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Abstract 

Binding affinity between two molecules is an essential property in drug and sensor 

discovery. Several computational and experimental methods exist to find molecules with high 

binding affinities to desired target molecules. These methods are often complementary, where fast 

computational methods can be used for the initial screening of molecules, and experimental 

methods can then screen and determine the molecules of interest and sometimes define the 

structures of bound complexes. After these steps, computational methods, like molecular dynamics 

(MD) simulations, can provide detailed insights into atomic interactions and binding, and machine 

learning approaches can analyze experiment-derived data to discern patterns and trends. The above 

computational methods were employed to tackle several research questions in this dissertation. In 

the first project, lipid-wrapped single-walled carbon nanotube (SWNT) conjugates and their 

interactions were examined with several membrane-disrupting molecules. The results of our 

simulations with the experimental optical emission spectra of these conjugates were compared, 

and the magnitude of the optical signal from the magnitude of the observed structural disruption 

was predicted. In the subsequent project, machine learning approaches were used to predict new 

DNA sequences in DNA-SWNT conjugates that can sense serotonin molecules. In the last project, 

BinderSpace, an open-source Python package was coded and developed for motif analysis, 

sequence visualization, and clustering. This tool was instrumental in analyzing datasets of 

oligonucleotides binding to single-wall carbon nanotubes and cyclic peptidomimetics interacting 

with bovine carbonic anhydrase protein. 

 Overall, this dissertation demonstrates the effective combination of computational 

methodologies in molecular science and contributes valuable tools and knowledge that can 

significantly impact sensor technology. 
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Chapter 1: Introduction 

Binding affinity between two molecules is a pivotal property in drug discovery and sensor 

development. There exists a complementary utilization of computational and experimental 

methods to identify molecules with high binding affinities to specific target molecules. Initial 

screenings often employ rapid computational techniques, followed by experimental methods to 

refine, and sometimes elucidate the structures of bound complexes. Subsequently, computational 

methods, particularly molecular dynamics (MD) simulations, provide intricate details of 

interactions and binding, while the machine learning methods offer predictive analytics and pattern 

recognition from the accumulated data, further enhancing the accuracy of prediction of new 

candidates proposed to have high affinity to target molecules. 

In the second chapter, the computational methodologies were used to perform the research 

described in the subsequent chapters.  

Chapter three focuses on lipid-functionalized SWNTs, examining their interactions with 

various membrane-disrupting molecules using MD simulations. The study revealed that these 

SWNTs favor asymmetrical positioning within the phosphatidylcholine (POPC) corona phase. By 

juxtaposing our simulation outcomes with experimental optical emission spectra of these 

conjugates (obtained by our collaborators), we aimed to discern if the magnitude of the optical 

signal could be predicted from the observed structural perturbations. The findings of this chapter 

were published in the journal ACS Applied Materials & Interfaces under the title "Characterizing 

the Interactions of Cell-Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled 

Carbon Nanotubes."1 

The fourth chapter, DNA-wrapped single-walled carbon nanotube (SWNT) conjugates, 

known for their unique optical properties in biosensing and imaging, were explored. The challenge 
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lay in predicting DNA sequences that yield strong analyte-specific optical responses. Using near-

infrared (nIR) fluorescence datasets, machine learning (ML) models were trained to predict DNA 

sequences with pronounced optical responses to the neurotransmitter serotonin. This approach led 

to the discovery of five novel DNA–SWNT sensors with enhanced fluorescence response to 

serotonin. The insights from this chapter were published in the journal ACS Nano in an article 

entitled "Discovery of DNA–Carbon Nanotube Sensors for Serotonin through Machine Learning 

and Near-infrared Fluorescence Spectroscopy."2 

In the last chapter, the discovery of target-binding molecules, such as oligonucleotides and 

peptides, was enhanced using BinderSpace, an open-source Python tool was coded and developed. 

This tool proved useful for analyzing datasets of oligonucleotides binding to single-wall carbon 

nanotubes and cyclic peptidomimetics interacting with bovine carbonic anhydrase protein, 

emphasizing the importance of bioinformatics in understanding large datasets and identifying 

high-affinity binders. The findings from this chapter were featured in the Journal of Computational 

Chemistry under the title "BinderSpace: A Tool for Analyzing Sequence Spaces in Datasets of 

Affinity-Selected Oligonucleotides and Peptide-Based Molecules."3 
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Chapter 2: Methods 

2.1. MOLECULAR DYNAMICS SIMULATION 

The systems in chapter three were investigated using classical atomistic molecular 

dynamics simulations. This section covers the various aspects of MD simulations, including their 

theoretical foundations, force fields, and interactions between atoms. The integration method for 

solving the equations of motion in each thermodynamic ensemble is also discussed. 

Classical Molecular Dynamics 

The simplest way to perform MD simulations is to solve the classical equations of motion 

using Newton's equations for all atoms present in the system of interest. These equations are used 

for systems that have constant energy as a constraint4. For a system containing N particles, the 

Cartesian coordinates ri and velocities vi of each particle i present in the system are obtained by 

solving Newton's equations of motion. For the system which contains N particles, the force on 

particle i, 𝑓𝑖⃗⃗ , can be obtained from Newton’s equations of motion as follows: 

 

𝑚𝑖
∂2𝑟𝑖⃗⃗⃗  

∂𝑡2 = 𝑓𝑖⃗⃗                                                       (2-1) 

 

𝑓𝑖⃗⃗ = −
∂

∂𝑟𝑖⃗⃗⃗  
𝑈(𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, … , 𝑟𝑁⃗⃗⃗⃗ ) ,                          (2-2) 

 

where mi is the mass of particle i, t is time, and U is the total potential energy of the system, 

a function of coordinates of all the N atoms, which is defined in the section below.  

To solve the equations, we need to calculate the forces  𝑓𝑖⃗⃗  exerted on particle i by all the 

other particles present in a system. The main computational task for MD software, such as 

NAnoscale Molecular Dynamics (NAMD)5 which is used in this dissertation research, is the 

efficient calculation of the potential energy U and the above equations. The potential function U, 
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which defines the interaction between particles, is also called a force field, which will be 

introduced below.  

The MD simulations performed in this dissertation used Langevin equation of motion, 

which are slightly different from Newton’s equations of motion. These equations are used to 

maintain constant temperature T and constant pressure p inside the system, which usually 

corresponds to the conditions in the laboratory.  

Atomistic Force Field 

As mentioned above, the potential function U is defined through the interactions between 

all the atoms present in a simulated system. The definitions of these interactions and specific 

parameters assigned to atoms is overall called a force field. Every atom present in the system is 

assigned its type, which has its defined parameters. All the parameters associated with each atom 

type have been previously determined and validated by other researchers and are available for use 

by those who perform MD simulations. The force field used in this thesis is called Chemistry at 

HArvard Macromolecular Mechanics (CHARMM) force field, whose parameters were determined 

by quantum mechanical calculations4. The force field parameters are validated by comparison of 

simulated and experimental properties, such as solvation free energy and vaporization heats, for 

molecules in different thermodynamics conditions.6,7  

The force field parameters are divided into two main groups: non-bonded and bonded 

parameters. The non-bonded parameters are comprised of Coulombic and van der Waals 

interactions, while the bonded parameters include the intramolecular interactions, namely, bonds, 

angles, dihedrals, and improper angles. The potential energy of the system is defined as an additive 

potential. Namely, we define a full system potential 𝑉𝑁  =  𝑈(𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, … , 𝑟𝑁⃗⃗⃗⃗ ) as a sum of bonded and 

non-bonded interaction energies: 
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𝑉𝑁 = ∑𝑉𝑁,𝑏𝑜𝑛𝑑𝑒𝑑 + ∑𝑉𝑁,𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑       (2-3) 

Where 𝑉𝑁,𝑏𝑜𝑛𝑑𝑒𝑑 is the potential energy arising from intramolecular interactions, which 

contains stretching, bending and torsions of chemical bonds. Chemical bonds and angles are 

considered as springs in CHARMM forcefield. In Figure 2-1 and Equations 2-4 to 2-7, 𝑉𝑁,𝑏𝑜𝑛𝑑𝑒𝑑 of 

CHARMM force field8 are depicted and defined for all angles, bonds, improper dihedrals, and 

dihedral angles defined in the system: 

 

𝑉𝑏𝑜𝑛𝑑 = ∑ 𝑘𝑖
𝑏𝑜𝑛𝑑(𝑟𝑖 − 𝑟0𝑖)

2
𝑏𝑜𝑛𝑑 𝑖        (2-4) 

 

𝑉𝑎𝑛𝑔𝑙𝑒 = ∑ 𝑘𝑖
𝑎𝑛𝑔𝑙𝑒(θ𝑖 − θ0𝑖)

2
𝑎𝑛𝑔𝑙𝑒 𝑖        (2-5) 

 

𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = ∑ 𝑘𝑖
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙[1 + 𝑐𝑜𝑠(𝑛𝑖ϕ𝑖 − γ𝑖)]𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑖     𝑛𝑖  ≠ 0   (2-6) 

 

𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 = ∑ 𝑘𝑖
𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 𝑖 (ϕ𝑖 – γ𝑖 )
2    𝑛𝑖  = 0    (2-7) 

 

Above, the total energies arising from bonds, angles and improper dihedrals, labeled as 

𝑉𝑏𝑜𝑛𝑑 , 𝑉𝑎𝑛𝑔𝑙𝑒 and 𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟, are described by weak harmonic potential forms with spring 

constants ( 𝑘𝑖
𝑏𝑜𝑛𝑑, 𝑘𝑖

𝑎𝑛𝑔𝑙𝑒
 , 𝑘𝑖

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟
) and associated instantaneous internal coordinates 𝑟𝑖, angles 

θ𝑖, dihedrals and improper dihedrals ϕ𝑖, which differ from their equilibrium values (𝑟0𝑖, θ0𝑖, γ𝑖). 

The equilibrium values (𝑟𝑖0, θ𝑖0, γ𝑖0) represent stable equilibrium state with minimum stretching, 

bending and torsional energies. Cosine function is used to define 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙, which is dependent on 

force constant 𝑘𝑖
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙, periodicity 𝑛𝑖  and dihedrals (ϕ𝑖) varying from γ𝑖. 
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Figure 2-1: Illustration of bonded and non-bonded interactions in CHARMM force field. 

 

Non-bonded potential energies, due to Coulomb and van der Waals (vdW) interactions, are 

defined as pairwise interactions. They are calculated using the Coulomb law. The Coulomb 

potential between two atoms i and j, which have partial charges 𝑞𝑖 and 𝑞𝑗 (defined as force field 

parameters), is given as follows: 

𝑉𝑐𝑜𝑢𝑙(𝑟𝑖𝑗) = ∑ ∑
𝑞𝑖𝑞𝑗

4πϵ0𝑟𝑖𝑗
𝑗>𝑖𝑖          (2-8) 

 

where, ϵ0 and 𝑟𝑖𝑗 denote vacuum permittivity and the distance between the centers of atoms 

𝑖 and 𝑗, respectively. This term is evaluated explicitly within a predetermined cutoff distance, 

beyond which the Coulomb interactions are either ignored or estimated using different approaches 

due to the prohibitive computational cost of calculating every pairwise interaction in large systems. 

One commonly used method for accounting for long-range electrostatic interactions beyond this 

cutoff is the Particle Mesh Ewald (PME) method9. The PME method divides the computation of 

long-range electrostatics into real space and reciprocal space interactions, thereby allowing for an 

accurate and efficient treatment of the Coulomb potential over the entire system, despite the 

presence of a cutoff. This technique is particularly important in periodic systems where long-range 

interactions play a significant role in the physical behavior of the system. 

The short-ranged Lennard-Jones (LJ) potential is used to describe vdW interactions 

between a pair of atoms i and j. The LJ potential is composed of two terms. The Pauli repulsion 

term is important at short range distances between atoms due to overlapping electron orbitals. The 

attractive long-range term describes the attraction between atoms at long range distances. LJ 

potential is defined as:  
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𝑉𝐿𝐽(𝑟𝑖𝑗) = ∑ ∑ 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)
12

−  2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)
6

]𝑗>𝑖𝑖       (2-9) 

where 𝑟𝑖𝑗 is the distance between atoms i and j, and 𝑅𝑚𝑖𝑛,𝑖𝑗 and 𝜀𝑖𝑗 are calculated from the 

Lorentz-Berthelot rules: 

𝑅𝑚𝑖𝑛,𝑖𝑗  =  
𝑅𝑚𝑖𝑛,𝑖+𝑅𝑚𝑖𝑛,𝑗

2
   𝜀𝑖𝑗 = √𝜀𝑖𝜀𝑗          (2-10) 

where the particles i and j's respective radii and potential well depths are represented by 

𝑅𝑚𝑖𝑛,𝑖, 𝑅𝑚𝑖𝑛,𝑗   and 𝜀𝑖, 𝜀𝑗.  

Integration method for MD 

By operation of integration, Newton's equations of motion can provide coordinates and 

velocities of the particles present in the system. To compute the integrals, the velocity-Verlet 

algorithm is used. The algorithm considers the position of the particle, its velocity, and its force at 

the time of its calculation. The velocity-Verlet algorithm procedures are defined as follows: 

“half-kick” → 𝑣𝑛+1 2⁄  =  𝑣𝑛 + 𝑚−1𝑓𝑛. Δ𝑡/2    (2-11) 

 

“drift” → 𝑅𝑛+1  =  𝑅𝑛 + 𝑣𝑛+1 2⁄ . Δ𝑡      (2-12) 

 

“Compute force” → 𝑓𝑛+1  =  𝑓(𝑅𝑛+1)     (2-13) 

 

“half-kick” → 𝑣𝑛+1  =  𝑣𝑛+1 2⁄ + 𝑚−1𝑓𝑛+1. Δ𝑡/2    (2-14) 

 

The time reversibility and simplistic properties of the velocity-Verlet method contribute to 

momentum conservation, an important theoretical feature for researchers carrying out the MD 

simulations. 

Periodic boundary condition (PBC) 

Experimental systems typically contain many atoms (> Avogadro’s number). However, 

MD simulations are not capable of efficient simulations of so many atoms. The systems that are 

chosen to form a simulation unit cell are therefore typically much smaller, containing from several 

atoms to about a billion atoms. To make simulated systems resemble a much larger experimental 
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system, a periodic boundary condition (PBC) is introduced in the simulations. This condition 

propagates the simulation unit cell box in x, y, and z dimension an infinite number of times, so 

that the original simulation boxes interact with propagated adjacent unit cells. 

Ensembles 

Experimental systems usually exist in conditions with well-defined thermodynamic 

parameters. We can say that these systems can be described as thermodynamic ensembles. We can 

perform MD simulations with a different choice of such thermodynamics ensembles. A first 

common ensemble is NVE ensemble, where the number of particles (N), volume (V) and total 

energy (E) of the system are held constant. Other common ensembles are NVT (N, V, and 

temperature (T) are held constant), and NPT (N, V, and pressure (P) are held constant).  

The simulations performed using the NPT ensemble in this thesis were conducted with 

Langevin dynamics equations of motion. In simulations performed with Langevin equations, 

temperature and pressure of the systems are maintained at constant values.  

𝑚
𝜕2𝑟 

𝜕𝑡2  =  𝑚𝑣̇ = 𝐹(𝑟) − 𝛾𝐿𝑎𝑛𝑔𝑚𝑣 + √2𝛾𝐿𝑎𝑛𝑔𝑘𝑏𝑇𝑚 𝐺(𝑡)     (2-15) 

 

where, respectively, 𝑟, 𝑡,𝑚, 𝑣, and 𝐹 stand for coordinates, time, mass, velocity, and force. 

𝛾𝐿𝑎𝑛𝑔, 𝑘𝑏, and 𝑇 stand for the Boltzmann constant, temperature, and friction factor, respectively, 

depending on the system and user definition. G(t) stands for a Gaussian process with a single 

variable. Damping and fluctuation terms are the second and third terms in the equation, 

respectively. 𝛾𝐿𝑎𝑛𝑔, controls the magnitudes of damping and fluctuating terms. 

2.2. MACHINE LEARNING 

This section presents a thorough overview of machine learning (ML) techniques, 

particularly highlighting convolutional neural networks (CNN) and support vector machines 

(SVM), as used in Chapter 4. Furthermore, it introduces dimensionality reduction techniques, 
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specifically the t-distributed stochastic neighbor embedding (t-SNE) and principal component 

analysis (PCA), along with clustering methods, all of which are utilized in Chapter 5. 

Classification and Regression 

Machine learning problems can be broadly categorized into classification and regression. 

Classification deals with discrete variables, wherein the output variable belongs to a specific 

category or group, such as determining whether a DNA sequence corresponds to high or low 

responses to serotonin. On the other hand, regression concerns continuous variables, where the 

output represents a continuous value like the dissociation constant value. Both classification and 

regression are foundational to various ML algorithmic methods. 

Perceptron Networks 

All neural networks consist of input layer, hidden layers, and output layer as main sections. 

A layer contains neurons. Figure 2-2 shows these three sections. All different kinds of neural 

networks like convolutional neural networks contain perceptron at the end of their models. 

According to the dataset the perceptron networks can be used alone without adding any other 

layers. 
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Figure 2-2: Input layer, hidden layers, and output layers. Each circle indicates a neuron in layers. 

 

The perceptron neural network processes input data, each instance of which is represented 

by a vector of attributes. For each input instance I, the perceptron computes an output by 

multiplying this input vector with a weight matrix W, often followed by adding a bias term b. The 

weight matrix W consists of individual weights wi, each corresponding to the importance or 

contribution of an input attribute towards the resulting output. The perceptron output is thus a 

weighted sum given by WT⋅I+b, as shown in equation 2-16 and figure 2.3: 

𝑦 =  𝑓𝑢𝑐𝑡𝑖𝑜𝑛(∑ 𝑤𝑖𝐼𝑖 + 𝑏) =𝑛
𝑖 =1 𝑓𝑢𝑐𝑡𝑖𝑜𝑛(𝑊𝑇𝐼 + 𝑏)      (2-16) 

 

where WT is the transpose of the weight matrix W, and b is a scalar bias that offsets the input to the 

activation function. During the training phase, the network adjusts the weights W and the bias b 

based on a set of training data, with the goal of minimizing the error in prediction or classification 

tasks. For classification tasks involving multiple classes, the perceptron's output—before serving 

as the final predicted class—can be converted into a probability distribution using the SoftMax 

function. This function, given by equation 2-17, is applied to the raw output scores, or logits, z, 

which can be obtained from the weighted sum before the activation function is applied: 

𝜎(𝑧 )𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

            (2-17) 

 

In this context, the SoftMax function, denoted as 𝜎(𝑧 )𝑖, calculates the probability that a 

given input belongs to class i. The function employs the exponential e to ensure that each raw 

score zi from the input vector 𝑧  is positive and scales these values such that the sum across all K 

classes is 1, forming a valid probability distribution. Here, K signifies the total number of classes 

in the classifier. 
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During the training phase, the network fine-tunes the weights W and the bias b with the 

aim of minimizing the discrepancy between the network's predictions and the actual outcomes of 

the training data. For a perceptron that is part of a multi-layer network handling multiple 

categories, the SoftMax function is typically applied at the final layer. This function translates the 

perceptron's outputs into a probability distribution, which aids in identifying the most probable 

class for a given input as illustrated in equation 2-17. 

Separately, the network utilizes an activation or transfer function to transform the weighted 

input sum before classification. One commonly used activation function in neural network models 

is the step function, which outputs a value of 1 if the processed input is above a threshold and -1 

if below. This binary output is pivotal during learning, as it is contrasted with the expected output 

to compute the error. The error is then used to adjust the weights proportionally to the input 

magnitude and a predetermined learning rate, thereby incrementally improving the model's 

accuracy. 

The perceptron neural network is essentially a linear classifier, which partitions input data 

into two distinct groups with a decision boundary. Throughout training, this boundary, represented 

by the weights, is iteratively optimized. Initially, weights are assigned randomly, and the model is 

progressively refined following equation 2-16. Upon completing the training cycle, the model can 

make predictions. 

It should be noted that the description of the SoftMax function generating a binary value 

of 1 or -1 is incorrect; SoftMax outputs probabilities, not binary classifications. Binary results are 

typical of the sign or step function, which is not the same as the SoftMax function. 
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Figure 2-3: Input layer, Hidden layers, and output layers. Each circle indicates a neuron in layers. 

 

Convolutional Neural Networks 

Convolutional neural network (CNN) is a deep learning algorithm that can receive as input 

images and text data which contains DNA sequences data. A CNN model is divided into feature 

extraction and classifier parts, and the last part is a perceptron network. In the feature extraction 

part, CNN assigns importance (learnable and bias weights) to each of the objects/aspects and 

extracts features in the images and text and can distinguish them from each other. Feature 

extraction is the critical difference between ML and CNN deep learning models. Usually, a DNA 

sequence is a sequence of four or fewer nucleoids, adenine (A), cytosine (C), guanine (G), and 

thymine (T) which can be treated as a letter and the DNA sequence as text. Since all ML and DL 

methods work with numerical data, these letters need to be converted to numbers, which is known 

as encoding. Two types of encodings are typically used to encode the text data, one hot encoding, 

which changes the sequence to 0 and 1, and a label encoding. Figure 2.4 shows an example of how 

the encoding works for the DNA sequences. 
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Figure 2-4: Illustration of one-hot encoding (also referred to as position-specific vector encoding) 

and label encoding methods. 

 

The convolutional layer is a hidden layer, as shown in Figure 2.5, to extract features that 

will add more dimensions. A max-pooling layer is added after each convolutional layer to reduce 

the dimensions of extracted features. Kernel size and the number of filters is the most critical 

hyperparameter in the convolutional layer that can affect the learning result. Flattening is used 

after the max pooling layer to convert all the resultant 2-dimensional arrays from pooled feature 

maps into a single long continuous linear vector. Adding a fully connected layer is an inexpensive 

way to learn high-level nonlinear combinations of features as provided by the feature extraction 

layers (convolutional layers + max pooling + flatten layer). The fully connected layer in that space 

retains a possibly nonlinear function. With all the layers, the input image or text  is transformed 

into a suitable output to be fed to the classifier section to assign classes10–13. 
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Figure 2-5: Workflow of a convolutional neural network (CNN) for DNA sequence classification. 

The process begins with binary-encoded DNA sequences, followed by feature extraction using 

convolutional filters (kernels). The resultant feature maps are then down sampled through max 

pooling and flattened to form a one-dimensional vector. This vector is subsequently passed through 

a fully connected neural layer, culminating in a SoftMax activation for probabilistic classification 

into two distinct classes: Class 0 and Class 1. 

 

Support Vector Machines 

Support vector machines (SVMs) Support vector machines (SVMs) are a set of supervised 

learning algorithms used for classification and regression tasks. In the context of classification, 

SVMs aim to find the optimal separating hyperplane that divides classes of data with the maximum 

margin. Figure 2.6 provides a visual representation of how SVMs accomplish this task (in two 

dimensions rather than the usual multiple dimensions that typically are present in real application 

problems). The figure illustrates a two-dimensional space where the x-axis is X2, and the y-axis is 

X1. In this space, data points from two different classes are plotted: datapoints from one class are 

represented by green dots, and the datapoints from the other class by red dots. The SVM algorithm 
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seeks to find the line (in two dimensions) or a hyperplane (in higher dimensions) that best separates 

these two classes. This line is the decision boundary, and the equations w⋅x+b=−1 and w⋅x+b=1 

represent the borders of the margin on either side of it.14 

 

Figure 2-6: SVM Decision Boundary Visualization: The two classes, represented by green and red 

dots. The parallel dashed lines denote the support vectors, given by equations w.x + b = -1 and w.x 

+ b = 1. The distance between these support vectors is the margin, calculated as max(2/||w||), which 

SVM aims to maximize for optimal class separation. 

 

In Figure 2.6, the margin is indicated by the distance between the two dashed lines parallel 

to the decision boundary, which is the line w⋅x+b=0. The margin is the region that encompasses 

the closest points of both classes, which are equidistant from the decision boundary. The SVM 

classifier works by maximizing this margin, and the maximum width of the margin is calculated 

as 2/∥w∥, where w is the weight vector perpendicular to the separating hyperplane. The points that 

lie on the dashed lines are known as the support vectors, as they 'support' the margin. 
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The b in the equations represents the bias, which adjusts the position of the hyperplane 

along the direction of w. Together, w and b define the decision boundary: w determines its 

orientation, and b its displacement from the origin. The goal of the SVM training process is to 

determine the optimal values of w and b such that the margin is maximized, subject to the condition 

that all data points are correctly classified, meaning that all points from one class fall on one side 

of the margin and all points from the other class fall on the opposite side. 

For cases where the data is not linearly separable in the original input space (the space 

where X1 and X2 are defined), SVMs employ a mathematical function known as the kernel function 

to project the data into a higher-dimensional space where it is possible to find a separating 

hyperplane. This is where the phi function (ϕ) mentioned comes into play. It is a transformative 

feature mapping that takes the original input data and projects it into a higher-dimensional space. 

This process is essential when the data is not linearly separable in its original space. The phi 

function is implicitly represented through the kernel function, which computes the dot product of 

data points in this new, larger space without having to compute the high-dimensional space 

explicitly. This is known as the kernel trick, which allows the SVM to efficiently create a decision 

boundary for complex datasets. 

In summary, by adjusting w and b based on the input data, SVMs find the widest possible 

margin between classes, as depicted in Figure 2.6. Once these parameters are learned, the SVM 

model can be used to predict the class of new data points by determining which side of the decision 

boundary they fall on, using the inequalities (w⋅x+b)≥1 for class 1 and (w⋅x+b)≤−1 for class 0.15 

(𝑤. 𝑥 + 𝑏) ≥ 1, 𝑥 ∈  𝑐𝑙𝑎𝑠𝑠 1         (2-18) 

 

 (𝑤. 𝑥 + 𝑏) ≤ −1, 𝑥 ∈  𝑐𝑙𝑎𝑠𝑠 0        (2-19) 
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Machine learning evaluation metrics 

In machine learning, datasets are typically divided into two portions: training and testing. 

The training dataset, which is typically the larger subset, is used to train the model, while the 

testing dataset is employed to evaluate the trained model's performance. Performance metrics such 

as accuracy, recall, precision, and f1 score play a crucial role in evaluating the model's quality. 

Accuracy is determined by the proportion of correct predictions out of all the test datapoints and 

is given by equation 2-20. Terms like True Positives (TP), True Negatives (TN), False Positives 

(FP), and False Negatives (FN) are fundamental in understanding these metrics and are illustrated 

in Figure 2-7. The recall, which represents the model's ability to correctly identify positive 

instances, is calculated as shown in equation 2-21. Precision, on the other hand, measures the 

proportion of positive identifications that were correct and is given by equation 2-22. The f1 score 

harmonizes precision and recall into a single metric and is defined as below.16 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑒𝑠𝑡 𝑠𝑖𝑧𝑒
∗ 100     (2-20) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝐹𝑁+𝑇𝑃
         (2-11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃+𝑇𝑃
         (2-22) 

 

𝑓1 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
        (2-23) 
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Figure 2-7: A confusion matrix illustrating the four primary outcomes in binary classification: True 

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). It provides 

a comprehensive view of a model's performance by comparing predicted results against actual 

values. 

 

Receiver Operating Characteristic (ROC) curve is a graphical plot that illustrates the 

diagnostic ability of a binary classifier system as its discrimination threshold is varied. It plots the 

true positive rate (sensitivity) against the false positive rate (1-specificity) at various threshold 

settings.17  

Area Under the Curve (AUC), refers to the area under the ROC curve and is a measure of 

the overall ability of the test to discriminate between positive and negative class values. A larger 

AUC indicates better model performance, with a value of 1 representing perfect discrimination 

and a value of 0.5 suggesting no discriminative power, equivalent to random guessing.17  

Dimensionality Reduction 

In this dissertation, dimensionality reduction is leveraged to condense the complex, high-

dimensional information present in DNA or peptide sequences into a more manageable form, 

aiding in data visualization and analysis. The two techniques utilized are principal component 

analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). 

PCA serves to simplify high-dimensional data by finding the directions, or axes, where the 

data shows the most significant variance. Variance in this context is a statistical measure of how 

much the data points deviate from their average value. In essence, PCA finds where the data is 
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most spread out and projects it onto new axes that capture this spread most effectively. The 

construction of a covariance matrix is a preliminary step in PCA. This matrix is a systematic 

arrangement of values that quantifies the extent to which each dimension varies in concert with 

the others. When two dimensions increase or decrease together, they have a high covariance, 

indicating a relationship between them. Principal components are extracted from this matrix. They 

are the eigenvectors that point in the direction of the highest variance, with each direction’s 

significance quantified by its corresponding eigenvalue. Eigenvalues measure the magnitude of 

variance along their respective eigenvectors, revealing the relative importance of each direction. 

The PCA transformation is captured mathematically by the equation Y=XW. Here, Y is the 

transformed dataset expressed in terms of new axes, X is the original dataset, and W is the matrix 

of eigenvectors that define the new coordinate system derived from the covariance matrix.18 

While PCA streamlines data by emphasizing its most spread-out features, t-SNE focuses 

on preserving the local structure of the data as it reduces dimensionality. It places each data point 

into a lower-dimensional space, a process known as embedding, which is akin to creating a detailed 

map that maintains the proximity of neighborhoods in a complex city layout. t-SNE compares two 

distributions: one representing similarities between data points in the original space, and the other 

representing similarities in the new, lower-dimensional space. The goal of t-SNE is to make the 

lower-dimensional distribution reflect the high-dimensional one as closely as possible. The 

divergence, specifically the Kullback-Leibler divergence, is a mathematical criterion that t-SNE 

aims to minimize. It is a measure of how one probability distribution diverges from a second, 

expected probability distribution. In the context of t-SNE, minimizing this divergence is the 

objective of a cost function—a mathematical function that the algorithm tries to minimize. Because 

t-SNE is non-convex, the optimization process can arrive at different solutions with each run, as it 
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does not settle at a single best answer but rather at one of the many local minima in the solution 

landscape. t-SNE’s core formula is: 

𝑞𝑖𝑗  =  
(1+||𝑦𝑖−𝑦𝑗||

2)−1

∑ (1+||𝑦𝑘−𝑦𝑙||
2)−1

𝑘≠𝑙
  ,   (2-2) 

 

calculates the probabilities that define similarity in the lower-dimensional space. Here, qij 

represents the likelihood that points i and j are neighbors in the embedded space. The embedded 

space is the lower-dimensional representation where each data point's coordinates, yi and yj, 

maintain the essential relationships seen in the high-dimensional original dataset.  

Both PCA and t-SNE offer insightful methods for visualizing high-dimensional data, each 

through a distinct lens that caters to different aspects of the data's innate structure. PCA highlights 

the global structure by pinpointing the directions with the greatest variance, effectively revealing 

the overarching spread and range of the dataset. Conversely, t-SNE illuminates the local patterns 

by preserving the neighborhood relationships, ensuring that data points close to each other in the 

high-dimensional space remain close in the reduced-dimensional representation. When selecting 

the appropriate method for data analysis, researchers must consider the unique characteristics of 

the data along with the specific investigative questions they aim to address. This decision is crucial 

as it determines whether the emphasis should be on the data's broad trends or on the finer, subtle 

interactions within it.18 

Clustering 

Clustering is a technique in unsupervised learning where data points are grouped into 

distinct clusters based on their similarities, without any prior labeling. This method is especially 

useful for discovering inherent patterns and structures in datasets. Among the various clustering 

algorithms, balanced iterative reducing and clustering using hierarchies (BIRCH) algorithm is 

adept at handling large datasets by constructing a tree structure, thus reducing the complexity. K-
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means, on the other hand, partitions the dataset into 'K' number of centroids and is one of the most 

widely used clustering methods. Density-based spatial clustering of applications with noise 

(DBSCAN) identifies clusters based on the density of data points, effectively distinguishing 

between high-density regions and areas of noise or outliers. Lastly, Gaussian mixture model 

(GMM) assumes that data is generated from a mixture of several Gaussian distributions. It seeks 

to identify these individual distributions, making it a probabilistic approach to clustering. Each of 

these methods offers unique advantages, and the choice of algorithm often depends on the nature 

of the data and the specific goals of the clustering process. The process of dimensionality reduction 

and clustering was employed to construct the BinderSpace, as detailed in Chapter 5. 
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Chapter 3: Characterizing the Interactions of Cell-Membrane-Disrupting Peptides with 

Lipid-Functionalized Single-Walled Carbon Nanotubes 

3.1. INTRODUCTION 

Antimicrobial molecules often function by permeating and disrupting bacterial 

membranes, leading to bacterial cell death either by dissolving their membranes or creating pores 

that result in cytoplasmic leakage and membrane potential destruction.19–21 However, bacteria 

naturally develop resistance to antimicrobials over time, which leads to a continuing need for the 

development of new antimicrobial molecules. Many organisms produce antimicrobial peptides 

(AMPs) as a part of their innate immune responses.22 Drawing inspiration from these natural 

peptides, numerous antimicrobial screening efforts aim to discover novel membrane-disrupting 

molecules either through the chemical design and synthesis of new peptides23 or by creating 

extensive combinatorial peptide libraries24 and evaluating their antimicrobial activity. 

While modern advancements in automated peptide synthesis technologies have expedited 

the synthesis of new peptide-based compounds,24–26 the evaluation of their antimicrobial properties 

remains a significant challenge. Traditional screening methods involve assessing the effects of 

potential antimicrobials on live target cells using growth inhibition and cell death assays.27 

However, these methods are often time-consuming, costly, and come with contamination risks. As 

a result, alternative antimicrobial screening techniques have been developed. One such approach 

involves the use of droplet-based microfluidic platforms, where individual cells and potential 

compounds are encapsulated in picolitre-volume emulsion droplets for analysis through imaging 

or fluorescence reporters.28,29 Another approach employs abiotic systems that screen for molecules 

specifically designed to disrupt cell membranes. These systems utilize simplified cell membrane 

models like artificial planar lipid bilayers and liposomes.30,31 
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Despite the potential of existing antimicrobial discovery methods, each comes with its own 

set of advantages and limitations. These limitations often pertain to the speed, throughput, detail 

level, and the applicability of results to live cells. Recognizing these challenges, recent research 

has proposed an abiotic system based on lipid-wrapped single-walled carbon nanotube (SWNT) 

conjugates as a novel optical sensing platform for antimicrobial compound screening.32 This 

platform leverages SWNTs as near-infrared (nIR) fluorescent transducers to report lipid 

interactions with antimicrobial compounds occurring on the SWNT surface. 

SWNTs, when wrapped by various polymers, have found applications in diverse fields 

such as biological catalysis, bio separations, gene therapy, photothermal cancer therapy, and bio 

analyte detection. 2,33–48 The role of these polymers is twofold: solubilizing hydrophobic SWNTs 

in aqueous media and binding to potential analytes in sensing applications. SWNTs, known for 

their remarkable electronic and optical properties,49 are pivotal in polymer-wrapped SWNT 

conjugates for optical sensing. 

While previous studies have linked changes in SWNT emission to significant alterations 

in dielectric constants and local electric fields, the impact of small analyte concentrations on the 

SWNT environment remains largely unexplored. In the context of POPC-wrapped SWNTs 

interacting with antimicrobial peptides, the addition of minimal peptide concentrations primarily 

led to a decrease in SWNT emission intensity.32 The structural changes in the lipid corona that 

induce this decrease in SWNT fluorescence emission intensity remain unidentified. 

In this study, we focus on characterizing phospholipid-coated SWNTs, exploring the 

effects of membrane-disrupting peptides on these sensors and phospholipid bilayers, and 

comparing the effects across both phospholipid systems. We employ atomistic molecular 

dynamics (MD) simulations to detail peptide binding and the subsequent perturbations in these 
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phospholipid systems. Our findings, in conjunction with previous experimental results,32 are 

analyzed for potential correlations and mechanistic insights. We specifically chose POPC-coated 

SWNTs for our investigations due to the availability of experimental data for these systems.32. 

3.2. METHOD 

Antimicrobial Building Atomistic Models of POPC-SWNT Systems 

A segment of a (6,5) single-walled carbon nanotube (SWNT) measuring 8 nm was 

constructed using the Carbon Nanostructure Builder tool in VMD software.50 A single POPC 

molecule's structure (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) was sourced from a 

POPC membrane segment, which was crafted using the Membrane Builder tool in VMD software 

and the CHARMM36 topology.51 Using a custom bash-TCL script which I developed specifically 

for this project, copies of this POPC molecule were systematically arranged around the SWNT 

segment. This script positions a specified number of POPC molecules radially around the SWNT. 

The script's input includes the nanotube's structure, the single POPC molecule's structure, the angle 

between neighboring radially oriented POPC molecules, and the number of times the POPC 

molecules are replicated along the SWNT's length. This script can be accessed on GitHub 

(https://github.com/vukoviclab/POPCsensor). Using this approach, four POPC-SWNT systems 

were generated with mass density ratios of 9:1, 15:1, 20:1, and 30:1. Each system was then solvated 

with TIP3P water molecules. Details of the constructed systems are provided in Ref1. 

Constructing the Atomistic Model of the POPC Bilayer 

A POPC bilayer was assembled by Ms. Yadav using the CHARMM-GUI membrane 

builder52 and CHARMM36 topology,51 set in a tetragonal box containing 160 lipid molecules (80 

per leaflet) and 31,838 TIP3P water molecules. The molecule counts were chosen to maintain a 

similar POPC concentration as in the 15:1 POPC-SWNT system. Details are provided in Ref1. 

https://github.com/vukoviclab/POPCsensor
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Building Models of POPC-SWNT Systems and POPC Bilayers with Membrane-Disrupting 

Peptides 

Three peptides known for membrane disruption, namely colistin (Col), TAT peptide was 

constructed by Ms. Yadav, and a crotamine-derived peptide (Cro), were explored in the 

simulations. The Col structure was prepared using the ChemSpider MOL structure (id = 65877) 

and supplemented with hydrogen atoms. Parameters for Col, based on the CHARMM general force 

field (CGenFF), were sourced from the CGenFF web interface.53,54 The TAT structure was derived 

from the HIV-derived TAT peptide's crystal structure (pdb ID: 1K5K).55 The Cro structure was 

adapted from the crotamine's crystal structure (pdb ID: 4GV5)56 with specific mutations to achieve 

the desired sequence.32 Additionally, a poly-R peptide made of three arginines (RRR) was crafted 

using the TAT peptide's structure (pdb ID: 1K5K).55 These peptides' parameters were based on the 

CHARMM36 protein force field.6 Subsequently, six POPC-SWNT systems were developed with 

Col, TAT, and Cro molecules to study their impact on POPC-SWNT conjugates. Each system 

contained a POPC-SWNT conjugate with a 9:1 or 15:1 mass density ratio and ten molecules of 

either Col, TAT, or Cro, strategically placed within 20 Å of the POPC corona (detailed are 

prepared in Ref1). Structures of the POPC-SWNT conjugates used were pre-equilibrated in 1 μs 

MD simulations. All the new systems were solvated in TIP3P water and charge-neutralized by 

adding Cl– ions. Additionally, a system was created with ten RRR peptides and a 9:1 POPC-SWNT 

mass density ratio system (Detailed in Ref1). This system was constructed similarly to the six 

previously described POPC-SWNT systems. Three separate POPC bilayers were also developed 

with Col, TAT, and Cro molecules. All these bilayer systems had ten molecules of either Col, 

TAT, or Cro, placed within 20 Å of the POPC bilayer headgroups. Each system was solvated in 

TIP3P water and charge-neutralized by adding Cl– ions. 
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Molecular Dynamics Simulations 

All systems were simulated using the NAMD2.1357 software package and CHARMM36 

force-field parameters.6,51,58 The simulations employed Langevin dynamics in the NPT ensemble, 

with set conditions of 310 K temperature and 1 bar pressure. The integration time step was 2 fs, 

and interactions were evaluated within a 12 Å cutoff distance. Long-range interactions were 

assessed using the particle-mesh Ewald (PME) method with periodic boundary conditions 

applied.59 The pure POPC-SWNT systems underwent an initial minimization of 20,000 steps. 

Following this, solvent molecules were equilibrated for 1 ns, with SWNTs and POPC restrained 

using harmonic forces. The systems were then subjected to production runs of varying lengths. Six 

POPC-SWNT systems with added peptides (Detailed in Ref1) underwent a similar minimization 

and equilibration process. During these stages, SWNT and POPC molecules were restrained. The 

systems were then subjected to 1 μs long production runs. Simulations of the 9:1 POPC-SWNT 

system with RRR peptides followed a similar protocol, but with a 200 ns long production run. 

Separate simulations were conducted to study single disruptor molecules' interactions with 

equilibrated 15:1 POPC-SWNT systems. These systems were minimized, pre-equilibrated, and 

then subjected to 1 μs long production runs. Simulations of four POPC bilayer systems were also 

conducted. These systems underwent a 20,000-step minimization, followed by a 1 ns pre-

equilibration and 1 μs long production runs.  

Analysis of POPC Corona Thickness 

The POPC distribution around the SWNT was analyzed by calculating the POPC corona's 

thickness, dPOPC, based on the angle θ. The value of dPOPC(θ) was determined by averaging over 

bins along the z-axis of the system. 

𝑑𝑃𝑂𝑃𝐶(𝜃) =
1

𝑁𝑙
 ∑ (𝑟𝑚𝑎𝑥,𝜃(𝑙) − 𝑟𝑆𝑊𝑁𝑇)

𝑙𝑚𝑎𝑥
  𝑙𝑚𝑖𝑛       (3-1) 
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Where lmin refers to the smallest z coordinate in the bin, while lmax represents the largest z 

coordinate in the bin. The term rmax,θ(l) denotes the furthest radial distance from a single-wall 

carbon nanotube (SWNT) surface to a POPC atom, specifically the POPC atom that is at the 

greatest radial distance within the bin and rSWNT signifies the radius of SWNT.  

Calculating Distances between Disruptor Molecules and SWNT Surfaces 

To understand the binding nature of disruptor molecules to POPC-SWNT conjugates, the 

distances of all bound disruptor molecules from SWNT surfaces were calculated. 

〈𝑑𝑖(𝑡)〉 = 〈𝑟𝑖(𝑡) − 𝑟𝑆𝑊𝑁𝑇〉       (3-2) 

Contact Area Calculations 

The contact areas between SWNTs and different species in the solution were calculated to 

understand the SWNT surface's exposure to various molecules and functional groups. 

A(t) =  
𝑎𝑆𝑊𝑁𝑇(t)+𝑎𝑀(t)−𝑎𝑆𝑊𝑁𝑇,𝑀(t)

2
        (3-3) 

Calculation of Distances between Disruptor Molecules and Centers of POPC Bilayers 

To understand the binding nature of disruptor molecules to pure POPC bilayers, the z-axis 

component of distances of all bound disruptor molecules from the center of the POPC bilayer was 

calculated. 

〈𝑑𝑖(𝑡)〉 = 〈𝑧𝑖(𝑡) − 𝑧𝐶𝑂𝑀,𝑏𝑖𝑙𝑎𝑦𝑒𝑟(𝑡)〉      (3-4) 

3.3. RESULTS 

Asymmetric Distribution of POPC Corona Around SWNTs 

Our preliminary MD simulations explored the interaction of POPC lipids with (6,5) 

SWNTs. We constructed four systems where POPC lipids were cylindrically arranged around 

SWNTs (detailed in the ref paper1). These systems had POPC to SWNT mass density ratios of 9:1, 

15:1, 20:1, and 30:1. Notably, the 30:1 ratio mirrors the mass density ratio from prior experimental 
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setups.32 Such setups are detailed in Ref.32, involving a 2 mL mixture of 0.5 mg/mL SWNT and 

20 mg/mL POPC, which underwent sonication and centrifugation. Our simulations aim to replicate 

these experimentally derived POPC-SWNTs in water-based solutions. We focused on individual 

SWNTs because only they, not bundled SWNTs, are believed to emit light in POPC-SWNT 

conjugates.60–62 

After 175 ns to 1 μs of MD simulation equilibration, the systems settled into the 

configurations depicted in Figure 1a. The 9:1 POPC-SWNT system took a cylindrical form, while 

others resembled bilayers, with this likeness intensifying with the mass density ratio. In all 

systems, the central position of the SWNT shifted, leading to an increasingly asymmetrical POPC 

corona over time. This evolving asymmetry for the 15:1 POPC-SWNT system (Detailed is 

illustrated in ref paper1). The SWNTs ended up being enveloped by the hydrophobic tails of the 

POPC, but one side always remained in touch with the zwitterionic heads of the POPC molecules. 

This asymmetry is evident in the POPC corona thickness measurements for the 9:1 and 15:1 

system, as shown in Figure 3-1b. 
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Figure 3-1. Equilibrated configurations of POPC-SWNT assemblies from MD simulations. a) Four 

representative images of POPC-SWNT combinations at mass density ratios of 9:1, 15:1, 20:1, and 

30:1, post-simulation equilibration. Duration of equilibration for each setup is mentioned below 

their respective images. SWNT atoms are depicted in pink, while POPC tails appear as white links 

and the P and N atoms of POPC as grey orbs. Water molecules are omitted for visual simplicity. 

b) Measurement of the POPC layer thickness surrounding SWNTs in 9:1 and 15:1 mass density 

ratio setup after 1 μs of equilibration. 

 

Interactions of POPC Membrane Disruptors with POPC-SWNTs 

We then studied the interactions between POPC-SWNT systems with 9:1 and 15:1 ratio 

and three peptides known for their disruptive effects on POPC structures. These peptides were Col, 

TAT, and Cro. We focused on the 9:1 and 15:1 system for better simulation sampling. The 15:1 

system already resembles a bilayer, akin to the 20:1 and 30:1 system. After introducing ten 

molecules to the equilibrated POPC-SWNT systems, they were equilibrated in water for 1 μs, 

resulting in the structures shown in Figure 3-2a. The disruptor molecules attached to various parts 

of the POPC corona, with some binding directly to the nanotube. Figure 3-2's results allow for a 
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comparison of the three peptides based on their disruptive effects on POPC-SWNT systems. Col 

exhibited the most significant disruption, followed by TAT and then Cro. I performed Col and Cro 

simulations, while Ms. Anju Yadav performed TAT simulations.  

 

Figure 3-2. Interaction of colistin, TAT peptide, and crotamine-derived peptide with POPC-SWNT 

assemblies. a) Visual depictions of stabilized POPC-SWNT assemblies in the presence of Col 

(red), TAT (blue), and Cro (green) at 9:1 and 15:1 POPC:SWNT mass density ratios. Darker 

shades signify molecules directly touching SWNT in the latter half of their paths, while paler 

shades represent molecules attached to the thicker POPC layers away from the SWNT core. b) 

Average distances between the molecules' central points and the SWNT surface while they are 

linked to 9:1 POPC-SWNTs, detailed further in Table S4. Disruptor molecules have unique 

identifiers on the x-axis, denoting each of the ten examined molecules in each scenario. Histogram 

bar shades differentiate molecules directly bound to SWNT (darker shade) and those attached to 

the POPC layer (lighter shade). Bars marked with (*) represent molecules that intermittently attach 

and detach from POPC-SWNT, while bars with (♯) indicate molecules with two distinct binding 

occurrences with POPC-SWNT. Broken lines represent the mean distance of all linked molecules 

from the SWNT exterior in each setup. c) Central points of molecules' distances from the SWNT 

surfaces, averaged for the periods they are linked to 15:1 POPC-SWNTs. Color distinctions and 

markings remain consistent with panel b's description. 
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Interactions of Peptides with POPC Bilayers 

We also investigated the interactions of Col, TAT, and Cro with pure POPC bilayers, 

maintaining the same concentration ratios as in the POPC-SWNT systems. After 1 μs of MD 

simulation equilibration, the peptide-bilayer interaction structures are shown in Figure 3-3a. 

Compared to POPC-SWNT systems, fewer molecules are bound to the pure bilayers. However, 

the binding modes to both systems were similar. Figure 3-3b quantifies the depth and probability 

of insertion into bilayers for each molecule. All three peptides reduced the order of POPC chains 

in the bilayer, as shown in Figure 3-3c. 

In summary, the results from Figure 3-3 allow us to rank the peptides based on their 

disruptive activity on POPC bilayers: Col is the most disruptive, followed by TAT, then Cro. This 

ranking aligns with their behavior in POPC-SWNT systems, suggesting that the disruption 

experienced by POPC-SWNT conjugates by these molecules is like that in lipid bilayers. These 

membrane simulations were performed and analyzed by Ms. Anju Yadav.  
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Figure 3-3. Interaction of colistin, TAT peptide, and crotamine-derived peptide with standalone 

POPC bilayers. a) Visual representations of stabilized POPC bilayers in the company of Col (red), 

TAT (blue), and Cro (green). The coloring and depiction methods mirror those used in preceding 

figures. b) Dispersal of central point distances (along the z-axis) for adhered Col, TAT, and Cro 

molecules relative to the central point of the bilayer. c) Structuredness measure of POPC bilayers 

(both unadulterated and in conjunction with Col, TAT, or Cro molecules).  

 

3.4. CONCLUSION 

We studied the behavior of POPC-coated (6,5) SWNT conjugates through MD simulations. 

Contrary to our initial expectations based on prior studies with (18,0) SWNTs, the SWNTs in our 

simulations were asymmetrically positioned within the POPC coronas, as depicted in Figure 3-1. 

This deviation suggests that the SWNT's position in lipid assemblies might be influenced by the 
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type of lipid and possibly the SWNT size. The intricacy of our findings and those from previous 

studies highlight the need for more in-depth research. 

Subsequently, we explored the interactions between POPC-SWNT conjugates and three 

known cell membrane disruptors: colistin, TAT peptide, and crotamine-derived peptide. We also 

analyzed these peptides' interactions with POPC bilayers. Our findings revealed that Col and TAT 

deeply penetrate both POPC bilayers and the POPC corona on SWNTs, while Cro primarily 

adheres to the POPC surface in both scenarios. These interactions align with previously 

documented interaction mechanisms between antimicrobial cationic peptides and lipid bilayers. 

Another unique aspect of POPC-SWNT systems is the presence of a distinct interface 

where peptides can bind, which is absent in POPC bilayers. This interface is the thinnest part of 

the POPC corona, where the SWNT surface is partially exposed. Interestingly, peptides like Col 

and TAT, which cause the most disruption in bilayers, also induce significant perturbations at this 

POPC-SWNT interface. 

In essence, our simulations allowed us to rank the peptides based on the disruption they 

cause in POPC-SWNT conjugates: Col being the most disruptive, followed by TAT, and then Cro. 

This ranking is consistent with the behavior of these peptides when interacting with POPC bilayers. 

The degree of structural disruptions aligns with the experimentally observed nIR optical signal 

changes in lipid functionalized SWNTs upon peptide addition. Our findings suggest that lipid-

functionalized SWNTs can serve as simplified cell membrane models, with their optical signals 

reflecting peptide-induced structural changes in the lipid phase at the SWNT surface. This 

indicates the potential of lipid functionalized SWNTs as promising platforms for preliminary 

screening of molecules that can disrupt cell membranes. Further testing on larger compound 

libraries could offer more insights into the efficacy of these systems for antimicrobial screening 
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through optical emission responses. Additionally, exploring the optical responses of other 

nanomaterials, like quantum dots, to antimicrobial peptides could lead to exciting new areas of 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

Chapter 4: Discovery of DNA–Carbon Nanotube Sensors for Serotonin with Machine 

Learning and Near-infrared Fluorescence Spectroscopy 

4.1. INTRODUCTION 

Single walled carbon nanotubes (SWNT) are integral components of numerous hybrid 

materials crafted for nanotechnological uses, spanning areas like sensing, biological visualization, 

electronics, and gene transport.38,40,63–70 A common technique to modify SWNTs and make them 

soluble in water is noncovalent polymer adsorption, which creates a "corona phase" on the SWNT 

exterior. Various polymers, such as nucleic acids, peptides, surfactants, lipids, and peptoids, have 

been employed for this purpose.41,43,71–78 Notably, SWNT conjugates functionalized with nucleic 

acids are particularly prevalent and hold significant potential for applications like optical sensing 

of vital biological compounds,38,40 delivering polynucleotides (DNA/RNA) for genetic 

modification,67,79 and segregating multi-chirality SWNT samples into pure chiral groups.33,80–83  

The DNA sequence is pivotal in DNA–SWNT conjugates used for optical sensing, as it's 

the primary factor determining specific molecular recognition of analytes. An effective sequence 

should not only bind strongly to the analyte but also to the SWNT surface, leading to a noticeable 

change in the SWNT's near-infrared (nIR) fluorescence, ΔF/F, when the target analyte is present. 

Previous studies have shown that even a minor alteration, like changing a single nucleotide in the 

DNA sequence, can negate the sensor's response to its target.40 

Historically, DNA–SWNT sensors have been created either by using pre-established 

molecular recognition elements84,85 or by screening a limited number (less than 100) of DNA 

sequences for their fluorescence changes in the presence of target analytes.40,86 The latter method, 

which often results in random successful outcomes, depends on the accidental identification of 

potential sensors. While this method has its merits in pioneering new research field, it's not ideal 

for refining existing sensing technologies or creating sensors for hard-to-detect analytes. To 

address this, we recently introduced a technique (SELEC) that "evolves" ssDNA–SWNT-based 

molecular recognition towards a specific analyte, enhancing selectivity with each evolution 
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cycle.87 This method allows for the evolution of around 1010 unique ssDNA strands for target 

analyte recognition while still being attached to a nanomaterial's surface. 

The SELEC method produces data sets rich in details about DNA sequences that offer 

selectivity and SWNT binding affinity. In this study, we utilize these data sets to curate a collection 

of approximately 100 DNA–SWNT conjugates, obtained by the lab led by Dr. Markita Landry at 

the University of California Berkeley. We then assess their ΔF/F nIR fluorescence response to a 

selected analyte. We employ this data to construct machine learning (ML) models that can predict 

and identify useful ssDNA sequences, which might have been overlooked in earlier experiments, 

that can bind to and optically detect the chosen analyte on SWNT surfaces. The Landry Lab then 

experimentally validated these model predictions experimentally, use the outcomes to refine our 

models, and predict DNA sequences that yield a higher ΔF/F response to the target. While our 

methodology can be adapted for various analytes, in this instance, we focus on serotonin (5-

hydroxytryptamine, 5-HT), a neurotransmitter with significant functions both within88 and outside 

the brain.89 Given the critical nature of serotonin biosensing, numerous recent endeavors have been 

directed towards its sensor development.84,87,90,91 Figures and tables labeled with an 'S' can be 

referenced in the published paper associated with this chapter. 

 

4.2. METHOD 

Data Preparation and Machine Learning (ML) Implementation 

We used datasets comprising ssDNA sequences and their corresponding ΔF/F values for 

our preliminary ML model training and testing. These data were sourced from experiments 

conducted by the Landry Lab at UC Berkeley, as detailed in Ref.87. This data can be found in Table 

4-1.  
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Table 4-1. presents the original collection of DNA sequences attached to single-walled carbon 

nanotubes (SWNT) and their change in fluorescence intensity (ΔF/F) in reaction to serotonin. All 

listed sequences contribute to both the training and evaluation of model M1. However, for model 

M1B, sequences highlighted in yellow, orange, and green are excluded as they represent repeated 

measurements. Each DNA sequence is bookended by C6-mer PCR primers. Most of the sequences 

and their ΔF/F metrics were initially documented in Ref87, with their designated names correlating 

to datasets produced in that study (with E/C denoting experimental/control groups, followed by 

the selection round number and the individual ID within the SELEC dataset). Sequences marked 

as N/A were selected at random for testing purposes. 

Seq 
ID 

Sequence 
ΔF/F    

(1195 nm) 
Name 

1 ACACACACAACGACGCGG 0.70223 E4#2755, E5#10, E2#180224 

2 AGCACAACACGGCAACCT 1.63693 E4#8701, E5#24, C6#105380, E6#1 

3 AACACACCACAGACTCTG 0.74523 E4#39060, E5#83, E6#2 

4 ACACACCATCAGACGCCG 0.61943 E4#2479, E5#21, E6#3 

5 AGCAGCACACGACACACT 0.96503 E5#29, E6#4 

6 ACGCCAACACATTCCGCT 1.68843 E4#12871, E5#23, E6#5 

7 AACACACACAGCCGTCCG 0.78507 E4#467850, E5#18, E6#6 

8 AACACACACAGACGCACG 1.0623 E4#734956, E5#1703, E6#7 

9 AGCACCAGACAGCACACT 1.9069 E5#137, E6#8 

10 ACCACGATCCTCACTCCG 0.59733 E4#184836, E5#239, E6#9 

11 ACGCACCGACAGCACACT 0.54127 E4#233419, E5#1, E6#1208 

12 ACACCACACCACACCGAT 0.47627 E4#184339, E5#2, E6#43 

13 ACGACAACCAACACTGTG 1.33259 E5#3, E6#56 

14 AGCACACTACACACGGCG 0.8454 E5#4 

15 ACACCACCTCACGACGTG 0.77627 E4#34446, E5#5, E6#665 

16 ACACCACCAGACACTGCG 0.80127 E5#6, E6#1534 

17 ACCAACACCAGCCGTGCG 0.63761 E4#111696, E5#7, E2#300713, E6#326 

18 ACACACACCACACGTGCT 0.65277 E4#207701, E5#8, E6#10 

19 ACACAACACCCGACGCGG 0.66363 E4#681284, E5#9, E6#25 

20 ACACACACAACGACGCGG 0.77176 E4#2755, E5#10, E2#180224 

21 GATCCAACCGCTGCCACA 1.3514 E3#7742, E5#10, E6#3137 

22 ACGACGTACACTCCTCCT 1.27193 E4#1, E5#565, E6#1609 

23 AACCGCATGTACTCTCCG 1.02657 E4#2, E6#445196 

24 AACATGCACAGACGTCCG 1.11015 E4#3, E5#1033, E6#482 

25 AACCATGCACAACGCGTG 1.04517 E4#4, E5#2084, E6#1925 

26 ACACAACCTGCTCCTCCT 1.15197 E4#5, E5#193, E6#36 

27 CCCCCCCCCCCCCCCCCC 0.81727 
E4#6, E5#95, C6#17553, E3#14, C2#773, 
C3#8098, C5#1640, C4#125089, E6#6067 

28 ACGCACAATCCGGCACTT 1.01673 E4#7, E6#441458 

29 ACAGACTGCAGTCATGTG 0.76213 E4#8 

30 ACACCAGCCACACGTGCG 0.54147 E4#9, E5#32, E6#103 

31 ACCTGACACGATCCTATG 0.20597 N/A 

32 GGCACAACGCTCGATGCT 0.62686 E3#1 

33 ATTACAGCGGACAAGTGT 0.39338 E3#2 
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34 TAAGGCCGATCCCACTAT 0.21325 E3#3 

35 TGACTCCATAACAGTGTG 1.15087 E3#4 

36 GACACCCTGGACCCGTCG 0.73723 E3#5 

37 TGGCGTACAAACCGTCTG 0.65847 E3#6 

38 ACACACTCTACTCTTCCA 0.26397 E3#7 

39 GACGTTGTGCCCAAGTTG 0.98223 E3#8 

40 AAGGGACTGAAAGCAATG 1.45753 E3#9 

41 ACCGCATCGACATGTGCT 1.01393 
E4#3165, E2#642689, C3#1153, C5#8791, 

C4#124653, E6#173 

42 ACCGCACGAGCCAGTGTG 0.54137 
E4#128294, C6#1, E2#855501, C2#556426, 

E6#4999 

43 TCACCACATTCCGCTGTG 0.65097 
E4#592353, C6#2, E2#141998, C5#10221, 

C4#6551, E6#21314 

44 ACCGAGAGCAGACGATGT 1.00867 
E4#299356, C6#3, C2#14685, C4#26020, 

E6#473021 

45 AACACCACACACGGCGCT 1.1451 
E4#3934, C6#4, E2#35033, C2#49973, C5#1, 

C4#13, E6#325887 

46 GCAGCGTGACTTGACGTG 1.13463 
E4#665722, C6#5, E2#1833, E3#10611, 

E6#2458 

47 AACACGGCCCTCATGTCG 0.58513 
C6#6, C2#331535, C5#6179, C4#40744, 

E6#123552 

48 AGCCGTATGCACACCTCA 0.52833 C6#7, E2#767751, E3#480, C5#2434, C4#2983 

49 ACACACCGTTCATCCGCG 0.805 C6#8, E3#38449, C3#252187, E6#219759 

50 GCTGATCGACGACACGTG 0.78593 C6#9 

51 AACACCACACACGGCGCT 0.64953 
E4#3934, C6#4, E2#35033, C2#49973, C5#1, 

C4#13, E6#325887 

52 AGCACACTCCACTCCGCT 0.95393 C6#320, C3#75273, C5#2 

53 GCACACACCAGCCGTCTG 0.77587 C6#2551, C3#19037, C5#3, C4#12 

54 AACCACACACCGTCCGCT 0.9622 
E5#5415, C6#294, E3#18495, C3#244055, 

C5#4, C4#3825, E6#5869 

55 ACCACACCATCGACGCGT 0.97047 C6#1396, C3#110889, C5#5, C4#4762 

56 AGCCACACGACGCGCTCT 0.39057 E4#29995, C6#984, E2#121542, C5#6 

57 ACGGCACACACCATCGCT 0.66563 C6#5556, C5#7 

58 ACGACACTGCACGACGCG 0.56955 C6#195757, C5#8 

59 ACGGCAACTCCCATTCCG 0.8091 C6#11460, C2#614315, C5#9 

60 ACGACACCACACTGCTCT 0.50943 C6#105782, C5#10 

61 ACACAGCATCATTCCGCT 0.44783 C3#346295, C5#12 

62 GCACCAACCAGCCGTCTG 0.874 E4#28645, C6#321, C5#47, C4#1 

63 TCACCACATTCGACGGCG 0.4382 C5#2646, C4#2 

64 ACCACAAGTGACTGTCCT 0.47915 C4#3 

65 GCCGACATGACTCCTCCT 0.42083 
C6#421, C3#80010, C5#1693, C4#4, 

E6#410151 

66 ACACACCAATGACCTGTG 0.61373 C5#135, C4#5 

67 TACCCACACCACACACTG 0.70733 C6#2111, C3#398357, C5#152, C4#6 

68 ACTGCACATCGACGCGCG 0.46227 C6#29012, C5#41, C4#7 

69 ATTGCCGCCATCCTCATG 0.6527 C4#8 

70 AGGCCACCGTCGCACGTG 0.41914 C4#9 

71 ACAGACCGACGTGTGCTG 0.28237 N/A 

72 TGGGAGCCATCTTGTGCG 0.30723 C3#1 
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73 GTTCAGCCTTTTCGTTCG 0.42323 C3#2 

74 GGAATCTCCGGCGTCTAT 0.33207 C3#3 

75 TAGCACAGGTCGTCTATT 0.38593 C3#4 

76 GCCAATATAGCCCTTCCG 0.79868 C3#5 

77 AATCACTGCAATGGTCGT 0.31937 C3#6 

78 AACACATTGACGTGCACT 0.2447 C3#7 

79 GGGCTGTGCCGTCATGCG 0.55663 C3#8 

80 GATGGGGAATCATGCGTG 0.27437 C3#9 

81 GCACAATCCAGCGCACAA 0.73998 N/A 

82 ACGACGGAACTACACACC 0.91085 N/A 

83 GAGACTCAACCGAACACC 1.3473 N/A 

84 ACCACACAACCGACTGTG 1.02557 N/A 

85 AACCCCAACCACGGTTGG 0.82087 N/A 

86 AGGACAACCCCGCGTGTG 1.2009 N/A 

87 ACACACCGACACGGTGTG 0.3311 N/A 

88 ACCACGACGACGACTGTG 0.53127 E6#3500 

89 ACCAACACACACTCCGCT 0.85663 N/A 

90 AACACACCAACACCCGCT 1.0687 N/A 

91 ACACACACACACTCCGCT 0.49517 N/A 

92 ACACCACCACACTCCGCT 0.32298 N/A 

93 ACCACACAACGCTCCGCT 0.334 N/A 

94 ACACACCGCTCTCCCTCT 0.49743 E4#393, E5#538, E6#20 

95 ACGACATGGCACACCGAT 0.87663 E4#26, E5#578, C3#108525, E6#28 

96 ACACAACCTGCTCCTCCT 1.41713 E4#5, E5#193, E6#36 

97 ACACCAATCGCACTTCCG 1.4976 E4#385, E5#232, E6#59 

98 ACACGATCCAACACTCCG 0.95543 E4#404, E5#74, E6#94 

99 AGCACCAGACAGCACACT 0.767 E5#137, E6#8 

 

The ssDNAs had an 18-nt variable segment bordered by two C6-mers on each end. The 

18-nt variable segments of the ssDNAs served as the input for our models. Multiple data encodings 

were explored, such as position specific vectors (1-gram, denoted as psv1 and illustrated in figure 

2-4) The data from Table 4-1 was categorized into two groups: class 0 for DNA sequences with 

low serotonin response and class 1 for those with high serotonin response. We adjusted the 

threshold value for class 0 (t0) across various parameters, while maintaining the threshold for class 

1 (t1) at a constant value of 0.9. This thresholding ensured a balanced distribution of classes, 

essential for effective model training and testing. 
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We evaluated the efficacy of multiple ML classifiers, such as AdaBoost, logistic 

regression, linear support vector classification, and random forest. For these models, sequences 

were represented as 1 × 72 binary arrays, derived from the sequential arrangement of psv1 matrix 

columns into a linear array. Additionally, we assessed the convolutional neural network (CNN) 

models' performance on psv1 and term frequency vector inputs, which had shown promise in prior 

DNA and RNA sequence specificity predictions.92 All models aimed to predict the likelihood of 

an input sequence exhibiting a high or low serotonin response. We employed the Scikit-learn 

library for ML model training, while Keras93 and TensorFlow 294 served as the foundation for the 

CNN models. The primary data set used for training, as referenced in the paper2, was instrumental 

in this study. The CNN models with psv1 encoding exhibited the best performance, leading to the 

exclusive use of the CNN methodology for subsequent models applied to extended data sets. 

All coding for ML classification and regression model training is accessible on GitHub at 

https://github.com/vukoviclab/DNAsensor. 

Evaluation Criteria 

Our CNN models were designed to forecast the serotonin response of 18-nt DNA 

sequences, or more precisely, to predict the likelihood of these sequences belonging to either class 

0 or class 1. Both class probabilities were assessed independently. Sequences predicted to have a 

high response were identified based on normalized class 1 probabilities exceeding 0.5. 

For every model, we computed various metrics like accuracy, precision, recall, f1 score, 

ROC curves, and AUC, while also tracking TP, TN, FP, and FN values. We used standard 

definitions to calculate accuracy, precision, recall, and f1 score. For ML models, singular values 

of precision, recall, and f1 score were determined. In contrast, CNN models provided two sets of 

these metrics, enabling separate evaluations for sequences with both low and high serotonin 

https://github.com/vukoviclab/DNAsensor
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responses. All model performances were further assessed using ROC curves and AUC values. For 

each CNN model, two ROC curves and corresponding AUC values were derived, one for low-

response sequences and another for high-response sequences. For most data sets, 200 models were 

crafted with varying random states. For certain model groups, we provided a range of statistical 

evaluations related to model quality metrics. 

PCA Assessment 

The top 200 sequences from R6E and R6C SELEC data sets underwent principal 

component analysis (PCA) using the Scikit-learn library. We then analyzed the positions of some 

experimentally tested sequences within the established PCA framework. 

4.3. RESULTS AND DISCUSSION 

Categorizing DNA Sequences in DNA–SWNT Conjugates by Their Optical Reaction to 

Serotonin 

Our initial endeavor was to develop and evaluate classifier models that could predict 18-

nucleotide (nt) ssDNA sequences' relative nIR fluorescence response to serotonin after being 

conjugated to SWNT. We began by training models on a foundational data set of 96 distinct 

ssDNA sequences, which were pinpointed from prior SELEC studies. This foundational data set 

was curated from a comprehensive library of roughly 1010 18-nt ssDNA sequences that either 

bind competitively to SWNT (control) or to SWNT in serotonin's presence (experimental).87 The 

SELEC method, depicted in Figure 4-1a, underwent multiple selection rounds, yielding data sets 

of chosen DNA sequences and their prevalence. The primary 96 sequences, mainly the most 

prevalent ones from SELEC rounds 3 to 6, were selected for subsequent serotonin response 

spectroscopic evaluations, thereby creating the foundational data set for model training. We 

measured the nIR fluorescence emission for these 96 distinct ssDNA–SWNT conjugates before 
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and after introducing 100 μM serotonin. This data has been previously documented in ref (31) and 

is displayed in Figure 4-1b. The conjugates' response to serotonin was derived from the 

fluorescence emission spectra for the dominant (8,6) chirality peak (centered around ∼1195 nm) 

using the formula ΔF/F = (Fa – F)/F, where F represents the fluorescence signal before serotonin's 

addition, and Fa represents the signal post-addition (Figure 5-1a). The ΔF/F values for sequences 

in the foundational data set span from 0.2 to 1.9. This foundational data set, color-coded based on 

their SELEC group affiliation (experimental, control, or neither), is also depicted in Detailed in 

Ref2. 

Using the methodology illustrated in Figure 4-1c, we trained and evaluated convolutional 

neural network (CNN) classifier models on the acquired data set of 96 DNA sequences and their 

associated ΔF/F values (Figure 4-1b). This data set was bifurcated into two categories based on 

serotonin response: class 1 sequences exhibited a pronounced serotonin response (ΔF/F threshold 

t1 > 0.9), while class 0 sequences had a subdued response (with variable ΔF/F thresholds of t0 < 

0.85, 0.8, 0.7, 0.6, and 0.5). These thresholds were chosen to discern sequences resulting in DNA–

SWNT conjugates with either an exceptionally high or notably low response to the target analyte, 

information crucial for the practical application of DNA–SWNT sensors. The t1 > 0.9 threshold 

meant that class 1 encompassed 32% of sequences from the entire data set (31 out of 96 sequences). 

The fluctuating t0 threshold allowed us to study the impact of data set dimensions and equilibrium 

on ML model efficacy and consistency. Larger thresholds would result in more sequences in class 

0, imbalanced classes, more robust models, and the learning of sequences with a median serotonin 

response. Conversely, smaller thresholds would yield fewer entries in class 0, balanced classes, 

less consistent models, and the learning of sequences with a minimal serotonin response. The CNN 

models' input was ssDNA sequences, transformed into position-specific vector (psv1) format with 
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binary values (an example is provided in Figure 2-4). The trained CNN models' outputs are the 

likelihoods of the input sequences belonging to either class 0 or class 1 (evaluated independently). 

 

Figure 4-1. Methodology for identifying DNA sequences in DNA-SWNT conjugates that exhibit 

a significant reaction to serotonin. a) A SELEC protocol, conducted for up to 6 cycles, isolates 

ssDNAs with a pronounced affinity for SWNTs and, distinctively, SWNTs when serotonin is 

present. A subset of these high affinity ssDNAs are then chosen for detailed fluorescence emission 

spectroscopic studies of their conjugates with SWNTs both pre and post the introduction of 100 

µM serotonin. b) The optical shift, represented as ΔF/F, of 96 distinct ssDNA-SWNT 

combinations when exposed to 100 µM serotonin. This dataset also encompasses repeat readings 

for 4 of these sequences. c) The primary computational strategy involves converting DNA 

sequences into either the binary psv1 format or a basic binary sequence. These sequences are then 

categorized based on their optical reactions, using specific ΔF/F thresholds. Both the sequences 

and their corresponding ΔF/F values serve to educate both classification and predictive models. 

The top-performing models then forecast sequences with either heightened or diminished reactions 

to serotonin. These predictions undergo experimental verification. The results from these tests then 

guide the creation of subsequent models. 

 

One of the most effective CNN models trained on the foundational data set, labeled M1, 

has its quality metrics displayed in Figure 4-2a. For M1, the area under the receiver operating 
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curve (AUC) values were 0.59 for predicting class 0 sequences and 0.64 for class 1 sequences. 

Meanwhile, precision/recall values were 0.81/0.5 and 0.76/0.57 for predicting class 0 and class 1 

ssDNA sequences, respectively. The models were sensitive to the removal of several sequences 

from the input, especially those from class 1. This sensitivity was evident when attempting to 

develop a high-quality CNN model trained on a reduced foundational data set containing only 93 

data points. Quality metrics for a representative model, M1B, crafted with 93 data points from the 

foundational data set, are detailed in Ref2. In general, while the CNN methodology yielded decent, 

albeit not outstanding, quality metrics, we opted to employ it for DNA sequence classification. 

This decision was made because several other tested ML techniques, including AdaBoost, logistic 

regression, support vector classification, and random forest, consistently produced unsatisfactory 

models. These alternative methods invariably resulted in class 0 and class 1 probabilities of 0.5 ± 

0.2, signifying a lackluster distinction between sequences with high and low serotonin responses 

when trained using these methods (are detailed in Ref2). Separately, we favored the psv1 sequence 

encoding over other encoding types reported by others95 that we also evaluated.  

Subsequently, we analyzed model M1's predictions for the most prevalent DNAs from the 

control and experimental SELEC data sets. We employed model M1 to categorize the 300 most 

prevalent DNA sequences from rounds 6 and 5 of the experimental (R6E/R5E) and control 

(R6C/R5C) SELEC data sets, excluding any overlapping sequences present in both experimental 

and control data sets from identical rounds. Model M1 anticipates that 41.7%/37.7% of R6E/R5E 

sequences and 26%/34% of R6C/R5C sequences will exhibit a high ΔF/F serotonin response 

(Figure 4-2c). Given that sequences from the experimental data set were chosen based on their 

strong affinity for SWNTs in serotonin's presence, in contrast to the sequences from the control 
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data set, we anticipated that the experimental data sets would contain a higher number of serotonin-

responsive sequences. This assumption aligns with the predictions presented in Figure 4-2c. 

To verify the predictive accuracy of model M1, we chose 20 DNA sequences from the top 

300 prevalent sequences in the R6E SELEX dataset. These sequences underwent experimental 

validation by the Landry Lab at UC Berkeley. Based on model M1's probability predictions for 

these sequences to belong to classes 0 or 1, 15 of the sequences are anticipated to have a high 

serotonin response, while the remaining 5 are expected to have a low response (SI, Table S4). 

Figure 4-2b and SI, Table S4 showcase the experimentally measured ΔF/F values for the chosen 

DNA sequences. Notably, 12 out of the 15 predicted high-response sequences exhibited ΔF/F 

values surpassing the class 1 threshold, t1 > 0.9 (80%, derived from 12 out of 15 sequences). 

Moreover, the validation tests identified two sequences with ΔF/F values of 2.1 and 2.7, indicating 

a stronger serotonin response than any sequence from the foundational data set. These sequences 

correspond to ID#90 (with 8 reads, ΔF/F = 2.1) and ID#115 (with 7 reads, ΔF/F = 2.7), based on 

their read counts in the R6E data set. On the other hand, 3 out of the 5 predicted low-response 

sequences recorded ΔF/F values below the class 0 threshold, t0 < 0.85. Overall, there wasn't a 

statistically significant correlation between the predicted probabilities and the experimental ΔF/F 

values (SI, Figure S3). 

Performance of Individual CNN Models Trained on Our Extended Data Set 

To determine if incorporating more experimental data points could yield more predictive 

models, we trained a second representative CNN model, M2, on an expanded data set of 113 

sequences. This data set combined the foundational data set (singly measured sequences in Figure 

4-1b with additional experimental data from the first set of validation tests Figure 4-2b more detail 

are available in the ref paper2). A representative model, M2, achieved an accuracy of 0.64, AUC 
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values of 0.71 for predicting class 0 sequences, and 0.75 for class 1 sequences. Additionally, 

precision/recall values were 0.77/0.59 and 0.53/0.73 for predicting class 0 and class 1 ssDNA 

sequences, respectively. Besides the enhanced AUC values, the M2 model exhibited significantly 

improved ROC curves compared to models M1 and M1B (Figure 4-3b, and are detailed in Ref2). 

 

Figure 4-2. Assessment of a typical CNN model based on the primary data collection. a) Review 

of a standard CNN M1 model educated using the preliminary dataset, with criteria set at t1 > 0.9 

and t0 < 0.85. b) The optical shift, symbolized as ΔF/F, of ssDNA-SWNT combinations when 

introduced to 100 µM serotonin. This data is derived from 20 novel ssDNA sequences that were 

forecasted by model M1 to exhibit either a strong (marked as positive) or weak (indicated as 

negative) reaction to serotonin. Sequences that present ΔF/F measurements surpassing 1.9, the 

peak values from the initial data set, are highlighted with green circles. c) Ratio of sequences from 

R6E, R5E, R6C, and R5C SELEC collections that model M1 anticipates being highly reactive to 

serotonin. This percentage is deduced from the inaugural 300 SELEC data sequences in the 

designated experiment/control set that aren't found in the associated control/experiment set. 

 

The Landry Lab at UC Berkeley experimentally validated these sequences. To validate the 

accuracy of model M2's predictions, we selected 40 DNA sequences from the 280 untested most 

prevalent sequences in the R6E dataset. Among these 40 DNA sequences, half were predicted by 

M2 to have a low response (termed as negative), and the other half were anticipated to have a high 
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response (termed as positive) (are detailed in Ref2). Figure 4-3c display the experimentally 

measured ΔF/F values for the chosen DNA sequences. Model M2 tends to overestimate false 

positive sequences since only 7 out of the 20 sequences (35%) predicted to have a high serotonin 

response recorded ΔF/F values exceeding the class 1 threshold of t1 = 0.9. The remaining 13 out 

of 20 sequences (65%) registered ΔF/F < 0.9. Single models like M2 might be predicting sequences 

with responses akin to those of randomly selected sequences. Notably, model M2 identified two 

previously unknown sequences from the R6E evolution group with a robust serotonin response, 

recording ΔF/F values of 2.5 and 2.9. These sequences are associated with ID#264 (with 6 reads, 

ΔF/F = 2.5) and ID#156 (with 7 reads, ΔF/F = 2.9), based on their read counts in the R6E evolution 

group. Separately, while all sequences predicted to have a low serotonin response recorded ΔF/F 

< 1.3, only 9 out of the 20 sequences (45%) had ΔF/F values below the class 0 threshold of t0 = 

0.85. 
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Figure 4-3. Assessment of CNN models based on the augmented data collection. a) Analysis of a 

typical CNN M2 model developed using the enlarged dataset, with criteria set at t1 > 0.9 and t0 < 

0.85. b) ROC trajectories for the M2 model when forecasting sequences for class 0 and class 1. c) 

Optical shift, denoted as ΔF/F, for ssDNA-SWNT combinations when exposed to 100 µM 

serotonin, derived from 40 novel ssDNA sequences. Sequences that present ΔF/F measurements 

that surpass 1.9, the apex value from the preliminary data collection, are highlighted with green 

circles. 

 

Predicting High-Response DNAs Using Combined Classification and Regression Models 

During the training of models M1 and M2, we observed their unpredictable behavior and 

their reliance on the random state variable (resulting in different training/testing data set divisions) 

chosen during the training process. To understand the unpredictability of these models trained on 

our limited data sets of approximately 100 sequences, we subsequently analyzed their accuracy 

and f1 scores. This analysis was conducted on 200 CNN models trained on the expanded data set 

using various random state variables and several t0 threshold values (0.5, 0.6, 0.7, 0.8, 0.85). The 

accuracy and f1 score distributions of these models, depicted in Figure 4-4a, b, vary between 0.4 

to 0.93 and 0.2 to 0.9, respectively. Although these distributions cover a broad spectrum, most 
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models have accuracy and f1 scores above 0.5, indicating their predictive potential. Furthermore, 

over half of the models in Figure 4-4b have accuracy and f1 scores exceeding 0.6. Intriguingly, 

predictions of high-response sequences are of superior quality for smaller t0 thresholds (are 

detailed in Ref2). Model unpredictability diminishes, and model consistency enhances when data 

sets contain 500 or more sequences for each class (Figure 4-4c, input sequences sourced from 

SELEC data sets). 

 

Figure 4-4. Variability in CNN model outcomes. a) Display of accuracy metrics across 200 CNN 

models using psv1 input, determined by varying random state settings for multiple t0 values. b) 

Spread of f1 score metrics across 200 CNN models, achieved with varying random states at a fixed 

t0 value of 0.7. c) Relationship between dataset volume and model consistency. AUC metrics for 

nine distinct CNN models, each developed using 100, 200, 500, and 1,000 sequence sets from two 

classes, sourced from R6C (class 0) and R6E (class 1) SELEC data collections. Every model is 

characterized by a unique random state setting. 

 

With the goal of predicting DNA sequences with the highest ΔF/F values, we subsequently 

trained regression models that predict ΔF/F values based on DNA sequence input. These regression 

models were developed using the support vector machine (SVM) regression algorithm with radial 

basis function (RBF) and sigmoid kernels, inspired by the successful application of these 

algorithms for sequence input.96 One of the most effective SVM RBF regression models, trained 

on the expanded data set with sequences having ΔF/F > 0.9 and ΔF/F < 0.6, is illustrated in Figure 

5a. There's a strong correlation between the ΔF/F values of test sequences obtained experimentally 
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and those predicted by this SVM model, with r2 = 0.448 and a Pearson coefficient of rPearson = 

0.67 (p-value = 0.001). However, like classification models, the quality of regression models also 

hinges on the random state variable. This dependency is evident in the r2 value distributions for 

200 models crafted with SVM RBF and SVM sigmoid methods, various random state variables, 

and different t0 values (Figure 5-5b, c). For both SVM RBF and SVM sigmoid methods, r2 values 

range from negative values to 0.5, with SVM RBF models generally being of superior quality 

compared to SVM sigmoid models. 

Considering the substantial number of effective classification and regression models we 

developed, our next step was to evaluate if merging these model predictions could help identify 

DNA sequences with either high or low serotonin responses. To achieve this, we trained CNN 

models using input data with set thresholds: t1 = 0.9 and either t0 = 0.5 or 0.6. This resulted in 

values of f10 and f11 exceeding 0.6. These models were then employed to predict the responses of 

3000 untested, abundant R6E sequences. In parallel, the top-performing regression models, with 

an r2 value greater than 0.45 and trained on an expanded dataset with sequences within the 

thresholds t1 > 0.9 and t0 < 0.5, were used to estimate the ΔF/F values for these 3000 sequences. 
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Figure 4-5. Utilizing SVM regression models to forecast ΔF/F values in ssDNA-SWNT 

combinations. a) A juxtaposition of experimentally derived ΔF/F values with those projected by a 

standout SVM RBF regression model, which was trained on the augmented dataset using criteria 

of t1 > 0.9 and t0 < 0.6, and a specific random state variable. b) Spread of r2 metrics across 200 

SVM RBF models, generated using varied random state settings. c) Dispersion of r2 metrics for 

200 SVM sigmoid models, acquired through different random state configurations. 

 

After organizing the sequences based on their predicted ΔF/F values from regression, we 

selected the top 10 sequences that the CNN models also identified as having a high response, due 

to their consistently high or low likelihood of belonging to class 1 or class 0, as shown in Figure 

6a. For a comparative analysis, we also picked the 10 sequences ranked at the bottom, which the 

CNN models identified as having a low serotonin response, based on their consistent probabilities, 

as depicted in Figure 4-6a. The likelihood of these 20 sequences being in class 1 or class 0 was 

further confirmed by an ensemble of multilayer perceptron artificial neural network (MLP-ANN) 

models, as illustrated in ref paper2. This ensemble incorporated models trained with thresholds t1 

= 0.9 and t0 = 0.7, achieving f10 and f11 scores values above 0.6. The probabilities derived from 

the MLP-ANN models (refer to paper2) aligned closely with the trends observed from the CNN 

models (as seen in Figure 4-6a). 
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Figure 4-6. Anticipating the reaction of DNA sequences to serotonin utilizing numerous top-tier 

classification and regression models. a) Predicted likelihoods for 20 DNA sequences to exhibit a 

strong (class 1) or weak (class 0) reaction to serotonin; these sequences were handpicked based on 

the outputs of several elite classification and regression models, as elaborated in the main content. 

b) The optical shift, depicted as ΔF/F, for ssDNA-SWNT combinations when introduced to 100 

µM serotonin, derived from those 20 ssDNA sequences. Any sequence that displays a ΔF/F 

measurement surpassing 1.9, the peak value from the initial data collection, is accentuated with a 

green circle. c) A side-by-side comparison of both experimentally obtained and projected ΔF/F 

values for those specific 20 ssDNA sequences. 

 

Subsequently, we conducted experimental evaluations on the top and bottom 10 sequences, 

labeled as positive and negative respectively (refer to Figure 4-6b). Remarkably, 60% (or 6 out of 

10) of the positive sequences displayed ΔF/F responses surpassing the class 1 threshold of t1 = 0.9, 

with one sequence even achieving a ΔF/F value of 2.1 (as are detailed in Ref2), which is higher 
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than any value in our initial dataset (1.9). On the other hand, 90% (or 9 out of 10) of the negative 

sequences had ΔF/F responses below the class 1 threshold of t1 = 0.9. Notably, there was a 

significant correlation between the experimentally measured and predicted ΔF/F values (as seen 

in Figure 6c), with a Pearson correlation coefficient (rPearson) of 0.5 and a p-value of 0.02. 

4.4. CONCLUSIONS 

In this study, we utilized machine learning (ML) techniques to identify DNA–SWNT 

sensors that exhibit a strong nIR fluorescence response to serotonin. Previously, we selected 96 

DNA–SWNT sensors based on the frequency of each DNA sequence from SELEC experiments, 

assuming that sequence abundance was the primary indicator of sensor performance. This method 

overlooked less common DNA sequences. Our findings indicate that ML can enhance this 

abundance-driven approach. ML models can independently discern the relationship between DNA 

sequences and their fluorescence reactions to substances, aiding in the selection of superior sensor 

candidates. Using the most frequent sequences from SELEC experiments ensures that the initial 

dataset for ML training is rich in high-response sequences, a scenario less probable with entirely 

random selections. 

Table 4-2. Newly developed DNA-SWNT detectors specific to serotonin and their ΔF/F values, 

as determined by the Landry lab. The identification numbers and count of reads are sourced from 

the R6E SELEC data collection.  

 

ML models can interpret patterns from previously tested datasets and forecast potential 

DNA sequences. Our evaluation of various ML techniques revealed that convolutional neural 

network (CNN) classifier models are most effective for datasets of around 100 DNA sequences, a 
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common size in sensor research. Initially, we trained two individual CNN classifier models to 

predict DNA sequences with high serotonin responses. While the prediction accuracies from the 

test data varied from experimental results, these models still identified several DNA sequences 

with enhanced serotonin responses than earlier experimental findings. Additionally, we developed 

regression models to predict the relative nIR fluorescence response based on DNA sequences. 

Our analysis of various models, considering different data splits, revealed that both 

classification and regression models based on our limited datasets are somewhat unpredictable. 

Still, most models are predictive, with the majority achieving over 50% accuracy. Our 

investigation into the unpredictability based on dataset size suggests that consistent models can be 

realized with datasets containing 500 samples per category. Given the challenge of obtaining such 

extensive experimental datasets, we combined predictions from top-performing CNN classifiers 

and SVM regression models, drawing inspiration from model ensembling strategies. This 

integrated method achieved 60% accuracy for high-response sequences and 90% for low-response 

sequences, underscoring its potential in predicting effective DNA sequences and hastening sensor 

development. A simpler principal component analysis (PCA) method seemed promising in 

preliminary analyses but lacked strong correlation in validation tests, unlike the successful CNN 

classifiers and SVM regression models. Many sequence patterns were observed in high-response 

sequences, but most were infrequent, emphasizing the advantage of ML in predicting high-

response sequences from existing datasets. 

In summary, our ML strategies led to the discovery of five serotonin DNA–SWNT sensors, 

as detailed in Table 4-2. Notably, these sensors outperformed those identified through traditional 

manual screening based on sequence abundance in the R6E SELEC library. The capability of our 

models to predict non-responsive DNA sequences is also crucial for sensor design. Collectively, 
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our findings indicate that ML can efficiently pinpoint high-performing DNA sequences, 

potentially accelerating advancements in fields reliant on DNA–SWNT combinations, such as 

biosensors, bioelectronics, and SWNT chirality separation. 
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Chapter 5: BinderSpace: A package for sequence space analyses for datasets of affinity-

selected oligonucleotides and peptide-based molecules 

5.1. INTRODUCTION 

The discovery of molecules that strongly bind to target molecules is a crucial step in 

creating new therapeutic treatments and research tools.97,98 However, finding such molecules is a 

complex task, especially when they need to bind selectively to the target and possibly perform 

other specific functions, like emitting light signals or triggering targeted protein degradation.99 A 

common method for finding these target-binding molecules involves creating and testing 

combinatorial libraries of molecules, which can either stand alone or be attached to entities like 

oligonucleotides or phages. In display tests, the sequence of the oligonucleotide or phage genome 

can be decoded using next-generation sequencing, giving each molecule in the library a unique 

identifier. These encoded molecule libraries can be screened in one go for target binding, often 

resulting in the selection of high-affinity binders. 

The libraries can consist of various molecules, including oligonucleotides, modified 

nucleic acid polymers,100 small molecules,101,102 and different types of peptides.103–108 One 

technique for selecting target binders from diverse oligonucleotide sequences109,110 is known as 

systematic evolution of ligands by exponential enrichment (SELEX). This method involves 

multiple rounds where, in each cycle, high-affinity binders become increasingly prevalent. SELEX 

typically produces a dataset of oligonucleotide sequences that have been enriched for target 

binding. Targets in SELEX can vary from small molecules,111 to cancer cells,112 to carbon 

nanotubes.87 Once high-affinity binders, or aptamers, are identified, they can be utilized in various 

ways. 
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Over the past decades, methods for high-throughput screening of peptide-based molecule 

libraries have also been developed. As noted, experimental display technologies96,113,114 like phage 

or mRNA display are commonly used for peptide ligand discovery. These techniques can create 

and test vast libraries of peptide molecules (up to 1010). Each library usually has a single structural 

base with peptide segments that have both fixed and variable amino acid positions, sometimes with 

added synthetic fragments.103–105,115 Like SELEX, peptide selection from phage or mRNA display 

libraries typically results in large datasets of target-binding sequences. While these datasets likely 

contain high-affinity binders, identifying the best binders requires more detailed, low-throughput 

experiments that measure the equilibrium dissociation constant KD between each molecule and its 

target. As these experiments can only be done on a limited scale, further methods or experiments 

are needed to identify the highest affinity molecules. 

With the rise of artificial intelligence (AI), there's growing interest in using experimental 

selection datasets to train machine learning (ML) models. These models can predict molecules, 

whether oligonucleotides or peptides, with a high affinity for targets101,116 or those that can produce 

a specific functional response, like fluorescence.2,117 Bioinformatics can help understand the 

sequence makeup of experimental datasets and assess patterns in molecules predicted by ML 

models to have high target affinity. For instance, sequence motif analyses can identify motifs 

prevalent in experimental datasets, which is valuable since motifs often play a role in target 

affinity.118 Comparative analyses of control and selection datasets can also guide the selection of 

candidate molecules for more detailed experiments. Various bioinformatics tools have been 

developed for motif discovery in DNA, protein, and peptide datasets, with applications ranging 

from gene regulation to the discovery of therapeutic peptides.119 However, many of these tools, 

like MEME120 and MERCI121, might not be optimized for analyzing selection datasets. 
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Another valuable bioinformatics tool is the visual analysis of reduced-dimensionality 

sequence spaces, using methods like principal component analyses (PCA) and t-distributed 

stochastic neighbor embedding (t-SNE). These methods can reveal structures within large datasets 

and have been applied in various biological contexts, including DNA methylation122 and single-

cell transcriptomics.123 Clustering methods can further categorize sequences in these reduced 

spaces, helping identify sequences with similar properties. 

To our knowledge, no single toolkit currently combines motif discovery with reduced-

dimensionality sequence space visualizations for oligonucleotide and peptide-based selection 

datasets. In response, we've created BinderSpace, a Python package designed for efficient analysis 

of sequence compositions from selection processes. BinderSpace can analyze motifs in DNA, 

RNA, or peptide sequences, visualize sequences in reduced spaces, and cluster sequences. We 

showcase BinderSpace's capabilities using datasets of oligonucleotides selected for binding to 

carbon nanotubes in the presence of serotonin2,87and cyclic peptidomimetics chosen for binding to 

bovine carbonic anhydrase protein.104 

5.2. METHODS 

In this section, we introduce the BinderSpace package, designed to analyze datasets of 

related DNA and peptide-based sequences derived from selection experiments. As illustrated in 

Figure 1, BinderSpace offers functionalities such as motif analysis, visualization of sequence 

space, cluster analysis, and extraction of sequences from specific clusters. 

BinderSpace is a Python3-based open-source tool. Its source code is accessible on GitHub 

and can be installed or downloaded from the Python Package Index (PyPI) repository. The 

repository includes a code folder and a tutorial-style example analysis folder. 
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Figure 5-1. A breakdown of the capabilities of the BinderSpace tool. Inputs for the package (box 

1) consist of DNA or peptide molecular sequences. This includes molecules known for their strong 

affinity to a target (positive dataset) and those from a control set, which are presumed not to bind 

strongly to the target (negative dataset). The initial result (box 2) involves evaluating motifs within 

both positive and negative sets. The subsequent output (box 3) is a graphical representation 

examining the sequence distribution of both sets. The final output (box 4) analyzes the cluster 

evaluation of these sequence space representations, allowing for the extraction of molecular 

sequences from desired clusters. 

 

Motif Search in Affinity-Selected Molecule Datasets 

The initial task in BinderSpace when analyzing datasets of affinity-selected DNA or amino 

acid-based molecules is motif search. These datasets might comprise sequences with strong target 

binding, termed positive sequences. Alternatively, datasets might have both positive and negative 

sequences, with the latter assumed to lack strong target binding. Ms. Zhao employed the Apriori 

algorithm,124 the motif search identifies the top K motifs most prevalent in the positive sequence 
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set. The result is a csv file listing motifs and their frequency in the positive sequence set. If both 

positive and negative sequence sets are analyzed, the search yields top K motifs frequent in the 

positive set but rare in the negative set. The output ranks motifs based on the difference in their 

frequency between the positive and negative sets. As our tool is designed for genetically encoded 

affinity-selected molecules of uniform size but varying sequences, it assumes consistent sequence 

lengths across the dataset. 

To execute the motif search task, users run motif_search.py from the command line, a 

parallelized Python 3 script. Table 1 lists and describes the required and optional flags for this 

command. The essential flag is (-i), specifying the input dataset of positive sequences. When 

incorporating a negative sequence dataset using the optional flag (-n), the output also includes the 

Chi-square and p-value statistics. In practical scenarios, the control dataset might contain 

sequences with low or non-specific target affinity. Alternatively, the random_sequence function 

in module.py can generate a negative dataset of random sequences absent in the positive dataset. 

Several other options for the motif search task are detailed in Table 5-1. The flag (-c) lets users 

specify the molecule type in the dataset, either DNA or peptide. The flag (-f) sets the minimum 

motif occurrence frequency in the positive dataset, influencing search speed. Users can define 

minimum (-m) and maximum (-l) motif lengths, allowable motif gaps (-g), and the maximum gap 

length (-a). Additionally, the motif search can run on multiple processors, with the number of 

processors specified using the (-p) flag. While our search yields a detailed list of individual motifs, 

broader motif families can be identified using other software, like GLAM2 in the MEME suite,120 

which visualizes motifs as sequence logos (detailed in Ref3).  
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Table 5-1. Overview of choices available within the motif_search.py script. 

flag description default format 

    

-i 
calls the input file containing positive 

sequences (csv) 
- file name, required 

-n 
calls the input file containing negative 

sequences (csv) 
- file name 

-o 
defines the name of the output files 

listing the found motifs to be different 
from default (motifs.csv) 

motifs.csv file name 

-c 
defines if used for protein or DNA 

sequences 
amino_acids dna or amino_acids 

-f 
the minimal occurrence frequency for 

the positive sequences  
0.001  0<number < 1 

-m the minimal motif length 3 integer > 1 

-l the maximal motif length 
the length of the 
longest positive 

sequence 
integer > 1 

-g maximal number of gaps in motifs 0 integer ≥ 0 

-a maximal gap length 1 integer ≥  1 

-p 
number of processors used for running 

motif_search.py 
20 integer 

 

PCA and t-SNE Analyses 

BinderSpace's second task involves PCA and t-SNE analyses on DNA or peptide-based 

molecule datasets. These can be executed on entire datasets or subsets related to specific motifs. 

We recommend users interact with the binder_space.py code in a Jupyter notebook for flexibility. 

The most straightforward PCA and t-SNE analyses are in two- and three-dimensional spaces, 

enabling users to visually inspect the dataset in these condensed spaces. The PCA and t-SNE 

analyses in binder_space.py utilize scikit-learn modules, optimized based on our test DNA dataset. 



62 

However, the t-SNE section offers comprehensive guidance on hyperparameter testing. For both 

analyses, molecule sequences in datasets are represented as matrices, either (1 × N) for peptide-

based molecules with N amino acids or (1 × M) for DNA molecules with M nucleotides (Table 

S1). Users can choose the dataset for analysis, either the entire dataset or subsets containing 

specific motifs. The code provides instructions for each analysis type and suggests hyperparameter 

optimization. The code can also export PCA and t-SNE coordinates for sequences across all dataset 

dimensions when using the standard scikit-learn library. These coordinates are saved as a csv 

output. For extensive datasets, like our test DNA dataset with over 750,000 sequences, t-SNE 

analysis might be slow. In such cases, we recommend the cuML library for t-SNE analysis, which 

currently supports only two-dimensional analysis and is compatible with Linux-like systems.124 

Clustering in PCA and t-SNE Spaces 

Our provided Jupyter notebooks allow users to cluster data on the two-dimensional maps 

obtained from PCA and t-SNE analyses. Depending on data distribution in the maps, users can opt 

for one of four clustering methods from the scikit-learn library: DBSCAN, Birch, Gaussian 

Mixture, and k-means. Each method offers various parameters for refining clustering results. 

Sample Datasets 

We utilized two datasets, summarized in Table 5-2, to showcase BinderSpace's capabilities. 

The SDNA dataset, sourced from Jeong, Landry, and colleagues and detailed in Ref.,87 consists of 

18-nt long DNA sequences, divided into positive (SDNA-pos) and negative (SDNA-neg) 

sequences. The SDNA-pos sequences were selected for binding to single-walled carbon nanotubes 

(SWNTs) in the presence of serotonin, while SDNA-neg sequences were chosen for binding only 

to SWNTs. Another dataset, BCA-pos and BCA-neg, initially sourced from experiments by 

Ekanayake, Derda, and colleagues and described in Ref.104 contains cyclic peptides with 1,3-
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diketone groups. These molecules were selected for binding to bovine carbonic anhydrase (BCA) 

and compared against a control protein, bovine serum albumin (BSA). 

Table 5-2. Overview of datasets utilized to showcase the application of BinderSpace. "X" 

denotes the variable locations in the molecules. 

Molecule type Dataset Length 
Sequence 
template 

Number of 
sequences 

DNA 
SDNA-pos 18-nt  C6-X18-C6 570,926 

SDNA-neg 18-nt  C6-X18-C6 219,382 

peptidomimetic 

BCA-pos 6-aa 
SXCXXXC-
DKMP 

7,815 

BCA-neg 6-aa 
SXCXXXC-
DKMP 

7,644 

 

5.3. RESULTS AND EXAMPLES 

Motif Analysis 

Upon importing the positive and negative datasets, BinderSpace sifts through the 

sequences to identify recurring motifs. It then provides an output detailing these sequence motifs 

and their prevalence within the datasets. These motifs can be continuous or may contain gaps. The 

results are presented in csv files, each showcasing sequence motifs of a specific length. Using the 

SDNA and BCA datasets, we first showcased the motif search feature. Figure 5-2a, b displays the 

top 5 motifs of two distinct lengths, both with and without sequence gaps. The program 

motif_search.py produces a csv file for each motif length. All motifs exceeding the user-specified 

minimum length are identified in a single search. Alongside the detailed list of motifs in csv format, 

our tool can also visually display the top motifs and their corresponding percentages, color-coded 

based on their magnitude (Figure 5-2a, b). This allows for an easy visual assessment of motif 

representation in the dataset. Figure 5-2a further demonstrates our tool's ability to visually 

represent functional properties of sequences containing each motif. For the SDNA dataset, this 

functional property is the change in optical fluorescence emission, termed ΔF/F, following 
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serotonin analyte addition to a sample containing DNA sequences wrapped around single-walled 

carbon nanotubes. 

 

Figure 5-2. Illustrations of the graphical results of identified motifs through BinderSpace from two 

sample datasets. The motif analysis yields a csv file (comprehensive list) and a heatmap (prominent 

motif list) where motifs are arranged based on their frequency in the positive group. a) Heatmap 

showing leading 10-nt long motifs with either a single gap or none from the SDNA dataset, shaded 

according to ratios in positive and negative groups (left). Another heatmap represents ΔF/F values 

for DNA sequences encompassing these motifs, sourced from specific experiments24 (right). b) 

Heatmap spotlighting prominent 4-amino acid motifs with a pair of gaps from the BCA collection. 

c) Heatmap showcasing leading 9-nt long motifs devoid of gaps from the SDNA collection. 

 

 This visualization can be instrumental in pinpointing motifs linked to high functional 

property values. For the BCA dataset, our motif search can identify motifs with gaps as well as 

two and three amino acid motifs, as depicted in Figure 2b. We evaluated the runtime of 

BinderSpace's motif_search.py on a desktop workstation with an Intel Corporation Xeon E7 
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v3/Core i7 processor and 32 GB of memory, using the SDNA dataset, which contains 790,308 

sequences. Execution time depends on the frequency option (-f) and the number of gaps (-g). 

Increasing the frequency and reducing gaps speeds up the process, as shown in Table S2. For 

instance, with the SDNA dataset, a default frequency of 0.001 and 1 gap resulted in a runtime of 

1128 s (18.8 min). Adjusting the frequency to 0.01% reduced this to 85 s (1.42 min). Conversely, 

a laptop with an 11th Generation Intel Core i7-11800H Processor and 64 GB of CPU-allocated 

memory had a runtime of 43.19 s. For the BCA dataset, which contains 15,459 amino acid 

sequences, each four amino acids long, the runtime was consistently under 3 s (detailed in Ref3). 

Visualizing Affinity-Selected Molecule Sequence Space 

To visualize the sequence space of affinity-selected molecules in the SDNA dataset, we 

conducted PCA and t-SNE analyses on 18-nt DNAs, initially represented as 1 × 18 encoded arrays 

(Table S1). Figure 3A,B displays the positions of the top 500 SDNA-pos and SDNA-neg dataset 

sequences, overlaid with sequences containing the C*CATTCCGCT motif, previously identified 

as functionally significant.87 The specific sequence and motif were chosen due to their notable 

169% increase in optical emission in the presence of the serotonin analyte.87 The PCA and t-SNE 

analyses were based on all 790,308 sequences from the SDNA dataset, but for clarity, only select 

sequences are visualized. Figure 5-3a, b reveals that four DNA sequence subsets occupy similar 

regions in both PCA and t-SNE spaces. The high overlap makes it challenging to discern regions 

associated with sequences binding to serotonin from those that don't. Figure 5-3c, d displays the 

positions of SDNA-pos and SDNA-neg sequences with the C*CATTCCGCT motif in PCA and t-

SNE spaces, based on the subset of SDNA sequences with this motif. The plots reveal distinct 

sequence clusters, especially in t-SNE space, with varying compositions of SDNA-pos and SDNA-
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neg sequences with the C*CATTCCGCT motif. One potential application of datasets like SDNA 

is to train machine learning models to predict new high-affinity binding sequences.  

 

Figure 5-3. Exploration of the sequence landscape represented by the SDNA dataset. The 

visualizations were crafted by employing either the PCA or t-SNE techniques for shrinking the 

dimensionality of the original 18-nt long DNA sequences, initially showcased as 1 x 18 matrices. 

a) Contrast of the leading 500 sequences from SDNA-pos (depicted in orange) and SDNA-neg (in 

green) datasets, juxtaposed with sequences embracing the C*CATTCCGCT motif from both 

SDNA-pos (in blue) and SDNA-neg (in red) sets. This motif emerges in the 

ACGCCAACACATTCCGCT sequence (highlighted in fluorescent green), a sequence of noted 

functional relevance24. The principal component (PC) arena is drawn from the all-encompassing 

SDNA dataset. b) Contrast of sequences identical to panel a, yet analyzed using t-SNE. The t-SNE 

domain is derived from the entire SDNA dataset. c) A juxtaposition of sequences holding the 

C*CATTCCGCT motif from SDNA-pos (in blue) and SDNA-neg (in red) datasets. The PC realm 

is crafted from the SDNA sequences inclusive of the C*CATTCCGCT motif. d) Review of 

sequences identical to panel c, but through t-SNE. The t-SNE domain is shaped from SDNA 

sequences encompassing the C*CATTCCGCT motif. 
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The analyses in Figure 5-3 highlight the separation between SDNA-pos and SDNA-neg 

sequences, which can inform the potential accuracy of ML models. For instance, the better 

separation in Figure 5-3 c, d suggests that the dataset used here might yield higher-quality ML 

models than the datasets in Figure 5-3a, b, where sequences overlap more. However, since ML 

models would be based on specific data subsets, they might not generalize to sequences lacking 

the motif. Depending on project goals, users should examine maps from both full datasets and 

subsets to determine the viability of predictive ML models. 

Cluster Analysis and Sequence Extraction 

Our findings in Figure 5-3 c, d indicate that points in reduced dimensionality sequence 

space sometimes form clusters. These clusters, discernible visually, have diverse compositions of 

sequences from positive and negative dataset sections. Some clusters predominantly contain 

sequences from positive datasets, suggesting high target affinity. We theorize that such clusters 

might contain functionally significant sequences, warranting further experimental investigation. 

To identify sequences within clusters and extract them, I incorporated clustering analysis 

functionality into our Jupyter notebook codes. 

Figure 5-4 presents example clustering analyses using the t-SNE map of sequences with 

the C*CATTCCGCT motif from SDNA-pos and SDNA-neg datasets. The same map displays 

cluster labels obtained by four different methods: DBSCAN, Birch, Gaussian Mixture, and k-

means. All four methods required hyperparameter tuning to enhance cluster labeling. Among the 

tested methods, DBSCAN (Figure 5-4a) yielded the best cluster labeling. Birch and Gaussian 

Mixture methods excelled in small cluster labeling but struggled with larger clusters. The k-means 

method's labeling was also subpar compared to DBSCAN, as one distinct large cluster was labeled 



68 

as multiple clusters. After clustering, the code offers an option to export sequences forming a 

specific cluster in csv format. 

 

Figure 5-4. Cluster examination of the t-SNE visualization for sequences featuring the 

C*CATTCCGCT motif from the SDNA collection. This study is based on the two-dimensional t-

SNE depiction presented in Figure 3c. a) Cluster evaluation employing the DBSCAN technique, 

set with ε = 6 and a threshold of 20 points to define a cluster. b) Cluster study utilizing the Gaussian 

Mixture approach, configured for 9 clusters, spherical covariance mode, and capped at 5000 

cycles. c) Cluster evaluation through the BIRCH approach, calibrated for 9 clusters. d) Cluster 

analysis leveraging the k-means strategy, adjusted for 7 clusters. 

 

5.4. CONCLUSION 

BinderSpace serves as a comprehensive tool for examining datasets derived from DNA 

and peptide-based molecule sequences, which are acquired from selection experiments like 

SELEX13, 14 and phage display18, to name a few. This Python3-based open-source tool offers 
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capabilities such as motif analysis, visualization of sequence space, cluster analysis, and extraction 

of sequences from specific clusters. A standout feature of BinderSpace is its motif search 

functionality, which leverages the Apriori algorithm and is adept at handling even short sequence 

datasets. Beyond text-based results, the motif analysis offers visual outputs and can be paired with 

visual representations of specific functional properties for molecules containing the identified 

motifs, given that these properties have been previously determined. Users have the flexibility to 

conduct PCA and t-SNE analyses on either the entire dataset or specific motif-related subsets. 

These analyses can spotlight sequences of functional significance within the PCA and t-SNE 

visualizations. If sequences form discernible clusters within the PCA or t-SNE two-dimensional 

maps, users can further looks into cluster analyses. In essence, BinderSpace is a valuable resource 

for exploring the interplay between molecular sequences and the underlying principles governing 

their target binding interactions. 
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Chapter 6: Conclusion and Future works  

In my dissertation, I included the research that was performed for three publications where 

I was a first or a co-first author. 

In the first study, I used molecular dynamics simulations to characterize POPC-coated (6,5) 

SWNT conjugates. Unexpectedly, the SWNTs showed asymmetric positioning within POPC 

coronas, contrasting with previous findings in different lipid types. This suggests that SWNT 

positioning in lipid assemblies may be influenced by lipid type and SWNT size. Furthermore, the 

interactions of cell membrane disruptors with these conjugates were explored, revealing varying 

interaction mechanisms. Colistin and TAT peptides are deeply inserted into POPC bilayers and 

coronas, whereas crotamine-derived peptides are primarily adsorbed to the POPC surface. A 

potential future direction could be to characterize the interactions of cell-membrane-disrupting 

peptides with lipopolysaccharide-coated single-walled carbon nanotubes, extending the 

understanding of these materials' interactions with complex lipid structures. 

In the second study, I applied machine learning methods to discover DNA–SWNT sensors 

for serotonin with high near-infrared fluorescence response. Machine learning models, particularly 

convolutional neural network classifier models, effectively predicted promising sensor DNA 

sequences, significantly improving traditional selection methods based on sequence abundance. 

My study demonstrated the potential of machine learning in accelerating sensor discovery and 

optimization. Future work could focus on expanding the capability of the sensors to detect other 

neurotransmitters while ensuring specificity, such as developing sensors that specifically detect 

serotonin without interference from other neurotransmitters like dopamine. 

In the third study, the BinderSpace package was developed to analyze datasets of DNA and 

peptide-based molecules obtained from selection experiments. Implemented in Python3, it 
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performs motif analysis, sequence space visualization, cluster analysis, and sequence extraction 

from clusters of interest. Its ability to work with very short sequences and provide insights into the 

relationships between molecule sequences and their binding targets highlights its utility in 

molecular recognition research. Future development could involve enhancing BinderSpace to 

operate on GPUs for increased computational efficiency and scalability and adapting it to accept 

datasets with varying sequence lengths, facilitating more comprehensive analyses in molecular 

biology and bioinformatics. 
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