The YouTube link below is the general overview of how users can 

interact with R-HyperSpectral: https://youtu.be/3RoxSfByPhI  

 

 

 

https://youtu.be/3RoxSfByPhI
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Figure 2.6: The boxplot of the visualization by location of raw reflectance ( where Atq, 

Brw, EACr, Imn, Sag, and Tol are Atqasuk, Barrow, Eagle Creek, Imnaviat, Sagwon, and 

Toolik ).  

2.4. Discussion 

The development of R-HyperSpectral attempts to present a custom and shareable analytic and 

open-source multi-user collaborative tool for hyperspectral data with an initial focus on Arctic 

terrestrial and aquatic ecosystems using the SEL data as a test case study. This will not only help 

improve the utilization of an extensive spectral library by the NASA ABoVE researchers, but 

also enable the user community to have access to an application that permits an advanced search, 

and filtering of spectral records, calculate a range of spectral indices, and enhance advanced 

visualizations. R-HyperSpectral will aid the Arctic research community to have access to data for 

improved rapid change detection across the ABoVE domain. R-HyperSpectral allows users to 

view, interact, and discover optical properties of Arctic tundra plant communities at different 

locations such as Barrow, Aquasak, Toolik Lake, etc. Users can view the hyperspectral 

reflectance scans, explore common spectral indices, and visualize their results from a choice of 

plotting methods. The features of R-HyperSpectral include the data selection tab that enables 

users select hyperspectral reflectance data based on the instruments, location, sites, year, among 

others. There is also the metadata tab that shows the metadata including the researcher’s name, 

start and end year, institution, and project title, just to mention a few. Others include data 

visualization that allows users to visualize either raw reflectance or hyperspectral indices, and 

table of calculated indices. Furthermore, the table of calculated indices gives users the 

opportunity to view the hyperspectral reflectance scans and explore common spectral indices at 

temporal scales.  

The main difference of R-HyperSpectral compared to other comparable tools is the generation 

and visualization of SIs within a very short time, usually less than a minute, and further groups 

them based on categories that calculate similar properties. Spectral indices are designed to 

enhance spectral contributions from desired vegetation characteristics, while minimizing the 

interference of other factors (Xue, et al., 2017). Most importantly, SIs are calculated from a 

discrete number of reflectance bands linked to specific plant traits and are applied in developing 

proxies for traits of interest and reflectance properties (Sims & Gamon, 2003). Spectral Indices 

(S1) obtained from remote sensing of canopies are quite simple and effective algorithms for 

quantitative and qualitative evaluations of vegetation cover, vigor, and growth dynamics, among 
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other applications (Xue, et al., 2017). The importance of remote sensed information of terrestrial 

vegetation growth, vigor, and dynamics in providing useful insights for application in 

environmental monitoring, biodiversity conservation, and agriculture cannot be overemphasized 

(Xue, et al., 2017). Hence, the importance of having an application that can easily calculate, 

produce, and visualize these S1s. Depending on the SI, information on various aspects of 

vegetation growth and development such as chlorophyll content, canopy structure, leaf area, and 

water content can be monitored in the Arctic region. Table 2.1 above shows all the spectral 

indices that can be produced by R-HyperSpectral. 

In continuation, the metadata tab allows users to gather all the relevant and important 

information about the who, what, when, where, and by whom for spectral data collection, which 

allows to access pertinent information for tracing data provenance, and context. Metadata is 

essential for both discovery and validation of data (Leipzig, et al., 2021). Metadata has emerged 

as important component for supporting the federal and institutional recommendations, that 

mandates to build a sustainable research infrastructure to support FAIR data initiatives and 

produce reproducible research (Margolis, et al., 2014, Brito, et al., 2020, & Wilkinson, et al., 

2016) with standards supporting research life cycle, especially in ecological research. Hence, the 

inclusion in R-HyperSpectral. The development of this web-enabled spectral library application 

using open-source technology will enable wider data archival and sharing among wider 

ecological and remote sensing communities, thereby supporting the initiative above. All these 

components of the app are strategically included to enhance data sharing, accessibility, 

availability, and further allow users understand how these data were collected, who collected 

them, the measurement instruments used and their calibration among other vital information 

about the data, the metadata field reveals.  

The data for this application is housed in EcoSIS (Ecological Spectral Information System) and 

was used as a case study for building and developing the web app. EcoSIS is a useful tool for 

finding spectral data (https://ecosis.org/) and is connected to the application via an API, this 

opens the application to be continuously enriched with more hyperspectral data through a slight 

modification of the underlying codes. This will further open up the possibility for researchers 

collecting similar data to leverage the application to view, archive, share, and analyze their 

spectral data. Importantly, the SEL data in EcoSIS is for testing purposes, in the future, data from 

https://ecosis.org/
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other regions will be included in the application. This will help bridge the gap for the need for 

open access to data and open-source software in the remote sensing community and the field of 

ecology at large. To the best of our knowledge, there is no other tool with potentially greater 

access or functionality for similar use at present. R-HyperSpectral will ensure that researchers in 

the community that require similar software for their data will have a template to build on or 

modify R-HyperSpectral to meet their need thereby increasing the capacity of R-HyperSpectral 

and sharing same to the community. If R-HyperSpectral is modified by the researchers, they 

would be a proper channel in place to verify that the code works as intended, with a thorough 

validation of the scientific issues the code is intended to solve.  

Future work would require improvement that enhances more user experience that is particularly 

user driven with better visualization options. Expanding the software to accommodate data from 

other research groups collecting similar data but from a different region or instruments would be 

a central focus in the future. At the moment, R-HyperSpectral inputs its data from EcoSIS which 

contains spectral data only, expanding the utility of the application to further include data from 

more instruments, such as the Airborne Visible and Infrared Imaging Spectrometer [AVIRIS] by 

(Carlson, et al., 2007), including data from satellite platforms and sensors such as Landsat and 

MODIS provides a foundation for improving the analysis, and modeling capabilities needed to 

understand and predict ecosystem responses and societal implications. Secondly, by linking R-

HyperSpectral to these platforms and sensors, and even other regions, other than the Arctic, 

would help the research community with increased access to data and help speed up ecological 

research in these areas. It would be important to initiate these future improvements using a code 

repository like GitHub (https://github.com) for versioning and tracking purpose. See the GitHub 

link provided above for access to R-HyperSpectral underlying codes.  

The future plan is to utilize Rstudio Connect in combination with Amazon Web Services (AWS) 

in hosting the application to ensure easy access and availability as well as help eliminate any 

issues related to data security as AWS provides a secure platform for hosting such applications. 

2.5. Conclusion 

We have demonstrated that R-HyperSpectral as a software application has the capability to 

analyze, visualize, and integrates diverse hyperspectral data streams and give the research 

community access to data for improved rapid change detection across the ABoVE domain. It can 

https://github.com/
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also calculate spectral indices and classify indices based on their similarities. With R-

HyperSpectral written in R Programming language that several ecologists and researchers find 

more convenient to use in their data analytics task, it will be relatively easy for future 

improvements to be initiated by ecologists instead of expert programmers. Furthermore, since R-

HyperSpectral is web-enabled, researchers, ecologists, and academicians that work with 

hyperspectral data may be encouraged to incorporate it in the analysis, visualization, and 

contribute towards improving the overall working of the application for efficient and effective 

spectral data discovery.  
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Chapter 3: rDataFusion: A Project-Specific Multi-Data Fusion Tool for Discovering, 

Integrating, and Visualizing Heterogenous Long-term Data Sets 

Abstract 

To understand ecosystem change over a range of spatial and temporal scales and levels of 

biological organization and interaction, multiple streams of ecological data need to be collected, 

integrated, and analyzed. However, due to the size and complexity of these data streams and 

many other challenges (e.g., personnel turnover, methodological changes, and gaps in observing 

records), managing, analyzing, sharing, and visualization of these data has posed a significant 

challenge. To resolve these challenges, we developed a multi-data fusion tool called 

rDataFusion, which is capable of aggregating heterogeneous data sets collected from a range of 

automated and semi-automated sensors and manual observations over a decade-long period. 

rDataFusion is developed using a free, open-source software package in R called shiny. 

rDataFusion, has the capability to integrate and filter data from two instrument nodes and 

different data streams that include micro-meteorological variables (e.g., temperature, relative 

humidity), soil conditions (e.g., temperature and soil moisture), and ecosystem trace gas and 

energy fluxes. After initial compilation and filtering, users can visualize data in near real-time to 

check that all sensors are running properly, and/or ensure preliminary flagging for data that is 

deemed out of range or problematic in some way. rDataFusion, also, has the capacity for 

exploratory data analysis through quality control and quality assurance processes that allow for 

identifying missing values, outliers, and gap-filling missing or problematic data, visualize data to 

allow for preliminary summaries and interpretations, and compare data across time or by site. 

The overarching goal is to develop a customizable analytic tool that aids researchers with 

improved capacities for aggregating different streams of data from a single intensive site by 

providing an open-source multi-data fusion tool that facilitates data management, sharing, and 

analysis and serves as a template for other research groups with similar challenges. 

3.1. Introduction 

The changes that are occurring in ecology create challenges with respect to gathering, managing, 

analyzing, and visualizing large volumes of data collected from different instruments and sensors 

across different research groups. One particularly daunting challenge lies in dealing with the 

scope and enormous variability and veracity of these datasets (Michener, et al., 2012 & Farley, et 
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al., 2018). The diversity in the spatiotemporal scale of a given study and the different ways in 

which these studies are carried out result in large number of small, distinctive datasets that 

accumulate from thousands of scientists that collect relevant ecological and environmental 

datasets (Heidorn, 2008 & Michener, et al., 2012). Such heterogeneity can be attributed, in part, 

to methodological specialization to address specific scientific hypotheses, but also to a lack of 

standard protocols for organizing, managing, storing, discovering, integrating, accessing, and 

curating data from different small, lowly funded academic research groups (Laney, et al., 2022). 

Unfortunately, only a small fraction of ecological data collected is readily discoverable and 

accessible due to lack or no ecological or environmental data integration tool to assist in 

organizing and managing data collected by these academic researchers (Michener, et al., 2012). 

Data loss is a big challenge for both “long tail science”, where many small research groups that 

do not have access to a deal of funding sources other than through public funding each produce a 

small body of knowledge that collectively make a large contribution to the science; and ‘big 

science’, where a few large research groups produce large and complex data sets as a product of 

strong public support and funding (Howe et al. 2011., Laney, et al., 2015, & Latif, et al., 2019). 

The need for a data integration software and information system tool that can improve efficiency 

and ameliorate the difficulty of data management and analysis tasks cannot be overemphasized 

(Recknagel, 2011, Laney, 2013). It is important to note that new networks such as DataOne, 

National Ecological Observatory Networks (NEON), and the US Long Term Ecological 

Research Network (LTER), among others, have been forming to promote ecological information 

management standards and tools (Collins et al. 2011, Michener et al. 2012, National Ecological 

Observatory Network 2013, McCord et al., 2021).  

Of these networks mentioned above, DataOne has been integral in creating data management 

approach using the data life cycle. The DataOne data life cycle describes the process of data 

management procedures starting from planning, collecting, assuring, describing, preserving, 

discovering, integrating, and lastly, analyzing (McCord, et al., 2021). The DataOne lifecycle acts 

as a standard organizational structure of how data moves through different stages (Michener, 

2015 & McCord, et al., 2021). It further provides an avenue that can prevent data loss through 

broader collaboration, shared repositories, use and reuse, and data integration. Interestingly, the 

DataOne data life cycle was developed in a time when ecological data integration, management, 
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and sharing was still nascent, and failed to capture some of the critical data management and 

integration processes that pose a great challenge to long tail ecological scientist (McCord, et al., 

2021). It is also pertinent to note that, the old method in which ecologist rely on spread sheets, 

emails, hard drives, among others, for data sharing and management is not sustainable and could 

potentially lead to loss and under-utilization of data (Michener et al., 2012). Interestingly, 

statistical computing software tools support robust data management, by integrating quality 

assurance and quality control (QAQC), including data and metadata management and integration 

and data analysis workflows systems to allow for properly documented data to be easily accessed 

for data and metadata completeness and quality (Laney, 2013).  

However, the challenge of effective data management, integration, visualization, curation, use, 

re-use, and analysis for large-scale synthesis studies in ecology is still profound among the long 

tail scientist or small-scale research labs (Laney, 2013 & Michener et al. 2012). Due to advances 

in technology, ecological data are collected through several automated means, including field 

instrumentations, satellite and aerial platforms, automated and semi-automated sensor networks 

(Collins, S.L. et al., 2006; Porter, J.H. et al., 2009 & Michener et al., 2012). All these data from 

disparate sources when combined will generate terabytes to petabytes of data annually. 

Integrating and managing data from these sources for a small lab group is time consuming and 

labor intensive as it requires understanding the methodological differences, transforming data 

into a common representation, and converting data to a compatible semantics before analysis can 

begin (Michener, et al., 2012). Furthermore, ecological data show high variability with highly 

complex interactions that makes it tedious and difficult to analyze, manage, and integrate 

(Michener, et al., 2012). It is also pertinent to note that long tail ecological scientists have 

traditionally used Excel to manipulate and convert their data for integration and analysis; 

however, these methods and processes are always error-prone and is not reproducible because of 

lack of provenance regarding its operations, good practices of documentations, and metadata 

(Michener, et al., 2012).  

Statistical software and scripting tools have been shown to be highly effective in data analytics 

and management in Ecology and other fields and disciplines such as Health Sciences, Social 

Sciences, Engineering, Agriculture and Medicine, among others. In the field of Agriculture, 

important data management decisions makings have been aided by the use of statistical software 
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tools (Perakis, et al., 2020 & Krisnawijaya, et al., 2022). It is the same story in the field of 

Medicine and Health Sciences, including Community Medicine, where data analytics software 

tools have aided researchers to bridge the gap between data generation and analysis to 

extrapolate meaningful results and conclusions (Joshi, et al., 2021). These tools aid the 

researchers even without an in-depth knowledge of statistics to analyze and manage their 

research data (Joshi, et al., 2021). 

Statistical software and scripting tools such as R and a package in R called shiny – a free, open-

source statistical software application and programming language that has the capacity to execute 

complex statistical analysis, produce sophisticated and customizable scientific visualizations and 

can interface with databases, clouds, and data archives (Laney, 2013; Wanyanhan, et al, 2022; 

Chang, et al, 2020, & Chang, W., 2018) is a very good example. These tools bring to bear a set 

of approaches that explicitly encode the semantics of observational data to automate or semi-

automate the process of data integration, management, and analysis (Wanyanhan, et al, 2022 & 

Laney, 2013). These tools allow for data analytic and management approaches to be built from 

bottom up to streamline the process (Laney, 2013). They can help to foster the culture of data 

sharing, integration, synthesis, and automate the documentation of data workflows (Farley, et al., 

2018). They also help provide solutions to previously unanswered research questions and 

provide avenues for training a new generation of ecological data scientists (Farley, et al., 2018).  

It is important to reiterate challenges ecologists face with respect to gathering, managing, 

analyzing, and visualizing large volumes of data collected from different instruments and sensors 

across different research group due to lack or low deployment and use of software tools for long 

tail science. The daunting task of dealing with the scope and enormous variability and veracity of 

these datasets (Michener, et al., 2012) persists among long tail ecological scientists. The varied 

diversity in scales studied and the different ways in which these studies are carried out result in 

large number of small, distinctive datasets that accumulate from thousands of scientists that 

collect relevant ecological and environmental datasets (Heidorn, 2008 & Michener, et al., 2012) 

portend a great challenge to manage and analyze by long tail scientists without adequate 

deployment of software analytical tools. These challenges, among others, spurred us to develop a 

data integration and management tool called rDataFusion. 
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In this study, we introduce rDataFuison; aimed at developing a customizable analytic tool that 

aids researchers with improved capacities for aggregating different streams of data from a single 

intensive site by providing an open-source multi-data fusion tool that facilitates data 

management, sharing, integration, curation, visualization, and analysis and serves as a template 

for other research groups with similar challenges. The System Ecology Lab (SEL) manages a site 

at the Jornada Experimental Range (JER) where it amasses a heterogeneous amount of data from 

different instruments and sensors over a long period of time, and is faced with the challenge of 

aggregating, analyzing, curating, visualizing, and managing these huge amounts of data. 

rDataFusion offers capacities to visualize data in near real-time to check that all sensors are 

running properly, ensure preliminary flagging for data that is deemed out of range, filter data 

based on quality flags, and align data with that from other sensors. It also employs statistical 

algorithms to filter extreme values and outliers, gap-fill with sensors at the site, visualize data to 

allow for some preliminary summaries and interpretations. The rest of this paper is organized as 

follows: Section 2 shows the study sites and methods, section 3 discusses the results, while 

section 4 presents the discussion and conclusion.  

3.2 Materials and Method 

3.2.1 Study Site 

The study site was built in 2009 and became operational in 2010, with the overarching goal of 

studying global change science in arid ecosystems, with special focus on changes and feedback 

cycles in land cover, hydrology, and land – atmosphere exchange of water, carbon, and energy. 

Since its inception in 2009, the site has been supported by more than ten research grants and has 

included over 100 grad students, post docs, and technicians who have explored a range of 

research topics and questions. This has included several theses and dissertations including, 

“Furthering our understanding and scaling patterns and controls of land – atmosphere carbon, 

water and energy exchange in the Chihuahuan desert shrubland with novel cyberinfrastructure” 

(Jaime, 2014), Towards new data and information management solutions for data – intensive 

ecological research” (Laney, 2013), “Assessing data quality in a sensor network for 

environmental monitoring” (Ramirez, 2011), “Spatiotemporal variability of plant phenology in 

drylands: A case study of the Northern Chihuahuan desert” (Luna, 2016), “Development of low 
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cost network of webcams for monitoring plant phenology in Chihuahuan desert” (Gonzalez, 

2011), among others.  

The SEL-Jornada site lies within the United States Department of Agriculture (USDA) 

Agricultural Research Services (ARS) in southern New Mexico (32° 34’ 59’’N, 106° 37’ 34’’ W; 

1417 m a.s.l, Figure 1). The site is a shrubland with a mixture of Larrea tridentaae (Creosote) 

and Prosopis glandulosa (Honey Mesquite) that is typical of the northern Chihuahuan Desert 

(Laney, 2013). Other notable species available in the area are Flourensia cernua (Tarbush), 

Muhlenbergia porter (Bush Muhly) and Dasyochloa pulchella (Fluffgrass). It is characterized by 

a shallow sandy to gravelly soil that is generally less than 1m in depth. The study site slopes 

westward by approximately 2° from east to west. The long-term average rainfall at the JER 

Headquarters (approximately 13km from SEL-Jornada) was 245.1 mm from 1915 to 1995, with 

a standard deviation of 85.0 mm (Wainwright, 2006., Laney, 2013). A large portion of annual 

precipitation occurs mostly during the summer monsoon season (40-50% on average, 5.7 cm 

regionally from 1910 to 2010) (Petrie et al 2014). It is also important to note that this region 

exhibits an out of phase interaction between spring and summer growing seasons, where 

precipitation events induce pulses of vegetation productivity, nutrient cycling, and fluxes of 

water and carbon differently between spring and summer seasons (Petrie, et al., 2014). 
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Figure 3.1: Map showing the Jornada study site at the Chihuahuan Desert (Ramirez, 2011). 

The green, yellow, and brown colors represent the United States, Mexico, and Jornada site, 

part of the Map, respectively. 

3.2.2 Data Collection 

Site infrastructure include instrumentation such as: Extended Open Path Eddy Covariance 

System – A 10m tall tower hosting an open path eddy covariance system was designed to 

measure the land – atmosphere flux exchange, and provides digital output of carbon dioxide, 

density, sensible heat, temperature, humidity, net radiation, horizontal wind speed, and direction 

among others, (Laney, 2013 Streams of data like Climate, Soil Moisture, Flux, and cs650 for this 

data integration tool were all collected from the study site using different instruments and 

sensors. These datasets provide the capacity for studying seasonal variabilities of ecosystems 

changes and to accurately estimate the land – atmosphere fluxes of carbon dioxide, water vapor, 

and energy. Tables 3.1, 3.2, 3.3, and 3.4, below show variable abbreviations, full variable names 

and the SI units for Climate, soil moisture, Flux, and cs650 data streams, respectively. 
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Table 3.1: showing the abbreviated variable names, full variable names, and the units for 

the climate data stream. 

S/N Abbreviated Variable 

Name 

Full Variable Name SI Units 

1 t_hmp Air Temperature 0C 

2 rh_hmp Relative Humidity Percent 

3 e_hmp Absolute Humidity kPa 

4 atm_pressure Atmospheric pressure kPa 

5 hor_wnd_spd Horizontal Wind Speed M/S 

6 hor_wnd_dir Horizontal Wind Direction Degree 

7 Precip_tot Total Precipitation mm 

8 Par Photosynthetically Active 

Radiation 

umol/m/s 

9 albedo albedo unitless 

10 LEAF_WET Leaf Wetness mV 

11 NetRs Net Solar Radiation W/m2 

12 NetRI Net Radiation W/m2 

13 UpTot total downwelling; upward 

facing sensor 
W/m2 

14 DnTot total upwelling; downward 

facing sensor 
W/m2 

15 CO2_raw Carbon dioxide mmol/m3 

16 H2O_raw Water mmol/m3 

 

Table 3.2: showing the abbreviated variable names, full variable names, and the units for 

the Flux data stream. 

S/N Abbreviated Variable 

Name 

Full Variable Name SI Units 

1 HS sensible heat flux using sonic 

temperature 

W/m^2 

2 H Sensible heat flux using the fine 

wire thermocouple 

W/m^2 

3 Fc_wpl Carbon dioxide flux (LI-7500) mg/(m^2 s) 

4 LE_wpl W/m^2 Latent heat flux (LI-

7500) 

W/m^2 

5 Hc Sensible heat flux computed 

from Hs and LE_wpl 

W/m^2 

6 tau Momentum flux kg/(m s^2) 

7 u_star Friction velocity m/s 

8 Ts_mean Average Sonic Temperature C 

9 stdev_Ts Standard deviation sonic 

temperature 

C 
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10 cov_Ts_Ux Covariance of sonic 

temperature and horizontal 

wind (x-axis) 

m C/s 

11 cov_Ts_Uy Covariance of sonic 

temperature and horizontal 

wind (y-axis) 

m C/s 

12 cov_Ts_Uz Covariance of sonic 

temperature and vertical wind 

m C/s 

13 CO2_mean Average Carbon dioxide mg/m^3 

14 stdev_CO2 Standard deviation of carbon 

dioxide 
mg/m^3 

15 cov_CO2_Ux Covariance of carbon dioxide 

(LI-7500) density and 

horizontal wind (x-axis) 

mg/(m^2 s) 

16 cov_CO2_Uy Covariance of carbon dioxide 

(LI-7500) density and 

horizontal wind (y-axis) 

mg/(m^2 s) 

17 cov_CO2_Uz Covariance of carbon dioxide 

(LI-7500) density and vertical 

wind  

mg/(m^2 s) 

18 H2O_Avg Average water vapor (LI-7500) 

density 
g/(m^2 s) 

19 stdev_H2O Standard deviation of water 

vapor (LI-7500) density 
g/m^3 

20 cov_H2O_Ux Covariance of water vapor (LI-

7500) density and horizontal 

wind (x-axis) 

g/m^3 

21 cov_H2O_Uy Covariance of water vapor (LI-

7500) density and horizontal 

wind (y-axis) 

g/(m^2 s) 

22 cov_H2O_Uz Covariance of water vapor (LI-

7500) density and vertical wind  
g/(m^2 s) 

23 fw_Avg Average finewire temperature C 

24 stdev_fw Standard deviation of finewire 

temperature 
C 

25 cov_fw_Ux Covariance finewire 

temperature and horizontal 

wind (x-axis) 

m C/s 

26 cov_fw_Uy Covariance finewire 

temperature and horizontal 

wind (y-axis) 

m C/s 

27 cov_fw_Uz Covariance finewire 

temperature and vertical wind  
m C/s 

28 Ux_Avg Average Horizontal wind (x-

axis 
m/s 
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28 stdev_Ux Standard deviation of average 

horizontal wind (x-axis) 
m/s 

30 cov_Ux_Uy Covariance of horizontal wind 

(x-axis and y-axis) 
(m/s)^2 

31 cov_Ux_Uz Covariance of horizontal wind 

(x-axis) and vertical wind 
(m/s)^2 

32 Uy_Avg Average horizontal wind (y-

axis) 
m/s 

33 stdev_Uy Standard deviation of horizontal 

wind (y-axis) 
m/s 

34 cov_Uy_Uz Covariance horizontal wind (y-

axis) and vertical wind 
(m/s)^2 

35 Uz_Avg Average vertical wind m/s 

36 stdev_Uz Standard deviation of vertical 

wind 
m/s 

37 press_Avg Average Barometric pressure 

(L1-7500) 
kPa 

38 Atm_press_mean Average Barometric pressure 

(CS105) 
kPa 

39 T_hmp_mean Average temperature from 

HMP45C 
C 

40 H20_hmp_meam Mean HMP45C vapor density kg/m^3 

41 Rh_hmp_mean Mean HMP45C relative 

humidity 
percent 

42 Rho_a_mean Mean air density kg/m^3 

43 Wnd_dir_compass Resultant wind direction using 

compass coordinate system 
degrees 

44 Wnd_dir_csat3 Resultant wind direction the 

CSAT3’s right-handed 
coordinate system 

degrees 

45 Wnd_spd Wind speed m/s 

46 Rslt_wnd_spd Resultant wind speed m/s 

47 Std_wnd_dir Standard deviation of wind 

direction 
degrees 

48 Fc_irga Carbon dioxide flux (LI-7500), 

without Webb et al. term 
mg/(m^2 s) 

49 LE_irga Latent heat flux (LI-7500), 

without Webb et al. term 
W/m^2 

50 C02_wpl_LE Carbon dioxide flux (LI-7500), 

Webb et al. term due to latent 

heat flux 

mg/(m^2 s) 

51 C02_wpl_H Carbon dioxide flux (LI-7500), 

Webb et al. term due to sensible 

heat flux 

mg/(m^2 s) 
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52 H20_wpl_LE Latent heat flux (LI-7500), 

Webb et al. term due to latent 

heat flux 

W/m^2 

53 H20_wpl_H Latent heat flux (LI-7500), 

Webb et al. term due to sensible 

heat flux 

W/m^2 

54 N_Tot Number of samples in the 

statistics (fluxes, variances, 

mean, etc) 

samples 

55 Csat_warnings Number of times any CSTA3 

flag warning was set high 
samples 

56 Irga_warnings Number of times any L1-7500 

flag warning was set high 
samples 

57 del_T_f_Tot Number of times delta 

temperature warnings from 

CSAT3 

samples 

58 sig_lck_f_Tot Number of poor signal lock 

warnings from CSAT3 
samples 

59 amp_h_f_Tot Number of amplitude high 

warnings from CSAT3 
samples 

60 amp_l_f_Tot Number of amplitude low 

warnings from CSAT3 
samples 

61 chopper_f_Tot Number of chopper warnings 

from LI-7500 
samples 

62 detector_f_Tot Number of chopper detector 

from LI-7500 
samples 

63 pll_f_Tot Number of choppers PII from 

LI-7500 
samples 

64 sync_f_Tot Number of chopper 

synchronization warnings from 

LI-7500 

samples 

65 agc_Avg Average AGC from LI-7500 unitless 

66 agc_thrshld_excded_Tot Number of times LI-7500 AGC 

exceeded a user set threshold 
samples 

67 lws_1_Avg LSW1 mV 

68 lws_2_Avg LSW1 mV 

69 Rn_nr_Avg Average net radiation W/m^2 

70 albedo_Avg Average Albedo unitless 

71 Rs_downwell_Avg SW_OUT, this is not 

downwelling, it's downward 

pointing sensor 

W/m^2 

72 Rs_upwell_Avg  SW_IN, this is not upwelling, 

it's upward pointing sensor 
W/m^2 
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73 Rl_downwell_Avg LW_OUT, this is not 

downwelling, it's downward 

pointing sensor 

W/m^2 

74 Rl_upwell_Avg LW_IN, this is not upwelling, 

it's upward pointing sensor 
W/m^2 

75 T_nr_Avg  W/m^2 

76 Rl_down_meas_Avg not temperature corrected (can 

use for net calculations because 

temp term cancels) 

W/m^2 

77 Rl_up_meas_Avg not temperature corrected (can 

use for net calculations because 

temp term cancels) 

W/m^2 

78 par_Avg  umol/m/s 

79 hfp01_1_Avg Soil heat flux (5cm/15cm) 15 

open... (channel 3H/L. Field 

label: 10O) 

W/m^2 

80 hfp01_2_Avg Soil heat flux (5cm/15cm) 10 

open... (channel 6H/L. Field 

label: 15O) 

W/m^2 

81 hfp01_3_Avg Soil heat flux (5cm/15cm) 15 

bush... (channel 10H/L. Field 

label: 15B) 

W/m^2 

82 hfp01_4_Avg Soil heat flux (5cm/15cm) 10 

bush... (channel 8L (=16 SE). 

Field label: 10B) *single-ended 

W/m^2 

83 precip_Tot Total Precipitation mm 

84 hor_wnd_spd_mean Average 03002 horizontal wind 

speed 
m/s 

85 hor_wnd_spd_mean_rslt Average 03002 resultant wind 

speed 
m/s 

86 hor_wnd_dir_mean_rslt Average resultant horizontal 

wind direction 
Deg 

87 hor_wnd_dir_stdev Standard deviation of wind 

direction 
Deg 

88 panel_temp_Avg Average CR3000 panel 

temperature 
C 

89 batt_volt_Avg Average battery voltage V 
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Table 3.3: Abbreviated variable names, full variable names, and the units for the 

soil/ECTM data stream. 

S/N Abbreviated Variable 

Name 

Full Variable Name SI Units 

1 VWC1 Volumetric Water Content % 

2 VWC2 Volumetric Water Content % 

3 VWC3 Volumetric Water Content % 

4 VWC4 Volumetric Water Content % 

5 VWC5 Volumetric Water Content % 

6 VWC6 Volumetric Water Content % 

7 VWC7 Volumetric Water Content % 

8 VWC8 Volumetric Water Content % 

9 Temp1 Soil temperature C 

10 Temp2 Soil temperature C 

11 Temp3 Soil temperature C 

12 Temp4 Soil temperature C 

13 Temp5 Soil temperature C 

14 Temp6 Soil temperature C 

15 Temp7 Soil temperature C 

16 Temp8 Soil temperature C 

 

Table 3.4: Abbreviated variable names, full variable names, and the units for the CS650 

data stream. 

S/N Abbreviated Variable 

Name 

Full Variable Name SI Units 

1 CS650_VWC_1_AVG Soil moisture 1 average % 

2 CS_650_VWC_2_AVG Soil moisture 2 average % 

3 CS650_VWC_3_AVG Soil moisture 3 average % 

4 CS650_VWC_4_AVG Soil moisture 4 average % 

5 CS650_VWC_5_AVG Soil moisture 5 average % 

6 CS650_EC_1_AVG Soil Conductivity 1 average ds/m 

7 CS650_EC_2_AVG Soil Conductivity 2 average ds/m 

8 CS650_EC_3_AVG Soil Conductivity 3 average ds/m 

9 CS650_EC_4_AVG Soil Conductivity 4 average ds/m 

10 CS650_EC_5_AVG Soil Conductivity 5 average ds/m 

11 CS650_P_1_AVG Soil permittivity 1 average F/m 

12 CS650_P_2_AVG Soil permittivity 2 average F/m 

13 CS650_P_3_AVG Soil permittivity 3 average F/m 

14 CS650_P_4__AVG Soil permittivity 4 average F/m 

15 CS650_P_5_AVG Soil permittivity 5 average F/m 

16 CS650_PA_1_AVG Soil period 1 average uS 

17 CS650_PA_2_AVG Soil period 2 average uS 

18 CS650_PA_3_AVG Soil period 3 average uS 
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19 CS650_PA_4_AVG Soil period 4 average uS 

20 CS650_PA_5_AVG Soil period 5 average uS 

21 CS650_VR_1_AVG Soil Voltratio 1 average ratio 

22 CS650_VR_2_AVG Soil Voltratio 2 average ratio 

23 CS650_VR_3_AVG Soil Voltratio 3 average ratio 

24 CS650_VR_4_AVG Soil Voltratio 4 average ratio 

25 CS650_VR_5_AVG Soil Voltratio 5 average ratio 

26 CS650_T_1_AVG Soil Temperature 1 average Celsius 

27 CS650_T_2_AVG Soil Temperature 2 average Celsius 

28 CS650_T_3_AVG Soil Temperature 3 average Celsius 

29 CS650_T_4_AVG Soil Temperature 4 average Celsius 

30 CS650_T_5_AVG Soil Temperature 5 average Celsius 

 

 

Figure 3.2: UTEP-JER site showing the interconnection of different projects (right) and a 

photo of the Robotic Tram System (left) (Ramirez, 2011). 

 

3.2.3 Overview of rDataFusion 

We built rDataFusion with R version 4.04, released in 2021 using the shiny package developed 

by RStudio, Inc. (http://www.rstudio.com/shiny/), which was first released in November of 2012. 

Shiny is an R wrapper for JavaScript – an interpreted programming language. JavaScript 

implementation in web browsers helps control the browser and its content and allows for 

interactivity with the user of the web browser (Laney, et al., 2013). Shiny is a free, open-source 

statistical software application and programming language that has the capacity to execute 

http://www.rstudio.com/shiny/
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complex statistical analysis, produce sophisticated and customizable scientific visualizations and 

can interface with databases, clouds, and data archives (Laney, 2013; Wanyanhan, et al, 2022; 

Chang, et al, 2020, & Chang, W., 2018). rDataFusion contains approximately two thousand five 

hundred lines of code (2500). The app starts by loading different libraries mainly from the user 

interface including shinydashboard, DT, xts, gt, highcharter, ggplot2, dplyr, lubridate, inputeTS, 

gridExtra, CaTools, shinyjs, zoo, glue, among others. The server part (server.R) contains all 

functions required to read data files, select data and view, aggregate raw data, flagged status of 

variable, distribution of flagged status, clean data through QAQC process, perform outlier and 

extreme value detection, relace missing values, compare raw and clean data variables, merge 

data, and display new tables and graphs as described in section 3.1 below, and provide 

functionality behind user interface controls. The user interface (ui.R) is made up of the user 

interface code. The codes for the server and ui can run on personal computers or on servers. 

Figure 2.3 below shows a flow chart or visual map of rDataFusion. 

 

 

Figure 3.3: A flow chart or visual map or rDataFusion 



46 

3.2.4 Why R-shiny 

Owing to the rise of automated data gathering and collection tools, data size and complexity of 

analysis have placed a limitation between research disciplines and the required data analysis 

(Kasprzak, et al., archive & Donoho, 2017). A data analytics software tool that utilizes common 

task frameworks and can help interpret, quantify, and possibly close methodological variations 

across disciplines is highly needed (Dondo, 2017). Following the review of data analytics 

software tools, we discovered that data analytics software tools such as Minitab (Arend, 2010), 

MATLAB (Moler & MathWorks, 2012), GenStat (Payne, et al., 2007), and SPSS (Landau & 

Everitt, 2004), have attempted to proffer solution to this problem by creating a more user-

friendly interfaces that either make coding easier to learn, or use drop down menus and radio 

button selections to bypass the command lines (Kasprzak, et al., archive). These mentioned 

analytical software have their limitations such as non-publication ready graphics, non-intuitive 

drop-down menus, restrictive interfacing with other software, pricing – including the cost of 

licensing the proprietary software. Others include the difficulties encountered by users when they 

attempt to run codes originating from the software on their platform (Kasprzak, et al., archive), 

among others. 

R has grown to become one of the most popular programming languages for statistics, 

environmental, and biological data analytics with over 14,000 free packages designed to address 

varying range of data analytics issues (Kasprzak, et al., archive). One of these packages is shiny. 

Shiny provides a framework for creating web-based interactive applications (Ramalho & 

Segundo, 2020). It can generalize R code to all levels of users, by simplifying the use of complex 

methodologies for people of different specialties, at the level of proficiency appropriate for the 

end users (Ramalho & Segundo, 2020). Shiny appears to have better graphics, and customizable 

visualizations capacities that allows users to dynamically change visualizations by adjusting 

parameters in some controlled variables using buttons, selection list or by direct clicks on the 

graphs (Ramalho & Segundo, 2020). Since R shiny web application is free and open source, it 

eliminates the burden of purchasing proprietary software, which can be inflexible and expensive 

and often takes resources away from research (LaZerte et al., 2017). Shiny applications can 

easily be interfaced with other software through API, as well as easy code adaptation (LaZerte et 

al., 2017).  
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The above important features of shiny and the flexibility of use, formed our decision in adopting 

shiny to build and develop rDataFusion web application. The design of rDataFusion utilized 

agile development approaches, including good architecture that allows the application logic to be 

broken down into smaller, independent parts, that are easier to maintain and verify. Also, 

included are testing the code, validating the data and app state, scaling, and performance. These 

are done to ensure quality assurance, validate the logic and the source code, including the test 

data, to minimize data quality issues, and the scalability and overall performance of the 

application. rDataFusion followed best practices for shiny application development (Kasprzak, et 

al., archive).  

3.3 Results 

3.3.1 rDataFusion Detailed Operation 

rDataFusion application when run, opens in a web browser, showing the About Page that briefly 

gives user the general overview of the application, including its capabilities, limitations, data 

source description, features of the system, and how end users will interact with it. It also contains 

the Reset App tab that users can utilize to refresh the application when it is taking more time than 

expected to run. The Next button helps users to navigate between tabs. The Select Data & View 

tab comes with various options to make users’ experience seamless, ranging from Choose a date 

Range that enables users to select the range of date of all the raw data they want to process and 

analyze based on the provision of the application. Then comes the Select one data source at a 

time to inspect that gives users the option to choose either of the four data sources - Climate, 

Soil/ECTM, Flux, and CS650 data. Once a choice of data source is made, the Upload Raw 

Datasets allows users to upload the selected data source into the application. The data to be 

uploaded needs to be formatted to a data table with properly labeled columns. The user then goes 

on to preview the raw data in a data table using the preview button. Figure 3.4 below shows the 

Select Data & View Page with chose a date range, select data to inspect, upload raw data set, 

and preview selected data. 
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Figure 3.4: Select Data & View tab: This figure shows the processes of getting data into the 

application and view raw data table. The “chose date range “allows the user to select a date 

range of data that will be uploaded, the upload button allows the user to upload the data 

for the date range selected, the ‘chose data to inspect’ field allows users to choose the data 

stream they would want to upload. See table 3.1, 3.2, 3.3, and 3.4 for the full names and the 

SI units of all the variables used. 

 

Furthermore, since the raw data is aggregated every minute, the Aggregate raw data tab enables 

users to transform the raw data from every minute to half hourly or hourly data for all the data 

streams within the date range selected. Data can further be previewed in a table and graphed 

interactively, as seen in fig. 3.5. below. The next step is the Flagged Status of Variables tab that 

allows users to flag data based on QC filtering data based on these conditions: outside high 

range, outside low range, data rejected due to QC, missing data – given as NAs or shown using 

non-physical values such as 999 or 9999 or similar and passed L1QC test. A csv file that 

contained most of the variables minimum and maximum values based on the instrument 

specification was used to apply flag to filter out data points deemed to be outside high and low 

ranges. We generated this csv file by carefully researching each of the variable’s measurement 

instruments applicable range of value specifications. These steps are the initial stages of data 

cleaning processes that rDataFusion offers so that users can have clean data to work with. This 

tab further allows users to show color coded flagged data that reflects various conditions of the 
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data – either missing value, data rejected due to QC, and so on. Figure 3.6 below shows the 

flagged status of variables. 

 

Figure 3.5: Aggregate Raw Data tab: This figure shows how raw data is aggregated from 

every minute to half-hourly or hourly data. See table 3.1, 3.2, 3.3, 3.4 for the full names and 

the SI units of all the variables used 

 

Figure 3.6: Flagged status of variables tab: This figure allows users to filter data based on 

QC flags. See table 3.1, 3.2, 3.3, and 3.4 for the full names and the SI units of all the 

variables used. 
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In addition to Flagged status of variables, there is the distribution of flagged status tab that show 

the flagged status of variables individually, for example, when users chose air temperature, they 

will be able to see different flagged status with a clean flagged variable summary table that show 

the number of data points that fall into each of the flagging categories. In the example of air 

temperature mentioned above, we observed that, for the time range selected – 01/01/2020 to 

06/30/2020, there are no data points that are out of low or high range, rejected due to QA/QC, or 

suspected as bad data. We do observe that there are two data points that are missing and eight 

thousand six hundred and eighty-six data points that passed QC test. There is also a tab for 

Cleaning Data through QA/QC process that enables users to generate clean data sets. These are 

data sets that have passed through the initial cleaning process – where data that is deemed out of 

range or problematic based on the sensor specifications have been filtered out. These data sets 

still contain gaps, outliers, and extreme values. Fig.3.7 below shows the generated “semi” clean 

data table. Semi clean implies data has passed QC test but still contains gaps and outliers. 

 

 

Figure 3.7: The generated “semi” clean data table. Here, the data has passed the initial 

QAQC test but still contains outliers and gaps. See table 3.1, 3.2, 3.3, and 3.4, for the full 

names and the SI units of all the variables used. 

 

Subsequently, the outlier and extreme value detection tab gives users the opportunity to filter out 

outliers and extreme values in the data. There are different techniques for evaluating outliers and 
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extreme values based on scientific and practical applications, because clear outliers or bad data 

may contain valuable information about the process or the data gathering process (Faybishenko, 

et al., 2021) Detailed description of these methods is beyond the scope of this work, however, the 

first step in the evaluation of outliers and extreme values is to access whether the data are within 

a reasonable range (natural overall, seasonal, and instrumental). As an example, rainfall will only 

have positive values when there is precipitation and zeros when there is none; solar radiation is 

expected to be only positive values and zeros at night, etc. The outlier and extreme value” 

detection tab filters datasets based on datapoints considered to be an outlier and extreme value, 

utilizing statistical algorithms known as Median Absolute Deviation (MAD) that shows the 

graphs of data points with outliers and extreme values clearly labelled. This is based on the 

Hampel approach that uses a sliding window to go over the data vector and calculate the median 

and standard deviation expressed as median absolute deviation (Faybishenko, et al., 2021). 

Considering seasonal fluctuations and trends in our time series meteorological data, we utilized 

the runquantile function from R Package caTools which uses a moving window to calculate the 

quantiles over a vector of the variable. A 6-month moving window was used, with probabilities 

of 0.999 and 0.001 used for upper and lower extreme values, and 0.975 and 0.025, for the upper 

and lower outlier values, respectively, following (Faybishenko, et al., 2021). The rolling window 

length and thresholds are usually anchored on the outlier detection goals.  

In addition, the outlier detection part of this app has a sub-tab that populates the summary of 

outliers in a table. It also allows users with the option to filter out the data points considered as 

outliers and extreme values or not. Fig. 3.8 below show time series graphs depicting outliers and 

extreme values, and the statistics of the outliers and extreme values are summarized in fig. 3.9 

below.
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Figure 3.8: These show time series graphs depicting outliers and extreme values. The 

figures show Air temperature, relative humidity, absolute humidity, and atmospheric 

pressure, respectively, from Jan. to Sept. 2020, with the red dots showing extreme values 

and the green color showing outliers. See table 3.1, 3.2, 3.3, and 3.4 for the full names and 

SI units of all the variables used. 
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Figure 3.9: Statistics of the outliers and extreme values. See table 3.1, 3.2, 3.3, and 3.4, for 

the full names and SI units of all the variables used. 

Modern data collection instruments (data loggers) collect and record time series or other types of 

data, but collected data are always prone to distinct types of errors (Faybishenko, et al., 2021). 

These errors include errors of omission such as improper recording of metadata or data due to 

lack of proper documentation, anomalies in the data collection field, human errors, and 

commission with examples as: error in data entry and malfunctioning of instruments, among 

others (Faybishenko, et al., 2021). It is also important to note that collected time series data could 

be imperfect due to different time frequency of measurement, varied units of measurements in 

the same time series, changes in sensors due to calibration or other sensor malfunctioning, and 

abnormal values (Faybishenko, et al., 20210). Interestingly, the QAQC processes we introduced 

into our data helped in cleaning up these issues and in return introduced gaps in the data as some 

of the data points were filtered out. 

In our app, there is a tab for replacing missing values or Gap Fill. Missing values are observed 

when no values are stored for the variable in an observation. Missing value mechanisms and 

patterns are different for different data types. Imputation or gap filling of missing values is a 
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challenging problem because of the non-generic nature of the techniques and are different for 

different kinds of data. The imputeTS package in R provides a univariate time series imputation, 

with different time series imputation algorithms included. In the app, we utilized the mean of the 

neighboring data points to fill the gaps, and only filled gaps that are within 2- hours-time range. 

Figure 3.10 below shows the climate data source with all the missing values filled.  

 

Figure 3.10: Missing data points replaced from the selected data source. See table 3.1, 3.2, 

3.3, 3.4, for the full names and the SI units of all the variables used. 

Furthermore, to ensure that the data cleaning processes such as QAQC, outlier and extreme 

values detection, filtering out outliers and extreme values, and missing values replacement were 

effective, we compared raw data (before the cleaning processes) and the clean data (after the 

cleaning processes). For the raw data, we summarized the data to see the mean, standard 

deviation, minimum, maximum, and standard error and compare it with the clean data, but 

included the number of gaps filled data points, as well as the number of data points removed as 

outliers. Figure 3.11 below shows the raw and clean data comparison. 
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Figure 3.11: Raw and clean data comparison. See table 3.1, 3.2, 3.3, and 3.4 for all the full 

names and the SI units of all the variables used. 

Lastly, all the clean data sources were merged into one data table using the merge data tab. This 

will allow users to have all the data in one place, download all the data in an excel or csv file. 

Users can visualize the data by each variable using the data visualization tab. Users can chose to 

visualize either one, three, and six months of data. They can also visualize one year of data and 

all these depends on the length of data selected to upload to the application at the data selection 

and view stage. Users can also view charts or graphs in full screen, print charts, download 

images either in PNG, JPEG, PDF, and SVG vector formats. It is expected that production-ready 

plots will be made from desktop applications with customizations and annotations as required. It 

is also important to note that the data behind the charts can also be downloaded in csv or xls 
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formats or view the data table. Figures 3.12 and 3.13 below show the merged data table and 

visualized temperature data from climate data source, respectively. A YouTube video that shows 

users how to navigate through rDataFusion can be viewed at https://youtu.be/ByGdTZRiXTQ 

 

Figure 3.12: Merged data table of all the data sources. See table 3.1, 3.2, 3.3, and 3.4 for the 

full names and SI units of all the variables used. 

 

Figure 3.13: Time series visualization of temperature from the merged data table. See 

Table 3.1, 3.2, 3.3, and 3.4 for the full names and SI units of all the variables used. 

https://youtu/
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3.4. Discussion 

Data driven research is often faced with the enormous task of data preparation and cleaning with 

an estimated 80% effort spent towards achieving this goal within the academia and even in the 

industry (Huber, et al., 2021 & Press, 2016). This has not only led to a very reduced amount of 

time spent in the actual data analysis which brings real value in data, but also discouraged some 

researchers from attempting their data driven research because of data cleaning and preparation 

difficulties (Huber et al., 2021). New ways of doing data-driven research, data analytics, and 

integration have been provided by technological advances over the past few years coupled with a 

great deal of computing resources (Hey, et al., 2009). The development of these resources has 

given researchers the leverage to shift their focus to activities that allow them extract knowledge 

from their data. With these challenges in mind, and the need to adequately utilize new 

technological advances in data analytics, the development of rDataFusion aimed at developing a 

customizable analytic tool that aids researchers with improved capacities for aggregating 

different streams of data from a single intensive site by providing an open-source multi-data 

fusion tool that facilitates data management, sharing, analysis, and serves as a template for other 

research groups with similar challenges was born. 

Furthermore, the extensive need for standardized, systematic, and long-term monitoring to 

understand ecological and environmental changes that lead to global changes cannot be 

overemphasized (Weigel, et al., 2020). rDataFusion is carefully built and designed to meet the 

needs of ecologist or environmental scientists or researchers who are collecting data from 

disparate sources, instruments, or sensors but have no way of aggregating, managing, or 

visualizing their data. The QA/QC process, filtering outliers, gap filling and other carefully 

thought features of the app were added to ensure clean data since collected time series data are 

often irregular, with different units of measurements in the same time series, time stamp 

duplicates, periodic failure or malfunctioning of sensors, changes due to calibrations or missing 

data (Faybishenko, et al., 2021). Other key features of rDataFusion include the capacity to 

visualize data in near real-time to check that all sensors are running properly, ensure preliminary 

flagging for data that is deemed out of range, and filter data based on flags. 
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For the ecological, environmental science and research community that utilize data analytical 

and integration tool, growing data and advances in analytics are essential in gathering the 

knowledge needed to address issues such as global change, biodiversity loss among other urgent 

ecological or environmental issues (Raban & Gordon, 2020). Data management tools are 

necessary and have a crucial role to play in addressing these challenges. Therefore, a data tool 

like rDataFusion that supports efficient and effective data management, integration, and 

visualization will help in addressing the challenges. 

Besides, rDataFusion is embodied with terrific features that starts with the “About page” – a 

brief description of the application and the various data sources utilized in the app, with an 

automatic connection of the application to an online data archive that feed data to the app. There 

is also the “select data & view” tab that not only allows users to select date range, but also give 

them leverage to upload raw datasets into the app with “a click and select” one data stream at a 

time to preview data in a data table. Since the raw data is collected every minute, we added a tab 

to convert the data in half hourly or hourly intervals. After data conversion, users can select the 

data source to preview and graph the selected data variables using the preview graph tab for 

preliminary checks. 

Similarly, there is a “flagged status of variables” tab that allows users to apply preliminary 

flagging to filter variables based on the minimum and maximum values of the instruments used 

for measurement of that variable. This would allow data variables to be filtered based on level 

one quality control to either, “passed”, “outside low range”, “outside high range”, and “rejected”. 

Next, is the “distribution of flagged status” that shows the distribution of flagging status of 

specific variables. It also shows the summary of flagged variable based on the number of data 

points that passed QC test, rejected due to QC test, outside high range, outside low range, 

missing data, and suspect data. Immediately following, is the tab for “cleaning data due to 

QA/QC” that allows users “to generate and show clean data table”; data that has passed QC test. 

All these features are essential in modern data analytic and integration tool for effective cleaning, 

utilization, and extraction of desired knowledge from data and further reduce the time spent in 

data processing and cleaning as rDataFusion is built with these challenges in mind. 

Future work would include expanding rDataFusion software to include data from other research 

groups and include metadata information. Currently, rDataFusion fetches input data from SEL 
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data archive, future work would enable rDataFusion software to be connected to a standard 

database for data input. Future work will allow users customize the merging of the data based 

selected criteria. Future improvements using a code repository like GitHub (https://github.com) 

for versioning and tracking purpose as the codes for this application is currently in GitHub and 

here is the link: https://github.com/SELDevTeam/rDataFusion1 

3.5. Conclusion 

Through rDataFuison, we have demonstrated that it is possible to aggregate data from different 

sources by long tail ecological scientist using a programming language that is common to 

ecologists. This relied on established web-based practices that in principle allow for the design of 

uniform, programming language, and research infrastructure independent practices, that enable 

seamless integration of data for analysis. This has become viable in practice through the design 

of rDataFusion as a roadmap that can help promote open access to data and open-source software 

development, which is important as it helps researchers who need software for data analytics to 

be able to find one online or generate one and share with the community. 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/
https://github.com/SELDevTeam/rDataFusion1
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Chapter 4: Detecting Rare Soil Moisture Events in a Chihuahua Desert Dryland Ecosystem 

using Machine and Deep Learning 

Abstract 

Detecting rare soil moisture events in dryland ecosystems is important for understanding how 

rising temperatures and shifting precipitation regimes are altering the frequency and severity of 

drought across all dryland regions. However, predicting rare soil moisture events might require 

sensor cross-correlation. Hence, the need for cross-correlation of sensors. The objective of this 

study is to assess if multi-sensor cross-correlation can predict rare soil moisture events in time 

series data using Machine Learning and Deep Learning (DL) models. We deployed several 

Machine and Deep Leaning techniques and cross correlated these for optimal rare soil moisture 

events detection in a Chihuahuan Desert shrubland on the Jornada Experimental Range in 

southern New Mexico. Specifically, the machine and deep learning techniques used for this 

study utilized both classification and regression methods, including Decision Tree Classifier 

(DTC), Logistic Regression Classifier (LR), Random Forest Regression (RF), and a Long Short-

Term Memory (LSTM) method used in Artificial Neural Network (ANN). Of the methods used, 

the DTC performed the best, with prediction accuracy of 88.8%, closely followed by a LSTM 

model with 88%. The LR recorded a prediction accuracy of approximately 80%. The Variable 

Importance Plot (VIP) showed that soil temperature and soil heat flux are the most prominent 

factors in predicting soil moisture dynamics in this dryland ecosystem at 54% and 38%, 

respectively, when a DTC modelling method was used. Similarly, with the random forest 

regression model, the VIP plot showed that soil heat flux made the highest contribution to 

determine rare soil moisture event with a feature value of 50%, closely followed by soil 

temperature with a 35% contribution. This result will further aid in understanding drought 

severity in these regions and help ecologists to manage ecohydrological and agricultural 

processes to ensure human well-being and sustainable environmental management. This will 

further help ecologists to understand both small and large- scale drought patterns in the region. 

4.1 Introduction 

Rare or anomalous events in time series data describe both the unusual magnitude and time 

interval of an event whose value deviates from the remaining measured data points (Nikou 

Gunnemann-Gholizadeh, 2018). According to the IPCC 2021 report (Seneviratne, et al., 2021), it 

is evident that rare events such as hot temperature extremes or droughts are intensifying in many 
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regions of the world and will continue to do so in the future. Other events that are likely to 

intensify are heat waves, floods, soil moisture anomalies, snow-cover-induced albedo anomalies 

among others. In drylands much research focuses on understanding how rare or extreme 

hydrometeorological events affect dryland ecosystems and their functioning (Mahecha et al., 

2017, Frank et al, 2015, & Niu et al., 2014). Some of this research has focused on the 

manifestation of extreme anomalies of phenology (Ma et al., 2015), exploration of soil moisture 

anomalies occurring coincidently with unusual climate patterns that catalyze anomalous 

vegetation responses (Nicolai-Shaw et al., 2017), biogeochemical fluxes (Frank et al., 2015), and 

the global inter-annual variability in atmospheric carbon uptake due to extreme anomalies in 

gross primary production (GPP) (Mahecha et al., 2017). 

Although there are ever more sophisticated climatic models to project or detect future changes, 

the effects of climatic fluctuations on complex ecosystem attributes such as soil moisture 

dynamics remains poorly understood, both empirically and theoretically (Woodward et al., 

2016). For example, soil moisture dynamics are continually perturbed by changes in catchment 

geomorphology and land-use, local physio-chemical parameters, and changes in the timing of 

rare events relative to normal seasonal cycles (Garner et al., 2015 & Death et al., 2015). 

Furthermore, although rare events may be viewed simply as one end of a gradient of fluctuations, 

anthropogenic influences are increasingly altering their intensity, frequency, and duration, with 

potentially dramatic consequences for water availability (Ledger & Milner., 2015). Separating 

the biological impacts of rare events from the effects of inherent and chronic background 

fluctuations in soil moisture dynamics remains an important challenge. 

Soil moisture dynamics influence both global water and energy budgets, and can control the 

redistribution of rainfall into infiltration, runoff, percolation in soil and evapotranspiration (Ali et 

al., 2015). Hence, it is regarded as a space-effective driver of hydrological and vegetation 

processes. Rare soil moisture conditions that are represented by saturation or the permanent 

wilting point can promote flood events or indicate droughts respectively. For meteorological 

processes, soil moisture is the “memory of precipitation” because it stores rainwater and re-emits 

it to the atmosphere via evaporation, sometimes following considerable delay (Ali, et al., 2015). 

Due to these characteristics and to the important effect soil moisture has on surface energy 

exchange, soil moisture content may be one of the best metrrics to observe in order to understand 
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how climate change dynamics are impacting dryland ecosystems. This hastens the need for 

detecting rare events in soil moisture in dryland ecosystems to better understand small and large-

scale drought patterns. 

The soil water holding capacity of any particular soil, especially in dryland ecosystems, 

contribute greatly to soil moisture availability within the soil profile (Weir, P. et al., 2023). 

Typically, soil moisture measurements attempt to quantify the amount of moisture stored within 

the soil. To determine high soil moisture values, which are rare events in draylands, we are only 

interested in the rarest high soil measurements. It is these low frequency soil moisture events 

with higher magnitude (rare events) that we intend to predict using predictive approaches. We 

are focusing on predicting rare high soil moisture events in dryland ecosystem because of its 

importance in understanding climate change dynamics in dryland ecosystems. Soil moisture also 

plays an important role as a space-effective driver for both hydrological and vegetation 

processes, growth, and development.  

Scientists from multiple disciplines, have over the past few decades, increasingly adopted 

predictive approaches to solving scientific problems such as the description of soil moisture 

anomalies, global climate change, emerging diseases, biodiversity loss, food security and many 

more (Willcock et al, 2018). Consequently, ecologists are challenged by the need to understand 

and predict complex ecological processes and patterns. To address these challenges, Machine 

Learning (ML), a fast-growing field that is now well embodied within the discipline of 

ecoinformatics is concerned with identifying structures in complex and often non-linear data to 

generate accurate predictive models or algorithms (Olden et al, 2008, Ghahramani, 2015). 

Simply stated, ML is a process that is used to fit a model to a data set, through training or 

learning. The learned model is then used against an independent data set to determine how well 

the learned model can generalize against the unseen data, a process called testing (Ghahramani, 

2015). 

Advances in both data collection techniques and FAIR Data Principles (Wilkinson et al. 2016), 

the availability of large high-resolution data sets spanning multiple spatiotemporal scales has 

increased dramatically. Accordingly, ML approaches are increasingly used by researchers to 

model complex relationships and predict anomalous behavior in these large data sets has been 

reputed as robust alternatives to traditional ecological modelling approaches (Olden et al, 2008). 
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This is because ecological data are known to be non-linear and multi-dimensional with many 

interactions Olden, et al., 2008). Approaches that assume linearity, therefore, are unable to cope 

with complex interaction effects (Knudby et al., 2010). Expectedly, ML methods show greater 

strength in accuracy and general capacity to predict and explain anomalous pattern especially in 

ecological data (Olden, 2008, Pichler & Hartig, 2023, Scowen, et al., 2021).  

In this study, we will attempt to utilize multi-sensor cross-correlation to predict rare events in 

soil moisture using data derived from a well-studied dryland study site using Machine Learning 

and Deep Learning (DL) -a subset of machine learning that uses structures and patterns like the 

human brain to analyze complex patterns and relationships in data (Pichler & Hartig, 2023). For 

this purpose, we will be adopting Decision Tree Classifier (DTC), Logistic Regression, Random 

Forest, and Long Short-Term Memory (LSTM) of neural networks. These methods were chosen 

because of their ease of implementation and interpretation (Cruz, et al., 2006). The rest of this 

chapter is organized as follows: Section 2 shows the study sites, section 3 highlights the 

methods, section 4 discusses the results, while section 5 presents the conclusion. 

4.2 Study Site: 

This study utilized data collected in a shrubland study site managed by researchers at the 

University of Texas at El Paso and located on the Jornada Experimental Range (32° 34’ 59’’N, 

106° 37’ 34’’ W; 1417m asl, Figure 2.1), which is owned and managed by the United States 

Department of Agriculture – Agricultural Research Service, in Southern New Mexico and 

northern Chihuahuan Desert. The study site was initiated in 2009 and became operational in mid-

2010, with the overarching goal of studying global change impacts on dryland ecosystems, with 

special focus on the biophysical controls and feedback associated with land – atmosphere 

exchange of water, carbon, and energy. Since its inception in 2009, the site has been supported 

by numerous grants and has included over 100 undergraduate and graduate students, post docs, 

and technicians who have explored a range of research topics and questions. Notable studies 

include “Furthering our understanding and scaling patterns and controls of land – atmosphere 

carbon, water, and energy exchange in the Chihuahuan desert shrubland with novel 

cyberinfrastructure” (Jaime, H. A., 2014), Towards new data and information management 

solutions for data – intensive ecological research” (Laney, C.M., 2013), “Assessing data quality 

in a sensor network for environmental monitoring” (Ramirez, G., 2011), “Spatiotemporal 
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variability of plant phenology in drylands: A case study of the Northern Chihuahuan desert” 

(Luna, R.N., 2016), “Development of low cost network of webcams for monitoring plant 

phenology in Chihuahuan desert” (Gonzalez, L., 2011), among others.  

A range of biophysical data such as soil temperature, soil water content, net radiation, relative 

humidity, wind speed, wind direction, soil heat flux, surface reflectance, land-atmosphere carbon 

and energy exchange, and vegetation phenology have been collected since 2010. Data included 

in this study spanned May 2010 to March 2020. Table 2.1 below shows all the data variables 

used with their abbreviated and full variable name and corresponding international system of 

units (SI units). The relative humidity and air temperature were measured at 5m height with an 

HMP155A probe (Vaisala Corporation, Helsinki, Finland), Net radiation was measured with a 

CNR4 sensor from the Campbell Scientific. Soil heat flux was measured using four self-

calibrating Hukseful USA HFP01 sensor plates in four representative positions of the landscape. 

Soil instruments are categorized into two sub-systems of soil profiles installed to capture 

underground soil temperature and heat under Mesquite shrubs and bare soil. The depth of these 

profiles are 2cm, 10cm, 15cm, and 20cm with the data collected and stored in a Campbell 

Scientific CR3000 data logger. It is also pertinent to note that the TE525 (Texas Electronics, 

Dallas, TX, USA) tipping-bucket rain gauge was used to measure the amount of rain on the site 

(Jamie, H. 2014). All these Biometeorological variables were measured every second and 

averaged and stored every 30 minutes. 

The study site is a shrubland with a mixture of Larrea tridenta (Creosote) and Prosopis 

glandulosa (Honey Mesquite) that is typical of the northern Chihuahuan Desert (Laney, 2013). 

Other notable species include Flourensia cernua (Tarbush), Muhlenbergia porteri (Bush Muhly) 

and Dasyochloa pulchella (Fluffgrass). The site is characterized by a shallow sandy to gravelly 

soils that are generally less than 1m in depth and are underlain by caliche. The study site slopes 

westward by approximately 2° from east to west. The long-term average annual rainfall at the 

JER Headquarters (approximately 13km from SEL-Jornada) was 245.1 mm from 1915 to 1995, 

with a standard deviation of 85.0 mm (Wainwright, 2006., Laney, 2013). Petrie, et al. (2014) 

stated that a sizable portion of annual precipitation occurs mostly during the summer monsoon 

season (40-50% on average, 5.7 cm regionally from 1910 to 2010). It is also important to note 

that this region exhibits an out of phase interaction between spring and summer growing seasons, 
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where precipitation events induce ecosystem pulses of vegetation productivity, nutrient cycling, 

and fluxes of water and carbon between spring and summer seasons (Petrie, et al., 2014). 

Table 4.1: Table of micrometeorological variables used in the study with their abbreviated, 

full variable names, and SI units. 

S/N Abbreviated Variable 

Name 

Full Variable Name SI Units 

1 TS Soil Temperature 0C 

2 TA Air Temperature 0C 

3 SW-OUT Shot Wave Outgoing Radiation W/m2 

4 SW-IN Short Wave Incoming Radiation W/m2 

5 NETRAD Net Radiation W/m-2 

6 SWC Soil Water Content % 

7 PA Atmospheric Pressure kPa 

8 P_RAIN Precipitation (Rain) mm 

9 RH Relative Humidity % 

10 LEAF_WET Leaf Wetness mV 

11 WD Wind Direction degrees 

12 WS Wind Direction m/s 

13 PPFD_IN Photosynthetic Photon Flux 

Density Incoming  
umol/m2/s 

14 PPFD_OUT Photosynthetic Photon Flux 

Density Outgoing  
umol/m2/s 

15 G Soil heat flux W/m-2 

16 LW-OUT Long Wave Outgoing Radiation W/m-2 

17 LW-IN Long Wave Incoming Radiation W/m-2 

. 
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Figure 4.1: Map showing the Jornada study site in the northern Chihuahuan Desert 

(Ramirez, G. 2011) 
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Figure 4.2: UTEP-JER site showing a range of different sensing systems including the 

Robotic Tram System (Ramirez, G. 2011). 

4.3 Methods 

4.3.1 Exploratory Data Analysis 

To understand the data and ensure accuracy of predictions, we adopted different approaches in 

exploring the data through exploratory data analysis. All variables were analyzed using python 

and its relevant libraries to check for missing values, null values, percentage of missing values, 

and the data type of each variable as seen in figure 4.3 below. In addition, we employed 

descriptive statistics to explore features of the datasets by generating summary statistics such as 

minimum, mean, standard deviation, first quartile and the maximum values of the numerical 

variables. See figure 4.4 below. 

  

Figure 4.3: Data points showing zero values, missing values, % of total values missing, total 

zero + missing values, its percentage, and the data type for each of the 30-minute from 2010 

-2020 
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Figure 4.4: Summary statistics of the data for exploratory data analysis. See table 4.1 for 

the full names and the SI units of all the variables above. 

Following, all missing values as seen in fig. 4.3 were removed to ensure only available data 

points were used for further analysis. Data were then visualized to check for outliers on both the 

dependent and independent variables (figure 4.5), including the alignment of the datapoints to 

determine if some of the datapoints required normalization, by plotting the histogram of each of 

the variables, as seen in figs. 4.6 below. 

Figure 4.5: Box plot showing outlier distribution of the data points. See table 4.1 for all the 

full names and the SI units of all the variables above. 



70 

 

 

Figure 4.6: Histogram to determine the frequency distribution of the data points for each 

variable. See table 4.1 for the full names and SI units of all the variables above. 

4.3.2 Variable Transformation 

Normally distributed data is essential for the application of large-scale statistical analysis. To 

statisticians, the adequacy and normal distribution of data are very crucial. However, data 

analysts are usually forced to deal with unusual data, including transforming data from non-

normal to normally distributed data (Hamasha, et al., 2022). Therefore, it is important to 

transform the non-normal data points to something close to normal as different statistical 

methods require distinct levels of normality (Hamasha, et al., 2022). There are different non-

normal to normality transformation methods available based on the nature of the data being 

transformed such as Log transformation, Box-Cox transformation, Yeo-Johnson, Reciprocal, and 
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Square-Root transformation methods. Since most of our variables are numeric, consisting of both 

negative and zero values, we must apply a transformation method that is consistent with our data, 

hence, we utilized some numeric variable transformation techniques like standardization - 

implemented in scikit-learn – a python ML Library, and the Yeo-Johnson transformation 

method, allowing the values to be centered around the mean with a unit standard deviation. The 

Yeo-Johnson power transformation that allows data to be more Gaussian-like and removes skew 

in the data distribution was also utilized (Hamasha, et al., 2012). The variables in our dataset that 

were transformed using the above methods include: P_RAIN, NETRAD, SW-OUT, SW_IN, 

LEAF_WET, PPFD_IN, and PPFD_OUT as seen in fig. 4.7 below.  

 

   

Figure 4.7: Histogram showing transformed variables (P_RAIN, NETRAD, SW-OUT, 

SW_IN, LEAF_WET, PPFD_IN, and PPFD_OUT) using Yeo-Johnson power 

transformation method. See table 4.1 for the full names and SI units of all the variable above. 
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4.3.3 Removing Outliers, Checking Multicollinearity, and Removing strongly correlated 

feature variables. 

Upon further analysis of the data, we found some outlying values in the data points and removed 

them, but also tested our final model with and without outliers. We used an Interquartile range 

technique and calculated the difference between the third (Q3) – the 75th percentile and the first 

quartile (Q1) – 25th percentile to return values at a given quantile within a specified range. The 

data points that fall below Q1-1.5IQR or above Q3+1.5IQR were deemed outliers. It is also 

pertinent to note that, for the purposes of analysis and prediction accuracy, we also decided to 

model the data with the datasets deemed as outliers, in order to compare the results with or 

without outliers after the final analysis. Figures 4.8 and 4.9 below show the datasets before and 

after removing outliers, respectively. 

 

Figure 4.8: Box plot of variables before removing data points deemed as outliers. See table 

4.1 for the full names and the SI units of all the variables above. 
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Figure 4.9: Box plot of variables after removing data points deemed as outliers. See table 

4.1 for the full names and the SI units of all the variables above. 

 

Furthermore, we explored the strength of the relationship between these variables by creating a 

correlation heatmap (figure 4.10). The correlation heatmap helps to provide a quick and intuitive 

way to visualize the correlation matrix and identify relationship between variables. Upon closer 

examination of the correlation heatmap, we found several variables are multi-correlated. 

However, multi-collinearity portends a significant issue for linear models. Collinearity can cause 

unstable parameter estimation, unreliable models, and weak prediction ability (Cheng, J. et al., 

2022). In other to address this problem, the Variance Inflation Factor (VIF) was introduced for 

feature selection. VIF is a tool that helps to identify the degree of multicollinearity. VIF 

measures how much the behavior (variance) of an independent variable is influenced, or 

inflated, by its interaction/correlation with the other independent variables (Cheng, J. et al., 

2022). Following best practice (Cheng, et al, 2022), any feature variable with VIF values above 

the threshold of 5 was removed. The correlation heatmap below shows the remaining feature 

variables after applying VIF to the variables (Figure 4.11). To compare the prediction accuracy 

between the transformed and untransformed, we also performed the final modelling both with 

and without removing the multi-correlated feature variables.  
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Figure 4.10: Correlation heat map of all the variables without data transformation. See 

table 4.1 for the full names and the SI units of all the variables above. 
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Figure 4.11: Correlation heat map after multi-correlated feature variables were removed 

using Varible Inflation Factor. See table 4.1 for the full names and the SI units of all the 

variables above. 

4.3.4 Modelling Techniques: 

Machine learning (ML) methods utilize a variety of statistical, probabilistic, and optimization 

methods to learn from the data, and detect useful patterns from large, unstructured, and complex 

dataset (Uddin, et., 2019 & Mitchel, 1997). In this study, we are mostly adopting supervised 

learning approaches for our modelling. In supervised learning (SL), a labelled training dataset is 

first used in training the algorithm. This trained algorithm is then fed on the unlabeled test dataset 

to categorize data into similar groups. SL is well suited to problems focused on either classification 

or regression-based issues. For this reason, we have identified Decision Tree Classifier (DTC), 
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Logistic Regression (LR), Random Forest (RF), and a deep learning algorithm – Long Short – 

Term Memory (LSTM) as different algorithms for modelling our problem - soil moisture 

dynamics. In each of these methods, we first evaluate the prediction capabilities of the model on 

the training sets of the data, before proceeding to evaluate the prediction capabilities of the models 

on the data set aside for testing called the ‘test set’. For the classification models - logistic 

regression and Decision tree classifier, we summarized the dependent variable - SWC, and found 

that the minimum value is -0.2114, while 4.56, 2.86, 2.52, 6.33, and 12.049 were the mean, 

standard deviation, first quartile, third quartile, and maximum, respectively. Since this is a binary 

classification, it procedurally dictates that a certain threshold needs to be assigned to distinguish 

between the two classes. In this regard, we made the histogram (Figure 4.12) below, to see the 

frequency distribution of the dependent variable (SWC) and utilized percentile – a statistical 

measure that indicates the value below which a certain percentage of observation in the dataset 

will fall. It is used to describe the distribution of a set of data by dividing it into one hundred equal 

parts. Based on the frequency distribution from the histogram, we took the 80th percentile as the 

threshold; this means that any value of SWC greater than or equal to 80th percentile was classified 

as 1 – to symbolize a rare event, while any value of SWC that falls below 80th percentile was 

classified as 0 – an event that is not rare. The value of SWC corresponding to the 80th percentile is 

6.9%. Based on the 80th percentile categorization, we found that 17591 SWC data points fell into 

this category of ‘1’ (rare events) and 70362 fell to the category of 0 (not rare events). Note: the 

sole purpose for the use of percentile is to convert the dependent variable to a categorical variable 

for binary classification. Hence, in our models, we are predicting the accuracy of Soil Water 

Content events equal to or greater than the high soil moisture threshold event, that is, the less 

frequently observed soil moisture with higher magnitudes in terms of the measured values.  
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Figure 4.12: Histogram of the dependent variable (SWC). 

4.3.5 Decision Tree Classifier, Logistic Regression, Random Forest, and Long Short – Term 

Memory 

4.3.6 Decision Tree Classifier 

DTC is a kind of nonlinear supervised classification model which has tree-like structures as a 

classifier. Here, the connection point between branches represents the condition for 

discrimination and the leaf nodes at the end of the branches represent the categories the records 

belong to. In using DTC, we continuously select different branches and repeat the process until 

reaching the leaf node (Zhang et., 2021). The nodes of a DT normally have multiple levels where 

the topmost or first node is known as the root node. All nodes having at least one child or 

internal node represent the test data or input variables. The classification algorithm branches 

towards the appropriate child node where the process of test and branching repeats until it 

reaches the leaf node depending on the test outcome (Uddin, et al., 2019). DTs have been found 

to be relatively easy to interpret and quick for users to learn in other fields (Cruz, et al., 2006). 

To identify each node, an attribute and a split condition on a given attribute minimizes the 

mixing of class labels, resulting in pure subsets. We utilized the GINI index to evaluate the 
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goodness of fit. The GINI index determines the purity of a specific class after splitting along a 

particular attribute (Zhang et., 2021). The best split increases the purity of the sets resulting from 

the split. We also utilized a test size of 0.25, a random state of 50, with a maximum depth of 6, 

maximum features of 4, and minimum sample leaf of 10 to build our decision tree classifier. 

Continuously, we ran the algorithm with all these parameters but without filtering outliers from 

the data to compare with results derived from data sets where outliers were excluded, as 

described above. Additionally, we ran the algorithm without invoking any kind of variable 

transformation technique or check to removing multi-collinearity but filtered out datapoints 

considered as outliers. This will further help evaluate and compare the overall accuracies of each 

of these techniques. 

4.3.7 Logistic Regression 

Logistic Regression is one of the most frequently used methods in supervised learning for the 

purpose of prediction. To predict the class labels of instances, the logistic regression assigns each 

instance as a probability. The probability of an anomalous instance (yj = 1) is denoted by P(yj = 

1|Xj ), and P(yj = 0|Xj ) = 1 − P(yj = 1|Xj ), for yj = 0. The estimated probability is learned based 

on the sigmoid basis function: P(yj = 1|Xj ) = f(g(Xj, β)) =
1

1+ⅇ−𝑔(𝑥𝑗,𝛽)
,    ---------- (1) 

where 0 ≤ f(g(Xj, β)) ≤ 1 and g(Xj, β) = β0 +∑ 𝐵𝑖
𝑇
𝑖=1 ⋅ 𝑥𝑡𝑖

𝑗
 is a linear expression including the 

explanatory features and the regression coefficients β. Equation 1 is called the linear logistic 

regression (Nikou Gunnemann-Gholizadeh, 2018; Bishop, 2006; Goodfellow et al., 2016). Being 

that it is a probability, the outcome lies between 0 and 1. We utilized the processes outlined in 

section 3.4 above to distinguish between the two classes, thereby classifying soil water content 

values that meet the 80th percentile threshold as either rare or not a rare event depending on 

whether they are greater than or equal to or less than 6.9% which is the SWC value at 80th 

percentile. 

We used the same data transformation procedures as DTC for logistic regression to model the 

data. We also modelled the data without any transformation to compare the results before and 

after. A variable importance plot helped to determine the contribution of each of the features 

selected in the overall performance of the model (Figures 4.14 & 4.15). 
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4.3.8 Random Forest 

Random Forest (RF) was also used to model the rare events in soil moisture. RF – is an ensemble 

regression consisting of many decision trees similar to a forest having numerous trees. Its 

foundation is based on bagging and random subspace methods (Ganesh, et al., 2021). With 

bagging, several learner trees are created and ensembled to ensure prediction accuracy is 

obtained. Following, independent bootstrap samples are created from the original training sample 

data for use in training the learner trees. Each bootstrap sample is created by drawing examples 

from the original training data. It is allowed to replace the examples while creating the bootstrap 

samples. In general, the bootstrap samples may be around 2/3 of the training data, without any 

duplicate examples. 

In the Random Forest regression Model, bagging reduces variance and overfitting in the 

ensemble, making it important for the learner trees to be correlated. Importantly, the samples 

from the original training datasets which were not selected for training the regression tree during 

bagging are collated to constitute an out of bag (OOB) dataset. The regression tree’s 

performance in terms of mean square error is calculated based on OOB, which is usually one-

third of the training dataset (REF). For the random forest regression model on non-dichotomous 

target variable – Soil Water Content (SWC), we transformed some of the variables that were 

badly skewed using the Yeo-Johnson power transformation method. We also removed outliers as 

well as checked and removed multi-correlated feature variables using variable inflation factor 

(VIF) values above 5. 

Several accuracy metrics were implemented in the model. This included the coefficient of 

determination (R2), consideration for the total number of samples, the mean absolute error 

(MAE), the mean squared error (MSE), as well as root mean squared error (RMSE). In this 

study, accuracy metrics help to understand how well the model performed in predicting the 

dynamics of soil moisture in dryland region. 

4.4.9 Long Short-Term Memory (LSTM) 

Neural network (NN) methods have an extraordinarily strong learning potential and the capacity 

to represent nonlinear relationships between the inputs and outputs of a system (Adeyemi et al., 

2018). NN has been applied to some specific water resources management problems such as crop 

yield prediction (Guo et al., 2014 & Gandhi et al., 2016), rainfall-runoff modelling (Sarkar et al., 
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2012 & Khan et al., 2006) and the prediction of soil moisture to aid irrigation (Capraro et al., 

2008 & Tsang et al., 2016). Specifically, the LSTM, a class of Recurrent Neural Networks 

(RNN), has been successfully applied in the control of nonlinear dynamic systems (Wang et al., 

2017 & Wang, 2017). The LSTM model – which is a branch of NN requires minimal input data 

for pre-processing and can preserve vital information across multiple time steps (Chauhan, S. & 

Vig, L., 2015). It has shown excellent performance in modelling water table depth according to 

Zhang et al. (2018), where they applied time series data on water dispersion, evaporation, 

precipitation, and temperature as inputs to the model. The authors reported R2 scores ranging 

between 0.789 and 0.952 for the LSTM models, outperforming other models. The excellent 

water table depth prediction demonstrated by the LSTM models highlights their ability to 

preserve and learn previous information from long-term time series data. This ability is 

particularly desirable in modelling soil moisture dynamics in dryland ecosystems and underpins 

the rationale for including it in this study. 

The LSTM is the output of a NN feeding back to the input that allows modelling data sequence 

or chains of information. Since the vanishing gradient problem of the training algorithm of RNN 

occurs because of backpropagation through time, the LSTM method uses several gated units to 

overcome this challenge (Gonzalez, J. & Yu, W., 2018). In this model, a total of 64 memory cells 

were used, with a l2 kernel regularizer that has a value of 0.01. There is also the input shape, the 

timesteps – that specifies the timesteps in the input sequence, and the input dimension that entails 

the number of features in each time step, and further complied with binary cross-entropy, 

RMSprop with a value of 0.01, and accuracy - as the loss function, optimizer, and the metrics, 

respectively. Subsequently, the model is trained with input training data and corresponding 

output training data. in this study, the model was trained with 50 epochs, a batch size of 16, and a 

validation split of 0.2. 

4.4 Results  

4.4.1 Analysis of the results from different models 

Biogeophysical data collected from 2010 to 2020 at our Chihuahuan Desert site were analyzed 

using four different machine learning models to understand and predict rare soil moisture events. 

Firstly, we modelled the data with DTC without transforming the data or filtering out outliers, 

and a prediction accuracy of 88.8% was achieved, with both precision and recall values of 93%. 
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However, when datasets deemed to be outliers were removed and skewed features were filtered 

out using a variance inflation factor (VIF), we noticed a reduction in the accuracy of the 

prediction. Prediction accuracy reduced to 81%, and the precision also reduced to 82%, while the 

recall increased to 99%. Moreso, when the model was built without removing outliers but 

excluded multi-correlated feature variables, the predication accuracy remained the same at 81%, 

precision, and recall slightly varied to 83% and 97%, respectively.  

When the logistic regression model was run without filtering outliers, transformed, or removed 

strongly correlated features, including skewed features, the prediction accuracy was 80.23%, 

with precision and recall values of 82% and 97%, respectively. When run with outliers and 

skewed factors removed, the prediction accuracy did not see a significant change at 

approximately 80%, with precision and recall of 80% and 100%, respectively. Accordingly, 

when the model was built with outliers included and multi-correlated feature variables excluded, 

the prediction accuracy was reduced to 79%, while the precision and recall were pegged at 81% 

and 96%, respectively. These prediction results show that DTC, LR, and LSTM were more than 

80% accurate in predicting that Soil Water Content with values equal or greater than 6.9% are 

rare soil moisture events. Table 4.1 below shows the results from DTC and LR. 

Table 4.2: DTC & LR modelling results before & after transforming the data with and 

without outliers. 

Algorithm 

Name 

Categories Precision Recall F1-score Accuracy 

Decision Tree 

Classifier  

0 0.93 0.93 0.93 0.8876 

1 0.72 0.72 0.72 

Decision Tree 

Classifier 

(After 

Transforming 

& removed 

0 0.82 0.99 0.89 0.8123 

1 0.68 0.10 0.17 
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outliers) 

Logistic 

Regression 

 

0 

0.82 0.97 0.89        0.8023 

1 0.51 0.12 0.20 

Logistic 

Regression 

(data 

transformed, 

outliers & 

strongly 

correlated 

features 

excluded) 

0 0.80 1.00 0.89          0.7986 

1 0.00 0.00 0.00 

Logistic 

Regression 

(with outliers 

but excluded 

strongly 

correlated 

features) 

0 0.81 0.96 0.88          0.7896 

1 0.40 0.12 0.18 
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Figure 4.13: DTC Modelling confusion matrix before & after transforming the data and 

with or without outliers 
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Figure 4.14: Logistic Regression confusion matrix for the different scenarios described 

above in order.  

The result of the random forest regression model on the non-dichotomous target variable – Soil 

Water Content (SWC), see table 4.2 below, shows an R2 of 21%, it implies that the model is only 

able to explain 21% variation in the dataset.  
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Table 4.3: Results of Random Forest Regression Model 

Algorithm Metrics Results 

Random Forest Regression 

Model 

Mean Squared Error 6.53 

Root Mean Squared Error 2.55 

Mean Absolute Error 1.96 

R2 0.21 

 

Furthermore, for a deep learning model, LSTM, at 50 timesteps, batch size of 16, sigmoid as 

activation, loss function as binary cross entropy, and Adam as optimizer, we applied the model 

without filtering out outliers or transforming as well as not removing strongly correlated feature 

variables, the model achieved an accuracy of 88% with a loss of 0.2664. When we transformed 

the data using the Yeo-Johnson transformation method, removed outliers and strongly correlated 

features, we arrived at an accuracy of 81% and loss of 0.4120. Alternatively, when we kept the 

outliers but transformed and removed strongly correlated features, the prediction accuracy 

remained the same at 82% with a loss of 0.4098. Table 4.3 below shows the results in a clear 

form. 

Table 4.4: Results from LSTM model. 

Algorithm name Epoch Loss Accuracy 

LSTM  50/50 0.2664 0.8813 

LSTM (With 

transformation, outliers 

& correlated feature 

excluded 

50/50 0.4120 0.8141 
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LSTM (Outliers 

included but 

transformed & 

correlated features 

excluded) 

50/50 0.4098 0.8168 

 

The Variable Importance Plot (VIP) for the DTC model, showed that Soil temperature and soil 

heat flux are the most important features for predicting rare soil moisture events with16% and 

14%, respectively, without the transformation or removing outliers from the data and over 54% 

and approximately 38% contributions, respectively, when the data was transformed, outliers 

filtered out, strongly correlated features removed, including skewed feature variables. When the 

data was transformed and outliers were removed with strongly correlated features, but without 

removing skewed features, the contribution of soil temperature and soil heat flux to the 

prediction retained their importance relative to other feature variables at 30% and 26%, 

respectively. With the random forest regression model, the VIP interestingly showed that soil 

heat flux made the highest contribution to determine rare soil moisture event with feature value 

of 50%, closely followed by Soil temperature with a 35% contribution. 

   

Figure 4.15: DTC VIP without transforming or outliers removed. See table 4.1 above for 

the full names and the SI units of all the variables in this plot. 
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Figure 4.16: DTC VIP with transformed data, outliers and strongly correlated features 

removed. See table 4.1 above for the full names and the SI units of all the variables used in 

the plot above. 

To measure the effectiveness of the model and to assess how well the best model captured and 

predicted rare soil moisture dynamics, we analyzed the confusion matrix of the best model 

(DTC) shown below in Figure 4.12. A confusion matrix is a performance measurement for 

machine learning classification methods, where output can be two or more classes (Das, et al., 

2022). It is a table of four different combinatinations of actual and predicted values, where each 

row represents an instance in actual values, while each column represents the predicted values, 

or vice versa (Kulkarni, et al., 2020 & Das, et al., 2022). The four different combinations 

include: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The 

TP means both the actual and predicted values are positive, that is the number of actual positive 

examples are classified accurately (Kulkarni, et al., 2020 & Das, et al., 2022). We had 13062 

examples predicted as rare soil moisture events that are actual rare events from the DTC. FP 

means that the actual value is negative, but the model predicted value is positive, that is the 

number of actual negative values classified as positive. In our model, that value stands at 978, 

i.e. 978 unrare soil mositure events were classified as rare events. FN on the other hand, is the 

number of actual positive examples classified as negative and we have 1000 false negatives in 

our best performing model. Lastly, TN, means both the actual and predicted values are negative, 

that is, the number of negative examples classfified accuarately. In our model, we had 2551 

classified as unrare soil mositure events that are actually unrare events. In the analysis above, 

we can see that the number of TP and TN are very high compared to FP and FN as predicted by 

the model. This further attests to the accuarcy of our predicted results, which depends largely on 
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the TP and TN. In other words, the misclassification is low since the number of FP and FN are 

very low. 

 

Figure 4.17: Visual interpretation of confusion matrix & confusion matrix of the best 

performing model in predicting rare soil moisture events 

4.4.2 Discussion 

Predicting rare soil moisture events in dryland ecosystems is essential as rising temperatures and 

shifting precipitation events are increasing the frequency and severity of drought across all 

dryland regions (Chenoweth, et al., 2022). Understanding drought severity in these regions is 

essential to manage ecohydrological and agricultural processes to ensure human well-being and 

sustainable environmental management (Bradford, et al., 2019). This study utilized multi-sensor 

cross-correlation to predict rare events, that is soil moisture events that are less frequently 

occurring with higher magnitudes in terms of its measurement values compared to others, in time 

series data in a northern Chihuahuan Desert shrubland situated on the Jornada Experimental 

Range in Southern New Mexico using predictive approaches. We chose a predictive approach to 

model this problem based on its capacities as outlined in the introduction section above.  

Results affirmed the importance of soil temperature and soil heat flux as the best predictors of 

soil moisture variability based on the ML models applied. Soil Moisture has been shown to have 

a tremendous influence on soil temperature by controlling the partitioning between sensible and 

latent heat (Seneviratne, et al., 2016). This leads to more absorbed radiative energy being re-

distributed into latent heat flux (Jin, S.N. & Mullens, T., 2014). Therefore, soil moisture interacts 

with soil temperature in controlling the exchange of water and heat energy between the land 

surface and the atmosphere through evaporation and plant transpiration. Results from the VIP 
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illustrating that soil temperature and soil heat flux have a greater influence on modeling soil 

moisture than rainfall is understandable considering that this region experiences prolonged 

periods of relatively high temperatures without rainfall. 

Land-atmosphere exchange of water and heat is an interactive process, where temperature 

gradients affect the soil moisture potential and both liquid and vapor movement in the soil (Julie, 

A. et al., 2021). The effects of soil moisture on the surface energy exchange may have a 

profound impact on climate change dynamics in the Chihuahuan Desert region. Hence, from our 

models findings that showed 88.8% accuracy soil moisture events that are equal or above 6.9% 

in value or greater than or equal to 80th percentile are rare soil moisture events, with soil 

temperature and heat flux being the most contributing variables to soil mositure dynamics, 

ecologists may be able to understand small and large-scale drought patterns within the 

Chihuahuan Desert dryland region, and link their affect to global or changing climate. 

It is important to note that the prediction accuracies were comparable among the models we 

utilized, with variation occurring depending on the state of the data. For example, we generally 

obtained higher prediction accuracy when there was no transformation of the data, no outliers 

were filtered out, and strongly correlated and skewed features were retained. The prediction 

accuracy slightly changed when we either filtered outliers, transformed the data, and/or removed 

strongly correlated features and strongly correlated features. This is noticed across the three 

Models of DTC, LR, and LSTM. This may be connected to the size of the data, as it has been 

established that ML algorithms, especially classification algorithms, perform poorly with limited 

sized data sets (Althnian, A., et al., 2021, Pitchler & Hartig, 2023). This is attributed to the fact 

that limited datasets will likely lead to less details, hence, the model cannot generalize patterns in 

training data (Althnian, A., et al., 2021). In addition, it may also lead to overfitting of the model 

(Althnian, A., et al., 2021, Scowen, et al., 2021). Overfitting occurs when the model becomes too 

complex and fits the training data too closely, leading to deficient performance on new unseen 

(test) data (Althnian, A., et al., 2021, Pitchler & Hartig, 2023). The above postulation could aptly 

explain the slight reduction in accuracy of our models when the size of our data was reduced 

following the removal of outliers, multi-correlated features, and skewed features.  

In the Random Forest Regression Model, the accuracy metrics used, such as R2,showed a 

different prediction strength in modeling rare soil moisture events compared to the other models. 
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For instance, the RF R2 value of 21% showed that the model only explained 21% of the variation 

in the dataset. The mean squared error, which measures the amount of error in the model, was 

valued at 6.53, which could be viewed to be high as values closer to zero are usually more 

appropriate. This deficient performance of the RF regression model could be attributed to the 

inability of RF to extrapolate training data, challenging the model to make effective predictions 

based on the average of the previously observed labels. To state it differently, in a regression 

problem, the range of prediction a RF model can make is bound by the highest and the lowest 

labels in the training data (Jonsson, E., & Fredrikson S., 2021). This behavior becomes 

problematic in situations where the training and prediction inputs differ in their range and/or 

distribution, which is the case for our data, as the distribution of each of the variables in the 

training sets are different. Overall, our model’s’ performance were better for classification 

problems compared to regression as seen from the results of the random forest regression 

analysis and other modelling approaches, we deployed. 

Future directions would be to incorporate the different depth of soil moisture measurement into 

the models. This cross-correlation analysis could further be extended to analyze common 

climatic indices such as drought, wind patterns, wildfires, heatwaves, etc., to back-cast soil 

moisture in the past, which could help determine long-term change and event durations. 

4.5 Conclusion 

This paper has presented different modelling approaches such as DTC, LR, and RF as well as the 

deep learning approach LSTM to model rare soil moisture events between 2010 and 2020 at a 

dryland study site in the northern Chihuahuan Desert of Southern New Mexico. The 

performances of each modelling approach were evaluated based on the state of the data – 

filtering or retaining outliers, transforming, or not transforming the data, excluding or not 

excluding strongly correlated, and skewed features variables. All the models but the regression-

based Random Forest achieved a prediction accuracy of over 80%, with DTC and LSTM 

reaching a prediction accuracy of 88.4% and 88%, respectively. The precision and recall which 

measures the accuracy of positive predictions and the completeness of positive predictions, 

respectively, were all far above 85%. ML and DL algorithms are powerful predictive modelling 

and data analysis tools for modelling complex ecosystem attributes such as rare events in soil 

moisture and how it affects drought patterns in the region. Hence, this prediction will further aid 
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ecologists in understanding drought severity in these regions and help them to manage 

ecohydrological and agricultural processes to ensure human well-being and sustainable 

environmental management.  
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Chapter 5: General Discussion 

The overarching goal of this dissertation is to develop ecoinformatics tools that will contribute 

to the advancement of global change science through; I) mitigating the challenges of new 

infrastructures for Big Data archiving, management and sharing, and analysis by developing a 

flexible system that supports multiple and novel data usage and visualization and II) 

understanding complex relationships among variables in a data set. In this chapter, we will 

discuss each of the objectives that addressed the above-mentioned overarching goal. Future 

research directions are also presented. 

5.1 Overview of the dissertation 

The first objective of this dissertation was to develop a tool that will aid synthesis, analysis, and 

discovery of spectral data collected from multiple instruments and lab groups to enhance data 

reuse and availability to wider user community. We achieved this by successfully developing 

web based analytic tools capable of integrating spectral reflectance data from multiple 

instruments actively used in the NASA ABoVE domain. R-HyperSpectral will help to 

dynamically view, interact, and discover optical properties of boreal and tundra plant 

communities. Users can view the hyperspectral reflectance scans and explore common spectral 

indices at temporal scales. 

In the Arctic, multiple streams of detailed field measurements of vegetation optical properties 

along with corresponding airborne and satellite remote sensing observations, particularly, 

hyperspectral reflectance measurements are being collected and used by NASA ABoVE 

investigators. These streams of data aid them to understand Arctic change, ecosystem 

vulnerabilities, including permafrost thaw and degradation, snow cover and sea ice loss, and air 

temperature rise, among others. However, due to the size and complexity of the data being 

collected, managing, analyzing, sharing, and visualizing has become challenging. With these 

challenges in mind, researchers have adopted some other ways of sharing and managing their 

data such as storing it in local archives or exchanging data through emails, which could make the 

data prone to destruction, data loss, as well as bring about accessibility issues. 

To mitigate the susceptability of data under – utilization, loss, destruction, coupled with the 

challenges of managing, analyzing, sharing, reuse, and visualization of these streams of 
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hyperspectral reflectance data, we developed R-HyperSpectral. R-HyperSpectral will not only 

aid the synthesis and integration of diverse hyperspectral data streams but also, give the research 

community access to data for improved rapid change detection across the ABoVE domain. 

Similarly, the second objective of the dissertation is motivated by the urgency to address what 

has been identified as a critical need by the ecological community. Addressing lab groups that 

collect multiple streams of data (climate, ecological, sensor, human observations/measurements) 

at one or several networked sites but have no means of managing, analyzing, visualizing, and 

sharing these data sets have persisted in the environmental and ecological science communities 

for decades. To achieve this objective and help address these challenges faced by the community, 

we developed rDataFusion – a multi-data fusion tool capable of aggregating heterogeneous data 

sets collected from a range of automated and semi-automated sensors and manual observations 

over a decade-long period.  

rDataFusion, has the capability to integrate and filter data from two instrument nodes and 

different data streams that include micro-meteorological variables (e.g., temperature, relative 

humidity), soil conditions (e.g., temperature and soil moisture), and ecosystem trace gas and 

energy fluxes. After initial compilation and filtering, users can visualize data in near real-time to 

check that all sensors are running properly, and/or ensure preliminary flagging for data that is 

deemed out of range or problematic in some way. rDataFusion, also, has the capacity for 

exploratory data analysis through quality control and quality assurance processes and allow for 

identifying missing values, outliers, and gap-filling missing or problematic data, visualize data to 

allow for preliminary summaries and interpretations, and compare data across time or by site. 

With Chapters 2 and 3, we identified an issue within the ecological community and proffered a 

solution by building a web-based information and data management system that allows 

researchers to analyze and dynamically visualize data. This also streamlines documentation of 

data and incorporates metadata management, including data aggregation. These new data 

management tools or system have the capability to improve data management with others in the 

ecological research community faced with similar challenges, and the open-source code will 

permit users to modify and/or add new or extended modules that can be further shared and 

innovated. This could potentially in the future become a new data management solution for the 
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majority of the ecological or environmental research community and allow for easy access and 

discovery of data for research. 

Lastly, the objective of data chapter 4 was to test and gain spatiotemporal information about soil 

moisture anomalies or dynamics and how to predict them in the dryland ecosystems to better 

understand small and large-scale drought patterns. We achieved this objective by utilizing multi-

sensor cross-correlation to predict rare soil moisture events in temporal data using some Machine 

Learning and Deep Learning (DL) models. This is we did by deploying several Machine and 

Deep Leaning techniques and cross correlated these sensors for optimal rare soil moisture events 

detection in the Northern Chihuahuan Desert, in Southern New Mexico. Specifically, the 

machine and deep learning techniques used for this study include both classification and 

regression methods, including Decision Tree Classifier (DTC), Logistic Regression Classifier 

(LR), Random Forest Regression (RF), and the Long Short-Term Memory (LSTM) method of 

Artificial Neural Network (ANN). Our models predicted that soil moisture events that are equal 

or greater than 6.9% are rare events, with prediction accuracy of over 88%. 

In conclusion, through the tools we developed, data will be available for ecological and 

environmental science researchers to analyze and further understand ecosystem changes over a 

range of spatial and temporal scales and levels of biological organization and interaction. It will 

also aid Arctic ecosystem researchers to understand ecosystem changes such as coastal erosion, 

permafrost thaw and degradation, air temperature rise, snow cover and sea ice loss orchestrated 

by Changes in climate variability over the past decades. Furthermore, the analysis and prediction 

of rare soil moisture events in the dryland ecosystem unveils a pathway to understanding soil 

moisture events and the key driver of soil moisture in drylands. The understanding of ecosystem 

and climate variability either in the desert or in the arctic, and drivers of soil moisture coupled 

with rare soil moisture events detection in dryland are all case studies that collectively contribute 

to the advancement of the global change sciences. 

5.2 Future research directions 

We have developed web-based data analytic tools that could aid ecologists better manage their 

data. The study opens the possibilities for future research directions. Modifying machine and 

deep learning models to accommodate soil moisture measurements at different depths, including 

seasonal variations will enhance knowledge of how rare soil moisture events persist in dryland 
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ecosystems. Seasonal variation of soil moisture availability has a profound impact on dryland 

ecological niches through linkages between soil moisture and vegetation composition and 

functioning. Soil moisture content may be different in different locations. Creating ML models 

that clearly incorporate these locational differences to see if there are emergent properties 

between sites that could serve as predictors and seasonal variations will further enhance the 

understanding of both small and large-scale drought patterns in the region.  

Furthermore, improving the detailed understanding of the processes and mechanisms that control 

soil moisture in dryland ecosystems would be a viable research opportunity in the future. 

Estimating soil moisture availability and the key drivers in dryland ecosystems is critical for 

advancing earth system science, planning, and management, and understanding the impacts of 

drought on the ecosystems. This will help develop more consistent methods to approximate soil 

moisture dynamics needed for ecosystem functioning and resource management. 

Another future direction would be to link R-HyperSpectral to the ABoVE Spectral Library 

(ASTRAL)- a web mapping tool for spectral information to introduce a geospatial component. 

Another potential future research direction would be to find ways to improve on the data 

aggregation and management components of the rDataFusion tool to develop and/or include 

metadata for datasets. Expanding rDataFusion to include information about data provenance, 

content, structure, and permission, so that data will be discoverable for future use, will further 

enhance the tool’s potential. Importantly, expanding on most of the research questions such as 

“How can we develop or create a workflow or template for project-specific multi-data fusion?” 

to include data from other researchers and open it up to other projects that are similar and would 

be neat to explore. Similarly, expanding and creating standard frameworks that do not only take 

into consideration the set of quality control and assurance standards across the network, but also 

facilitate intra and inter - site data integration and spatial comparison will enhance site 

intercomparison, transfer lessons learned at one spot to another. 
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