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Introduction 

 
Definition and importance of evapotranspiration 

One of the largest components of the hydrologic cycle is evapotranspiration (ET), which 

represents the sum of two processes: the evaporative loss of water from ground surfaces, plants, 

or water bodies, and the evaporative loss of water through stomata, also called transpiration (Irmak, 

2008). The main environmental factors controlling ET as a whole are water availability, energy 

availability, and the capacity of the atmosphere to take up water (Alfieri et al., 2020) which 

translate into multiple meteorological variables such as soil water content, air temperature and 

relative humidity, just to name a few. Additional controls are exerted on the transpiration portion 

of ET, coming from the plant physiological responses, such as photosynthesis and stomatal 

conductance, to environmental factors like the availability of radiative energy, changes in vapor 

pressure deficit, carbon dioxide levels and temperature (Alfieri et al., 2020; Kannenberg et al., 

2022). 

Speaking strictly in terms of energy fluxes, evapotranspiration is the latent heat flux (LE) 

associated with the change of phase in water, leading to the transfer of energy from a surface to 

the atmosphere (Carter and Liang, 2019), with energy being provided by the solar radiation and 

the sensible heat flux, and vapor pressure deficit along with wind speed enhancing the diffusion 

of water vapor in the atmosphere (Granata, 2019). Therefore, ET is a unique climate variable that 

links the water cycle through evaporation, the energy cycle through latent heat flux, and the carbon 

cycle through transpiration-photosynthesis (Fisher et al., 2017; Zhao et al., 2019) while also being 

strongly correlated to factors such as root density, leaf area, and soil water retention (Biederman 

et al., 2017).  
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Figure 1. Schematic diagram of the interrelation between the water cycle (blue), the energy 
balance (yellow) and the carbon balance (green). 

 
The interrelation of ET with multiple biogeochemical cycles makes it a better proxy for 

estimating ecosystems’ water availability than precipitation. Evidence of this is provided in a study 

by Biederman et al. (2017) which showed that the correlation between annual anomalies in ET and 

ecosystem productivity was stronger than that between precipitation and productivity, where the 

anomalies were identified as years with values more than one standard deviation away from the 

mean. Therefore, quantification of ET is fundamental for understanding an ecosystem’s 

ecohydrological dynamics. 

In agroecosystems, ET quantification becomes especially relevant for improving water use 

efficiency and determining water allocation or irrigation management (Alfieri et al., 2020; Irmak, 

2008). Accurate ET estimates are needed to optimize crop yield and improve the effectiveness of 

water resources management, especially as the demand for limited water resources grows (Alfieri 

et al., 2020). However, the motivation for getting accurate ET estimates goes beyond this. In 2012, 
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most drought monitoring tools, which look at drought indicators such as precipitation variation, 

temperature, soil moisture, water levels, and vegetation stress, failed to predict the magnitude and 

intensity of the U.S. Midwest mega-drought (Fisher et al., 2017). This failure has been attributed 

to these drought proxies not integrating enough information about the land-atmosphere coupling 

and the response of the vegetation, as the metrics that did capture the early warnings were based 

on ET, such as the Evaporative Stress Index (Fisher et al., 2017; Meng et al., 2014).  

ET measurements and modeling 

ET can be estimated directly with on-site measurements or indirectly using the energy 

balance residual. Direct or on-site measurements encompass techniques that consider the water 

inputs and outputs of the system (i.e., lysimeters) and are based on the principle of the conservation 

of mass and estimate ET by measuring changes in the amount of soil water. Micrometeorological 

techniques based on the Monin–Obukhov similarity theory and conservation of mass (i.e., eddy 

covariance) are also considered on-site measurements (Alfieri et al., 2020; Biederman et al., 2017; 

Fisher et al., 2017; Zhao et al., 2019). Indirect estimations on the other hand, rely on accounting 

for the remaining terms of the water and energy balance equations using meteorological data and 

other relevant climatic parameters to solve for equations like the Penman-Monteith, or on finding 

empirical relationships between variables to develop statistical models (Alfieri et al., 2020; 

Biederman et al., 2017; Fisher et al., 2017; Zhao et al., 2019). 

Both types of methods present disadvantages. A key disadvantage of direct measurements 

is their spatial and temporal coverage being limited to a constrained footprint (Alfieri et al., 2020; 

Carter and Liang, 2019) which translates to sparse availability of these measurements. To fill these 

data gaps in measurements, indirect measurements are then used. A common example is the use 

of remote sensing products to create models for estimating ET indirectly, particularly at larger 
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spatial scales (Biederman et al., 2017; Elfarkh et al., 2022; Zhang et al., 2019). However, the use 

of these type of products leads to one of the primary disadvantages of indirect measurements, given 

their temporal discontinuity and coarse spatial resolution, the product models tend to either over 

or underestimate (Alfieri et al., 2020).  

The models used for obtaining indirect ET measurements can be grouped into two broad 

categories: Physics-based and statistical-based (Granata, 2019; Hu et al., 2021; Zhang et al., 2019; 

Zhao et al., 2019). Physics-based models use explicit physical representations and can conserve 

energy but need to empirically estimate some parameters like surface roughness length and surface 

resistance. These models include surface energy-balance models, vegetation index-land surface 

temperature triangle/trapezoidal models, and Penman-Monteith or Priestley-Taylor models. On the 

other hand, statistical-based models use fewer physical mechanisms and, instead, ET is directly 

estimated using statistical correlations of ET with meteorological variables (empirical and semi-

empirical models) or forcing data using machine learning algorithms (ML-based). 

The statistical models commonly derive ET as a physical energy variable, LE. However, 

deriving it this way leads to requiring additional measurements to adequately capture the abiotic 

and biotic controls (Fisher et al., 2017). These additional measurements include meteorological 

variables that control the transfer of water from the land to the atmosphere (i.e. solar radiation, 

humidity, air temperature, wind speed, and soil moisture), data about phenology and changes in 

vegetation cover to provide information about the dynamics and magnitudes of ET fluxes, as well 

as land surface temperature information which relates directly to the evaporative flux (Fisher et 

al., 2017; Zhao et al., 2019). Therefore, a fundamental part of the statistical models includes the 

use of ground-based observations that complement and validate the use of remotely sensed data.  
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Machine learning models for ET estimation 

In recent years, remote sensing techniques combined with machine learning (ML) 

algorithms have become another approach for estimating ET, as ML models allow for the analysis 

of the complex climatic conditions near the surface as well as the dynamic variability of water and 

heat transfer processes which can reflect complex patterns not easily captured with traditional 

models (Amani and Shafizadeh-Moghadam, 2023; Dou and Yang, 2018; Granata, 2019). 

However, while these models are easier to apply, they can behave poorly outside the range of the 

data they were validated with and usually do not conserve the surface energy budget (Zhao et al., 

2019). In addition, selecting the most suitable ML algorithm for estimating ET can vary greatly 

depending on factors such as the study area, data availability, and the approach taken for ET 

estimation. Recent studies (Carter and Liang, 2019; Chen et al., 2020; Dou and Yang, 2018; 

Granata, 2019; Hu et al., 2021; Zhao et al., 2019) have systematically compared a range of ML 

algorithms and different sets of predictors to estimate LE from global remote sensing data and 

ground-based flux tower data. Overall, satisfactory results have been obtained from different 

methods with only marginal differences in performance (Carter and Liang, 2019; Dou and Yang, 

2018) but wide variation in algorithm efficiency (Carter and Liang, 2019; Granata, 2019). In the 

mentioned literature cases, the performance of models varied mainly between individual 

ecosystem types (Carter and Liang, 2019; Dou and Yang, 2018), but training the models with data 

from a single ecosystem led to worst performance compared to using data from all sites (Carter 

and Liang, 2019). 

So far, the models described are based strictly on ML, or ‘pure models’. These present the 

disadvantage of lacking physical constraints, such as energy balance closure and very limited 

physical interpretability (Reichstein et al., 2019). To account for these limitations, a new approach 
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has been developed in the form of hybrid ML models which aim to integrate the theoretical 

foundations and constraints of the physical processes with the prediction power of traditional ML 

models. With these models, physical consistency can be preserved and predictive accuracy can be 

improved while maintaining interpretability, thus making it possible to take better advantage of 

the data adaptiveness that ML models provide (Reichstein et al., 2019; Zhao et al., 2019). A hybrid 

ML model (Figure 2) is achieved by improving parameterizations of ML using physical models. 

With this approach, the patterns that are not represented in the physical model can be identified 

and used to correct the model bias caused by dynamic variables and facilitate downscaling to finer 

spatial scales, which conceptually translates to making ML models more physically realistic 

(Reichstein et al., 2019). Multiple hybrid ML models for ET estimation have been developed in 

the past few years (Chen et al., 2022; Hu et al., 2021; Zhao et al., 2019) combining flux tower data 

along with different remote sensing products (i.e. optical vegetation indices). In each of these 

cases, the developed hybrid model is compared to an equivalent ‘pure’ model, with results 

predominantly showing that while pure models tend to have the best accuracy, hybrid models have 

at least similar or overall improved performance while keeping the physical constraints. The model 

presented by Zhao et al. (2019) is of particular interest as the performance between the pure and 

hybrid model remains similar, while the results also indicate that it has a high capability for 

predicting extreme events.  
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Figure 2. Diagram of hybrid machine learning modelling by addition of a physical layer to a 
multilayer neural network (dark grey) with an example of how it translates to an ecological 

problem like prediction of transpiration and photosynthesis (light grey) (modified from 
Reichstein et al., 2019). 

 
Water limitation in drylands and the importance of ET estimation 

Drylands are characterized by their limited water availability and, as a result of this, they 

are highly vulnerable to changes in species abundance, soils, or ecosystem processes in response 

to alterations in environmental conditions such as those driven by climate change (Bestelmeyer et 

al., 2015; Reynolds et al., 2007; Smith et al., 2019). Given their large extent of over 41% of the 

terrestrial surface, 39% of the global population is dependent on dryland ecosystems and their 

resources despite their vulnerability to climate and land use change (Plaza et al., 2018; Reynolds 

et al., 2007). Approximately 11% of the global dryland area is used as cropland and 30% as pasture, 

meaning that 50% and 74% of global croplands and pastures are located in drylands (Plaza et al., 

2018). Aside from the importance of drylands for the human population and economy, recent 

studies have shown that semi-arid ecosystems dominate the trend and interannual variability of the 

land carbon dioxide sink (Ahlström et al., 2015).  

Water is a primary limiting factor in drylands, making the spatial and temporal availability 

of water a key driver of every vegetation related process, leading to a strong connection between 

ecosystem ecology and hydrology in these regions (Smith et al., 2019). Although water is far from 

being the only control on dryland processes (Austin, 2011), it still plays a critical role in its 
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biogeochemical cycles. Dryland systems generally go through brief but extreme precipitation 

events leading to a short window of water availability and pulses of biological activity, this is 

traditionally called pulse dynamics (Knapp et al., 2008). Many ecological processes in drylands 

are driven by the size, frequency, and intensity of these water pulses, which can be highly variable 

between years (Collins et al., 2014; Petrie et al., 2019). Global climate change models predict that 

many arid regions will get warmer and drier in the future, intensifying the already shifting 

precipitation regime (Collins et al., 2014). Considering this and the significant role croplands and 

pastures have in drylands at a global level, there is a marked need to improve water use efficiency 

in these regions, which involves improving irrigation practices in agriculture (Ramirez-Valle, 

2022).  

Gaps in knowledge of dryland ecosystem dynamics remain, despite the increased 

development of data networks in the last years, especially when compared to more mesic 

ecosystems (Biederman et al., 2017). The main reason for this is the drylands’ highly dynamic 

structure and function, the intermittent and unpredictable water availability and the chronic 

underrepresentation of long-term, continuous field measurements (Smith et al., 2019). In addition 

to this, the lack of long-term measurements of water exchange is further accentuated in drylands 

compared to more mesic ecosystems, leading to a heavy reliance on models for estimating ET in 

them (Biederman et al., 2017). However, the scale at which these models are created, along with 

the use of datasets with low representativeness of dryland ecosystems, leads to poorly constrained 

models and inaccurate estimates of ET (Biederman et al., 2017; Zhang et al., 2019), unless the 

model is explicitly constrained for the conditions of the site, which limits its application in areas 

with less available data (Dhungel et al., 2023; Elfarkh et al., 2022). For example, a study evaluated 

widely used remote sensing-based estimates of gross primary productivity and ET across dryland 
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sites of the United States Southwest and Mexico, results showed that they captured only 31% and 

29% of the interannual variability of site measured GPP and ET (Biederman et al., 2017). This 

mismatch has been primarily attributed to specific challenges with using drylands remote sensed 

data due to the difficulty of capturing their land surface phenology. Namely, low vegetation 

coverage leads to high signal-to-ground noise ratios, the presence of evergreen vegetation shows 

as low seasonal vegetation index variability, phenology is highly dependent on climatic conditions 

leading to highly irregular growing seasons, and the overall presentation of high spatial 

heterogeneity (Smith et al., 2019; Taylor et al., 2021).  

A more recent effort to improve model prediction of carbon and water fluxes in drylands 

was the one made by Dannenberg et al. (2023), who developed an artificial neural networks model 

to predict dryland ecosystem fluxes by combining optical vegetation indices, multitemporal 

thermal observations, and microwave soil moisture and temperature retrievals. This model was 

able to improve the ET predictions for 23 out of 26 sites with varying degree of improvement (R² 

between 0.4 and 0.9), but still underestimated the magnitude of interannual variability in ET 

similar to MODIS models. The model used in this case is considered a ‘pure’ ML model, where 

there is no physical constraints, which limits the ability to preserve the physical connections 

between the predicted variables such as GPP and ET. This study also mentions that the model 

performance was remarkably worse for sites with taller vegetation in the case of GPP and NEE 

predictions, although it is not mentioned if this is the case as well for ET predictions. 

Therefore, the challenges in quantifying ET using remote sensed data might be further 

accentuated for agricultural dryland sites, where management introduces abrupt changes in land 

use, physical soil properties, and water availability. The agricultural fields along the Rio Grande 

in Southwest Texas and Southern New Mexico present an example of challenges that might be 
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present in a dryland agricultural area. In this region, natural sites along the river valley have been 

converted into managed agricultural sites for over 100 years, which are flood-irrigated using 

diverted river water and pumped groundwater (Miyamoto et al., 1995; Ortiz et al., 2022). The 

distribution of these agricultural sites is often near urban areas, adding to the effect of land use 

changes and anthropogenic inputs that might be absent in less managed sites.  

At the time this work was developed and to the best of the author’s knowledge, no hybrid 

machine learning models has been developed or tested for drylands. Therefore, the focus of this 

thesis will be to investigate the predictive accuracy of Zhao et al. (2019) hybrid model for two 

dryland sites. This hybrid model will be described in detail on the methodology section. 
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Driving questions and goals 

Considering the challenges present in quantifying ET on drylands, the aim of this project 

is to evaluate how accurately an established globally trained hybrid ML model integrating remote 

sensing data and flux tower data can predict the evapotranspiration of drylands. For this purpose, 

the model developed by Zhao et al. (2019) will be tested using ground measurements of two sites 

located within drylands, one natural ecosystem and one agricultural field. By applying a hybrid 

ML model using the parameters described in Zhao et al. (2019) and evaluating it against these 

sites, the present work seeks to address the following questions:  

 Is the generalizability of a hybrid ML model trained on global flux tower data enough for 

accurately estimating drylands’ ET?  

 Does the applicability of the model change between a natural and an irrigated dryland 

system?  

 Finally, how high is the potential of the model for informing management decisions?  

I hypothesize that the generalizability of the hybrid ML model is likely to have limited 

accuracy for estimating dryland’s ET, with applicability varying by system, since the assumptions 

it is based on may not be entirely valid for dryland systems. This is expected to lead to a low 

potential for informing management decisions. The factors expected to contribute to the limited 

accuracy along with the ecosystem variability include the short distance changes in land use for 

the agricultural site and the highly dynamic structure and function of the natural site. While the 

agricultural site is located within a dryland region, the physical processes present on it due to 

management might make it more closely related with mesic ecosystems, which the model is 

expected to be properly trained for. However, short distance changes in land use are likely to affect 

the remotely sensed products, considering the more widely available ones have pixel sizes between 
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250 and 500 meters. At that resolution, the presence of roads, buildings, and other structures will 

be mixed, in some cases, with the signal of the agricultural land. The natural site, in contrast, will 

have greater homogeneity within pixels, as land use is more homogenous and far from 

anthropogenic structures of significant size. Nevertheless, the response to pulse events in the 

natural site might be challenging to capture by the remotely sensed products due to the data 

acquisition frequency. In addition to this, the natural site’s characteristics such as water scarcity, 

vegetation adaptations and soil-water dynamics might challenge the assumptions present in the 

existent model. Therefore, the performance of the model is expected to be limited for both systems 

but at different levels. In the case of the agricultural site, the remotely sensed data is expected to 

present the primary limitation, while for the natural site both the remotely sensed and the 

meteorological data are expected to present limitations in the context of the model. The potential 

for informing management decisions is expected to be limited by the lack of inclusion of more 

spatially variable data and the coarse spatial scale of the remotely sensed data used. 
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Study areas 

For this project, ET at two dryland sites will be evaluated with the hybrid machine learning 

model developed by Zhao et al. (2019). The chosen sites represent two extremes of dryland-located 

sites dynamics: a natural site US-Jo1 (Jornada Experimental Range Bajada Site) and an irrigated 

orchard US-PeA (5R Pecan Farm Above Canopy). Both sites have a running eddy covariance 

system with an additional set of biometeorological sensors. 

Jornada Experimental Range Bajada site 

The Jornada Experimental Range is located in the Jornada del Muerto Basin, in Southern 

New Mexico, at the northern end of the Chihuahuan desert. This experimental range is part of the 

National Science Foundation’s long-term ecological research network, and it covers 78266 ha and 

is located 20 km from Las Cruces, New Mexico (Greenland and Anderson, 1997). It was 

established in 1912, after a series of droughts combined with overgrazing led to a transition from 

native grass to shrubs, and aims to study the dynamics of this arid ecosystem in response to the 

impacts of climate change, land-use practices and disturbances (Greenland and Anderson, 1997; 

Tweedie, 2023). The Bajada site flux tower is located in a representative shrubland on the 

piedmont slope to monitor the CO₂ and H₂O dynamics (Tweedie, 2023). The vegetation in this site 

is predominantly Larrea tridentata (Creosote) and winter-deciduous Prosopis glandulosa (Honey 

mesquite), with a lower presence of Flourensia cernua (tarbush) and the grasses Muhlenbergia 

porteri (Bush Muhly) and Dasyochloa pulchella (Fluff Grass) (Greenland and Anderson, 1997; 

Tweedie, 2023). Local fauna includes stray domestic cattle, free-ranging introduced Oryx, and 

other native herbivores (Tweedie, 2023). The mean annual temperature is 15.7°C, with a mean 

minimum of 13.3°C, and mean maximum of 36°C. The annual precipitation average in the region 

is 247 mm, with over half of it occurring in brief, local, but intense thundershowers from July to 



14 

September and most of it being consumed as actual evapotranspiration (Greenland and Anderson, 

1997). The flux and biometeorological data collected from this site covers from 2010 to 2020, 

from the Ameriflux database (Tweedie, 2023). 

 

Figure 3. Site location map for Jornada LTER Bajada site eddy covariance tower. 

 
5R Pecan Farm Above Canopy site 

This site is located on the 5R Farm pecan orchard in Tornillo, TX, USA, which is part of 

the Trans-Pecos irrigation district. The orchard covers over 400 ha with trees over 20 years old, on 

average, of the Western Schley variety, planted in square patterns of 9 m by 9 m, and with soils 

ranging from loam to silty clay loam (Gutschick and Sheng, 2013). Irrigation water use, on 

average, corresponds to 127 mm per irrigation, with between 12 and 14 irrigation events per season 

and an additional irrigation event before the growing season to leach out excess salts in the soil 

(Palmate et al., 2022), surface water availability is highly variable (Gutschick and Sheng, 2013) 

leading to the use of groundwater to supplement surface water. The mean annual temperature is 

17°C, with a mean minimum of 9°C, and mean maximum of 27°C. The annual precipitation 



15 

average in the region ranges between 203 and 304 mm. The flux and biometeorological data 

collected from this site covers from 2022 to 2023, with gaps in the data due to instrument 

malfunctioning.  

 

Figure 4. Site location map for 5R Pecan Farm eddy covariance tower. 
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Methodology 

Hybrid machine learning models for estimating ET 

Hybrid machine learning models represent a new tool for generating accurate predictions 

of variables, like ET, while preserving physical constraints, such as the energy balance. Zhao et 

al. (2019) developed one such of these models, an Artificial Neural Network hybrid model for 

predicting ET with 13 variables, integrating both flux tower data and remotely sensed data. In Zhao 

et al. (2019) two models were developed, a pure machine learning model and a hybrid one that 

integrated a modified Penman-Monteith equation to predict LE. In this hybrid model, the surface 

resistance (rₛ) was considered a sub-model in the physical equation for predicting LE, as it is the 

main unknown term. Therefore, instead of LE, rₛ was the prediction target for the purpose of 

ensuring energy conservation and constraining ET as a down gradient of vapor pressure. The 

results showed nine key predictors (fraction of photosynthetically active radiation, soil water 

content, temperature, carbon dioxide concentration, wind speed, relative humidity, canopy height, 

photosynthetically active radiation, and plant function type) for both models. While the pure ML 

provided a better fit for the data (R² values of 0.81 and 0.78, respectively), energy was not 

conserved, and, overall, the hybrid model had a lower mean absolute percent error.  

Overall, the hybrid model was systematically better at predicting extremes in the dataset, 

suggesting that these types of models can generalize better than pure ML models. Additionally, 

the prediction of rₛ was used to systematically understand its dependence on the predictor variables, 

leading to identifying features such as the role of carbon dioxide effects on stomatal conductance 

at the ecosystem scale. However, despite evaluating multiple plant function types, the study did 

not consider dryland systems directly. Given this gap and the apparent versatility of the hybrid 

model, it will be replicated in this project with the purpose of evaluating its accuracy for drylands. 
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Flux tower data 

The flux tower data will come from three sources: the FLUXNET 2015 1 Tier 1 dataset 

(Pastorello et al., 2020), the US-Jo1 site (Tweedie, 2023), and the US-PeA site (Mauritz, 2023). 

The entirety of the FLUXNET dataset (excluding US-Jo1) will be used for training and validating 

the model, replicating the approach of Zhao et al (2019), while the two dryland site data will be 

used individually for applying the model. The FLUXNET and US-Jo1 data are available to 

download on the FLUXNET and AMERIFLUX websites, respectively. The US-PeA dataset is 

currently being collected and has yet to be submitted to Ameriflux. The variables of interest from 

these datasets include soil water content, vapor pressure deficit, plant function type, air 

temperature, carbon dioxide concentration, wind speed, atmospheric pressure, relative humidity, 

net radiation, soil heat flux, and photosynthetically active radiation (PAR).  

Data pre-processing 

Following Zhao et al. (2019) methodology, the FLUXNET 2015 tier 1 data set 

(https://fluxnet.fluxdata.org/data/download‐data/) was downloaded with information from 206 

sites. Afterwards, the corresponding plant function type was assigned to each site based on 

International Geosphere‐Biosphere Programme (IGBP) vegetation classification scheme from 

information already available in the FLUXNET database. Data filtering was then done following 

the criteria already established for the model. This consisted on using only measured and good 

quality gap filtered data, data sampled during rainy days as well as the following day was removed 

to avoid data quality drops, only daytime data was used (sensible heat > 5 W/m² and incoming 

shortwave radiation > 50 W/m²) to avoid stable boundary layer conditions, and records with 

negative gross primary productivity, LE or vapor pressure deficit were filtered out. In addition to 

this, the authors applied a percentile filter for carbon dioxide concentration, net radiation and 



18 

ground heat flux keeping only the data between the 5th and 95th percentile. As a requirement for 

the model to work, the dataset was corrected to achieve energy balance closure with a Bowen ratio 

method when closure was under 0.8 or over 1.2. After applying the previous filters, the dataset 

was reduced to 86 sites, 4 more than the number mentioned in the cited research. 

In addition to the FLUXNET data, the methodology required remotely sensed data 

corresponding to the fraction of absorbed photosynthetically active radiation. This data was 

retrieved on site basis from the MODIS product MCD15A3H using the Global Subset Tool 

(https://modis.ornl.gov/cgi‐bin/MODIS/global/subset.pl). Since this product has a temporal 

resolution of 4 days, and following the authors methodology, this value was used for the half-

hourly inputs. However, since it’s not clear how the unmodified value was used in the original 

research the 4 days values were interpolated to daily values, allowing only for gaps of up to 7 days 

or 2 measurements. In addition to this, vegetation height was estimated for each flux site record 

following the analytical equation derived by Pennypacker and Baldocchi (2016) as: 

ℎ =
𝑧

0.6 + 0.1 exp ቀ
𝑘 ∙ 𝑢

𝑢∗
ቁ
 

Where: 
h = Canopy height (m) 
z = Height of the instruments (m) 
k = von Karman constant (k = 0.4) 
u = Horizontal wind speed at height z (m·s-1) 
𝑢∗= Friction velocity (m·s-1) 

 

Since the model developed by Zhao et al. (2019) is based on estimating rₛ, this is an 

additional variable that needs to be calculated from the available data to be able to train the model. 

To achieve this, a quadratic equation for sensible heat flux can be used to solve for rₛ if we assume 

a turbulent derived approach. This equation, shown below as described by the authors, is derived 
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from the Penman-Monteith equation, a second-order Taylor approximation for the saturation vapor 

pressure function, and an equation for LE and H expressed using a big-leaf resistance. 
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𝑇= Air temperature (°C) 
 
To help the model stabilize faster the methodology requires all the variables used as inputs 

to be normalized using the z-score, which uses the mean and standard deviation to account for the 

differences in the range of values, as this helps the optimization algorithm to converge more 

quickly without affecting the distribution of the data (Lindholm et al., 2022). In addition to this, 

the logarithm value of rₛ is required as it will be the target of the model given its more normal 

distribution. 

The methodology described above was replicated for the two dryland located sites. In the 

case of the US-PeA dataset, additional processing was needed. The data was filtered by signal 

strength, plausibility, and diagnostic flags, as well as processed for removal of spikes, following 
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Mauder and Foken (2011) using EddyPro (h 

https://www.licor.com/env/support/EddyPro/home.html). In addition to this, the Webb method 

was be used for density correction (Webb et al., 1980) along with coordinate planar rotation 

(Wilczak et al., 2001). Gap filling and U star filtering was done using the web REddyProc tool 

(https://bgc.iwww.mpg.de/5622399/REddyProc) (Wutzler et al., 2018) for short periods of no data 

or where extreme flux values were filtered. Ground heat flux was calculated using two heat flux 

plates with overlying soil thermocouples and a soil water content probe located beneath the trees’ 

canopy. 

Model definition 

The initial parameters for the model used in this work will closely follow those defined by 

Zhao et al. (2019), as this research aims to evaluate the performance of this previously established 

hybrid model on two different dryland sites.  

The model’s architecture includes an input layer, five hidden layers with 64 neurons each, 

and an output layer, using a rectified linear unit as activation function. The aggregated dataset was 

shuffled randomly across time and sites and then separated with a distribution of 80 - 20% of the 

FLUXNET based dataset for training and testing, respectively. The two drylands sites based 

datasets were left out for additional testing after the base model results were considered 

satisfactory. The type of machine learning model used was an Artificial Neural Network model, 

or Neural Network (NN) for short, using the Python package ScikitLearn (Pedregosa et al., 2011). 

The structure used followed the one optimized by the authors through the Aikake Information 

Criterion, with six total layers, which includes the input layer, five hidden layers with 64 neurons 

for each one, and an output layer with a single neuron. However, further calibration and 

optimization of the model was needed as parameters such as batch size and learning rate were not 
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specified. To make this model hybrid, a modified quadratic Penman-Monteith equation was used 

to predict LE from rₛ, meaning that the NN model will be set to predict rₛ instead of LE. In addition 

to this, to constrain the model to the surface energy balance and the diffusion-like process, a 

corrected second order PM equation was used as the loss function. To simplify the equation, the 

loss function solves for sensible heat flux instead of for LE. The equation is defined as follows: 

𝐿𝑜𝑠𝑠൫𝐻, 𝐻൯ =  ඩ
1

𝑛
(𝑏ప

 − 𝑏)
ଶ



ୀଵ

+ ඩ
1

𝑛
(𝑐పෝ − 𝑐)

ଶ



ୀଵ

 

Where: 

𝑏 =
∆ೌ

ఘ
+

ఊ(ೌ  ା ೞ)

ఘ
    , 𝑐 = 𝑉𝑃𝐷 −

ఊ(ೌ  ା ೞ)(ோିீ)

ఘ
 

And: 

H = Sensible heat flux (W⸱m-2) 
n = Number of samples 
^ represent the predictions, while the items without ^ represent the true values 
Δ = Slope of the saturated vapor pressure curve (kPa⸱K-1) 
ra = Aerodynamic resistance (m⸱s-1) 
rs = Surface resistance (m⸱s-1) 
γ = Psychrometric constant (kPa⸱K-1) 
ρ = Air density (kg⸱m-3) 
Cp = Specific heat of air (Cp = 1012 J⸱kg-1⸱K-1) 
VPD = Vapor pressure deficit (kPa) 
Rn = Net radiation (W⸱m-2) 
G = Soil heat flux (W⸱m-2) 
 

The predictions from the replica model rₛ were then used to generate predictions for LE. 

The metrics used to evaluate the performance of the replica model were the same as the ones used 

in the original model: R², mean average percentage error and root mean square error. 

To assess the model’s performance for US-Jo1 and US-PeA sites once the base model 

performance was considered satisfactory the same prediction accuracy metrics were used. To 

evaluate the sensitivity of the model to the environmental variables for the dryland located sites, 



22 

perturbations were added to each input variable with increasing steps of 10% of the standard 

deviation to identify potential differences in LE and rₛ drivers compared to those of the FLUXNET 

dataset. An emphasis is made on the word potential, as despite the model having been constrained 

by physical parameters, correlation might not mean causation.  

Table 1. List of variables used as inputs for machine learning model. 
Variable Units  Data source Frequency 
Fraction of photosynthetically 
active radiation 

ratio MODIS (MCD15A3H) 4-day 

Soil water content m³⸱m⁻³ FLUXNET / Study sites Half-hourly 
Vapor pressure deficit kPa FLUXNET / Study sites Half-hourly 
Plant function type category FLUXNET / Study sites Half-hourly 
Air temperature °C FLUXNET / Study sites Half-hourly 
CO₂ concentration umol⸱mol-1 FLUXNET / Study sites Half-hourly 
Wind speed m⸱s-1 FLUXNET / Study sites Half-hourly 
Atmospheric pressure kPA FLUXNET / Study sites Half-hourly 
Relative humidity % FLUXNET / Study sites Half-hourly 
Net radiation W⸱m-2 FLUXNET / Study sites Half-hourly 
Soil heat flux W⸱m-2 FLUXNET / Study sites Half-hourly 
Photosynthethically active 
radiation 

µmol·s-1·m-2 FLUXNET / Study sites Half-hourly 

Canopy height m 
Estimated following 
Pennypacker and 
Baldocchi (2016) 

Half-hourly 

Surface resistance s·m-1 
Inverted from PM 
equation 

Half-hourly 

Latent heat flux W⸱m-2 FLUXNET / Study sites Half-hourly 
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Results 

Model development and performance 

The statistical metrics for rₛ showed that similar results were achieved between the 

established model and the replica created for this project, with slightly improved performance in 

the R² and MAPE for the replicated one (R²=0.63 and MAPE=58.26% against and average R²=0.76 

and MAPE=41.55%) but considerably worse performance for the RMSE (RMSE = 90.63 against 

an average RMSE = 357.7) (Figure 2Figure 5). These differences are mainly attributed to 

variations in data processing and model calibration, as it is suspected that information related to 

some of these aspects was missing in the description of the established model.  

In the case of the statistical metrics for LE, the performance of the replica model was 

preserved better, with only major differences between the values of the MAPE (MAPE=21.85% 

against an average MAPE=87.81%). A summary of these metrics is available in Table 2. In 

particular, the difference in in sample sizes between the models (N=32998 against N=542612) is 

of concern as the number of FLUXNET sites used for training is very similar, with 82 sites for the 

established model and 86 for the replica. 

The performance of the replica model in the target sites decreases considerably for both rₛ 

and LE. The overall performance of the replica model for predicting rₛ values was slightly better 

for US-Jo1, while predicted LE values were considerably better for US-PeA. However, the 

performance of the model for US-PeA is considered highly uncertain due to the relatively small 

amount of samples available. 
Table 2. Summary of statistical metrics of hybrid model performance (training, validation, test) 

for predicting rₛ and LE against the established model and the study sites.  
rₛ LE  

Dataset R² MAPE RMSE R² MAPE RMSE N 
Training 0.76 41.40 356.77 0.75 81.62 60.91 347270 
Validation 0.76 41.72 359.68 0.75 82.46 60.01 86832 
Test 0.75 41.53 356.86 0.74 99.36 61.10 108510 
Established model 0.63 58.26 90.63 0.76 21.85 55.80 32998 
US-Jo1 0.55 58.64 872.09 0.36 503.99 161.83 26844 
US-PeA 0.46 56.29 533.32 0.67 524.04 371.25 2033 
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High levels of dispersion are observed when comparing rₛ model predictions against 

estimated values (Figure 5a and c). An apparent gap seems to appear consistently around the rₛ 

prediction value of 170, this is believed to be related to the filters required by the methodology. 

The plots showing these relationships below show only the range of values consistent with the one 

shown in the established model methodology, however in reality the range of values is wider due 

to the presence of extreme outliers which are likely to be the source of the high values for the rₛ 

RMSE and the LE MAPE. However, despite the dispersion of the rₛ prediction values, the 

distribution and trend of the values of LE derived mathematically from them (Figure 5d and f) 

remain highly consistent with those shown on Zhao et al. (2019) albeit with a considerably higher 

MAPE. It is unclear if additional filters related to the possible existence of two positive solutions 

for the quadratic equation to calculate LE where used, or if the difference is mainly related to the 

higher number of samples used in the replica model. 

   

   
Figure 5. Comparison between the true values from the FLUXNET dataset and the predicted 

values derived from replica model following Zhao et al. (2019) methodology of rₛ 
(a-c) and LE (d-f) for the train, validation and testing datasets. The red line 

represents a 1:1 slope while the gradient indicates the scatter point’s density.  
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Model evaluation at study sites 

The predictions for US-Jo1 and US-PeA (Figure 6) show a different trend to that of the 

FLUXNET dataset. In both sites, rₛ gaps are present, similar to those observed in the FLUXNET 

dataset, suggesting that this might be due to a step in the calculations. For US-Jo1 (Figure 6a), rₛ 

is consistently underestimated, while for US-PeA (Figure 6b) the sparseness and dispersion of data 

makes it difficult to assess patterns other than a slightly less pronounced underestimation. 

  

  
Figure 6. Comparison between measured (true) LE values and rₛ values with predicted values for 
both variables in Jo1 (a, c) and PeA (b, d). The red line represents a 1:1 slope while the gradient 

indicates the scatter point’s density. 
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The distribution of the LE values across both sites shows that the range of values predicted 

is higher than that of the measured values. In particular, for US-Jo1 (Figure 6c), it is observed that 

the measured values range between 0 and 200 Wm⁻² while the model-predicted values are 

concentrated between 0 and 600 Wm⁻². While a similar trend of overestimation is present for US-

PeA (Figure 6d), it is once again less pronounced with a seemingly linear trend that could be 

associated to a semi constant displacement rather than a completely different range of values. 

The results of the sensitivity analysis (Figure 7) does not show clearly which variables are 

apparently more sensible to perturbations, especially when compared to the clear trends seen in 

the original research presented by Zhao et al. (2019). However, even small percentages of 

perturbation seem to lead to a considerable drop in R² values for all variables, however, afterwards 

the R² remains almost constant. The sole variable which seems to have a consistent behavior across 

sites is PAR, which for all cases is the less affected by perturbations.  

It is noted that the R² values for the rₛ sensitivity test in both sites become negative for some 

variables. While by definition R² represents the square of the coefficient of correlation and is 

intuitively assumed to only range between 0 and 1, the formula for R² is defined as: 

𝑅ଶ = 1 −  
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
 

Where the residual sum of squares represents the variation in data that is not explained by 

the model and the total sum of squares represents the difference between the expected and the 

actual values. Thus, negative R² values can happen when the residual sum is major than the total 

sum of squares. This inequality is possible when the model is evaluated in a different dataset from 

that in which it was fitted for and its variation is larger than that from the original dataset. All 

negative R² values indicate a fit worse than that of the average line (Chicco et al., 2021). 
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Figure 7. Results of sensitivity analysis for Jo1 (a-c) and PeA (b-d) for rₛ (a-b) and LE (c-d). 
 

To further evaluate the differences between sites, the relationship between the input 

variables and the predicted LE values for both sites was assessed (Figure 8). A clear difference 

was observed between sites for the CO₂ concentration values and the soil moisture (Figure 8a and 

b), both of which can be attributed to the difference in vegetation type and distribution as well as 

to specific site conditions. Otherwise, a general overlap between the remaining predicting variables 

is observed. The overall similitude between these remaining variables distribution is attributed to 
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the relative geographical closeness between the sites and the fact that they are all meteorological 

variables, although the limited data availability for PeA might be obscuring other possible 

relationships. 

   

   
Figure 8. Key predicting variables against predicted ln(rₛ) values for both sites including (a) CO₂ 

concentration, (b) PAR, (c) relative humidity, (d) soil moisture, (e) temperature, and 
(f) vapor pressure deficit. 

 

The canopy height values for both sites used as an input in the model were evaluated, as 

they are one of the key variables in the original model but also represent an additional source of 

uncertainty as a calculated value. Results (Figure 9) show implausible values for Jo1, ranging from 

0 to 7 meters, which are not representative of the predominating creosote and mesquite vegetation 

found at the site. For PeA, while the values are in range close to that of the pecan trees (between 

10 and 12 meters), the range goes above plausible values and there is an apparent ‘shortening’ of 

the trees related to the trees leafing out.   
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Figure 9. Time series of calculated canopy height values for both sites. 

 
Given the marked seasonality of key events such as the North American monsoon season 

for both sites, and the irrigation season for PeA, the time series of the predicted and true values for 

both sites was compared (Figure 10). Overall, the predicted values were consistently overestimated 

across time for both sites, however, the overall pattern for both the predicted and the true values 

remained similar suggesting the prediction error is mostly related to the magnitude of the values. 

  
Figure 10. Overlapping time series of predicted and true LE values for (a) Jo1 and (b) PeA. 
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Discussion 

The performance of the replica model was considered satisfactory, with RMSE being the 

only metric with a considerable discrepancy (Table 2). However, RMSE is a metric susceptible to 

the effect of data outliers that are likely present in the replica and not in the established model due 

to the large difference in sample sizes. This work was not able to find the source of the difference 

in sample sizes, which is even more disconcerting considering the number of sites used from the 

FLUXNET dataset after applying the filters required was almost the same (i.e. 82 against 86). It is 

also noted that in order to fulfill the assumptions required by the model, a large number of sites 

and PFT from the original FLUXNET dataset are excluded. This is an initial limitation for the 

applicability of the model. 

Overall, the performance of the replica model for the dryland located sites was deficient, 

more so for Jo1 than for PeA. The distribution of the LE values across both sites (Figure 6c and d) 

suggests that the range of values predicted by the model is higher than the true values and LE is 

being overestimated. This predominant lack of agreement between true and predicted values when 

using globally trained models is consistent with findings by other authors (Barnes et al., 2021; 

Biederman et al., 2017; Dannenberg et al., 2023) where, for example, models based on MODIS 

satellite observations have been shown to underestimate mean annual ET by around 50%. It is 

worth mentioning as well that due to corrections needed to force energy balance closure and fulfill 

the model assumptions, there are cases where the true value does not match the measured value at 

the tower site. 

The difference between sites level of underestimation is suspected to be related to the 

increased water availability of water associated to PeA being an irrigated agricultural field as well 

as the effect of estimating canopy height for Jo1, a variable with high importance in the original 
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established model. The increased water availability likely make this site conditions similar to a 

more mesic site, which the original model is better trained for. In fact, the PeA site PFT is classified 

as a deciduous broadleaf forest (DBF), which was trained for and evaluated in the original 

established model. However, there is still a considerable difference within statistical metrics 

between the DBF original model average R² of 0.75, MAPE of 20.84 and RMSE of 64.04 and the 

PeA R² of 0.67, MAPE of 524.04 and RMSE of 371.25. The effect of the calculations for canopy 

height is another possible high impact factor in the case of Jo1. This site is located in a shrubland 

with non-homogeneous canopy height distribution in the tower footprint. A very different case to 

that of PeA, a mostly homogeneous canopy. The method used for calculating the canopy height 

does not consider vegetation sparseness and thus likely produce values that are not representative 

of the actual footprint, indicating a higher vegetation coverage than it actually exists. This is 

believed to be the main cause of the extreme LE overestimation for Jo1. 

In the case of the sensitivity analysis, the apparent lack of consistency in the order in which 

variables R² value decreases within the same site is unexpected. For example, in US-Jo1 sensitivity 

analysis results, the R² values for perturbation of CO₂ concentration goes from being only mildly 

affected in the case of rₛ to being the most affected variable in the case of LE (Figure 7a and b). 

The sensitivity analysis results between sites show opposite behaviors, with accuracy for Jo1 being 

extremely sensible to small perturbations for all variables except PAR while accuracy for PeA 

appears to be mostly insensible to perturbations except for those in relative humidity, canopy 

height, and carbon dioxide concentration which additionally appear to increase accuracy as the 

perturbation increases. There is an apparent insensitivity to perturbations in PAR values likely 

explained by it being the only remotely sensed variable and being temporally downscaled from 4-

day intervals to a single daily value for all the half-hourly records of the day. This is believed to 
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lead to its limited effect on the prediction of rₛ and could be eliminated to simplify the model. A 

case can be made for both removing remotely sensed variables and adding more. Keeping only 

measured or measurement-derived predicting variables is a favorable factor for evaluating the 

possible relationships between variables if enough credence in the model has been established, 

while integrating multiple remotely sensed variables from different sources can help the precision 

of the predictions as shown in Dannenberg et al. (2023).  

It is important to mention that the type of sensitivity analysis performed here was only one-

at-a-time, which while simple and commonly used, has the disadvantage of not considering the 

factors interactions making it specially limited when analyzing more complex processes, such as 

ET. However, this was the method used in the original model by Zhao et al. (2019), and was thus 

the one implemented. 

The poor model performance of the replica model in the two dryland-located sites suggests 

multiple issues. First, the assumptions made by the original model limit the ecosystems for which 

the model can be trained by requiring the energy balance to close and by excluding extreme events. 

In sites where the storage component plays a bigger role, forcing the energy balance closure leads 

to, either removing large portions of the datasets, or using modified and non-representative data 

for training the model. In addition to this, large pulse events captured by the dryland datasets might 

be excluded as outliers, by following the original model criteria. This means that even if more 

dryland sites are included in the training of the model, the parameterization extracted from them 

might not be representative, as key dryland-specific processes are not captured and factors such as 

canopy height are misrepresented. 

The hybrid nature of the model replicated here presents a novel approach that could lead 

to exploratory modeling where if enough credibility in a model is established it could lead to 
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inferences about the driving factors or processes behind the predicted output. While different and 

successful modelling efforts have been made for predicting carbon and water fluxes using ML in 

the North American Southwest (Barnes et al., 2021; Dannenberg et al., 2023), they lack the implicit 

coupling of the physical processes involved which limits their ability to deepen the understanding 

of the unique processes behind, as they are not interpretable ML models.  

While the results show that the hybrid ML model proposed by Zhao et al. (2019) is not 

adequate for the study sites as is, it is considered a starting point which with further evaluation and 

refinement could lead to a more physically realistic model of carbon and water fluxes in drylands 

that integrates both its spatial and its temporal context. At this point, there is no potential for the 

model to inform management decisions, as the performance is extremely poor for both sites. 

However, the hybrid nature of the model and its expected interpretability once properly refined are 

expected to change this, especially if the prediction is not only time series based but spatially based 

as well. 
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Conclusions 

Evaluating the already established hybrid ML model by Zhao et al. (2019) in two dryland-

located sites has shown an apparent deficit in its ability to predict LE accurately, with a marked 

trend towards overestimation of ET across sites. However, the factors associated to this 

overestimation are not completely clear and need to be further studied. No major inferences about 

the structure or parameterization of the model were derived from the results of the sensitivity 

analysis, other than an apparent insensitivity to perturbations in PAR values and PeA having no 

sensitivity to the predictors, which could be related to the lack of data. Evaluation of the temporal 

variation of true against predicted value shows no evidence of the overestimation being related to 

a seasonal or temporal factor. 

Existing models for estimation of carbon and water fluxes using ML model have 

successfully shown the inaccuracy of major globally trained models for predicting these fluxes in 

drylands. However, they do not fully integrate the coupling of the processes, albeit specific 

variables are integrated in order to explicitly account for them to some degree. A dryland based 

hybrid ML model could help gain further understanding of the time and spatial variability of 

carbon and water fluxes, making it an actual tool for management purposes. The evaluated hybrid 

ML model will be used as a stepping-stone to be further modified and refined for this purpose. 

While research has shown the capabilities of hybrid ML models for fluxes prediction at 

larger scales, further work is needed to improve their performance and generalizability at sites 

outside their training dataset based on the physical constraints they integrate. The use of hybrid 

ML models for prediction of water and carbon fluxes could represent a new tool towards improved 

time series and spatial variability estimations for regions with low data records availability, such 

as drylands.  
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Future directions 

Further improvements in the model parameters are needed to achieve accurate predictions 

for LE in drylands. Future work includes modifying the approach to the physical constraining as 

well as integrating new parameters to improve the performance of the model and better capture the 

LE patterns and processes of drylands. The parameters to include will be based on those included 

in existing dryland models. More dryland sites will be integrated for evaluation. Once the LE 

hybrid model is properly refined, additional modifications are expected to expand the model for 

carbon flux prediction with the final goal of moving from a prediction model based only on time 

series to a spatially based prediction model. 
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