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Chapter 1: Introduction 

1.1. BACKGROUND INFORMATION 

The American electric grids are facing increasing issues, from the now yearly phenomenon 

of wildfires caused by fallen PG&E lines in California to the weeks-long outages in Texas in early 

2021. While some of these issues are attributable to unexpected weather conditions, other issues 

such as congestion occur as supply and demand grow. Transmission congestion is a major issue in 

U.S. power grids. While there have been significant investments in congestion reduction (around 

US$40 billion in 2018), the congestion costs are still measured in the billions of dollars each year 

(US DOE, 2020). As a way of mitigating the problem, variable-impedance series flexible AC 

transmission systems (FACTS) can help provide effective power flow control as part of smart 

transmission systems (Li, et al., 2010). FACTS devices can thus help improve the utilization of an 

existing network and provide a more reliable and sustainable power delivery network (Gotham & 

Heydt, 1998). 

As an extension of the FACTS devices, and in order to improve deployability, Distributed 

FACTS (D-FACTS) are a lightweight version of FACTS. These have lower costs and possess the 

capacity of being re-allocated throughout their life to better respond to shifting needs. While 

traditional FACTS devices are installed at buses, D-FACTS can be installed throughout 

transmission lines or towers in a modular fashion (Sang & Sahraei-Ardakani, Effective power flow 

control via distributed FACTS considering future uncertainties, 2019).  Thanks to these properties, 

D-FACTS devices are slowly becoming popular solutions to reduce line congestion in numerous 

electric grid improvement projects throughout the country (Kakkar & Agarwal, 2010). The 

capacity of FACTS devices to better integrate renewable energies into new grids has been 

previously demonstrated as detailed by Gandoman, et al. (2018). D-FACTS, however, haven’t 
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been studied in such detail, although the expectation is that they will similary be very useful in the 

integration of renewable energies into existing grids. 

1.2. RESEARCH OBJECTIVE 

Although arguably more versatile and effective, the allocation of D-FACTS modules rather 

than traditional FACTS devices introduces nonlinearities to the model which can be 

computationally exhausting to solve (Sang & Sahraei-Ardakani, 2018). Thus, the challenge is now 

not necessarily to optimally allocate the modules, but to do so in a computationally-efficient 

fashion. One of the main objectives of this research is to create algorithms which can allocate the 

modules in a quick, computationally-efficient way in order to optimize one or more objectives. 

For this purpose, metaheuristic algorithms will be used in conjunction with other exact and 

heuristic approaches in order to minimize the computational time. After all, the benefits and 

applications of D-FACTS and FACTS devices have already been thoroughly proven (Gandoman, 

et al., 2018), so what is crucial now is to improve the optimization algorithms in order to hasten 

the allocation and implementation of these new technologies. 

Thus, the main objective of this work is to create effective and efficient metaheuristic 

algorithms to optimally allocate D-FACTS modules on transmission systems based on improving 

one or more objectives to be studied, including operational costs and environmental impact 

metrics. These objectives may be optimized individually, that is, one at a time and with different 

results for each, or concurrently, at which point the allocation becomes a multiple-objective 

problem. There are multiple procedures for solving a multi-objective problem, such as using a 

utility function or with methods such as the NSGA algorithms. For this study, a non-dominated 

Pareto-optimal approach over Multiple Objective Evolutionary Algorithms will be implemented. 
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1.3. SCOPE AND LIMITATIONS 

The present work will analyze a number of electrical test systems, some of which are IEEE 

test systems. The systems may have undergone some slight modifications to be more suitable for 

studying the effects of D-FACTS modules on the system. If modifications are made, they will be 

specified and detailed as needed. Stochasticity is added to the systems in the forms of load 

scenarios, renewable energy capacity scenarios, and generation scenarios with the purpose of 

demonstrating the flexibility of the devices under different operating conditions. 

This work aims to minimize total operational costs over the multiple scenarios for each 

case study, resulting in an increased profit for the relevant utility companies. Additionally, 

environmental impacts, in the form of Global Warming Potential (GWP) and Human Toxicity 

Potential (HTP) are to be minimized, resulting in better living conditions for surrounding 

communities. Other objectives, such as renewable energy integration will also be considered. 

For the optimization process, this work will focus on the combination of evolutionary and 

linear programming algorithms to minimize computation time and improve the quality of the 

solutions. However, the scope of this research is limited to the generation of Pareto-Optimal 

solutions in multi-objective case studies, as the selection of the ideal solution is best left for an 

experienced decision-maker. Still, some methods for pruning the Pareto Set will be studied. In the 

case of single-objective optimizations, sensitivity analyses will be conducted on relevant variables. 

The problems are studied under the assumption of static fuel costs and static investment 

costs and limits during an optimization run. Costs and emissions associated with energy generation 

and device installation are obtained from test systems data and not modified for the study. 

 

1.4. DISSERTATION OUTLINE 

The remainder of this work will be structured as follows: 

Chapter 2 will consist on a comprehensive literature review, to include topics such as 

FACTS and D-FACTS devices, optimization algorithms with an emphasis on those commonly 
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used for FACTS and D-FACTS allocation, multi-objective methods, and relevant mathematical 

models. 

Chapter 3 will show previous publications by the author in the field, while chapter 4 will 

include mainly the mathematical formulations to be used in the study, including formulations 

found in research, for illustrative purposes. Chapter 5 will carefully detail the optimization 

algorithm used in the case study presented in chapter 6. Finally, chapter 7 provides some 

concluding remarks as well as future work directions. 
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Chapter 2: Literature Review 

2.1. FACTS AND D-FACTS 

Flexible AC Transmission Systems (FACTS) and Distributed FACTS (D-FACTS) are 

thyristor-based controllers designed to manage series impedance, shunt impedance, phase angle, 

or some other parameter in electric transmission systems (Hingorani, 1993). Some of the most 

common types of FACTS devices are: Static Var Compensator (SVC) which are used to control 

the voltage of electric power systems; Thyristor Controlled Series Capacitor (TCSC) which is used 

to increase transfer capacity and system stability; Static Synchronous Series Compensator (SSSC), 

which is used for power transmission series compensation as a source of synchronous voltage; and 

Unified Power Flow Controller (UPFC), which can be used for enhancing steady state, dynamic, 

and transient stability (Murali, Rajaram, & Reka, 2010). 

It has been repeatedly demonstrated that the installation of FACTS devices can not only 

improve the stability of the transmission networks, but also reduce operational costs and open the 

possibility for increased sales by utilities (Habur & O'Leary, 2004). They can also be installed with 

the more specific objectives of congestion relief and voltage stability (Wibowo, Yorino, Eghbal, 

Zoka, & Sasaki, 2011),  in order to integrate different energy sources into the grid (De Oliveira, 

Marangon Lima, & De Almeida, 2000), or in order to improve security in the network (Yorino, 

El-Araby, Sasaki, & Harada, 2003). 

 

2.1.1. FACTS Allocation 

The allocation of traditional FACTS has been thoroughly studied and algorithms for this 

purpose include Particle Swarm Optimization (PSO) (Jordehi, 2015), with some studies optimizing 

not only location but also device type and settings (Chansareewittaya & Jirapong, 2014). 

Additionally, the aspect of the network being optimized can vary from maximizing voltage 

stability during outages (Srivastava, Dixit, & Agnihotri, 2014), optimizing power system 

loadability and minimizing installation costs (Malathy, Shunmugalatha, & Thaineesh, 2015), and 
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total operation and installation cost (Mohamed, Rama Rao, & Hasan, 2010). Genetic Algorithms 

(GA) have also been used in order to minimize cost (Cai, Erlich, & Stamtsis, 2004), simultaneous 

maximization of system security and minimization of installation costs (Radu & Besanger, 2006), 

optimization of branch loading, voltage stability and loss minimization (Surender Reddy, Sailaja 

Kumari, & Sydulu, 2010), power system security (Baghaee, et al. 2008a), among other objectives. 

Other optimization methods include Khan et al’s (2021) modified lightning attachment procedure 

optimization (MLAPO), a fairly novel metaheuristic algorithm; and the Firefly algorithm for 

reducing power loss, voltage deviations, fuel costs, and branch loading (Gundavarapu & Bathina, 

2015). The results are fairly promising in reducing power losses and achieving quick convergence.  

Further details on optimization algorithms and methods are described in section 2.2. 

 

2.1.2. D-FACTS Allocation and Benefits 

Distributed FACTS, or D-FACTS, are a smaller, light-weight version of traditional 

FACTS. D-FACTS were proposed in 2005 with the objective of dealing with some of the obstacles 

that traditional FACTS have for deployment, namely the investment cost, space requirements, 

system stress, and reliability requirements (Divan & Johal, 2005). They have the added 

conveniences of being modular and re-deployable, not needing large spaces for installation at each 

bus, but their adjustance ranges are lower and the computational burden to optimally allocate them 

is larger due to the added variable of how many to allocate. Still, the potential economic benefit of 

D-FACTS is larger when compared to traditional FACTS (Sang and Sahraei-Ardakani 2018), not 

to mention the long-term benefit of re-deployability, which has not yet been studied in research, 

but promises reduced costs if a situation arises in which the network configuration changes and re-

allocation becomes necessary. 

The use of FACTS and D-FACTS devices also helps the integration of renewable energy 

sources into the power grid. Analysis has shown that FACTS devices can improve voltage profile 

at buses and reduce power loss in lines (Suresh & Sreejith, 2017). Smart grids are using FACTS 
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devices in order to improve power quality levels (Liao, Abdelrahman, & Milanović, 2016). It is 

estimated that by 2050 20-25% of energy in global grids will come from renewable sources such 

as solar, wind, etc. (Jha, Bilalovic, Jha, Patel, & Zhang, 2017). As such, power flow control devices 

will become more relevant in managing distribution networks and grid congestion. More than 

FACTS, D-FACTS are more attractive control devices to dynamically manage voltage, reactive 

power, and power quality (Gupta and Kumar 2016; Gaigowal and Renge 2016). It is important to 

note that due to the uncertainty that comes with the incorporation of renewable energy sources, 

precise and dynamic management of microgrids becomes more important still. D-FACTS-based 

green plug-switched filter capacitor filters have been developed to improve the energy use and 

dynamic voltage stabilization of wind energy-connected systems with load changes and temporary 

fault conditions,  promising high-speed controllability and maintained power factor correction 

capability (Gandoman, Sharaf, Abdel Aleem, & Jurado, 2017). FACTS and D-FACTS 

technologies thus play a key role in the improvement of energy management as grids transition 

towards smart, dynamic control schemes (Gandoman, et al., 2018). 

 

2.1.3. Mathematical Optimization Models for FACTS and D-FACTS 

Similarly to the objectives being optimized, the formulations for the optimization models 

have also varied greatly between studies. Some studies have focused more on studying only what 

happens at transmission lines, thus disregarding some other aspects of the transmission systems 

such as spinning reserves or even costs, while other studies may be more interested in testing the 

integration of renewable energies, omitting things such as generator or line reliability. 

Elmetwaly et al. (2020) modeled the integration of Adaptive Switched Filter Compensator 

(ASFC) and D-STATCOM type devices into a microgrid to improve power quality, specifically 

harmonic distortion and voltage stability in renewable energy sources, considering only the power 

sources and battery banks in their constraints as that was their focus of study, which had only 5 

constraints in their optimization plus an objective function, with most of the article being devoted 
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to describing the renewable energy sources and the specifications used in the devices for their 

simulation. On the other hand, the study by Sang and Sahraei-Ardakani (2019) aimed to minimize 

total system operating costs considering power reserves and multiple stochastic scenarios, which 

needed to consider constraints for transmission capacities and voltage stability limits, thus 

resulting in a model with 21 constraints and an objective function, which resulted in a fairly 

realistic model for how a transmission network may operate. 

Ultimately, the number of constraints in the model serves mainly to determine the 

computational burden that can result from using a solver and is no direct reflection of the quality 

of the model. The number of constraints does also help to estimate how many elements are being 

considered into the optimization but as every problem is different so will every study have a 

different formulation. 

 

 

2.1.4. Types of D-FACTS devices 

Some of the most common types of D-FACTS are the following: Distributed Static 

Compensator (D-STATCOM), which is useful for voltage regulation, compensation of current 

harmonics, control of reactive power, and uninterrupted supply from storage devices (Divan & 

Johal, Distributed FACTS - A New Concept for Realizing Grid Power Control, 2005); Distributed 

Static Series Compensator (DSSC), which allows for control of active line power flow, are smaller 

and cheaper than other types of devices, and help minimize real power losses (Divan, et al. 2004; 

Divan, 2005); Distributed Thyristor Controlled Series Compensator (D-TCSC), which helps 

improve system stability and development of cyber-secure control methods as well as controlling 

system voltages (Gandoman, et al., 2018); Distriubted Series Impedance (DSI) which can adjust 

line impedance for improving power flow (Divan & Johal, 2005); and Distributed Power Flow 

Controller (DPFC), a distributed version of the Unified Power Flow Controller (UPFC), which can 

control all parameters in a network including line impedance, power angle, and voltage magnitude, 
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with the added advantage of lower installation and maintenance costs and much higher reliability 

(Yuan, de Haan, & Ferreira, 2007). Out of these, DSI type devices will be used as the focus of the 

research, as the devices will be used to modify the line impedances to improve transmission 

capacity in order to optimize the various objectives studied. 

 

2.2.  OPTIMIZATION METHODS IN FACTS AND D-FACTS ALLOCATION 

The optimal allocation of indivisible items with connectivity constraints is considered to 

be at least an NP-hard problem (Igarashi, 2019). While there is no research studying the 

computational complexity of FACTS or D-FACTS allocation, it can be deduced based on the 

problem formulation that the computational time cannot be easily estimated on a polynomial time 

scale, and so we assume that the FACTS and D-FACTS allocation problem to also be at least NP-

hard, if not NP-complete. Additionally, FACTS and D-FACTS allocation methods generally 

allocate the devices based on one of the following methods based on the objective to optimize: 

Sensitivity-based methods, cost-benefit analysis-based methods, voltage security margin-based 

methods, and optimization-based methods (Gupta & Kumar, 2019). While formulations such as 

linear programming or mixed-integer programming can be used to optimally solve complex 

optimization problems, they are faced with the drawback of large computational times. A popular 

alternative to reduce the computational burden is the use of heuristic and metaheuristic 

optimization methods. These may not be capable of guaranteeing an optimal solution due to their 

nature, but the solutions found are almost always at least very close to the true optimums. This 

section will focus on reviewing some of the most common optimization methods for FACTS and 

D-FACTS allocation problems, their base formulation, and modifications used in case studies.  
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2.2.1. Linear Programming 

Linear programming (LP) is a method of achieving an optimal solution from a 

mathematical model which is expressed in linear relationships. While similar methods date back 

to Fourier, modern interpretation of linear programming are mainly attributed to George Dantzig, 

who designed the simplex method in 1947 (Chvatal & Chvatal, 1983). The standard form of a 

linear programming problem is expressed as follows: 

max{𝒄𝑇𝒙 | 𝒙 ∈  ℝ𝑛  ∧ 𝑨𝒙 ≤ 𝒃 ∧ 𝒙 ≥ 0} 

Where c represents the vector of cost coefficients, x represents the vector of variables to 

be optimized, and A and b are the constraint coefficients and right-hand-sides in matrix/vector 

form. 

In addition to linear programming, there are integer programming (ILP) and mixed-integer 

programming (MILP), where all or some of the variables in x are also constrained to integer space, 

increasing the computational complexity of the problem.  

Many of the LP-based approaches to optimal FACTS and D-FACTS allocation use mixed-

integer programming. Sahraei-Ardakani and Hedman’s 2015 study proposed a mixed-integer 

reformulation of the nonlinear program in order to make the problem computationally solvable 

when optimizing FACTS allocation to improve system transfer capacity. MILP has also been used 

in order to optimize allocation and settings of FACTS devices to maximize system loadability in 

large networks, with simulations for networks up to 904 buses (Lima, Galiana, Kockar, & Munoz, 

2003). Other authors chose to linearize the allocation problem into a standard LP formulation to 

relieve overloads and voltage violations (Shao & Vittal, 2006). Overall, it can be argued that 

different types of LP formulations are effective in solving problems in FACTS and D-FACTS 

allocation as well as Optimal Power Flow (OPF) problems. However, the fact remains that these 
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are at least NP-hard problems, and thus exact optimization methods such as this are not very 

efficient in finding a solution. 

2.2.2. Branch and Bound Method 

Branch and Bound is a heuristic search method. It was proposed in 1960 by Ailsa Land and 

Alison Doig as a method for solving discrete programming problems (Land & Doig, 1960). In 

essence, the algorithm consists of an enumeration of possible solutions in the form of a tree with 

the full set of possible solutions at the root and subsets at the branches. The algorithm then explores 

the branches and discards them based on their upper or lower bounds. 

Due to the difficulty in finding upper and lower bounds for solutions of complex problems, 

branch and bound is not always a very popular choice for some combinatorial problems. However, 

it has been used in combination with Mixed-Integer Non-Linear Programming (MINLP) to find 

optimal allocation of SVC devices based on an Optimal Reactive Power Flow (ORPF) model. The 

study used branch and bound to restrict the solution space and then solved each sub-problem using 

the MINLP. By branching the problem, it was then possible to reduce the computational time of 

each solution (Alves Silva & Belati, 2016). 

 

2.2.3. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a metaheuristic search method. Metaheuristics are 

high-level procedures designed to find or generate a lower-level search method which may provide 

a good solution to an optimization problem with limited information or resources (Bianchi, Gorigo, 

Gambardella, & Gutjahr, 2009). 

Particle Swarm Optimization is a popular search algorithm thanks to its simplicity. It was 

originally proposed by Kennedy and Eberhart in the 1995 IEEE International Conference on 

Neural Networks. Its basis is to search the solution space by having a set of solutions (particles) 
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which are, initially, randomly placed across it, and which then move across it based on simple 

mathematical formulas, converging on an optimum. Particle Swarm Optimization has been 

commonly used for FACTS and D-FACTS optimization, since it is a very convenient method for 

graphics-based problems. Since the allocation of power flow control devices can be represented 

graphically, PSO is an easily applicable. Some of the applications of PSO in the allocation of 

FACTS devices are covered by (Jordehi, 2015).  

In addition to the examples provided in section 2.1, PSO has been used in optimizing 

location and size of STATCOM-type devices performing sensitivity analysis on the inertia weight 

of the optimization process (Ravi & Rajaram, 2013). Multi-objective PSO is used in the form of a 

non-dominated sorting PSO to provide pareto fronts in the allocation of TCSC and SVC units 

(Sedighizadeh, Faramarzi, Mahmoodi, & Sarvi, 2014). Another modification to the PSO algorithm 

applied to this field is an Enhanced Leader PSO (ELPSO) algorithm for allocating distributed 

TCSC devices (Resaee Jordehi, Jasni, Abd Wahab, Kadir, & Javadi, 2015). The key advance in 

the ELPSO algorithm is a mutation strategy for the “swarm leader” or the solution with the best 

objective function value, with the purpose of moving this leader out of what may be a local 

optimum. Overall, it has been found that the application of PSO methods highly improves the 

computational time of power flow control optimization problems while still yielding solutions that 

are close enough to the real optimum that any difference is negligible. 

 

2.2.4. Genetic and Evolutionary Algorithms 

Genetic Algorithms (GAs) were first proposed by J. H. Holland in his 1975 publication 

“Adaptation in Natural and Artificial Systems.” They were designed to mimic natural evolutionary 

processes by manipulating potential solutions in an optimization problem. Their basic procedure 

is to initialize a population of possible solutions, evaluate them, and, while the termination criteria 
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is not reached, select solutions for the next population and perform crossover and mutation before 

evaluating this new population (Srinivas & Patnaik, 1994).  

Genetic algorithms have also been used (although not as much as PSO methods) in solving 

power flow control problems with specific objectives in mind via the implementation of FACTS 

and DFACTS devices. Baghaee et al. (2008b) used GAs to allocate multi-type FACTS devices 

(specifically TSCS, SVC and UPFC types) in order to improve voltage stability and reduce losses 

across the IEEE 30 bus system, considering multiple scenarios, showing that installation of 

multiple types of FACTS devices do improve both of their objectives, although economic aspects 

were not considered. Fuzzy logic-based approaches in which some uncertainty exists for some 

parameters is used by Phadke, Fozdar, and Niazi (2012) to also allocate FACTS to optimize 

maximum distance to saddle-node bifurcation and minimum voltage deviation, applying their 

method of adding shunt compensation to the weakest bus over the IEEE 14-bus and 57-bus 

systems. 

Other GA-inspired algorithms such as the Bees Algorithm is also used for optimal FACTS 

allocation in deregulated markets by Idris, Khairuddin, and Mustafa (2009) in order to optimize 

available transfer capacity considering TCSC, SVC, UPFC, and TCPST-type FACTS devices, 

comparing both the bees algorithm and traditional GAs, finding both algorithms are able to find 

the optimal solution and settings of the devices, although the bees algorithm has a slight advantage 

on convergence speed. Similarly, Cai, Erlich, and Stamtsis (2004) also studied optimal allocation 

of FACTS in deregulated markets using GAs, but focused on minimizing costs, with their findings 

falling in line with other studies and showing that the installation of FACTS devices can reduce 

total system costs. Genetic Algorithms are widely used in optimization methods thanks to their 

fast convergence speed and ease of use. 
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The advantages of GAs as well as many of their applications are described and detailed by 

Vikhar (2016), who described the key advantages as: 

• Being conceptually simple and flexible 

• Uses prior information (considers already-known data) 

• Is independent of the numeric representation of the formulation 

• Can use parallel processes within each iteration 

• Are more robust and can adapt the solution to a changing environment 

• Does not require human expertise 

Still, there are some drawbacks to the use of genetic algorithms, namely that, like every 

other metaheuristic, it has a risk of converging towards local optima in the search space and thus 

not finding the most optimal solution. 

 

2.3. MULTIPLE OBJECTIVE OPTIMIZATION METHODS 

For years after the formulation of traditional single-objective optimization methods, 

problems were solved by one objective at a time, the objective being cost minimization or 

reliability maximization. However, single objective optimization is not a very realistic framing for 

most problems as improving one parameter will usually worsen others. While for most problems 

considering only one objective can reduce the complexity and computational burden, it also 

reduces their capacity of describing and explaining many of the nuances that would be present in 

real-world problems. This reasoning resulted in the understanding that single-objective 

optimization is no longer suitable for solving problems, and the framework for multiple-objective 

optimization was laid down, as it allows for more information to be taken into account (Caramia 

& Dell'Olmo, 2008). 

As so, a basic single-objective problem can be formulated as follows: 
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min{𝑓(𝑥)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆 

Where f is a scalar function and S is the set of constraints. 

While a single-objective optimization problem is expressed by a single objective function, 

a multi-objective problem is expressed by a number of objective functions, as well as several 

equality and inequality constraints. The notation for this can be written as follows: 

min 𝑓𝑖(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔(𝑥) ≤ 0 

ℎ(𝑥) = 0 

Where fi(x) stands for each of the objective functions (i = 1, …, n) that is being optimized, 

and the set of constraints g(x) and h(x) define the feasible region, with the decision variables 

represented by x. 

Several methods exist for solving both single and multiple-objective optimization 

problems. Given that single-objective optimization methods are fairly straight-forward and some 

have already been discussed, the remainder of this sub-section will be dedicated to discussing some 

of the methodologies used for solving multi-objective optimization problems. These can be 

classified in two main groups based on whether the expected output is a single solution or a set of 

solutions in the form of a non-dominated Pareto set. 

2.3.1. Single Solution Approaches 

 The first set of methods involve combining all objective functions into a singular 

aggregated objective function, essentially transforming the problem back into a single-objective 

problem in order to simplify the algorithm. While this type of approach has the benefit of being 

very straight-forward in its implementation and less intensive in computational burden, it suffers 

from the drawback of not allowing as much exploration of possible solutions compared to Pareto-

optimal methods.  
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Goal Programming 

The Goal Programming approach was first developed by Charnes et al. in 1955. The aim 

was to find specific goal values for each of the objective functions considered in the problem. In 

their method, each objective function F(x) is assigned a goal bj. The aggregated objective function 

becomes reducing the total deviation from the goals, dj. The deviations are separated into positive 

and negative values, to consider under and overachievement, where achievement or zero values 

imply reached goals. The optimization problem is then formulated as follows: 

min
𝑥∈𝑍,𝑑−,𝑑+

∑(𝑑𝑖
+, 𝑑𝑖

−)

𝑘

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝐹𝑗(𝑥) + 𝑑𝑗
+ − 𝑑𝑗

− = 𝑏𝑗  

𝑑𝑗
+, 𝑑𝑗

− ≥ 0 

 Where j = 1, …, k. This approach can simplify a multi-objective problem and is useful if  

the solver’s objective is to approximate a specific result, but it does not actually guarantee a Pareto-

optimal solution and can become more computationally exhausting in larger problems due to the 

increased number of variables. Some variations to this method include Weighted Goal 

Programming, Preemptive Goal Programming, Multi-Goal Programming, and Goal Attainment 

Method. 

 

Weighted Sum or Scalarization 

The Weighted Sum method is one of the most common approaches to multi-objective 

optimization. This strategy converts a multi-objective problem into a single-objective one by 

constructing a weighted sum F(x) of all objectives in the vector of criteria functions (Marler & 

Arora, 2010). More specifically, the Weighted Sum method minimizes a positively weighted 

convex sum of all objectives, and can be represented as follows: 

𝐹(𝑥) = ∑ 𝑤𝑖𝑓𝑖(𝑥)

𝑛

𝑖=1
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Where n represents the total number of objectives I and wi their respective weights. An 

advantage to this method is its simplicity, transforming a multi-objective problem into a single-

objective one by simple addition, while also allowing the decision maker to assign priority to the 

objectives through the weights. Its disadvantage, however, lies precisely in assigning the weight 

coefficients, which can be difficult to choose. Determining the adequate weights for this type of 

problem has been the subject of much research, with some researchers arguing that weight 

functions be more appropriate for better representing preferences. Some approaches to weight 

assignment include ranking, categorization, rating, and eigenvalues. 

 

Lexicographic Method 

Yet another way to address multiple objectives is through the lexicographic approach 

proposed by Fishburn (1974). This method requires the decision maker to establish a priority for 

each objective. In this method, the objective functions are arranged in order of importance, and 

solutions are compared in respect to the most important objective. In the event of a tie, the next 

most important functions are compared, and so on until there are no ties or objectives remaining. 

This method can be described with the following formulation: 

min 𝑥 ∈ 𝑋 𝐹𝑖(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐹𝑗(𝑥) ≤ 𝐹𝑗𝑥 ∗ 𝑗 

𝑗 = 1, 2, … , 𝑖 − 1; 𝑖 = 2, 3, … , 𝑘 

Where i represents a function’s position in the preferred sequence, and Fj x*j represents 

the optimum of the jth objective function, found in the jth iteration. After the first iteration (where 

j=1), Fj x*j is not necessarily the same as the independent minimum of Fj(x), since new constraints 

have been introduced from the results of the previous iteration. 
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Multi-Attribute Utility Theory 

In this case, utility refers to the satisfaction that each attribute or objective function 

provides to the decision maker. This way, the utility theory approach assumes that any decision is 

made on the basis of the utility maximization principle. This principle suggests that the best choice 

is the one that would provide the most satisfaction to the decision maker. In multi-attribute utility 

analysis, the total utility of a design solution is a scalar on the interval between 0 and 1, where 0 

represents no utility and 1 represents the highest possible utility (Dyer, 2005). According to utility 

theory, if Xi is the measure of satisfaction provided by an attribute I, and there are n attributes, then 

the joint utility function for all attributes can be expressed as: 

𝑈(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑓(𝑈1(𝑋1), 𝑈2(𝑋2), … , 𝑈𝑛(𝑋𝑛)) 

In this case, 𝑈𝑖(𝑋𝑖) is the utility of the ith attribute. The overall utility function is the sum 

of all individual utilities if the attributes are independent. This function can be expressed as 

𝑈(𝑋1, 𝑋2, … , 𝑋𝑛) = ∑ 𝑈𝑖(𝑋𝑖)

𝑛

𝑖=1

 

And after assigning weights to each attribute, the function becomes 

𝑈(𝑋1, 𝑋2, … , 𝑋𝑛) = ∑ 𝑊𝑖𝑈𝑖(𝑋𝑖)

𝑛

𝑖=1

 

While utility optimization is effective and widely used, it requires extensive interviews 

with the decision maker to determine appropriate utility functions and weights. Once the utility 

function has been constructed, however, optimization can occur and the design alternative with the 

maximum utility can be determined. 

 

ε-Constraint Approach 

This procedure originally proposed by Chankong and Haimes (1983) overcomes some of 

the convexity problems that the Weighted Sum technique faces. In this approach, the decision 

maker chooses one objective to be optimized, and constraints the remaining objective to be within 

a target range (equal or less than a target in a maximization objective, or equal or larger than a 
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target in a maximization objective). For example, in a bi-objective minimization problem, the 

problem is divided into two problems, P1(ε2) and P2(ε1), which are the following: 

min 𝑓1(�⃗�) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

�⃗� ∈ 𝑋 

𝑓2(�⃗�) ≤ 𝜖2 

And 

min 𝑓2(�⃗�) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

�⃗� ∈ 𝑋 

𝑓1(�⃗�) ≤ 𝜖1 

Respectively. 

Contrary to other aggregation methods, the ε-constraints approach is able to identify a 

number of non-inferior solutions within a nonconvex boundary. However, it has the drawback of 

its hard constraints not being adequate for representing real design objectives. 

 

2.3.2. Pareto-based Optimization Approaches 

In Pareto-optimality-based approaches, there is no single optimal solution, but instead a set 

of non-dominated alternative solutions. These solutions are considered “Pareto optimal”, since 

none of the other solutions are dominated by other solutions. The concept of dominance in 

optimization means that there is no other solution in the feasible region which is quantifiably better 

than the pareto-optimal solutions in all the objectives considered. This makes it possible for there 

to be tradeoffs between objectives from the decision-maker’s point of view (Zitzler & Thiele, 

1998; Zitzler et al., 2002) 
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These optimal solutions are called Pareto-optimal solutions and the set of these is denoted 

as the Pareto-optimal set. Figure 2.1 shows an illustration of the terminologies in Pareto-based 

optimization: 

 
Figure 2.1: Pareto-based optimization illustration and terms 

In the figure above, each axis represents an objective being minimized, with an ideal or 

utopia solution marked in green, an unfeasible solution in red (where the objective function values 

would not be achievable under existing constraints), pareto-dominant or nondominated solutions 

in blue over the orange line representing the Pareto-front, and feasible but non-optimal solutions 

in yellow. 

As an example of conflicting objectives, such as when maximizing an objective involves 

increasing another that we want to minimize, we could consider a situation in which cost and 

efficiency are to be optimized. Cost is an objective that is almost always being minimized, while 

efficiency is almost always maximized. However, it is also true that increasing efficiency involves 

increasing costs, creating a conflict in the objectives. The final decision will rely on which of the 

two objectives is more important to the designer. 
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Formulating, analyzing, and solving problems with conflicting objectives usually requires 

a decision maker to express preference relations between alternative solutions. The decision maker 

must have some expertise in the field for which the problem is solved, as well as knowledge on 

the resulting set of solutions, in order to make an educated choice as to which solution would be 

best, as well as to give weights to the objectives being evaluated. The Pareto-optimal set can help 

reduce the design alternatives from a feasible region into optimal trade-offs (Yancang, Lina, & 

Shujing, 2010). 

 

Multiple-Objective Evolutionary Algorithms 

Optimizing multi-objective problems can be a challenging task, since one of the 

characteristics of these problems is that the objectives tend to conflict with each other, and the 

multi-dimensional search space tends to be very complex. As a solution, researchers have proposed 

several different models to obtain Pareto-Optimal solutions. Much like in single-objective 

optimization, evolutionary algorithms are some of the more popular models for solving these types 

of problems due to their capacity to be adapted to different types of problems. 

Genetic Algorithms (GAs) optimize a desired objective by altering its encoded variables. 

Comparing it to biological evolution, the solutions arise from a set of possible “genetic” sequences. 

Hence, the best solutions result from organisms that were able to survive and reproduce within the 

environment, which is to say, the solutions with the best objective function values. Genetic 

Algorithms are a variety of Evolutionary Algorithms (EAs), which apply techniques inspired by 

evolutionary biology such as inheritance, mutation, and crossover or combination. A set of random 

solutions represented by a data structure is generated. In technical GA terms, these solutions are 

considered the chromosomes that constitute the individuals in a population. The chromosomes 

consist of a sequence of genes, or specific data characteristics which will be used during the 

evaluation of the objective function or fitness value for the individual, and can be in the form of 

bits, digits, or letters (Kumar, Hussian, Upreti, & Gupta, 2010). 
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A genetic algorithm simulates the best individuals in successive generations, where a set 

of individuals composes each generation’s population. Each generation’s population is evaluated 

to continually identify the best solutions. The general methodology followed in the formulation of 

a genetic algorithm is showed below in figure 2.2. The process for a genetic algorithm will be more 

thoroughly explained in section 5.2.  

In multiple objective optimization, Evolutionary Algorithms follow similar processes as 

Genetic Algorithms. Still, all evolutionary algorithms have different techniques when attempting 

to achieve diversity in their population set. In multiple-objective evolutionary optimization, it is 

crucial to achieve diversity in their population, as it means that it’s possible to deliver a varied set 

of alternatives to the decision maker. For this, different fitness assignment methodologies have 

been explored. Pareto-based approaches can be divided into elitist and non-elitist approaches, 

depending on whether the stored non-dominated solutions are included in the crossover process. 

Some of the most common algorithms are presented in the following subsections. 

 

 
Figure 2.2: Graphic representation of a GA (Delgado, 2016) 
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2.4.  PARETO-BASED NON-ELITIST APPROACHES 

1. Multiple Objective Genetic Algorithm (MOGA) in an approach in which individuals are 

assigned ranks corresponding to the number of individuals in the current population by 

which they are dominated. The non-dominated individuals are ranked and ties are averaged 

to maintain the sampling rate (Murata & Ishibuchi, 1995). 

2. Niched Pareto Genetic Algorithm (NPGA) proposed by Horn et al. in 1994, has a Pareto 

dominance-based tournament selection with a sample of the population to determine the 

winner between two candidate solutions. A subset of individuals is used to determine 

dominance between the two solutions competing, and the non-dominated individual is 

selected for reproduction. In the event of a tie, the winner is decided through fitness sharing. 

3. Non-Dominated Sorting Genetic Algorithm (NSGA) in an approach in which all non-

dominated individuals are classified into one category, and collectively assigned a fitness 

value proportional to population size. This group is removed, and the remaining population 

is repeatedly classified until all the population has been classified (Deb, Pratap, Agarwal, 

& Meyarivan, 2002) 

 

Pareto-based Elitist Approaches 

1. Strength Pareto Evolutionary Algorithm (SPEA), developed by Zitzler and Thiele in 1999, 

has many similarities with other algorithms in terms of storing previously-obtained Pareto-

optimal solutions, as well as the use of the dominance concept and the use of clustering to 

reduce the number of stored solutions. However, what makes it stand apart from the rest is 

the use of all three of these concepts in a single algorithm. It determines a fitness function 

out of the stored solutions, avoiding dominance from the existing population, and uses all 

the stored Pareto solutions for selection 
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2. Strength Pareto Evolutionary Algorithm 2 (SPEA2), formulated as an improvement of the 

original SPEA by Zitzler et al. in 2001. This iteration of the algorithm intends to avoid the 

situations in which individuals in the population can have the same fitness value according 

to their dominance by stored solutions. This time, the fitness function is calculated using 

both the stored solutions and the current population, adopting a new scheme to prevent the 

loss of boundary solutions during archive updating. Diversity is maintained in this 

approach with a density-based cluster on the kth nearest neighbor. 

3. Pareto Archived Evolutionary Strategy (PAES) is a single-parent single-child EA, similar 

to a (1+1) evolutionary strategy. The PAES method has two main objectives: The first is 

that the algorithm should be strictly confined to local search, moving from one solution to 

a nearby neighbor. The second is for the algorithm to be a true Pareto optimizer by treating 

all nondominated solutions as equal in terms of their value to the decision maker. This can 

be troublesome when comparing a pair of solutions that do not dominate each other. This 

is addressed by keeping a record of previous non-dominated solutions, which can be used 

to estimate a dominance ranking for this pair of solutions. The authors concluded that in a 

multi-objective routing problem, the PAES method provided competitive results compared 

to a traditional MOEA (Knowles & Corne, 1999) 

4. Pareto Envelope-based Selection Algorithm (PESA) is an algorithm that uses a smaller 

internal (or primary) population and a larger external (secondary) population than that 

adopted by PAES. PESA uses the same hypergrid division of objective space from PAES 

to maintain diversity, but its selection mechanism is based on a hypergrid crowding 

measure. This crowding measure is used to decide which solutions are to be introduced 

into the external population (Corne, Knowles, & Oates, The Pareto Envelope-Based 

Selection Algorithm for Multiobjective Optimization, 2000) 

5. Pareto Envelope-based Selection Algorithm II (PESA-II), developed by Corne et al. in 

2011. This revised version of PESA proposes the use of region-base selection, in which the 
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unit to be selected is a hyperbox rather than an individual. The procedure in this method is 

to select a hyperbox and then randomly choose an individual within that box. 

6. Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) is the revised method for the 

NSGA, proposed by Deb et al. in 2002. This method was devised to eliminate some of the 

weaknesses of the original NSGA, particularly its non-elitist nature and the specification 

of the sharing parameter. In this version, the individuals still undergo non-dominated 

sorting as in the first version, with the individuals receiving ranks based on this sorting. 

However, a new selection technique called crowded tournament selection is proposed. This 

selection method chooses individuals based on crowding distance (representing 

neighborhood density). Elitism is implemented by not allowing dominated solutions to pass 

on to the next generations 

 

The multi-objective algorithm method used in this study is similar in some ways to the 

NSGA method, but with a different fitness assigning metric, proposed by Taboada et al in 2007. 

The fitness metric in this approach combines separate fitness assignments for proximity and 

diversity in the Pareto set and allows for weights to be assigned depending on which of the two is 

preferred. 

Post-Pareto Optimality 

An aspect of multi-objective optimization is that the selection of the best solution is often 

left to a decision maker’s judgement. There are three approaches to incorporate the decision 

maker’s opinions into the optimization method: Firstly, an a priori method, in which the decision-

maker’s preferences are incorporated into an algorithm before generating solution points. Then, 

there is the a posteriori approach, which first generates the solution points to make up the Pareto-

optimal set before a decision is made. Lastly, there is the interactive method, in which the decision 

maker’s preferences are incorporated during the search. The objective of post-pareto analyses is 
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to make the final decision easier for the decision maker, who can often be found struggling to make 

sense of hundreds or thousands of data points. 

As an example of an a priori approach, Pinchera et al. (2017) introduced a function which 

they named Quantized Lexicographic Weighted Sum (QLWS), based on the definition of a Global 

Cost Function, which required the decision maker to define priorities among the targets to optimize 

in order to more quickly generate a set of solutions by avoiding the evaluation of the Pareto front. 

For a posteriori methods, Reynoso-Meza et al. (2010) used a Differential Evolution algorithm to 

generate a set of non-dominated, Pareto-optimal solutions, and then introduced spherical pruning, 

which is less sensitive to the loss of non-dominated solutions, in order to reduce the Pareto set for 

the decision-maker. Lastly, Gong et al (2014) used an interactive method, which they call an 

Interval Multiple-objective Optimization Problem, which has the goal of finding the decision-

maker’s preferred solution, by having them input the importance relations between the objectives 

during the evolution. 

The methods that this study will focus on are those which deal with the reduction of the 

Pareto-optimal set after the Pareto frontier has been established, i.e., a posteriori methods. These 

methods are intended to alleviate that part of the decision-making stage by delivering a more 

feasible to analyze amount of solutions. Still, it can be difficult to visualize the Pareto-optimal set 

when there are more than two objectives, not to mention the challenge of presenting this set to the 

decision maker. Below are described some a posteriori methodologies for Pareto-optimal set 

analysis. 

The non-uniform weight generator with pseudo-ranking scheme, developed by Carrillo and 

Taboada (2012) uses a weight generating algorithm to generate a set of weights for the solutions. 

The algorithm then performs a weighted sum of the normalized objectives, where the best solution 

for each set of weights is marked, and after repeating the process with all different weight sets, the 

solutions that are marked becomes the new pareto set, while the unmarked solutions are deleted. 
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Another method for reducing the Pareto set was recently developed by Fernandez (2017), 

using the concept of Nash Dominance. This approach uses game theory to reduce the number of 

Pareto-optimal solutions. The approach considers each solution a strategy and each objective 

function a player, and has the objective of maximizing the number of players that benefits from a 

change in selected solutions, basically choosing to keep solutions that excel in a larger number of 

objectives compared to others. This generally resulted in the elimination of extreme solutions, 

which only yield good results in one objective while sacrificing others. 

 

2.5. STATE OF THE ART 

As shown in the literature, this is a very active research area in the topic of power systems 

and transmission systems optimization, but there is still much to be studied in the field. For one, 

no studies currently consider quantified environmental impact metrics as an objective to optimize, 

which becomes a much more significant topic as climate change effects worsen. Additionally, 

while there have been studies such as Sang and Sahraei-Ardakani (2019) that consider varying 

load scenarios, no study was found that would consider generator or line failure scenarios. As such, 

most research has opted for less computationally-burdensome deterministic approaches, which 

only considers what would be the most likely scenario or standard operating conditions. In this 

research, D-FACTS devices will be allocated on electric transmission systems to verify the 

benefits of installing D-FACTS devices on existing grids as well as show the improvements 

brought to the optimization process by the developed algorithms. 

The present research proposes the development of Single- and Multi-Objective 

Metaheuristic Algorithms to solve stochastic D-FACTS allocation problems. Moreover, this thesis 

can provide the industry with an initial analysis of both the economic and environmental 

advantages to the installation of these devices.  
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Chapter 3: Mathematical Models 

The D-FACTS allocation problem can be considered at least NP-hard, if not NP-complete 

in terms of its computational complexity. This chapter will present the basic formulation of the D-

FACTS allocation problem as has been found in literature, as well as a number of modifications 

in track of the problems being solved in this dissertation. Since sections 4.1 and 4.2 are reviewing 

previous models, equation numbers are not used in them. 

 

3.1. EARLY MODELS 

The earliest formulation of this problem can be attributed to Li et al. (2009), who used a 

linearized DC power flow model with a voltage of 1.0 and no real power loss in the lines. Using 

this model, the flow at the kth line (connecting buses i and j) is obtained from the equation 

𝐹𝑘 = 𝐹𝑖𝑗 =
𝛿𝑖𝑗

𝑥𝑖𝑗
=

𝛿𝑖 − 𝛿𝑗

𝑥𝑖𝑗
= 𝑏𝑖𝑗(𝛿𝑖 − 𝛿𝑗) 

Where  

𝐹𝑘 Flow at line k (from bus 

i to j) 

𝑥𝑖𝑗 Reactance of line k 

𝛿𝑖 , 𝛿𝑘 Voltage angles at bus i,j 𝑏𝑖𝑗 Susceptance of line k = 
1

𝑥𝑖𝑗
 

With a simple optimization formulation given as: 

𝑀𝑖𝑛 ∑(𝐹𝑘
2 − 𝐹𝑘

𝑚𝑎𝑥2
 )

2
𝑀

𝑘=1

 

Subject to 

[𝑩] ∙ 𝛿 = 𝑷 

𝐹𝑘
2 = 𝐹𝑖𝑗

2 = (𝑏𝑖𝑗(𝛿𝑖 − 𝛿𝑗))
2

≤ 𝐹𝑘
𝑚𝑎𝑥2

 

𝑏𝑖𝑗 = 𝑏𝑖𝑗,0 + 𝑏𝑖𝑗,𝑐
𝑚𝑎𝑥 

𝑏𝑖𝑗,𝑐
𝑚𝑖𝑛 ≤ 𝑏𝑖𝑗,𝑐 ≤ 𝑏𝑖𝑗,𝑐

𝑚𝑎𝑥 

Where 

N Number of buses M Number of lines 
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𝐹𝑘 Flow through line k 𝐹𝑘
𝑚𝑎𝑥 Flow limit at line k 

[B] Nodal admittance matrix 𝛿 Vector of bus voltage 

angle 

P Vector of net nodal 

injection 

𝑏𝑖𝑗,0 Susceptance of original 

line 

𝑏𝑖𝑗,𝑐 Equivalent susceptance 

of series compensator 

𝑏𝑖𝑗,𝑐
𝑚𝑖𝑛, 𝑏𝑖𝑗,𝑐

𝑚𝑎𝑥 Min/Max susceptance of 

line with series compensator 

This basic formulation assumes the only unknowns to be the variables in 𝑏𝑖𝑗,𝑐, and its goal 

is to obtain the lowest congestion in the system. In such a simplified system, however, the model 

fails to adequately model more complex aspects of the system it tries to describe. This issue is 

addressed in later studies. 

Das et al. (2009) used a Particle Swarm Optimization (PSO) algorithm. While they don’t 

go into too much detail of the mathematical model they use, their objective function was to 

minimize cost as a linear function of a line utilization factor (LUF) and a module price: 

𝐶𝑜𝑠𝑡 = 𝐿𝑈𝐹 +
1

𝑊
𝑃𝑟𝑖𝑐𝑒 

𝐿𝑈𝐹 =
1

37
∑ (

𝐼𝑖

𝐼𝑚𝑎𝑥
)

10037

𝑖=1

 

𝑃𝑟𝑖𝑐𝑒 =
1

37
∑ 𝑁𝑀𝑖

37

𝑖=1

 

Where 

W Max number of modules in 

network 

𝐼𝑚𝑎𝑥 Thermal limit for lines 

𝐼𝑖 Flow in line i 𝑁𝑀𝑖 Number of modules 

installed in line i 
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3.2. MORE MODERN AND COMPREHENSIVE MODELS 

A more recent model by Dorostkar-Ghamsari et al (2015) used DSSC-type modules to 

maximize (1) system loadability factor and (2) system reliability via the following models: 

(1) 

𝑀𝑎𝑥 𝛼 

Subject to 

𝑮 − 𝛼 × 𝑫 = 𝑨 × 𝑳 

𝑳 = 𝑩𝑳(𝑨𝑇 × 𝜹 + 𝑽𝑞) 

𝑁𝑘 ≤ �̅�𝑘 × 𝑢𝑘           𝑘 ∈ Ω𝑙 

𝑁𝑘  × 𝑢𝑘 ≤ 𝑁𝑘         𝑘 ∈ Ω𝑙  

3 × ∑ 𝑁𝑘

𝑘∈Ω𝑙

≤ 𝑁 

𝑮 ≤ 𝑮 ≤ 𝑮 

−𝜋 ≤ 𝜹 ≤ 𝜋 

𝑁𝑘𝑉𝑞𝑘
≤ 𝑉𝑞𝑘

≤ 𝑁𝑘𝑉𝑞𝑘
    𝑘 ∈ Ω𝑙  

(2) 

𝑀𝑖𝑛 𝐸𝐷𝐶 

Subject to 

𝑮𝑺 + 𝑪𝑺 − 𝑫 = 𝑨 × 𝑳𝑺,      𝑠 ∈ 𝛀𝑺 

𝑳𝑺 = 𝑩𝑺(𝑨𝑻 × 𝜹𝑺 + 𝑽𝒒
𝑺),     𝑠 ∈ 𝛀𝑺 

𝑁𝑘 ≤ �̅�𝑘 × 𝑢𝑘            𝑘 ∈ Ω𝑙 

𝑁𝑘  × 𝑢𝑘 ≤ 𝑁𝑘         𝑘 ∈ Ω𝑙  

3 × ∑ 𝑁𝑘

𝑘∈Ω𝑙

≤ 𝑁 

𝑮𝑺 ≤ 𝑮𝑺 ≤ 𝑮𝑺,    𝑠 ∈ 𝛀𝑆 

|𝑳𝑺| ≤ 𝑳𝑆,     𝑠 ∈ 𝛀𝑆 

−𝜋 ≤ 𝜹𝑺 ≤ 𝜋,    𝑠 ∈ Ω𝑺 

𝑁𝑘𝑉𝑆
𝑞𝑘

≤ 𝑉𝑞𝑘
𝑆 ≤ 𝑁𝑘𝑉𝑞𝑘

𝑆 ,    𝑘 ∈ Ω𝑙 , 𝑠 ∈ Ω𝑆 
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𝐸𝐷𝐶 = ∑ ∑ (8760. Pr
𝑠

. 𝐶𝑖
𝑆. 𝐼𝐸𝐴𝑅𝑖)

𝑖∈Ω𝑑𝑠∈Ω𝑆

 

Where 

Ω𝑑 Set of demand buses Ω𝑙 Set of transmission lines 

Ω𝑠 Set of Scenarios A Network node incidence 

matrix 

𝑩𝑙 Diagonal Matrix of line 

susceptances 

D Vector of bus demands 

𝐺, 𝐺 Vectors of upper and 

lower limits on active 

generation 

𝑢𝑘 Binary parameter 

indicating whether DSSCs are 

allowed on line k 

IEARi Interrupted energy 

assessment rate of load point i 

𝐿 Vector of max flow limits 

𝑁 Max number of DSSCs 

allowed in system 

𝑁𝑘, 𝑁𝑘 Upper and lower limits of 

DSSCs per conductor in line k 

Prs Probability of scenario 

s 

𝑉𝑞𝑘
, 𝑉𝑞𝑘

 Upper and lower limits 

on injected voltage per conductor 

of line k 

EENSi Expected energy not 

supplied at point i 

G Vector of active power 

generations 

L Vector of active power 

flows 

CS Vector of load 

curtailment in scenario s 

Nk Number of DSSCs 

installed in line k 

Vq Vector of injected 

voltages 

𝑽𝒒𝒌
 Injected voltage on 

each conductor of line k 

𝜶 System loadability factor 
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𝜹 Vector of bus voltage 

angles 

  

These formulations presented one of the first explorations into optimization of these 

devices into multiple stochastic scenarios. However, this formulation is only valid for DSSC-type 

devices, which according to Sang and Sahraei-Ardakani (2019) are more expensive and have a 

lower market prospect. In Response, they proposed the following model to allocate DSI-type 

devices, which accounts not only for multiple scenarios, but also accounts for reserve requirements 

which is a requirement of many modern transmission systems and serve to account for fluctuations 

on load, and renewable energy integration, which is becoming a more common subsystem in many 

electrical networks. 

Due to power flow constraints, the optimization model is split into two parts, as they 

depend on power flow direction: 

𝐼𝑓 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≥ 0, (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘
max ≤ 𝐹𝑘,𝑠 ≤  (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘

min 

𝐼𝑓 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ 0, (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘
min ≤ 𝐹𝑘,𝑠 ≤ (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘

𝑚𝑎𝑥  

As so, the formulation first solves the system without considering D-FACTS devices to 

obtain the flow directions of each line and then uses this information in solving for the allocation 

of D-FACTS at each line. The first step uses the following formulation: 

min (∑ 𝑃𝑠 (∑ (∑ 𝑐𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔
+ 𝑐𝑔

𝑈𝑅𝑔,𝑠
𝑈 + 𝑐𝑔

𝐷𝑅𝑔,𝑠
𝐷 + 𝐶𝑔

𝑁𝐿

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔

) + ∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

𝑁𝑔

𝑔=1

)

𝑁𝑠

𝑠=1

) 

Subject to 

𝑃𝑔,𝑠 = ∑ 𝑃𝑔,𝑠
𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

 

𝑃𝑔
min ≤ 𝑃𝑔,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥  

−𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝐹𝑘

𝑚𝑎𝑧 

 (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘  = 𝐹𝑘,𝑠 

∑ 𝐹𝑘,𝑠

𝑘∈𝜎+(𝑛)

− ∑ 𝐹𝑘,𝑠

𝑘∈𝜎−(𝑛)

+ ∑ 𝑃𝑔,𝑠

𝑔∈𝑔(𝑛)

+ ∑ (𝑃𝑟,𝑠 − 𝑃𝑟,𝑠
𝐶 )

𝑟∈𝑟(𝑛)

= 𝐿𝑛,𝑠 
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∑ 𝑅𝑔,𝑠
𝑈

𝑁𝑔

𝑔=1

≥ 𝑆𝑈 

∑ 𝑅𝑔,𝑠
𝐷

𝑁𝑔

𝑔=1

≥ 𝑆𝐷 

𝑅𝑔,𝑠
𝑈 ≤ 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔,𝑠 

𝑅𝑔,𝑠
𝐷 ≤ 𝑃𝑔,𝑠 − 𝑃𝑔

𝑚𝑖𝑛 

𝑅𝑔,𝑠
𝑈 ≥ 0 

𝑅𝑔,𝑠
𝐷 ≥ 0 

Δ𝜃𝑘
𝑚𝑖𝑛 ≤  𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ Δ𝜃𝑘

𝑚𝑎𝑥 

𝜃1,𝑠 = 0 

The second step uses the same formulation, after obtaining the values for 𝑓𝑘,𝑠 encoded as 

0/1 for positive/negative flows, and changing the objective function to the one given below and 

adding new constraints: 

min (∑ 𝑃𝑠 (∑ ( ∑ 𝑐𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔
+ 𝑐𝑔

𝑈𝑅𝑔,𝑠
𝑈 + 𝑐𝑔

𝐷𝑅𝑔,𝑠
𝐷 + 𝐶𝑔

𝑁𝐿

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔

) + ∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

𝑁𝑔

𝑔=1

)

𝑁𝑠

𝑠=1

+ 𝑐𝑖𝑛𝑣
𝐷 ) 

∑ 𝑥𝑘,𝑖
𝐷

𝑖𝑚𝑎𝑥 

𝑖=1

≤ 1 

(1 + 𝑖𝜂𝐿)𝑋𝑘𝐹𝑘,𝑠 + (1 − 𝑥𝑘,𝑖
𝐷 )𝑀 + (1 − 𝑓𝑘,𝑠)𝑀 ≥ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 

(1 − 𝑖𝜂𝐶)𝑋𝑘𝐹𝑘,𝑠 − (1 − 𝑥𝑘,𝑖
𝐷 )𝑀 − (1 − 𝑓𝑘,𝑠)𝑀 ≥ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 

(1 + 𝑖𝜂𝐿)𝑋𝑘𝐹𝑘,𝑠 − (1 − 𝑥𝑘,𝑖
𝐷 )𝑀 − 𝑓𝑘,𝑠𝑀 ≥ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 

(1 − 𝑖𝜂𝐶)𝑋𝑘𝐹𝑘,𝑠 + (1 − 𝑥𝑘,𝑖
𝐷 )𝑀 + 𝑓𝑘,𝑠𝑀 ≥ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 

𝑋𝑘𝐹𝑘,𝑠 + 𝑀 ∑ 𝑥𝑘,𝑖
𝐷

𝑖𝑚𝑎𝑥

𝑖=1

≥ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 

𝑋𝑘𝐹𝑘,𝑠 − 𝑀 ∑ 𝑥𝑘,𝑖
𝐷

𝑖𝑚𝑎𝑥

𝑖=1

≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 

𝑐𝑖𝑛𝑣
𝐷 = ∑ ∑ 3𝑢𝑙𝑘𝑖𝐶𝑠ℎ

𝐷 𝑥𝑘,𝑖
𝐷

𝑖𝑚𝑎𝑥

𝑖=1

𝑁𝑏𝑟

𝑘=1

 

𝐶𝑖𝑛𝑣
𝐷 ≤ 𝐶𝑖𝑛𝑣

𝑚𝑎𝑥 
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Allocating a number i of modules in each line k per phase per mile, and where the following 

nomenclature is used: 

g Generator i 
Number of D-FACTS 

pr phase per mile 

k Line n Node 

r Renewable generator seg 
Segment of linearized 

generator cost func. 

𝜎+(𝑛) 
Transmission lines 

connected ‘to’ bus n 
𝜎−(𝑛) 

Transmission lines 

connected ‘from’ bus n 

g(n) 
Generators connected 

to bus n 
r(n) 

Renewable generators 

connected to bus n 

𝐶𝑖𝑛𝑣
𝐷  

Total investment in D-

FACTS 
𝐹𝑘,𝑠 

Power flow through 

line k in scen. s 

𝑃𝑔,𝑠 
Power from generator 

g in scen. s  

𝑃𝑔,𝑠
𝑠𝑒𝑔

 
Power from gen. g in 

scen. s in segment seg 

𝑃𝑟,𝑠 
Power from ren. gen. r 

in scen. s 
𝑃𝑟,𝑠

𝐶  
Curtailed power from 

ren. Gen. r in scen. s 

𝑅𝑔,𝑠
𝐷 , 

𝑅𝑔,𝑠
𝑈  

Down/Up reserves 

from gen. g in scen. s 
𝑥𝑘,𝑖

𝐷  

Binary integer 

indicating the number of D-

FACTS i installed in line k 

𝜃𝑏,𝑠 
Voltage angle at bus b 

in scen. s 
𝜃𝑓𝑟,𝑘,𝑠, 𝜃𝑡𝑜,𝑘,𝑠 

Voltage angle at the 

from/to node of line k in scen. s 

𝐶𝑔
𝑁𝐿 

No load cost of 

generator g 
𝐶𝑔,𝑠𝑒𝑔

𝑙𝑖𝑛𝑒𝑎𝑟 
Linear cost of generator 

g in segment seg 
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𝐶𝑔
𝐷, 𝐶𝑔

𝑈 
Down/up reserve cost 

of generator g 
𝑓𝑘,𝑠 

Binary integer 

indicating flow direction in line 

k in scen. s 

𝐶𝑠ℎ
𝐷  

Cost of a D-FACTS 

unit converted to an hourly 

value 

𝐹𝑘
𝑚𝑎𝑥 

Thermal capacity/ 

voltage drop limit of line k 

𝑖𝑚𝑎𝑥 

Max. num. of D-

FACTS to be allocated per 

mile per phase 

𝑙𝑘 Length of line k 

𝐿𝑛,𝑠 Load at bus n in scen. n M 
A very large positive 

number 

N 
Expected lifespan of 

D-FACTS devices 
𝑁𝑔 Number of generators 

𝑁𝑟 
Number of renewable 

generators 
𝑁𝑠 Number of scenarios 

𝑁𝑠𝑒𝑔 
Number of segments in 

cost function 
𝑝𝑠 

Probability of scenario 

s 

𝑃𝑔
𝑚𝑎𝑥 

Upper limit for 

generator g 
𝑃𝑔

𝑚𝑖𝑛 
Lower limit for 

generator g 

𝑆𝑈, 𝑆𝐷 
Down/Up reserve 

requirements 
𝑋𝑘 Reactance of line k 

u 
Unit distance for 

allocation per line 
𝑋𝑘

𝑚𝑎𝑥 , 𝑋𝑘
𝑚𝑖𝑛 

Max/min reactance of 

line k if D-FACTS are installed 

on it 
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𝜂𝐶 , 𝜂𝐿 

Max adjustment 

percentage of the line’s 

reactance in 

capacitive/inductive mode that 

a single D-FACT can achieve 

Δ𝜃𝑘
𝑚𝑎𝑥 , Δ𝜃𝑘

𝑚𝑖𝑛 

Max/min value of bus 

voltage angle difference to 

maintain stability in line k 

In addition to these, other studies have focused on environmental emissions. One such 

study by Santacruz and Sang (2021) aims to track renewable energy penetration into grids using a 

Marginal Emissions Factor (MEF). Here, they track emissions and power sources in order to 

minimize total costs to serve the load at each bus. The eventual objective of increasing more 

accurately handling power flow control to reduce fossil fuel reliance and make the grid more 

sustainable. A further study incorporated the use of electric vehicles as batteries and part of the 

grid to further reduce system costs, congestion, and emissions (Santacruz & Sang, 2022). 

 

3.3. NEW PROPOSED MODEL 

The formulation used for our study is similar to the one given above, but some 

modifications were made as the use of metaheuristic algorithms can transform the nonlinearities 

into linear equations by pre-determining the number of modules in the chromosome. Additionally, 

new indices and variables were introduced to account for the calculations of environmental impact 

metrics and multi-objective dominance metrics. Thus, we are able to not only reduce the 

computational time but also achieve a reduced model for optimization. The following 

nomenclature is used in our optimization model. Note that this nomenclature will be used 

throughout the remainder of this dissertation paper to identify relevant variables in the model. 

 

 

Indices 

a, b Solutions r Renewable Generator. 
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c Contaminant 𝑠  Scenario. 

𝑘 
Transmission 

line.  
𝑠𝑒𝑔  

Segment of linearized 

generator cost function. 

𝑔 Generator. i 
Objective or Fitness 

Function 

𝑛 Node.   

 

Sets 

𝜎+(𝑛) 

Transmission 

lines with their “to” bus 

connected to node 𝑛. 

𝑔(𝑛)  
Generators connected to 

node 𝑛. 

𝜎−(𝑛) 

Transmission 

lines with their “from” 

bus connected to node 𝑛. 

𝑟(𝑛)  
Renewable generators 

connected to node n. 

 

Variables 

𝐶𝑖𝑛𝑣
𝐷  

Total investment 

in D-FACTS ($). 

𝑃𝑔,𝑠
𝑠𝑒𝑔

  

Real power generation of 

generator 𝑔 in scenarios 𝑠 in 

segment 𝑠𝑒𝑔. 

𝐷𝑎,𝑏 
Dominance of 

solution a over solution b 
𝑅𝑔,𝑠

𝐷   

Spinning down reserve 

available through generator 𝑔 in 

scenario 𝑠. 

𝐹𝑘,𝑠  

Real power flow 

through transmission line 

𝑘 in scenarios 𝑠. 

𝑅𝑔,𝑠
𝑈   

Spinning up reserve 

available through generator 𝑔 in 

scenario 𝑠. 
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𝐹𝑀𝑖,𝑎, 𝐹𝑀𝑖,𝑎
𝑛  

Value of fitness 

metric, normalized F.M. i 

for solution a 

𝑥𝑘
𝐷  

Integer indicating the 

number of D-FACTS installed on 

transmission line 𝑘 

𝑂𝐹𝑖,𝑎, 𝑂𝐹𝑖,𝑎
𝑛  

Value of 

objective function, 

normalized O.F. i for 

solution a 

𝜃𝑏,𝑠  
Voltage angle at bus 𝑏 in 

scenarios 𝑠. 

𝑃𝑔,𝑠 

Real power 

generation of generator 𝑔 

in scenarios 𝑠. 

𝜃𝑓𝑟,𝑘,𝑠  
Voltage angle at the “from” 

node of line 𝑘 in scenarios 𝑠. 

𝑃𝑟,𝑠
𝐶  

Curtailed 

renewable generation 

from renewable 

generator r in scenario s 

𝜃𝑡𝑜,𝑘,𝑠  
Voltage angle at the “to” 

node of line 𝑘 in scenarios 𝑠. 

Parameters 

𝐶𝑔
𝑁𝐿 

No load cost of 

generator 𝑔. 
𝑁𝑘  Total number of lines. 

𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟  

Linear cost of 

generator 𝑔 in segment 

𝑠𝑒𝑔. 

𝑁𝑜𝑏𝑗  
Number of Objective 

Functions 

𝐶𝑔
𝐷 

Down reserve 

cost of generator 𝑔. 
𝑁𝑠  Number of scenarios. 

𝐶𝑔
𝑈 

Up reserve cost of 

generator 𝑔. 
𝑁𝑠𝑒𝑔  

Number of segments for 

the linearized generator cost 

function. 
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𝐶𝑠𝑖𝑛𝑔𝑙𝑒
𝐷  

Cost a of single 

D-FACTS unit ($). 
𝑁𝑝𝑜𝑝  

Population size for the 

algorithm. 

𝐶𝑠ℎ
𝐷  

Cost a of single 

D-FACTS unit converted 

to an hourly figure ($/h). 

𝑁𝑟  
Number of renewable 

generators. 

𝐶𝑖𝑛𝑣
𝑚𝑎𝑥 

Maximum 

investment allowed for 

D-FACTS. 

𝑝𝑠  Probability of scenario 𝑠. 

𝑓𝑘,𝑠  
Flow direction for 

line k in scenario s 
𝑃𝑔

𝑚𝑎𝑥  
Upper generation limit of 

generator 𝑔. 

𝐹𝑘
𝑚𝑎𝑥  

Thermal 

capacity/voltage drop 

limit of transmission line 

𝑘. 

𝑃𝑔
𝑚𝑖𝑛  

Lower generation limit of 

generator 𝑔. 

𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟 

Linearized Heat 

production of generator g 

in generation segment 

seg (MMBTU/MW) 

𝑃𝑟,𝑠  

Renewable generation 

produced by renewable generator r 

in scenario s  

𝐺𝑔,𝑐 

Gaseous 

contaminant c released 

by generator g 

(kg/MMBTU) 

𝑃𝑟,𝑠
𝐶   

Renewable energy 

curtailed from renewable generator 

r in scenario s. 

𝐺𝑊𝑃𝑔,𝑐,𝑠 

Global Warming 

Potential caused by 

contaminant c from 

𝑆𝐷   
Spinning down reserve 

requirement 𝑔. 
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generator g in scenario s 

(1kg CO2 eq.) 

𝑖𝑘
𝑚𝑎𝑥  

Maximum 

number of D-FACTS that 

can be allocated per line. 

𝑆𝑈  
Spinning up reserve 

requirement 𝑔. 

𝐼  
Interest 

rate/discount rate. 
𝑋𝑘  

The reactance of 

transmission line 𝑘. 

𝑙𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑐  

Maximum 

number of lines in which 

D-FACTS devices may 

be allocated 

𝑋𝑘
𝑚𝑎𝑥   

The maximum reactance of 

line k if D-FACTS are installed on 

this line. 

𝑙𝑘  Length of line k 𝑋𝑘
𝑚𝑖𝑛    

The minimum reactance of 

line k if D-FACTS are installed on 

this line. 

𝐿𝑛,𝑠   
Load at bus 𝑛 in 

scenario 𝑠.  
𝑊𝑐  

GWP factor for 

contaminant c (1 kg CO2 eq.)  

𝑁  
Lifespan of D-

FACTS. 
𝜂𝐶   

The maximum adjustment 

percentage of the line’s reactance 

in the capacitive mode that a single 

D-FACTS module (1 

device/phase/mile) can achieve. 

𝑁𝑐  
Total number of 

contaminants considered 
𝜂𝐿  

The maximum adjustment 

percentage of the line’s reactance 

in the inductive mode that a single 

D-FACTS module (1 

device/phase/mile) can achieve. 
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𝑁𝑔 
Total number of 

generators. 
∆𝜃𝑘

𝑚𝑎𝑥 

Maximum value of bus 

voltage angle difference to 

maintain stability for line 𝑘. 

𝑁𝑓𝑖𝑡 
Number of fitness 

metrics (non-aggregated) 
∆𝜃𝑘

𝑚𝑖𝑛 

Minimum value of bus 

voltage angle difference to 

maintain stability for line 𝑘. 

 

As discussed by Sahraei-Ardakani and Hedman (2015), the flow direction in the lines is 

relevant when adjusting their impedance. As so, we must use the following DC power flow 

constraints: 

𝐼𝑓 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≥ 0, (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘
max ≤ 𝐹𝑘,𝑠 ≤  (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘

min (3.1) 

𝐼𝑓 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ 0, (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘
min ≤ 𝐹𝑘,𝑠 ≤ (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘

𝑚𝑎𝑥 (3.2) 

Having considered flow direction constraints, the following model is created to 

simultaneously optimize (1) total expected system costs, (2) expected environmental impact in the 

form of global warming potential, (3) Line Utilization Factor as described previously by Das et al 

(2009), and (4) renewable energy curtailment, subject to the following constraints: 

 

min 𝑂𝐹1 =  ∑ 𝑃𝑠 (∑ ( ∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

+ 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 + 𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿)

𝑁𝑔

𝑔=1

+ ∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

) + 𝐶𝑖𝑛𝑣
𝐷

𝑁𝑠

𝑠=1

 (3.3) 

min 𝑂𝐹2 = ∑ 𝑃𝑠 (∑ ∑ 𝐺𝑊𝑃𝑔,𝑐,𝑠

𝑁𝑐

𝑐=1

𝑁𝑔

𝑔=1

)

𝑁𝑠

𝑠=1

 (3.4) 

min 𝑂𝐹3 =
1

𝑁𝑘
∑ ∑ 𝑃𝑠 (

𝐹𝑘,𝑠

𝐹𝑘
max)

100𝑁𝑘

𝑘=1

𝑁𝑠

𝑠=1

 (3.5) 

min 𝑂𝐹4 =  ∑ 𝑃𝑠

∑ 𝑃𝑟,𝑠
𝐶𝑁𝑟

𝑟=1

∑ 𝑃𝑟,𝑠
𝑁𝑟
𝑟=1

𝑁𝑠

𝑠=1

 (3.6) 

𝑃𝑔,𝑠 = ∑ 𝑃𝑔,𝑠
𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

 (3.7) 
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𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥  (3.8) 

−𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝐹𝑘

𝑚𝑎𝑥 (3.9) 

∑ 𝐹𝑘,𝑠

𝑘∈𝜎+(𝑛)

− ∑ 𝐹𝑘,𝑠

𝑘∈𝜎−(𝑛)

+ ∑ 𝑃𝑔,𝑠

𝑔∈𝑔(𝑛)

+ ∑ (𝑃𝑟,𝑠 − 𝑃𝑟,𝑠
𝐶 )

𝑟∈𝑟(𝑛)

= 𝐿𝑛,𝑠 (3.10) 

∑ 𝑅𝑔,𝑠
𝑈

𝑁𝑔

𝑔=1

≥ 𝑆𝑈  (3.11) 

∑ 𝑅𝑔,𝑠
𝐷

𝑁𝑔

𝑔=1

≥ 𝑆𝐷 (3.12) 

𝑅𝑔,𝑠
𝑈 ≤ 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔,𝑠 (3.13) 

𝑅𝑔,𝑠
𝐷 ≤ 𝑃𝑔,𝑠 − 𝑃𝑔

𝑚𝑖𝑛 (3.14) 

𝑅𝑔,𝑠
𝑈 , 𝑅𝑔,𝑠

𝐷 ≥ 0 (3.15) 

Δ𝜃𝑘
𝑚𝑖𝑛 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ Δ𝜃𝑘

𝑚𝑎𝑥 (3.16) 

𝜃1,𝑠 = 0 (3.17) 

𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐿) 𝑋𝑘𝐹𝑘,𝑠 ≥ 𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠) (3.18) 

𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐶) 𝑋𝑘𝐹𝑘,𝑠 ≤ 𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠) (3.19) 

0 ≤ 𝑥𝑘
𝐷 ≤ 𝑖𝑘

𝑚𝑎𝑥 (3.20) 

∑
𝑥𝑘

𝐷

max(𝑥𝑘
𝐷 , 1)

𝑁𝑘

𝑘=1

≤ 𝑙𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑐 (3.21) 

𝐺𝑊𝑃𝑔,𝑐,𝑠 = ∑ 𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔
𝐺𝑔,𝑠𝑊𝑐

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔

 (3.22) 

𝐶𝑖𝑛𝑣
𝐷 = ∑ 3𝑥𝑘

𝐷𝐶𝑠ℎ
𝐷

𝑁𝑘

𝑘=1

 (3.23) 

𝐶𝑖𝑛𝑣
𝐷 ≤ 𝐶𝑖𝑛𝑣

𝑚𝑎𝑥 (3.24) 

𝐶𝑠ℎ
𝐷 = 𝐶𝑠𝑖𝑛𝑔𝑙𝑒

𝐷
𝐼(1 + 𝐼)𝑁

8760((1 + 𝐼)𝑁 − 1)
 (3.25) 

0 ≤ 𝑃𝑟,𝑠
𝐶 ≤ 𝑃𝑟,𝑠 (3.26) 
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However, as described in Sang and Sahraei-Ardakani’s (2019) model, due to the way in 

which the devices affect the reactances, it is necessary to know the flow directions in the 

transmission lines. For this, a reduced model is first solved consisting solely of equations (3.1), 

(3.4-4.10), and (3.16-4.19), for the sole purpose of determining power flow directions, which are 

then obtained from the output of this reduced linear model using the following equation: 

𝑓𝑘,𝑠 =
𝐹𝑘,𝑠

|𝐹𝑘,𝑠|
 (3.27) 

For this, the variables 𝑓𝑘,𝑠 and 𝑥𝑘
𝐷 are both initialized to have the values of 1 and 0, 

respectively, at each possible index, essentially turning both of these equations into the equality in 

(3.28), which is the DC power flow equation: 

𝑋𝑘𝐹𝑘,𝑠 = 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 (3.28) 

The minutiae of the solving algorithm will be discussed later in section 6.2. The remainder 

of this subsection will be devoted to detailing the significance of each of the above equations. 

Firstly, (3.3) is the first objective function to be minimized. This function is the sum of all 

segmentized generation costs, up and down reserve costs, no-load generation costs and renewable 

energy curtailment costs of all the traditional and renewable generators across all scenarios plus 

the total D-FACTS investment costs, which does remain constant over the scenarios. The second 

objective function in (3.4) is to minimize the total Global Warming Potential of the power 

generation of the system, for all the contaminants known to be emitted by every traditional 

generator over all scenarios. The third objective function in (3.5) is the minimization of the Line 

Utilization Factor, a ratio of the current power flow in a line and its thermal capacity, as a measure 

of long-term health for the line and system flexibility (as less-used lines can pick up new 

transmission demands more easily). Equation (3.6) is the objective function with the objective of 

minimizing the amount of renewable energy curtailed from the system, in order to better integrate 

renewable energies into the power grid. 

Equation (3.7) then served to define the total power generated by a generator as a sum of 

all its segments, divided due to the shape of their associated cost function; while the associated 
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generation limits are described in (3.8). Constraint (3.9) serves to define the upper and lower limits 

to power flow within each line. Based on previous models, the capacity of short lines (0-50 miles) 

is set to their thermal limits, the capacity of medium lines (50-156 miles) is determined by their 

voltage drop limit and the capacity of long lines (156+ miles) is given by their voltage stability 

limits. 

 The load at each bus is defined in (3.10) to be equal to the sub of all incoming flows minus 

the sum of all outgoing flows plus the generation, both traditional and renewable, attached to said 

bus. Equations (3.11) and (3.12) define the up and down (respectively) reserve requirements for 

the system, with (3.13-3.15) defining the upper and lower limits for each generator’s reserves. In 

(3.16), the upper and lower voltage angle limits are established for the purpose of maintaining 

stability in the system, with (3.17) defining the angle at the first bus to be zero as a reference value. 

Equations (3.18) and (3.19) are the modified DC power flow equations, augmented to 

account for the impedance adjustments brought by the D-FACTS modules and considering the 

flow directions by the use of the 𝑓𝑘,𝑠 variable which would flip the inequality signs when the flow 

directions are negative. Equation (3.20) defines the number of D-FACTS modules which can be 

installed at each line, while (3.21) constraints the number of lines in which D-FACTS modules 

can be installed, for feasibility purposes. 

In (3.22), the Global Warming Potential (our chosen environmental impact metric, 

although the equation holds true for any metric by just adjusting the values for the parameter 𝑊𝑐) 

is calculated for each generator as the sum over all its generation segments of the heat (BTU/MW) 

produced at each segment times the power generated in each segment (MW), multiplied by the 

amount of each contaminant released (kg/BTU) and finally applying to this the corresponding 

GWP factor (kg CO2 equivalent/kg). 

 Equation (3.23) is used to define the total investment cost as 3 times the cost of a single 

device times the number of allocated devices (for 3 phases); with (3.24) limiting the total 

investment cost to a preset limit. Equation (3.25) converts the device cost to an hourly figure to be 



45 

in line with all other costs in the system. Finally, (3.26) defines the curtailment for each renewable 

generator to be between 0 and the amount of renewable energy produced. 

Mathematically, the formulation of the problem may appear to be a non-linear optimization 

problem. However, the use of a metaheuristic approach to pre-assign the values of 𝑥𝑘
𝐷 and pre-

calculate the values of 𝑓𝑘,𝑠 to ±1, means that all the constraints become linear.  
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Chapter 4: Optimization Methods 

An optimization method is a mathematical algorithm that will, upon completion, return the 

combination of values for the decision variables that will maximize or minimize a desired output. 

Among these, metaheuristic approaches are some of the most efficient methods. Metaheuristics 

are becoming more popular thanks to their quick convergence and low computational burden; they 

are able to achieve good, near-optimal solutions by performing a quick, effective, and intelligent 

search of the computational space (Yu & Gen, 2012).  

In this research, a Multi-Objective Evolutionary Algorithm (MOEA) is presented and used 

to efficiently find possible solutions to the D-FACTS allocation problem and identify which meet 

optimality conditions. As with any other multi-objective optimization problem, it is both possible 

and expected that at least some objectives are in opposition to each other, and that a single optimal 

solution cannot be determined without the assistance of a decision maker. In such situation, a type 

of optimality called Pareto Optimality is considered. A Pareto-Optimal solution is one for which 

no other solution exists that is objectively better than it in every objective. At the end of an 

optimization algorithm which considers Pareto Optimality, the output will be a set of Pareto-

Optimal solutions called the Pareto Front or Pareto-Optimal Set. This set of solutions can be further 

analyzed in a procedure called post-Pareto optimality; a set of tools used to prune very large Pareto-

optimal sets in order to reduce the burden on the decision maker. 

In terms of the Pareto front, the proposed MOEA has two main goals: proximity and 

diversity. Proximity refers to finding solutions that are as close as possible to the Pareto frontier, 

while Diversity means finding solutions that are spread over it, meaning that it attempts to find 

solutions that differ in their objective values as much as possible. The details of the algorithm are 

described below in section 5.2. 
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4.1. PARETO DOMINANCE 

Before detailing the algorithm, it is important to explain the concept of Pareto Dominance. 

This concept is crucial in this type of optimization process, as it is used to define which solutions 

are good and should be stored for further analysis by a decision maker. 

A Pareto non-dominated solution is one for which: 

• No solution exists that is objectively better than it in all objectives being considered, 

and  

• Is better than all other solutions in at least one objective 

Conversely, a dominated solution is one for which at least one other solution exists which 

is strictly better than it in every objective being considered. In practice, it is easier to define a non-

dominated solution as one that is not a dominated solution. The resulting set of non-dominated 

solutions is considered to be asymptotically closest to the utopia solution point. This proves 

valuable to the decision-maker as dominated solutions are objectively worse than non-dominated 

ones in evert single aspect (or objective) under consideration. Delivering only non-dominated 

solutions means delivering options which will have the best objective values and reduce the 

number of options being considered. 

For this algorithm, the following equations are used to determine dominance: 

𝐼𝑓 𝑂𝐹𝑜𝑏𝑗,𝑎 ≤ 𝑂𝐹𝑜𝑏𝑗,𝑏 ∀𝑜𝑏𝑗;  𝐷𝑎,𝑏 = 1;  𝑒𝑙𝑠𝑒, 𝐷𝑎,𝑏 = 0 (5.1) 

∑ 𝐷𝑎,𝑏

𝑁𝑝𝑜𝑝

𝑎=1

= 0 (5.2) 

Eq. (5.1) states that solution a dominates solution b if all its objective function values are lower 

than the corresponding ones in b. Additionally, a solution b is non-dominated if it satisfies equation 

(5.2). 
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4.2. THE MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM 

The proposed MOEA begins by generating sets of random values within the search space. 

Each of these sets is called a chromosome, and each chromosome represents a possible solution to 

the problem.  

 

The algorithm currently follows the steps described below: 

0. START 

1. Using the reduced model consisting of Eqns. (4.3), (4.7-4.10, (4.16-4.19), and (4.26), 

solve the linear problem to obtain the values of 𝐹𝑘,𝑠. 

2. Obtain the values of 𝑓𝑘,𝑠 via equation (4.27). 

3. Generate an initial population using the parameters 𝑖𝑘
𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥

𝑎𝑙𝑙𝑜𝑐 defined in equations 

(4.20) and (4.21). 

4. For each chromosome, solve the linear problem consisting of equations (4.3), (4.7-

4.10), and (4.16-4.19). 

5. Using the outputs from each linear problem, use a greedy algorithm to allocate the up 

and down spinning reserves as defined in Eqns. (4.11-4.15). 

6. From this information, calculate the values for the objective functions in (4.4-4.6).  

7. Use the Pareto Dominance criteria in eqns. (5.1, 5.2) on all solutions and store the non-

dominated ones. 

8. IF the stopping criteria have been met, go to step (13). Otherwise, go to step 9. 

9. Obtain the Fitness Metrics as defined in section (5.3.4), and calculate the Aggregated 

Fitness Metric. 

10. Rank solutions according to the Aggregated Fitness Metric obtained in step 9. 

11. Select Parents from the current population as described in section (5.3.5). 

12. Generate a new population as described in section (5.3.5) and return to step 4. 

13. Retrieve the stored solutions and re-check for dominance to obtain the Pareto-Optimal 

set 
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14. END 

The process is summarized below in the flowchart of figure 5.1. Each step of the process 

is also described in more detail in the following sub-sections.  

 
Figure 4.1 Evolutionary Algorithm Flowchart 

 

4.2.1. The Chromosome 

The chromosome is part of the foundations of a Genetic Algorithm. Each chromosome 

represents a solution inside the search area, and are used to generate and guide new solutions 

towards an optimal response. In a multi-objective algorithm, however, rather than being guided to 

an optimal point, they are guided towards a non-dominated optimality curve. 

The chromosome used in the algorithm is a 1-dimensional vector array, representing the 

number of devices that can be installed in each line, based on the limits allowed by the maximum 

adjustment allowed and the adjustment range for each device, with the constraints defined 

previously in (4.20) and (4.21). The population and chromosome encoding are represented below 
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in Fig. 5.2, where each of the 𝑁𝑝𝑜𝑝 lines represents a candidate solution or chromosome and each 

of the 𝑁𝑘 columns represents a different line in the system where D-FACTS devices would be 

installed. 

 
Figure 4.2: Population and Chromosome Representation 

 

 

4.2.2. The Initial Generation 

The first step in the algorithm is to peudo-randomly generate a pre-defined number 𝑁𝑝𝑜𝑝of 

individuals as an initial ser of solutions to explore. This initial population serves to initiate the 

exploration of the solution space, and the size of this population will influence how quickly the 

algorithm can converge around an optimum point in the case of single objective optimization, or 

how quickly it can create a Pareto-optimal set.  

For the generation of our initial population, the algorithm creates a zero-vector of length 

𝑁𝑘, and randomly generates two sets of random values: (1) random integers between 1 and 𝑁𝑘 to 

determine the locations where D-FACTS will be placed, and (2) random decimals in the [0,1] 

range to be multiplied by the 𝑖𝑘
𝑚𝑎𝑥 associated to the values in part 1 and rounded to the nearest 

integer to obtain how many devices are allocated to each line. These values are then stored in their 
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corresponding locations on the vector. Finally, equations (4.23-4.25) are applied to the 

chromosome, and if the constraint in (4.24) is not met, the whole vector is multiplied by 𝐶𝑖𝑛𝑣
𝑚𝑎𝑥/𝐶𝑖𝑛𝑣

𝐷  

and rounded down to ensure the constraints are met. 

 

4.2.3. The Objective Functions 

Cost Function 

This objective function aims to minimize not the cost of investment in D-FACTS devices 

but the entire system’s hourly operational costs. In this function, the total cost of the devices is 

converted to an hourly value in order for it to be expressed in the same units and thus included in 

the objective function. The function consists of various expressions that will be detailed below: 

∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

 

Which is the summation over the generation segments of the linearized cost and the 

segment’s power generation, in order to obtain the total cost of a generator’s operating settings 

∑ ( ∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

+ 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 + 𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿)

𝑁𝑔

𝑔=1

 

Which is now the summation over all generators of the previously-described generation 

function plus the up and down reserves times their costs and the no-load costs for each generator 

being considered 

∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

 

Which is the curtailed energy from each renewable source times the curtailment cost 

∑ 𝑃𝑠 (∑ ( ∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

+ 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 + 𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿)

𝑁𝑔

𝑔=1

+ ∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

)

𝑁𝑠

𝑠=1

 

Which takes both previous expressions and multiplies it by the probability of each scenario 

to occur, turning the problem into a stochastic one 
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∑ 𝑃𝑠 (∑ ( ∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

+ 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 + 𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿)

𝑁𝑔

𝑔=1

+ ∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

) + 𝐶𝑖𝑛𝑣
𝐷

𝑁𝑠

𝑠=1

 

Which finally adds the D-FACTS investment costs, constant through all scenarios. 

As mentioned previously, the linear program used as part of the metaheuristic algorithm 

will optimize the system accounting mainly for the cost function and later using the full output to 

calculate the other objective functions. This is considered to be a realistic choice because of the 

capital-driven nature of most industries and of utility services. 

Environmental Impact Function 

The second objective function aims to minimize environmental impacts stemming from the 

system operations, and considering solely emissions released to the environment from the non-

renewable generators, as it is assumed that both these and the renewable generators are already 

installed in the system and there are no external emissions considered at this time. The metric used 

for this study is the Global Warming Potential (GWP), which is an index of how much heat gases 

released from a process can trap into the atmosphere over a period of time, with a base on the heat 

trapped by carbon dioxide. The unit used in this study is 1kg CO2 equivalent over a timeframe of 

100 years. To calculate it, the formula below is used. Essentially, this formula only adds up the 

calculated GWP for each known contaminant released by every generator over every scenario and 

multiplies this added value by the probability of the scenario. 

∑ 𝑃𝑠 (∑ ∑ 𝐺𝑊𝑃𝑔,𝑐,𝑠

𝑁𝑐

𝑐=1

𝑁𝑔

𝑔=1

)

𝑁𝑠

𝑠=1

  

The GWP is calculated using the following formula. Essentially, each generator will 

release a different amount of gases depending on the amount of heat being generated. This happens 

to align with the linearized cost/generation functions. Thus, by multiplying each power generation 

segment by the corresponding heat production value we can obtain the total amount of each 
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gaseous contaminant G being released and obtain its equivalent by using the factor W to convert it 

into 1kgCO2 equivalent units. 

𝐺𝑊𝑃𝑔,𝑐,𝑠 = ∑ 𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔
𝐺𝑔,𝑠𝑊𝑐

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔

 

Line Utilization Function 

The third objective function aims to improve overall health of the transmission system by 

minimizing the line utilization factor, as previously described, in order to prevent line degradation. 

The function divides a line’s utilization by its thermal limit and uses an exponent to 

normalize the values, and averaged using both the scenario probabilities and the number of lines, 

as shown in the formula below: 

1

𝑁𝑘
∑ ∑ 𝑃𝑠 (

𝐹𝑘,𝑠

𝐹𝑘
max)

100𝑁𝑘

𝑘=1

𝑁𝑠

𝑠=1

 

Renewable Energy Integration Function 

The last objective function aims to minimize the curtailment of renewable energy. This is 

used also as a measure of renewable energy integration into the system, which is becoming a more 

necessary component to modern electric grids. As so, taking the curtailed renewable energy as a 

percentage is one of the simplest metrics that can be used for renewable energy integration. 

The function used is shown below. Essentially, it consists of adding up the total curtailed 

renewable energy and dividing it by the total amount of generated renewable energy, and obtaining 

a weighted average by the use of the scenario probabilities as the weights. 

∑ 𝑃𝑠

∑ 𝑃𝑟,𝑠
𝐶𝑁𝑟

𝑟=1

∑ 𝑃𝑟,𝑠
𝑁𝑟
𝑟=1

𝑁𝑠

𝑠=1

 

4.2.4. The Fitness Functions 

The developed MOEA has two main goals. Proximity which represents the closeness to 

the Pareto front, and diversity that has the objective of maintaining population diversity as 
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designed by Taboada & Coit, (2012). These two goals are evaluated with two fitness metrics which 

are distance-based (diversity), and dominance count-based (proximity). 

The first fitness metric, which is distance-based, assigns a higher fitness value to those 

solutions that are farther away from other solutions in the Pareto front. The aim of giving further 

solutions a higher fitness value is to give these a better chance of reproducing, thus creating a wider 

spread of solutions. This way, it is possible to use a fitness metric to increase diversity of the 

Pareto-optimal solutions. The following steps are followed to assess this fitness metric: 

1. Normalization: In this step, the objective function values of the solutions are 

normalized in order to ensure that all values are within the same order of magnitude to 

prevent unit discrepancy. The normalization of the solutions’ objective value uses the 

following equation: 

𝑂𝐹𝑖,𝑎
𝑛 =

𝑂𝐹𝑖,𝑎 − max
𝑎

𝑂𝐹𝑖,𝑎

max
𝑎

𝑂𝐹𝑖,𝑎 − min
𝑎

𝑂𝐹𝑖,𝑎
 (5.3) 

2. Distance Calculation: In this second step, the distance metric for each solution is 

calculated. Euclidean distance is used in this step, and the following focmula is used to 

determine the total distances between one solution and all the others: 

𝐹𝑀1,𝑎 = ∑ √ ∑ (𝑂𝐹𝑖,𝑎 − 𝑂𝐹𝑖,𝑏)
2

 

𝑁𝑜𝑏𝑗

𝑖=1

𝑁𝑝𝑜𝑝

𝑏=1

 (5.4) 

 

The second distance metric, which is based on dominance count, is based on the previously 

described concept of Pareto-dominance. The premise for this metric is that solutions which 

dominate others are closer to the Pareto frontier than those that are dominated, again based on the 

concept of Pareto dominance, which implies that a non-dominated solution is closer to the Pareto-

frontier and the ideal solution than a dominated one, which is to say, it has more proximity. In this 
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way, all solutions are compared against each other, and when a solution a dominates a solution a, 

the dominance count metric for this solution is increased by one. This process is based on the 

following formula: 

𝐹𝑀2,𝑎 = ∑ 𝐷𝑎,𝑏

𝑁𝑝𝑜𝑝

𝑏=1

(5.5) 

This is based on the dominance formula in equation (5.1). At the end of this process, the 

distance and dominance counts for all solutions are normalized in preparation for the final step, 

using a formula essentially equal to (5.3): 

𝐹𝑀𝑖,𝑎
𝑛 =

𝐹𝑀𝑖,𝑎 − min
𝑎

𝐹𝑀𝑖,𝑎

max
𝑎

𝐹𝑀𝑖,𝑎 − min
𝑎

𝐹𝑀𝑖,𝑎
 (5.6) 

The resulting normalized fitness metrics 1 and 2 are then aggregated into the final Fitness 

Metric used for solution ranking in the algorithm, designated 𝐹𝑀0,𝑎 using equation (5.7): 

𝐹𝑀0,𝑎 = ∑ 𝜔𝑖𝐹𝑀𝑖,𝑎
𝑛

𝑁𝑓𝑖𝑡

𝑖=1

 

Where 𝜔𝑖 is used as a weight to give more importance to one metric over the others. Since 

the values used for the aggregation are already normalized, there is no need to transform this value 

any further. As there is currently no preference, all weights are set as equal and to the value of 1. 

The resulting aggregated fitness metric is used in step 9 of the algorithm as described above in 

section 4.2. 

4.2.5. The Crossover Function 

Crossover is the process by which a new generation, or set of solutions, is created. The 

process can have a single crossover point or multiple crossover points. Due to the simplicity of the 

chromosome, it was decided that a single crossover point is enough for the algorithm. The 

crossover point represents the locations in which the information from both selected parents mixes 

into the new solution. This is exemplified below in figure 4.3. The crossover inserts genes for the 
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first parent into the new individual up to the crossover point 1 < 𝑝 < 𝑁𝑘, while the rest of the 

chromosome is made up of the second parent. Afterwards, if equation 4.21 is not satisfied, non-

zero values in the chromosome vector are transformed to 0 until it can be satisfied. 

 

Figure 4.3: One-Point Crossover Representation 

The selection of parents for the crossover also has different alternatives. There is a purely 

random selection process, in which two individuals are chosen from the parent population and 

used in crossover. This method has the drawback of not choosing better parents, which can cause 

the algorithm to take longer to find the optimal solutions. Another selection method is the roulette 

method. In this method, each solution has a probability of being chosen relative to their fitness 

values. This method can, in this way, have a better chance of selecting more “fit” solutions as the 

parents, which may create better offspring. Lastly, the method that we are going to use is called 

the tournament selection. This method randomly chooses two solutions to compete to be the first 

parent, and the one with the better fitness function gets the right to be the first parent. The same 

process is used to select the second parent. These two winning individuals are then used to perform 

the crossover process 

Mutation can also occur during the crossover process. The mutation function helps the GA 

by inserting some random variation in the evolutionary process, to avoid it falling into local 

optima. It works by slightly changing the offspring from two parents with a small probability. In 
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this sense, if mutation occurs, the origin of a value in the new chromosome will change from parent 

1 to parent 2 or vice versa. This is exemplified in figure 5.4 below. 

 
Figure 4.4: Mutation Function Example 

 

In addition to the aforementioned process, elitism is also used to fill the new population 

with individuals. Elitism is a function within the GA to help keep the optimization process moving 

towards what it may assume at the moment to be the optimal solution. It selects the top percentage 

of the population in a generation, based on the fitness function, and adds it directly to the next 

generation of the population. 

 

4.2.5. Obtaining the Pareto-Optimal Front 

At the end of each generation and before creating the new one, all non-dominated solutions 

of a generation are stored separate from the rest of the algorithm. After the stopping criteria 

(described in the next section) have been met, these solutions are once again checked for 

dominance, and the dominated solutions are deleted from the set. This final set of solutions is the 

closest the algorithm has been able to get to the true Pareto frontier. As so, this solution set 

represents the Pareto-optimal set of solutions. This final set of solutions is what is then analyzed 

in Post-Pareto optimality procedures or presented directly to the decision-maker.  
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It is important to reiterate that the basic principle for a solution to be non-dominated is that 

there is no other single solution which is better than it in all objectives that are being considered. 

Generally speaking, this becomes more likely as the number of objectives increases. Brockhoff 

and Zitzler (2006) argue that a high number (≥3) of objectives can cause difficulties not only in 

approximating the Pareto-optimal set, but also in data visualization, processing time, and decision-

making, as the multi-dimensionality of the solutions can present a challenge to both the researchers 

and the decision-makers. Dimensionality reduction methods are proposed by Brockhoff and 

Zitzler. However, these methods are not always suitable to use and are not very commonplace. 

 

4.2.6. Algorithm Termination 

The algorithm finishes its optimization process and goes into the Pareto-determination 

phase when certain criteria has been met. These criteria vary between different problems and the 

researcher’s preference. One such criterion is based on convergence. Here, if the best solution does 

not change after a set number of generations, the algorithm decides that the best solution has been 

found and there is no need to continue calculating more iterations. This criterion is mostly applied 

to single-objective optimization problems but can be slightly adapted to fit multi-objective 

problems. A suitable change would be to stop if no new non-dominated solutions has been saved 

after a set number of iterations. Another, simpler stopping criterion is simply a pre-defined number 

of iterations. With this criterion, there is no need to check the solutions over many iterations, but 

simply decide how many times the iteration process will be repeated. Lastly, it is possible to use a 

combination of the two in order to attempt to minimize the total computational time.  

In this study, a simple pre-defined number of generations is used as a stopping criterion, as 

determining convergence can be difficult in multi-objective optimization with a high number of 

objectives.  
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Chapter 5: Numerical Example (1) 

This chapter serves to present a numerical example of the previously described algorithm. 

For the example, a modified version of the IEEE 1996 Reliability Test System (RTS-96) was used. 

This example shows a transmission system with 24 buses, connected by 38 lines where 32 

generators are connected at various points in the system and where 2 buses have renewable energy 

systems attached to them. The objective of the example is to optimally allocate DSI-type D-

FACTS devices along transmission lines, within specific parameters, with the objective of 

minimizing the previously described objective functions. 

 

5.1. NUMERICAL DATA 

This section will present the information on the system that will be used to perform the 

optimization. The changes made to the original IEEE RTS-96 system were described by Sang and 

Sahraei-Ardakani (2018) and will be presented below. 

 

5.1.1. Bus Data 

This sub-section presents the data for the buses in the system. 

 

Table 5.1:  Bus Data 

BUS 

ID 

LOAD 

(MW) 

𝑷𝒓,𝒔 

(MW) 

Wind 

Curtailment 

Cost /MW 

1 113.4 0 0 

2 101.85 0 0 

3 189 0 0 

4 77.7 0 0 

5 74.55 0 0 

6 142.8 0 0 
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7 131.25 0 0 

8 179.55 0 0 

9 183.75 0 0 

10 204.75 0 0 

11 0 0 0 

12 0 0 0 

13 782.25 0 0 

14 84.525 0 0 

15 138.075 0 0 

16 105 0 0 

17 0 0 0 

18 349.65 0 0 

19 78.75 400 0 

20 55.65 400 0 

21 0 0 0 

22 0 0 0 

23 0 0 0 

24 0 0 0 

In this system, only two buses have renewable systems attached to them. Additionally, 

seven out of twenty-four buses have no loads on them and thus only serve as either generation 

points or intermediate points. 

 

5.1.2. Line Data 

This Subsection presents the data on transmission lines: 
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Table 5.2: Line Data 

LINE 

ID 

FROM 

BUS 

TO 

BUS 

Reactance Susceptance Thermal 

Limit 

(MW) 

1 1 2 0.014 -71.4286 175 

2 1 3 0.211 -4.73934 175 

3 1 5 0.085 -11.7647 175 

4 2 4 0.127 -7.87402 175 

5 2 6 0.192 -5.20833 175 

6 3 9 0.119 -8.40336 175 

7 3 24 0.084 -11.9048 400 

8 4 9 0.104 -9.61538 175 

9 5 10 0.088 -11.3636 175 

10 6 10 0.061 -16.3934 175 

11 7 8 0.061 -16.3934 175 

12 8 9 0.165 -6.06061 175 

13 8 10 0.165 -6.06061 175 

14 9 11 0.084 -11.9048 400 

15 9 12 0.084 -11.9048 400 

16 10 11 0.084 -11.9048 400 

17 10 12 0.084 -11.9048 400 

18 11 13 0.048 -20.8333 500 

19 11 14 0.042 -23.8095 500 

20 12 13 0.048 -20.8333 500 

21 12 23 0.097 -10.3093 220 

22 13 23 0.087 -11.4943 220 
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23 14 16 0.059 -16.9492 500 

24 15 16 0.017 -58.8235 500 

25 15 21 0.049 -20.4082 175 

26 15 21 0.049 -20.4082 175 

27 15 24 0.052 -19.2308 500 

29 16 17 0.026 -38.4615 175 

29 16 19 0.023 -43.4783 500 

30 17 18 0.014 -71.4286 500 

31 17 22 0.105 -9.52381 500 

32 18 21 0.026 -38.4615 500 

33 18 21 0.026 -38.4615 500 

34 19 20 0.04 -25 500 

35 19 20 0.04 -25 500 

36 20 23 0.022 -45.4545 500 

37 20 23 0.022 -45.4545 500 

38 21 22 0.068 -14.7059 500 

There are 38 lines in the system. The buses with the most lines connected to them are 9, 

10, and 21, with 5 lines each, while the least connected is bus 24, with only one line attached. 

 

5.1.3. Generator Data 

This subsection will present the generator data for the system: 

 

Table 5.3: Generator Data 

ID BU

S 

ma

x 

min .S.1  .S.2 .S.3 .S.4 L.C.

1 

L.C

.2 

L.C.3 L.C.4 N.L. 

Cost 
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1 1 20 15.

8 

15.8 0.2 3.8 0.2 142.

36 

146.

41 

206.0

9 

208.3

3 

1138.68 

2 1 20 15.

8 

15.8 0.2 3.8 0.2 142.

36 

146.

41 

206.0

9 

208.3

3 

1138.68 

3 1 76 15.

2 

15.2 22.8 22.8 15.2 21.2

9 

22.2

2 

25.81 29.68 130.63 

4 1 76 15.

2 

15.2 22.8 22.8 15.2 21.2

9 

22.2

2 

25.81 29.68 130.63 

5 2 20 15.

8 

15.8 0.2 3.8 0.2 142.

36 

146.

41 

206.0

9 

208.3

3 

1138.68 

6 2 20 15.

8 

15.8 0.2 3.8 0.2 142.

36 

146.

41 

206.0

9 

208.3

3 

1138.68 

7 2 76 15.

2 

15.2 22.8 22.8 15.2 21.2

9 

22.2

2 

25.81 29.68 130.63 

8 2 76 15.

2 

15.2 22.8 22.8 15.2 21.2

9 

22.2

2 

25.81 29.68 130.63 

9 7 100 25 25 25 30 20 83.8 90.2

1 

97.59 102.3

3 

839.45 

10 7 100 25 25 25 30 20 83.8 90.2

1 

97.59 102.3

3 

839.45 

11 7 100 25 25 25 30 20 83.8 90.2

1 

97.59 102.3

3 

839.45 

12 13 197 68.

95 

68.9

5 

49.2

5 

39.4 39.4 86.4

9 

91.5

1 

95.57 99.66 1159.93 

13 13 197 68.

95 

68.9

5 

49.2

5 

39.4 39.4 86.4

9 

91.5

1 

95.57 99.66 1159.93 
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14 13 197 68.

95 

68.9

5 

49.2

5 

39.4 39.4 86.4

9 

91.5

1 

95.57 99.66 1159.93 

15 15 12 2.4 2.4 3.6 3.6 2.4 105.

45 

107.

02 

120.8

8 

136.9

5 

72.68 

16 15 12 2.4 2.4 3.6 3.6 2.4 105.

45 

107.

02 

120.8

8 

136.9

5 

72.68 

17 15 12 2.4 2.4 3.6 3.6 2.4 105.

45 

107.

02 

120.8

8 

136.9

5 

72.68 

18 15 12 2.4 2.4 3.6 3.6 2.4 105.

45 

107.

02 

120.8

8 

136.9

5 

72.68 

19 15 12 2.4 2.4 3.6 3.6 2.4 105.

45 

107.

02 

120.8

8 

136.9

5 

72.68 

20 15 155 54.

25 

54.2

5 

38.7

5 

31 31 18.4

3 

19.0

5 

19.85 20.92 252.67 

21 16 155 54.

25 

54.2

5 

38.7

5 

31 31 18.4

3 

19.0

5 

19.85 20.92 252.67 

22 18 400 100 100 100 120 80 2.21 2.24 2.3 2.36 215.08 

23 21 400 100 100 100 120 80 2.21 2.24 2.3 2.36 215.08 

24 22 50 50 50 0 0 0 0 0 0 0 0 

25 22 50 50 50 0 0 0 0 0 0 0 0 

26 22 50 50 50 0 0 0 0 0 0 0 0 

27 22 50 50 50 0 0 0 0 0 0 0 0 

28 22 50 50 50 0 0 0 0 0 0 0 0 

29 22 50 50 50 0 0 0 0 0 0 0 0 

30 23 155 54.

25 

54.2

5 

38.7

5 

31 31 18.4

3 

19.0

5 

19.85 20.92 252.67 



65 

31 23 155 54.

25 

54.2

5 

38.7

5 

31 31 18.4

3 

19.0

5 

19.85 20.92 252.67 

32 23 350 140 140 87.5 52.5 70 18.7

4 

19.8

4 

20.61 21.78 358.23 

There are a total of 32 generators in the system, attached at 10 different points in the system. 

Overall, the generation produced is more than enough to supply load even if all buses are at their 

peak load. In the table, there are four Linearized generation Segments (L.S.) with a corresponding 

four Linearized Cost segments (L.C.) and a column for the constant No-Load (N.L.) costs. 

 

5.1.4. Scenario Data 

This subsection presents the data for each scenario: 

 

Table 5.4: Scenario Data 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

R.F 0 0 0 0 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 1 1 1 1 

L
o
a
d

 F
a
ct

o
r 

a
t 

B
U

S
 [

1
-2

4
] 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.31 0.36 0.40 0.45 0.31 0.36 0.40 0.45 0.31 0.36 0.40 0.45 0.31 0.36 0.40 0.45 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 
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0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95 

Ps 0.04 0.05 0.04 0.01 0.20 0.19 0.15 0.03 0.09 0.06 0.04 0.01 0.06 0.03 0.01 0.00 

Overall, there are 16 scenarios in the simulation: four scenarios correspond to different 

possible levels of load factors and four correspond to different factors indicating what percentage 

of the rated capacity for the renewable generators is being produced in the corresponding scenarios. 

 

5.1.5. Heat Data 

This subsection presents the data for heat output for each type of generator, differentiable 

by their capacity Pmax in table 5.3: 

 

Table 5.5: Generator Heat Data 

Size 

(MW) 

Type Corresponding 

Units 

Fuel Output 

% 

MW Net Plant 

Heat Rate 

(Btw/kWh) 

Incremental 

Heat Rate 

Calculated 
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by 

Continuous 

Function 

(Btu/kWh) 

12 
Fossil 

Steam 

15, 16 ,17 ,18 

,19 

#6 

oil 

20 2.4 16017 10179 

50 6 12500 10330 

80 9.6 11900 11668 

100 12 12000 13219 

20 
Combustion 

Turbine 
1, 2, 5, 6 

#2 

oil 

79 16 15063 9859 

80 16 15000 10139 

99 20 14500 14272 

100 20 14499 14427 

50 Hydro 
24, 25 ,26 ,27 

,28 ,29 

 
100 50 Not applicable 

76 
Fossil 

Steam 
3, 4, 7, 8 Coal 

20 15 17107 9548 

50 38 12637 9966 

80 61 11900 11576 

100 76 12000 13311 

100 
Fossil 

Steam 
9, 10, 11 

#6 

oil 

25 25 12999 8089 

50 50 10700 8708 

80 80 10087 9420 

100 100 10000 9877 

155 
Fossil 

Steam 
20, 21, 30, 31 Coal 

35 54 11244 8265 

60 93 10053 8541 

80 124 9718 8900 

100 155 9600 9381 
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197 
Fossil 

Steam 
12, 13, 14 

#6 

oil 

35 69 10750 8348 

60 118 9850 8833 

80 158 9644 9225 

100 197 9600 9620 

350 
Fossil 

Steam 
32 Coal 

40 140 10200 8402 

65 228 9600 8896 

80 280 9500 9244 

100 350 9500 9768 

400 
Nuclear 

Steam 
22, 23 LWR 

25 100 12751 8848 

50 200 10825 8965 

80 320 10170 9210 

100 400 10000 9438 

There are nine total different types of generators, each with different capacities and fuel 

types, and thus different corresponding emissions, as will be shown in section 5.1.6. The segments 

for the heat data actually correspond with the linearized generation segments in table 5.3. 

 

5.1.6. Generator Emission Data 

This subsection presents the emissions data for the generators based on their heat output: 

Table 5.6: Emissions Data 

 

IEEE-RTS Unit 

Group 

 

U20 

 

U12,U100,U

197 

 

U76,U155,U35

0 

Unit type GT ST ST 

Fuel type FO2 FO6 
Bituminous 

Coal 
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Fuel sulfur content 

(%) 
0.2 Unit-Specific Unit-specific 

Emissions Rate 

SO2 

(Lbs/MMBTU) 
0.2 Unit-specific Unit-specific 

NOX 

(Lbs/MMBTU) 
0.5 0.5 Unit-specific 

Part 

(Lbs/MMBTU) 
0.036 0.1 Unit-specific 

CO2 

(Lbs/MMBTU) 
160 170 210 

CH4 

(Lbs/MMBTU) 
0.002 0.002 0.001 

 

N2O 

(Lbs/MMBTU) 

0.004 0.004 0.004 

 

CO 

(Lbs/MMBTU) 

0.11 0.04 0.02 

 

VOCs 

(Lbs/MMBTU) 

 

0.04 
0.007 

 

0.003 

The data for the emissions was given in three groups for the fossil fuel types of generators. 

Note that the hydroelectric generators and the nuclear generators do not throw emissions into the 

atmosphere and are thus not in this table. Additionally, three of the contaminants have “Unit-
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specific” as the values. For simplicity, those values were set to the average of the existing values 

in other columns of the table. 

 

5.1.7. Algorithm Parameters 

As previously mentioned, an evolutionary algorithm needs certain parameters to be run. 

This subsection will briefly describe the parameters used in the algorithm before continuing on to 

the simulation results. These parameters are presented below in table 5.7: 

 

Table 5.7: Algorithm Parameters 

Parameter Value 

Number of Generations 100 

Number of Individuals (𝑵𝒑𝒐𝒑) 100 

Mutation Factor 5% 

Elitism 10% 

Additionally, the following parameters are used as a base for some necessary parameters 

in the D-FACTS optimization problem. The values given in table 5.8 will later be modified in a 

sensitivity analysis to show how the solutions change based on changes in the parameters. 

 

Table 5.8: D-FACTS Parameters 

Parameter Value 

𝜼𝒄, 𝜼𝑳  2.5% 

𝑪𝒔𝒊𝒏𝒈𝒍𝒆
𝑫   $3,000 

𝑵  10 years 

Max. line reactance adjustment ±20% 

𝑰  6% 

𝑪𝒊𝒏𝒗
𝒎𝒂𝒙   25$/hr 
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5.2. SIMULATION RESULTS 

The algorithm was coded on MATLAB® 2019a and run on a Dell® desktop computer with 

an Intel® Xeon® W-2195 Processor and 256 GB of RAM. The total runtime for the algorithm was 

19.59 seconds, and the results are summarized in figure 5.1 below. The first column has the cost 

objective in the x-axis, the second has GWP in the x-axis and the third has curtailment. The row 

y-axes are GWP, Curtailment, and LUF, respectively. 

The Pareto fronts excluding the one outlier in the GWP objective, appear to show inverse 

relations between cost and LUF, curtailment and LUF, and possibly GWP and LUF, while 

seemingly showing direct relations between curtailment and GWP, a weak relation between cost 

and curtailment, and, interestingly, a positive relation between cost and GWP. The full detail of 

the allocation per line for each solution is given below in table 5.9. Note that some lines have been 

omitted from table 5.9. This is due to the fact that no D-FACTS were allocated to these lines either 

because the algorithm found no significant improvement to them or because they could not be 

installed due to the nature of the line (some lines exist as transformers with length=0 and D-FACTS 

cannot be assigned to them). For comparative purposes, the Objective functions for the base case 

with no D-FACTS installed are Cost = 73,114, GWP= 88.06, Curtailment = 64.5% and LUF= 

0.053. These are given in table 5.10. 
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Figure 5.1: Pareto-Optimal Solutions Plot 

 

Additionally, the average number of devices installed per line is given at the bottom of 

table 5.9, and it shows line 22 as the most crucial line for installing devices into, with line 23 as 

the second. It should be noted, however, that there are still many Pareto-optimal solutions which 

do not allocate D-FACTS devices in one or both of these lines. The total number of devices 

installed in each solution is given on the last column. As expected based on literature, the algorithm 

will usually attempt to allocate as many devices as possible within its parameters. However, 

solution 41 allocated only 675 devices, which is an interesting result, although it only remains in 

the Pareto set because of a slightly good LUF value and not because particularly good values in 

any of the other objectives. 
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The details of the objective function values are shown in table 5.10. The objective functions 

are also compared with the no-D-FACTS case (where the allocation vector is �⃗⃗⃗�) and the difference 

is given as a percentage for simplicity. Additionally, an average is given at the bottom to quickly 

compare the results from incorporating D-FACTS devices into the transmission network. Based 

simply off the averages, it can be seen that incorporating D-FACTS brings the average cost down 

to $71,961, a 1.6% improvement from the $73,114 from the base case; the average GWP down to 

88, curtailment to 62.47% and LUF to 0.05. While on average not all these are a particularly 

noticeable improvement, there are solutions in which the improvement is much greater, as well as 

solutions in which these objectives actually worsen. This is part of the nature of a Pareto set and 

the process of improving the Pareto set falls under the field of Post-Pareto Optimality. 
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Table 5.9: Non-dominated solutions detail 

 
 

 

 

 

 

Sol. 1 2 3 4 5 6 8 9 10 11 13 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 SUM

1 6 0 0 0 0 0 0 201 0 0 0 0 0 0 720 0 0 0 0 0 72 0 0 0 0 0 0 0 0 0 0 999

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 690 0 0 0 0 0 24 0 0 0 0 108 180 0 0 0 0 1002

3 0 0 0 0 0 0 0 63 0 24 0 0 0 0 810 0 0 102 0 0 0 0 0 0 0 0 0 0 0 0 0 999

4 0 0 0 114 0 0 0 0 0 0 0 0 0 0 804 0 0 0 0 0 0 54 0 0 0 27 0 0 0 0 0 999

5 0 0 0 0 0 0 0 0 30 0 0 0 0 0 666 0 0 201 102 0 0 0 0 0 0 0 0 0 0 0 0 999

6 0 54 0 0 0 0 0 0 3 0 0 0 0 0 771 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 852

7 0 0 0 0 18 0 0 0 0 0 0 0 0 0 750 0 0 0 0 0 0 0 0 0 189 0 0 45 0 0 0 1002

8 12 102 0 0 135 0 0 0 0 0 0 0 0 0 663 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 912

9 24 0 0 0 0 0 0 0 0 0 216 156 0 0 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 999

10 0 51 0 0 0 0 0 0 0 0 153 0 0 0 633 0 0 0 99 63 0 0 0 0 0 0 0 0 0 0 0 999

11 0 0 0 0 0 0 0 0 0 0 0 234 0 0 522 0 0 0 0 0 96 0 0 0 147 0 0 0 0 0 0 999

12 0 0 0 0 0 0 0 0 156 0 0 252 0 0 543 0 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1002

13 6 0 0 0 0 0 0 0 0 0 12 0 0 0 726 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 999

14 0 0 6 0 0 0 0 0 0 0 0 177 0 0 639 0 0 0 0 0 0 0 0 0 114 0 0 0 0 60 0 996

15 0 0 0 0 0 21 0 0 0 0 0 0 0 0 336 573 0 0 0 0 0 0 0 0 0 0 0 66 0 0 0 996

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 405 405 0 0 0 0 0 0 72 0 0 0 0 0 102 0 15 999

17 0 0 0 0 0 0 0 0 0 0 0 81 0 0 414 0 0 192 0 0 315 0 0 0 0 0 0 0 0 0 0 1002

18 0 0 0 0 0 0 0 0 0 0 0 0 93 0 417 0 0 0 0 0 267 0 0 0 222 0 0 0 0 0 0 999

19 0 0 0 0 0 60 0 0 0 0 0 0 0 0 246 429 0 0 0 0 0 225 0 0 0 0 39 0 0 0 0 999

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 714 0 0 0 0 222 0 0 0 0 0 6 57 0 0 0 999

21 0 0 87 0 0 0 0 0 0 0 0 0 0 0 99 594 0 0 0 0 0 207 0 0 0 0 9 0 0 0 0 996

22 0 0 0 0 0 0 0 0 0 0 0 612 0 0 0 285 0 0 0 0 0 0 9 0 0 0 0 0 0 93 0 999

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 687 132 0 0 0 0 0 87 0 0 0 0 0 0 93 0 999

24 6 0 0 0 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 288 168 0 0 0 0 0 0 0 0 0 870

25 21 0 0 0 0 0 255 0 0 0 0 0 0 0 0 408 0 0 0 192 0 123 0 0 0 0 0 0 0 0 0 999

26 0 0 0 0 0 84 0 237 0 0 0 0 0 0 0 309 0 0 0 0 60 0 0 0 0 0 0 309 0 0 0 999

27 0 0 0 0 168 0 0 0 0 0 12 0 0 0 0 303 0 282 0 0 0 0 0 0 0 0 0 231 0 0 0 996

28 0 0 0 60 0 405 0 0 0 0 0 0 0 0 0 321 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 999

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 264 90 324 0 0 0 0 0 0 0 0 174 0 0 0 0 852

30 21 0 0 0 0 0 0 0 0 3 0 327 0 0 0 0 0 318 0 0 0 0 0 0 0 0 330 0 0 0 0 999

31 0 231 0 0 0 0 0 0 66 0 0 0 0 0 0 300 0 0 0 279 0 0 0 0 0 0 0 120 0 0 0 996

32 0 0 0 0 0 0 0 0 0 0 0 291 0 0 0 0 0 99 0 390 0 0 0 0 0 0 201 0 0 0 15 996

33 39 0 0 333 0 0 0 0 0 0 0 327 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 999

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 393 0 0 0 156 0 0 351 0 0 0 0 999

35 0 438 0 0 0 0 0 0 0 0 0 0 0 0 0 162 0 0 0 345 51 0 0 0 0 0 0 0 0 0 0 996

36 0 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 372 177 153 0 0 0 237 0 0 0 0 0 996

37 0 0 0 0 0 282 0 0 0 0 0 0 243 0 0 0 0 0 0 0 213 156 102 0 0 0 0 0 0 0 0 996

38 0 0 0 0 309 222 0 0 0 0 0 198 0 0 0 0 0 0 0 267 0 0 0 0 0 0 0 0 0 0 0 996

39 0 0 0 0 0 339 9 0 0 0 0 0 0 0 0 0 0 0 0 459 0 78 0 0 0 0 111 0 0 0 0 996

40 0 0 0 0 0 363 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 189 360 0 0 0 999

41 0 0 0 0 0 0 0 0 0 0 0 87 0 0 0 0 0 0 0 588 0 0 0 0 0 0 0 0 0 0 0 675

42 0 168 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 0 168 207 0 0 0 243 0 0 0 0 0 996

43 0 0 0 0 0 0 0 0 0 0 357 0 0 0 0 0 0 0 0 0 138 171 0 0 333 0 0 0 0 0 0 999

avg 3.1 24 3.5 12 15 41 8.2 12 5.9 5.5 17 64 7.8 9.5 266 136 6.3 35 4.7 85 49 36 6.8 9.6 23 19 37 28 2.4 5.7 0.7

LINE
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Table 5.10: Pareto-optimal solutions Objective Function detail  

 
 

Sol COST GWP CURT LUF COST GWP CURT LUF

1 70,870$ 88.02 60.44% 0.054 3.07% 0.05% 6.29% -2.10%

2 70,921$ 88.02 60.40% 0.054 3.00% 0.04% 6.36% -2.00%

3 70,936$ 87.77 59.75% 0.054 2.98% 0.33% 7.37% -2.56%

4 70,967$ 88.03 59.44% 0.054 2.94% 0.04% 7.84% -2.52%

5 70,986$ 88.02 60.99% 0.054 2.91% 0.04% 5.44% -1.94%

6 71,092$ 88.03 59.80% 0.054 2.77% 0.03% 7.28% -2.34%

7 71,103$ 88.03 60.10% 0.054 2.75% 0.03% 6.82% -2.21%

8 71,104$ 88.02 60.41% 0.054 2.75% 0.04% 6.34% -1.96%

9 71,138$ 88.03 60.44% 0.054 2.70% 0.04% 6.30% -1.84%

10 71,139$ 88.02 60.76% 0.054 2.70% 0.04% 5.79% -1.89%

11 71,174$ 88.02 61.40% 0.054 2.65% 0.04% 4.80% -1.76%

12 71,208$ 88.03 60.69% 0.054 2.61% 0.04% 5.91% -1.78%

13 71,217$ 88.03 60.18% 0.054 2.59% 0.03% 6.70% -2.14%

14 71,290$ 88.03 60.29% 0.054 2.49% 0.03% 6.53% -1.89%

15 71,318$ 88.03 60.71% 0.054 2.46% 0.03% 5.87% -1.70%

16 71,319$ 88.03 60.84% 0.054 2.46% 0.04% 5.67% -1.71%

17 71,392$ 88.03 63.68% 0.054 2.36% 0.04% 1.27% -1.73%

18 71,578$ 88.03 63.27% 0.054 2.10% 0.04% 1.90% -1.75%

19 71,705$ 88.03 61.31% 0.054 1.93% 0.03% 4.95% -1.42%

20 71,977$ 88.04 63.17% 0.053 1.56% 0.03% 2.06% 0.42%

21 71,984$ 88.04 61.78% 0.053 1.55% 0.02% 4.22% 0.07%

22 72,140$ 88.04 61.99% 0.053 1.33% 0.02% 3.89% 0.42%

23 72,178$ 88.04 62.56% 0.053 1.28% 0.02% 3.01% 0.39%

24 72,217$ 88.04 64.36% 0.052 1.23% 0.02% 0.22% 2.76%

25 72,521$ 88.05 62.99% 0.053 0.81% 0.01% 2.34% 0.42%

26 72,553$ 88.05 63.50% 0.053 0.77% 0.01% 1.56% 0.42%

27 72,553$ 88.05 63.84% 0.053 0.77% 0.01% 1.03% 0.42%

28 72,571$ 88.05 63.53% 0.053 0.74% 0.01% 1.50% 0.44%

29 72,580$ 88.05 64.32% 0.053 0.73% 0.01% 0.28% 0.42%

30 72,581$ 88.05 64.02% 0.053 0.73% 0.01% 0.74% 0.43%

31 72,616$ 88.05 63.28% 0.053 0.68% 0.01% 1.90% 0.44%

32 72,621$ 88.05 63.63% 0.053 0.67% 0.01% 1.35% 0.46%

33 72,720$ 88.05 63.53% 0.053 0.54% 0.01% 1.50% 0.45%

34 72,746$ 88.05 63.81% 0.053 0.50% 0.01% 1.08% 0.47%

35 72,750$ 88.05 64.02% 0.053 0.50% 0.01% 0.75% 0.46%

36 72,753$ 88.05 65.31% 0.049 0.49% 0.01% -1.25% 6.63%

37 72,755$ 88.05 65.23% 0.049 0.49% 0.01% -1.13% 7.31%

38 72,786$ 88.05 63.78% 0.053 0.45% 0.01% 1.11% 0.47%

39 72,826$ 88.05 64.03% 0.053 0.39% 0.01% 0.72% 0.50%

40 72,839$ 88.05 63.93% 0.053 0.38% 0.01% 0.89% 0.47%

41 72,851$ 88.05 64.00% 0.053 0.36% 0.01% 0.77% 0.48%

42 72,879$ 88.05 65.37% 0.047 0.32% 0.01% -1.35% 10.69%

43 72,890$ 88.05 65.35% 0.048 0.31% 0.01% -1.31% 9.10%

AVG 71,961$ 88 62.47% 0.05 1.58% 0.03% 3.15% 0.17%

OBJ IMPROVEMENT (RESPECTIVE)
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5.3. DISCUSSION 

The minimum values for each objective were {$70,879, 87.77, 59.44%, and 0.047}, 

respectively, for expected cost, expected GWP, expected renewable energy curtailment, and 

expected LUF, and the maximum values were {$72,890, 88.05, 65.37%, and 0.054}. Of course, 

none of these values are present in the same solution, as these are Pareto-optimal solutions.  

Up until now, the solutions were solved and analyzed under the assumption that a utility 

company would adjust their transmission system based on economic gain rather than ecological 

sustainability or long-term sustainability. These results reflect that assumption. The improvements 

to the system, however, do indicate that the installation of D-FACTS devices, with at least a 0.3% 

reduction in cost, and up to a 3.1%, which equates to up to $2,244 an hour, or $53,856 a day. 

In terms of allocation, most solutions allocated the devices in either 4 or 5 lines, except for 

solution 41 which only allocated them in 2: 87 devices in line 19 and 588 in line 27. This is also 

the only solution to allocate only about 2/3 of the allowed devices, with most other lines allocating 

996-1002 devices, although a few other solutions ranged in the 800s or around 80-90% of the 

allowance. This solution is worse than most others in terms of cost, GWP, and curtailment, but 

slightly better in terms of LUF. Further analysis would be required to determine whether this 

solution is worth maintaining at all. 

Of the lines where D-FACTS are most commonly allocated, line 22 stands at the top, with 

20 out of 43 solutions allocating devices into it, while line 23 is second with 15 solutions. 

Interestingly, only four solutions allocated devices to both of these lines at the same time. Other 

lines to which D-FACTS were allocated to frequently are line 19, with 11 counts, line 27, with 11 

counts, line 28 with 13 counts, line 29 with 10 counts, and line 34 with 10 counts. Figure 5.2 below 

shows the distribution of the average number of D-FACTS devices installed per line as both the 

total average and the average of non-zero elements from table 5.9: 

 

 



77 

 

 
Figure 5.2: D-FACTS allocation distribution per line 

 

As for the computational time, the algorithm benchmarked at 19.6 seconds for the given 

parameters and yielded a total of 43 solutions. The most similar implementation of the problem 

that could be found in literature was that of Sang and Sahraei-Ardakani (2019), who developed 

their experiment as a single-objective pure linear program, coded in Java and using the IBM 

CPLEX® optimizer. For comparative purposes, their algorithm was run on the same computer 

and, although it yielded better results on the objective of total costs, it did take a total time of 804.2 

seconds to run. This means our algorithm has a runtime 97.6% smaller than a pure linear 

programming approach, which is a large improvement, especially if applied to larger networks. 
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5.4. POST-PARETO ANALYSIS 

After having performed the initial analysis based on the results of the Pareto set, further 

analysis will be performed to further refine the final non-dominated set and to improve parameters 

in subsequent experiments. As such, a series of tests will be performed to further improve the 

efficacy and efficiency of the algorithm. 

Firstly, a correlation analysis will be performed on the objectives. The reasoning for this is 

that if there are two objectives that are very closely related, it becomes redundant to analyze all 

solutions for both of them, resulting in increased computational time over an objective that does 

not add much new information to out Pareto set. 

Continuing on, a sensitivity analysis will be performed to test how some parameters may 

impact the Pareto set and how the model can be improved by tweaking these parameters within 

realistic limits. This can also help the decision maker by giving them various sets of solutions 

under different parameters so that they may make a more holistic choice by not only choosing 

which objectives are more beneficial, but under which parameters those exist and how those 

parameters affect the bottom line. 

Finally, some Post-Pareto pruning techniques will be applied to discard solutions which 

may not be as desirable and reduce the burden on the decision maker. 

 

5.4.1. Correlation Analysis 

Correlation analysis, also known as bivariate analysis, is primarily concerned with finding 

out whether a relationship exists between variables and then determining the magnitude and action 

of that relationship. In essence, it is used to determine whether two variable follow similar trends 

and how similar these trends are. 

The correlation coefficient between two random variables can be defined as: 

𝜌𝑋,𝑌 = 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
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Modern statistical software can quickly calculate this coefficient for a large set of variables 

and organize the result into a simple, easy to read table. Figure 6.3 below was created using 

Minitab® statistical software: 

 

 
Figure 5.3: Correlation Matrix Plot 

Based on the information we can obtain from the above graph, there is a very strong 

correlation between the objectives of total expected cost and curtailed renewable energy, with a 

correlation of 0.912 between them. In addition, the correlation of these two objectives with other 

objectives are also very similar: Cost/GWP has a correlation of 0.465 and Curtailment/GWP has a 

correlation of 0.441, while Cost/LUF has a correlation of -0.690 and Curtailment/LUF a 

correlation of -0.772. A regression analysis for the two variables is summarized below, with 

curtailment as the response variable and cost as the predictor. 

Regression Equation: -0.971 + 0.000022*Cost 

Model Summary: 

 S=0.0075273, R-squared = 83.16%, R-squared (adjusted) =82.75% 
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Unusual Observations were noted in solutions 31 and 40, with unusually large standard 

residuals of 3.35 and 2.23, respectively. 

Since these two objectives follow a trend so similar to each other, and their R-squared value 

is fairly high, despite the apparent noise in the plot, it is safe to remove one of these variables to 

simplify the Pareto Analysis. Since Cost is a more important variable than renewable energy 

curtailment, it will be kept, while renewable energy curtailment will be deleted. In addition, 

reducing the number of objectives can allow for an improvement on the size and quality of the 

Pareto set. 

A second case study with a reduced number of objectives is presented below in section 5.5. 

 

5.5. CASE STUDY 1.2: REDUCED OBJECTIVE SET 

Upon re-running the algorithm without accounting for the objective of Renewable energy 

curtailment, 22 new solutions were found. These solutions are summarized in figures 5.4 and 5.5 

below: 

 
Figure 5.4: 3-D Pareto set 
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Figure 5.5: 2-D Pareto Set and Correlation Matrix Plot 

Based on these values, the new objectives can be considered independent enough from 

each other to not reduce them further. However, no significant changes were found on the objective 

values to merit further discussion. 
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Chapter 6: Published Studies 

In this chapter, further studies into the topic of D-FACTS allocation optimization, which 

were presented and published in various journals and/or conferences are to be included. The 

formatting has been altered to align with the rest of this document. For reference, the full citations 

will be given. The first paper included here is titled “A Computationally Efficient Evolutionary 

Algorithm for Stochastic D-FACTS Optimization” (Castillo Fatule et al 2021). It was published 

in the 2020 North American Power Symposium held online, and was the first step towards 

applying metaheuristic algorithms for the solving of D-FACTS allocation optimization. The 

second is “Co-Optimizing Operating Cost and Renewable Energy Curtailment in D-FACTS 

Allocation,” where a second objective, namely renewable energy curtailment, was added to the 

problem, turning it into a multi-objective one (Castillo Fatule et al, 2021). This was published in 

the 2021 North American Power Symposium held in College Station, TX, USA. The third paper 

is “Fine-Tuning the Parameters for Solving the Multi-Objective D-FACTS Optimal Allocation 

Problem,” which consisted mainly of a sensitivity analysis in order to improve the optimization 

process and study the effects of some parameters. This was published in the 2022 IEOM Society 

conference held in Orlando, FL, USA (Castillo Fatule et al, 2022). Next is “Analyzing the Effects 

of Line Switching Protocols on Multi-Objective D-FACTS Allocation Optimization,” which 

added another congestion-relief protocol to the problem and finding that, at least in the test system 

being used, the combination of multiple methods can have stronger effects on the system (Castillo 

Fatule et al, 2022). It was pointed out for this study that there is no comparison point between the 

two methods individually, nor between both in conjunction and only the line-switching protocols. 

The main reason for the lack of this analysis is the lack of space in the conference papers. Chapter 

7 will address this. In addition, other articles have been submitted for review and publication, but 

have not yet been accepted. 
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6.1. A COMPUTATIONALLY EFFICIENT EVOLUTIONARY ALGORITHM FOR STOCHASTIC D-

FACTS OPTIMIZATION  

 

Abstract—Flexible AC transmission systems (FACTS) are important contributors to smart 

transmission systems. They can offer a level of power flow control and improve transfer capability 

of an existing network which can be used to mitigate congestion and integrate renewable energies 

into a grid. Distributed FACTS is a lightweight version of FACTS which can be redeployed 

conveniently. It has become a more attractive power flow control technology due to its lower cost 

and ease of installation. This paper proposes a novel evolutionary algorithm to solve a stochastic 

model for D-FACTS allocation, studying their impacts on operating costs and the computational 

efficiency of the model. The results are presented are compared against a previously developed 

linear programming model and show a positive economic impact from the use of D-FACTS, as 

well as a significant reduction in computational time for this type of model.  

Index Terms--Distributed flexible AC transmission systems (D-FACTS), evolutionary algorithm, 

metaheuristics, optimal allocation, stochastic optimization 

 

I. Nomenclature 

 

 

Indices  

k Transmission line 

g Generator 

i The number of D-FACTS installed per phase per a certain distance for a 

transmission line 

n Node 

s Scenario 

seg Segment of linearized generator cost function 

Sets  

𝜎+(𝑛) Transmission lines with their “to” bus connected to node n 

𝜎−(𝑛) Transmission lines with their “from” bus connected to node n 

Variables  

𝐶𝑖𝑛𝑣
𝐷  Total investment in D-FACTS ($) 

𝐹𝑘,𝑠 Real power flow through transmission line k in scenario s 

𝑃𝑔,𝑠 Real power generation of generator g in scenario s 

𝑃𝑔,𝑠
𝑠𝑒𝑔

 Real power generation of generator g in scenario s in segment seg 

𝑅𝑔,𝑠
𝐷

 Spinning down reserve available through generator g in scenario s 

𝑅𝑔,𝑠
𝐷

 Spinning up reserve available through generator g in scenario s 

𝑥𝑘,𝑖
𝐷

 Binary integer indicating D-FACTS installed in transmission line k or not; 

when its value is 1, it means i D-FACTS are installed on line k 

𝜃𝑏,𝑠 Voltage angle at bus b in scenario s 

𝜃𝑓𝑟,𝑘,𝑠 Voltage angle at the “from” node of line k in scenario s 
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𝜃𝑡𝑜,𝑘,𝑠 Voltage angle at the “to” node of line k in scenario s 

Parameters  

𝐶𝑔
𝑁𝐿 No load cost of generator g 

𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟 Linear cost of generator g in segment seg 

𝐶𝑔
𝐷 Down reserve of generator g in segment seg 

𝐶𝑔
𝑈 Up reserve of generator g in segment seg 

𝐶𝑠𝑖𝑛𝑔𝑙𝑒
𝐷  Cost of a single D-FACTS unit 

𝐶𝑠ℎ
𝐷  Cost of a single D-FACTS unit converted to an hourly figure ($/hr) 

𝐶𝑖𝑛𝑣
𝑚𝑎𝑥 Maximum investment allowed for D-FACTS 

𝑓𝑘,𝑠 Binary integer indicating direction of power flow through line k in scenario 

s 

𝐹𝑘
𝑚𝑎𝑥 Thermal capacity/voltage drop limit of transmission line k 

𝑖𝑚𝑎𝑥 Maximum number of D-FACTS that can be allocated per a certain distance 

per phase 

I Interest rate/discount rate 

𝐿𝑛,𝑠 Load at bus n in scenario s 

N Lifespan of D-FACTS 

𝑁𝑔 Total number of generators 

𝑁𝑠 Number of scenarios 

𝑁𝑠𝑒𝑔 Number of segments for the linearized generator cost function 

𝑝𝑠 Probability of scenario s 

𝑃𝑔
𝑚𝑎𝑥 Upper generation limit of generator g 

𝑃𝑔
𝑚𝑖𝑛 Lower generation limit of generator g 

𝑆𝐷 Spinning down reserve requirement 

𝑆𝑈 Spinning up reserve requirement 

𝑋𝑘 Reactance of transmission line k 

𝜂𝐶  The maximum adjustment percentage of the line’s 

reactance in the capacitive mode that a single D- 

FACTS module (1 device/phase/mile) can achieve 

𝜂𝐿 The maximum adjustment percentage of the line’s 

reactance in the inductive mode that a single D- 

FACTS module (1 device/phase/mile) can achieve. 

Δ𝜃𝑘
𝑚𝑎𝑥 Maximum value of bus voltage angle difference to 

maintain stability for line k. 

Δ𝜃𝑘
𝑚𝑖𝑛 Minimum value of bus voltage angle difference to 

maintain stability for line k. 

 

II. Introduction 

There are a number of issues currently affecting electric grid systems in the US. One of the 

most significant issues is the transmission congestion, caused both by overloaded lines and 

the addition of new generation resources without adequate upgrading of aging systems. Some 
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solutions to congestion include transmission expansion, energy storage implementation, demand 

response, and power flow control technologies [1]. In the area of power flow technologies, 

variable-impedance series flexible AC transmission systems (FACTS) can provide effective flow 

control and help implement smart transmission systems [2]. As an alternative to conventional 

FACTS, a relatively new technology called Distributed FACTS (D-FACTS) can be used. These 

D-FACTS are light-weight versions of the traditional D- FACTS, with the advantage of a lower 

cost and a possibility of being re-deployed after its original installation. These devices have thus 

become a popular subject of study in recent years [3]. D-FACTS were originally introduced by [4] 

with the proposition of a cost-effective alternative to FACTS. Ref. [4] proposes the different types 

of D-FACTS, as well as the underlying equations to model the behavior of these. Overall, there 

are three main types of D-FACTS, namely Distributed Series Static Compensator (DSSC), 

Distributes Series Reactor (DSR), and Distributed Series Impedance (DSI). DSR and DSI can 

adjust the impedance of a transmission line, while DSSC functions as a phase shifter [5]-[11] . 

Models for the efficient allocation of D-FACTS devices are still fairly scarce in literature. This 

can be attributed largely to the relative novelty of such devices as well as the high computational 

burden that such models can have. Unlike conventional FACTS devices, where just one device is 

installed at critical nodes in the network, D-FACTS bring the necessity to allocate a much larger 

number of devices along every line in the system, resulting in an exponentially larger number of 

variables. Some work on allocation of D-FACTS using optimization algorithms is in [12], where 

a Steepest Descent algorithm is used to allocate DSSC-type devices. The study used a non-linear 

DC-power-flow-based model which considered D- FACTS as a static change in impedance over 

the line where it is installed, and it does not take advantage of the adjustability of the devices. Ref. 

[13] proposed a Particle Swarm Optimization heuristic to reduce overloading in lines, but 

considering a single static scenario. Ref. [14] used a sensitivity- based technique, basing their 

allocation of DSSC-type devices on the sensitivity of transmission losses with respect to line 

impedance, and testing the findings over a simulated 118-bus system. This study also considers a 
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single scenario and does not accommodate any uncertainties. Similarly, [15] attempted to 

minimize loss by using a Graph Theory approach, testing their results over different generation 

and load conditions. However, the model is designed to provide voltage support rather than 

controlling active power flow. Ref. [16] used a heuristic algorithm called backtracking search 

algorithm to allocate D-FACTS modules on microgrids to enhance their performance, considering 

various renewable energies, but only on a single scenario. Other studies proposed different 

optimization methods to allocate D-FACTS devices on a network. For example, [17] used a 

biogeography-based optimization technique to minimize cost as a function of energy price and a 

line utilization factor on a static scenario. [18] also used a two-stage Tabu-search metaheuristic for 

allocation of D- FACTS in radial distribution systems. [18] also considers the impact of renewable 

energies, considering the uncertainty in a Monte Carlo simulation. The two stages of their Tabu-

search consist on first the allocation of the devices, and then the optimization of the output with 

cost as the objective function. More recently, a Linear Programming model for D-FACTS 

allocation considering renewable energies and uncertainties in demand was formulated and solved 

by [1]. This model, however, due to its formulation as a Mixed-Integer Linear Program (MILP), 

is forced to include a large number of binary variables, which makes it computationally intensive, 

and must linearize some constraints to reduce the computational burden. The most recent work on 

D-FACTS allocation comes in [19], who proposes a Line Utilization Factor and Particle Swarm-

based algorithmic rule to allocate thrystor controlled series capacitor devices. The results show 

promising computational efficiency compared to other algorithms, but only considers a single 

scenario. In sum, existing optimal allocation model either do not fully consider the flexibility that 

D-FACTS has to offer, or do not consider future uncertainties, or are computationally challenging. 

Thus, this study aims to propose a computationally efficient evolutionary algorithm (EA) to solve 

a stochastic optimal allocation model for variable-impedance D-FACTS (such as DSR and DSI 

types) considering future uncertainty. The objective is to minimize the operating costs over the 

lifetime of the devices, considering uncertainties in power systems caused fluctuating demand 
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levels. The algorithm was implemented on a modified RTS-96 test system, and results show that 

the proposed algorithm can give a near-optimal solution in just a fraction of the time that the 

previously proposed LP took to solve the problem, significantly improving the computational 

efficiency. The rest of the paper is organized as follows. Section III describes the formulation of 

the optimal allocation model as well as the EA, Section IV discusses case study results, and 

conclusions are drawn and future work is discusses in Section V 

III. Model Formulation 

A. D-FACTS Allocation Model 

This paper proposes a DCOPF-based D-FACTS allocation model which allocates D-

FACTS modules per phase. This model is a stochastic optimization model, which considers 

different scenarios to address the future uncertainty. The model differs from the mixed-integer 

linear program (MILP) model proposed in [1] in two aspects: (1) the proposed model is nonlinear, 

but the model in [1] is linear; (2) the proposed model is able to allocate D-FACTS modules per 

phase, but the model in [1] has to allocate D-FACTS modules per phase per a certain distance, 

thus, the proposed model offers more flexibility in terms of the number of D-FACTS allocated on 

each line. Although the model is nonlinear and allocates D-FACTS per phase, it can still be solved 

in a computationally efficient manner, since it will be solved using an EA 

In the proposed model, series variable-impedance D- FACTS modules are allocated. Since 

the reactances of the lines need to be adjusted, applicable power flow constraints depend on power 

flow directions, as discussed by [20]: 

If 𝜃𝑓𝑟,𝑘,𝑘 − 𝜃𝑡𝑜,𝑘,𝑠 ≥ 0, 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 /𝑋𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 / 𝑋𝑘

𝑚𝑖𝑛 (1) 

If 𝜃𝑓𝑟,𝑘,𝑘 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ 0, 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 /𝑋𝑘
𝑚𝑖𝑛 ≤ 𝐹𝑘,𝑠 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 / 𝑋𝑘

𝑚𝑎𝑥 (2) 

In the proposed model, a base-case DCOPF model with no D-FACTS is first solved to 

obtain the power flow direction 𝑓𝑘,𝑠 for each transmission line in every scenario, and the value for 

this variable is then used in the next step of the allocation problem, in which the number of devices 

is assigned to each line. When 𝑓𝑘,𝑠  = 1, the power flow direction is the same as the reference 
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direction (from the ‘from bus’ to the ‘to bus’), and when 𝑓𝑘,𝑠 = 0, the power flow direction is the 

opposite to the reference direction (from the ‘to bus’ to the ‘from bus’). The formulation for 

optimal D-FACTS allocation is described by Equations (3) – (25). 
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In this formulation, the objective is to minimize the total operation cost, including 

generation dispatch cost, reserve cost, and no-load cost and also D-FACTS investment, 

considering all the scenarios and their probabilities. (4) and (5) are the generation constraints, 

where (4) segments the production in order to linearize the cost curve, and (5) denotes the lower 

and upper limits for each generator producing a load. Eq. (6) indicates the transmission limits for 

each line. Based on previous models, the capacity of short lines (0–50 miles) is set to their thermal 

limit; for medium lines (50–156 miles), the capacity is determined by the voltage drop limit, and 

long lines (more than 156 miles), are limited by the angular stability limit. Eq. (7) defines the 

power balance at each bus in each scenario. Eqs. (8)–(13) are the reserve requirements and (14) 

and (15) are the bus voltage angle constraints. In order to indicate the quantities and locations for 

D-FACTS installation, a binary integer variable,𝑥𝑘,𝑖
𝐷 , is introduced in Eqs. (16) – (23). For each 

line, 𝑥𝑘,𝑖
𝐷  is an array with 𝑖𝑚𝑎𝑥 elements. When 𝑥𝑘,𝑖

𝐷 = 1, the number of D-FACTS modules that are 

allocated to line k is i; if no 𝑥𝑘,𝑖
𝐷  is 1 for all i for a line k, no D-FACTS is allocated to line k. Eqs. 

(16) and (17) shows the DC power flow equations when D-FACTS modules are installed on the 

line and the power flow direction is the same as the reference direction, Eqs. (18) and (19) shows 

the DC power flow equations when D-FACTS modules are installed on the line and the power 

flow direction is the opposite to the reference direction, and Eqs. (20) and (21) shows the DC 

power flow equations when D-FACTS modules are not installed on the line. Eq. (22) makes sure 

that 𝑥𝑘,𝑖
𝐷  can only set a single value for the number of devices for the line. Eq. (23) defines the total 

investment cost, and this cost is limited in Eq. (24). Eq. (25) calculates the cost of each D-FACTS 

modules as an hourly figure considering the discount rate and lifespan of the modules. 

B. The Evolutionary Algorithm 

EAs are stochastic search algorithms inspired by natural evolution processes. They have 

been used in several complex problems arising in real-world applications which need effective 

algorithms that are able to achieve good (but not necessarily optimal) solutions by performing an 

effective and intelligent search of the space of possible solutions [21]-[23]. 
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In the present research, we develop a new EA to solve the D-FACTS allocation problem 

to improve the computational efficiency and reduce the number of variables that need to be 

calculated. This allows us to remove linearization in some constraints and simplify the formulation. 

It is thus possible to make the solution as accurate while reducing the computational time. 

The algorithm starts by generating random values within possible solution ranges, before 

testing if these values violate any constraints. If the constraints are not violated, the algorithm then 

calculates and stores the objective function value for the solution. Otherwise, it assigns a value of 

infinity. This is repeated for both steps of the solution process, obtaining the power flow directions 

𝑓𝑘,𝑠 before the second step. 

Two main search operators in an EA are crossover and mutation. Crossover is the process 

of exchanging chromosome material to create a new offspring, and mutation helps to diversify the 

population. The chromosome developed in our EA is a 3-dimensional array where each row 

represents a different set of variables (Power generation, reserves, D-FACTS allocation for each 

generator or line), stored in an orderly fashion within each row, with the values for each scenario 

stored in the 3rd dimension. In the first three rows, generation and reserve levels for each available 

generator is encoded as a percentage of the possible power generation for each generator. e.g., if a 

generator’s minimum possible generation is 30 MW, and the maximum is 40MW, a value of 0.5 

in the corresponding gene means that the generator is set to 30 + (40 - 30) × 0.5= 35MW. A 

negative value, on the other hand, indicates that the generator will handle no load. 

 
Figure 6.1.1. Chromosome Example 
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An example of one layer of the chromosome is presented in Fig. 1. The full chromosome 

consists of 𝑁𝑠 layers of this type of encoding, for each possible scenario. The section denoted in 

yellow (the allocation of D-FACTS devices), however, is constant for all scenarios, as it is not 

possible to change the installed number of devices on such short demand. The standard procedure 

for an EA is summarized in Fig. 2. 

In evaluating a possible solution, the following steps are taken, for each scenario: 

1) Verify that the assigned generation meets demand. If not, use a simple linear 

transformation to assure demand is met. 

2) Obtain power flows and voltage angles for each transmission line and bus based on the 

load and generation. 

3) Verify that these flows and angles meet the constraints. 

If the constraints are not satisfied for any single scenario, the solution is marked as 

unfeasible and its objective function value set to infinity, otherwise, the objective function value 

is obtained via (25) and assigned to the chromosome. After each iteration, the solutions are ranked 

based on their objective functions. 

In a new iteration, solutions are created via a triple single-point crossover. A cut-point is 

generated in each dimension of the array, and two randomly selected solutions are combined in a 

checkerboard pattern to generate a new one. This process repeats until a set number of iterations 

has been run or there is no improvement for the optimal objective function value after a set number 

of iterations. Mutation can occur on newly generated solutions by switching around values in the 

generator configurations (green section of Chromosome shown in Fig. 1).  
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Figure 6.1.2. Evolutionary Algorithm Flowchart 

IV. Case Studies 

A. Simulation Setup 

In this study, the model in Section II-A is adopted to study the cost-effectiveness of D-

FACTS using the new algorithm proposed in section II-B, and the computational efficiency of 

the solution method is discussed. The case studies use the same RTS-96 test system as Ref. [1] 

except that this study uses the original generator settings and fuel prices provided by the RTS- 

96 test system. Uncertainties in the model is represented using four different load scenarios, and 

the load factors are 0.65, 0.75, 0.85, and 0.95, respectively. 

It is assumed that each D-FACTS module is designed to be able to adjust the line’s 

reactance by ±2.5% per phase per mile, and the maximum reactance adjustment range for a 3-

phase line is ±20% [4]. D-FACTS results were obtained with the D- FACTS allocated evenly per 

line per phase. 

D-FACTS costs were determined based on industry data and previous academic studies 

[1]. It is assumed the cost for D- FACTS to be $100/kVA; where the compensation level in kVA 

depends on the parameters of the transmission line in which the D-FACTS device is installed. For 

simplicity, the compensation level for the most demanding line was adopted. In the RTS-96 
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system, the largest compensation level is 30kVA/module. Thus, a cost of $3000/module is used in 

this study. The hourly cost of the devices is based on Eq. (25), with an assumed lifespan of 30 

years and a discount rate of 6%. Eq. (24) puts an investment limit on the D-FACTS modules. For 

the case studied, a D- FACTS allowance cost of $25/hour was assumed. 

B. Comparison of Cost Savings 

To demonstrate out algorithm’s performance against previously developed linear 

programs, the results of [1] are used to compare the effectiveness of the proposed algorithm. In 

order to do this, simulations were carried out under similar conditions as the specific scenario we 

are evaluating, described previously in Section IV-A. D-FACTS can reduce congestion in the 

network as well as the expected dispatch cost. The expected dispatch cost in each simulation case 

was obtained from the objective function of the base case and D-FACTS optimization models, and 

compared with the results of the linear programming problem solution in [1]. The resulting 

expected costs from both cases and both algorithms are presented in Table I and illustrated in Fig. 

3. It can be seen that, similar to the results obtained from the linear programming solver, there are 

significant savings between the base case and the D-FACTS case. The cost obtained through the 

EA is slightly higher than those obtained through the linear programing solver, and this is due to 

the nature of such types of algorithms, which cannot guarantee the finding of an optimal solution. 

However, the differences between the operating costs solved by the linear programming solver 

and the EA are less than 2%, which is not significant. According to the solutions, the linear 

programming formulation’s solution requires the installation of about 20% more D-FACTS 

modules compared to the EA. The difference in devices can be partly attributed to the ‘per phase, 

per mile’ formulation used in the linear model in Ref. [1], which can make the problem less 

computationally intensive by reducing the range of some variables, but may restrain the flexibility 

in D-FACTS allocation. The results show that the proposed method has merit in terms of solution 

quality and reliability 
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Table 6.1.1. Comparisons Between Results Of Different Solution Algorithms 

 

 
Figure 6.1.3. Cost comparison between algorithms for base and D-FACTS cases 

C. Comparison of D-FACTS Allocation 

For a closer comparison, Table II below shows the allocation for the D-FACTS modules 

in each algorithm. Lines where no devices were allocated in either algorithm are not included in 

the table. The comparison shows that while the linear programming method concentrated the 

devices into two critical lines in the network, the EA instead distributed them throughout the entire 

system, and the number of D-FACTS modules allocated on each line does not have to follow a 

‘per phase per mile’ resolution when solved using the EA. This shows that the EA is able to offer 

more flexibility in D-FACTS allocation in a computationally efficient manner. 
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Table 6.1.2. D-FACTS Allocation per algorithm 

 

D. Computational Efficiency 

In order to show the computational efficiency of this type of model, the EA was coded on 

Matlab®, and run with a population size of 200 and 100 iterations. Both programs were run on a 

Dell Inspiron 17-7779 with 16 GB of RAM and an i7-7500U processor. The runtimes of both 

algorithms were obtained and are illustrated in Fig. 4. There is a noticeable difference in runtime 

between the two methods, with the EA being roughly a third of the linear program. This shows 

that the EA-based method is significantly more computationally efficient than methods such as 

branch and bound for this type of model. 
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Fig. 6.1.4. Runtime Comparisons for both algorithms (seconds) 

V. Conclusions and Future Work 

This study presented an EA-based approach to solve a stochastic D-FACTS allocation 

model, which optimally assigns D-FACTS devices per phase to transmission lines. It mitigates 

transmission congestion and reduces generation dispatch costs, resulting in better social welfare in 

the electricity market. The model considers uncertainties caused by fluctuating loads in the system. 

The algorithm was used to allocate D-FACTS under static investment limits and conditions, and 

its effectiveness was compared to a previously developed linear model. Results show that the 

proposed algorithm can solve the D-FACTS optimally allocation problem much more 

computationally efficient than the Linear Programming model for D-FACTS allocation without 

significantly increasing the objective function value. 

This approach to solving a D-FACTS allocation problem is novel, and it is still necessary 

to further test its applicability over different scenarios. In a future work, the algorithm will be 

tested against other solution methods with varying investment levels and different operating 

conditions including with the implementation of renewable energy sources 
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6.2. CO- OPTIMIZING OPERATING COST AND RENEWABLE ENERGY CURTAILMENT IN D-

FACTS ALLOCATION 

Abstract— Modern energy grids have become extremely complex systems, requiring more 

variable and active flow control. As a remedy to this, Distributed Flexible AC Transmission 

Systems (D-FACTS) are cost-efficient devices used to mitigate power flow congestion and 

integrate renewable energies. The objective of this study is then to propose an efficient multiple 

objective evolutionary algorithm to solve a stochastic model for D-FACTS allocation which aims 

to optimize both the utilization of renewable resources and the total operating costs of the grid. 

The model was implemented on a modified RTS-96 test system, and the results show that 

optimally allocating D-FACTS modules using the proposed model can significantly reduce power 

system operating costs and improve the integration of renewable energy sources. Additionally, the 

case study shows that the model is very computationally efficient.  

Index Terms--Distributed flexible AC transmission systems (D-FACTS), evolutionary 

algorithm, metaheuristics, multi-objective optimization, optimal allocation, stochastic 

optimization 

I. Nomenclature 

Indices 

a, b Solutions 

c Contaminant 

𝑘 Transmission line.  

𝑔 Generator. 

𝑛 Node. 

𝑠 Scenario. 

𝑠𝑒𝑔 Segment of linearized generator cost function. 

i Objective or Fitness Function 

Sets 
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𝜎+(𝑛) Transmission lines with their “to” bus connected to node 𝑛. 

𝜎−(𝑛) Transmission lines with their “from” bus connected to node 𝑛. 

𝑔(𝑛) Generators connected to node 𝑛. 

𝑟(𝑛)  Renewable generators connected to node n. 

Variables 

𝐶𝑖𝑛𝑣
𝐷  Total investment in D-FACTS ($). 

𝐷𝑎,𝑏 Dominance of solution a over solution b 

𝐹𝑘,𝑠 Real power flow through transmission line 𝑘 in scenarios 𝑠. 

𝐹𝑀𝑖𝑎 Value of fitness function i for solution a 

𝑂𝐹𝑖,𝑎 Value of objective function i for solution a 

𝑃𝑔,𝑠 Real power generation of generator 𝑔 in scenarios 𝑠. 

𝑃𝑟,𝑠
𝐶  Curtailed renewable generation from renewable generator r in scenario s 

𝑃𝑔,𝑠
𝑠𝑒𝑔

 Real power generation of generator 𝑔 in scenarios 𝑠 in segment 𝑠𝑒𝑔. 

𝑅𝑔,𝑠
𝐷  Spinning down reserve available through generator 𝑔 in scenario 𝑠. 

𝑅𝑔,𝑠
𝑈  Spinning up reserve available through generator 𝑔 in scenario 𝑠. 

𝑥𝑘
𝐷 Integer indicating the number of D-FACTS installed on transmission line 

𝑘 

𝜃𝑏,𝑠 Voltage angle at bus 𝑏 in scenarios 𝑠. 

𝜃𝑓𝑟,𝑘,𝑠 Voltage angle at the “from” node of line 𝑘 in scenarios 𝑠. 

𝜃𝑡𝑜,𝑘,𝑠 Voltage angle at the “to” node of line 𝑘 in scenarios 𝑠. 

Parameters 

𝐶𝑔
𝑁𝐿 No load cost of generator 𝑔. 

𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟 Linear cost of generator 𝑔 in segment 𝑠𝑒𝑔. 

𝐶𝑔
𝐷 Down reserve cost of generator 𝑔. 

𝐶𝑔
𝑈 Up reserve cost of generator 𝑔. 

𝐶𝑠𝑖𝑛𝑔𝑙𝑒
𝐷  Cost a of single D-FACTS unit ($). 
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𝐶𝑠ℎ
𝐷  Cost a of single D-FACTS unit converted to an hourly figure ($/h). 

𝐶𝑖𝑛𝑣
𝑚𝑎𝑥 Maximum investment allowed for D-FACTS. 

𝑓𝑘,𝑠 Flow direction for line k in scenario s. 

𝐹𝑘
𝑚𝑎𝑥 Thermal capacity/voltage drop limit of transmission line 𝑘. 

𝑖𝑘
𝑚𝑎𝑥  Maximum number of D-FACTS that can be allocated per line. 

𝐼  Interest rate/discount rate. 

𝑙𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑐 Maximum number of lines in which D-FACTS devices may be allocated 

𝑙𝑘  Length of line k 

𝐿𝑛,𝑠 Load at bus 𝑛 in scenario 𝑠.  

𝑁  Lifespan of D-FACTS. 

𝑁𝑔 Total number of generators. 

𝑁𝑘  Total number of lines. 

𝑁𝑠 Number of scenarios. 

𝑁𝑠𝑒𝑔 Number of segments for the linearized generator cost function. 

𝑁𝑝𝑜𝑝 Population size for the algorithm. 

𝑁𝑟  Number of renewable generators. 

𝑝𝑠 Probability of scenario 𝑠. 

𝑃𝑔
𝑚𝑎𝑥 Upper generation limit of generator 𝑔. 

𝑃𝑔
𝑚𝑖𝑛 Lower generation limit of generator 𝑔. 

𝑃𝑟,𝑠  Renewable generation produced by renewable generator r in scenario s  

𝑃𝑟,𝑠
𝐶   Renewable energy curtailed from renewable generator r in scenario s. 

𝑆𝐷 Spinning down reserve requirement 𝑔. 

𝑆𝑈 Spinning up reserve requirement 𝑔. 

𝑋𝑘 The reactance of transmission line 𝑘. 

𝑋𝑘
𝑚𝑎𝑥  The maximum reactance of line k if D-FACTS are installed on this line. 

𝑋𝑘
𝑚𝑖𝑛    The minimum reactance of line k if D-FACTS are installed on this line. 
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𝜂𝐶 , 𝜂𝐿 The maximum adjustment percentage of the line’s reactance in the 

capacitive or inductive mode that a single D-FACTS module (1 

device/phase/mile) can achieve. 

∆𝜃𝑘
𝑚𝑎𝑥 Maximum value of bus voltage angle difference to maintain stability for 

line 𝑘. 

∆𝜃𝑘
𝑚𝑖𝑛 Minimum value of bus voltage angle difference to maintain stability for 

line 𝑘. 

 

II. Introduction 

The American electric grid system is constantly facing problems with their transmission 

systems. While some issues such as technical failures or natural disasters are hard to plan for, 

others, such as capacity and congestion, can be solved in the design of the system. Transmission 

congestion occurs when a line is overloaded to the point that it starts to deteriorate, which can then 

cause a myriad of issues from short-circuiting to line breakage. As a way of mitigating this 

problem, variable-impedance series flexible AC transmission systems (FACTS) can be used to 

provide effective power flow control as part of smart transmission systems [1]. FACTS can help 

improve the utilization of an existing network and provides a more sustainable and reliable power 

delivery network. 

Distributed FACTS (D-FACTS) are considered a light-weight version of FACTS, in which 

many smaller devices are used in place of a single large one, and installed along the transmission 

line rather than at a substation. In recent years, D-FACTS technology has advanced considerably, 

and is now being implemented in various projects [2]. However, it is important to also consider 

environmental impacts when looking at possible large infrastructure projects, even more so now 

as climate changes are becoming more extreme. For this reason, this study will consider not only 

the cost-effectiveness of installing DFACTS devices on an existing power grid, which has been 

previously shown by [3] to improve considerably by the installation of the devices, but also will 
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consider the integration of renewable energy sources as a rudimentary measure of environmental 

impacts. Since D-FACTS devices can improve the transmission capacity of a network, it is 

expected then that by improving flow capacity around the renewable energy sources the power 

generated by traditional generators would be reduced and the integration of renewable energies 

would improve. 

The topic of D-FACTS allocation is still a relatively new one, with a still limited number 

of studies and models published. The models have varying levels of complexity according to their 

objective. The earliest work on D-FACTS allocation is by Li et al [4], who in 2009 proposed a 

non-linear DC-based optimization model for allocating D-FACTS devices with the objective of 

minimizing congestion in the lines. Said study used a static value for the reactance adjustment of 

each device. Ref. [5] proposed a Particle Swarm Optimization (PSO) algorithm for D-FACTS 

device allocation with the objective to reduce loads in overloaded lines. This model used a static 

generation and load. Other proposed methods include the use of graph theory [6], linear 

programming, and mixed-integer programming [3], [7]. However, these types of optimization 

methods can be very computationally intensive.   

Studies such as [8]-[9] recommend the use of D-FACTS devices for effectively controlling 

energy flow in systems with distributed generation, including less predictable sources such as 

renewable energies. Ref. [10] also remarks that FACTS devices have been successfully used for 

smart power flow control. By extension, it can be said that the modular D-FACTS can be at least 

as effective for the same purpose. Among the advantages of D-FACTS devices are enhanced grid 

utilization, increased flexibility and power flow control, and increased security and reliability [11]. 

Most importantly, D-FACTS improve power quality by stabilizing nonlinear loads, thus working 

to maintain sinusoidal waves in the current [12]. 

Multiple Objective Optimization of D-FACTS allocation problems have previously been 

performed with deep focuses on specific issues of transmission lines. Ref. [13], for example, 

attempts to minimize voltage deviation and power losses, maximize voltage stability, and optimize 
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load balancing using an enhanced bacterial foraging optimization (EBFO) method. Particle Swarm 

Optimization methods have also been used by [14] with the purpose of simultaneously optimizing 

the VA rating, power loss, and undervoltage problems by allocating unified power quality 

conditioners, which are devices with similar applications as D-FACTS. Newer algorithms, such as 

the lightning search algorithm, have also been successfully used by [15] to improve power loss, 

voltage deviation, and voltage stability by allocating D-FACTS. However, despite the optimization 

of multiple objectives in these studies, they are considered as separate objectives and are optimized 

separately as a show of the improvements offered by the devices rather than by simultaneous 

optimization. In addition, renewable energy curtailment has yet to be considered as an objective 

to optimize in existing literature.  

In order to fill these gaps, this paper proposes a Multiple Objective Evolutionary Algorithm 

(MOEA) to solve a D-FACTS optimal allocation problem. The innovation of this algorithm is that 

it considers not only cost savings resulted from using D-FACTS, but also the renewable energy 

curtailment, and the two objectives are considered simultaneously in the optimization problem. 

The algorithm can generate a pareto front with feasible solutions, and system planner could choose 

the best solution based on their needs. Additionally, the proposed algorithm is very 

computationally efficient. 

The remainder of this paper is organized in the following manner: Sec. Error! Reference s

ource not found. will describe the formulation of the optimal allocation model as well as the 

MOEA used to solve it; Sec. Error! Reference source not found. will discuss the simulation s

etup and the results from the case study, and finally conclusions and future work directions are 

presented in Sec. Error! Reference source not found.. 

III. Model Formulation 

A. D-FACTS Allocation Mathematical Model 
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The proposed model is a DC Optimal Power Flow (DCOPF) -based D-FACTS allocation 

model, which has the purpose of allocating D-FACTS modules in each phase with the objective 

of optimizing cost and renewable energy utilization while maintaining load satisfaction. It is a 

stochastic optimization model, where different scenarios with associated probabilities are 

considered to assess some level of future uncertainties. It differs from the Mixed-Integer Linear 

Program model presented in [3] in the following key aspects: (1) The proposed model in this study 

is nonlinear, while the model in [3] is linear; (2) the proposed model allocates the total number of 

devices per phase for a transmission line, while the model in [2] allocated them per phase per mile 

in each line, which allows our model more accuracy in finding the required number of devices to 

optimally allocate along the system; and (3) the proposed model simultaneously optimizes both 

total costs and renewable energy usage. Despite introducing a second objective function and 

removing linearity constraints, it is still possible to solve the problem in a computationally-

efficient manner thanks to the use of the Multiple Objective Evolutionary Algorithm discussed in 

Sec. III-B. In the proposed model, series variable-impedance D-FACTS modules are allocated. 

Since the reactances of the lines are to be adjusted, the applicable power flow constraints will 

depend on power flow directions, as discussed by Error! Reference source not found. : 

If 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≥ 0,   

𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘
𝑚𝑎𝑥⁄ ≤ 𝐹𝑘,𝑠 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘

𝑚𝑖𝑛⁄    (1) 

If 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ 0,  

 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘
𝑚𝑖𝑛⁄ ≤ 𝐹𝑘,𝑠 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘

𝑚𝑎𝑥⁄    (2) 

The model for optimal D-FACTS allocation considering energy reserve requirements and 

multiple scenarios is described by Equations (3) – (26): 

min 𝑂𝐹1 =  ∑ 𝑃𝑠 (∑ (∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1 + 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 + 𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿)

𝑁𝑔

𝑔=1 +
𝑁𝑠
𝑠=1

∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶𝑁𝑟

𝑟=1 ) + 𝐶𝑖𝑛𝑣
𝐷   (3) 

min OF2 = (∑ (𝑃𝑠 ∑
𝑃𝑟,𝑠

𝐶

𝑃𝑟,𝑠

𝑁𝑟
𝑟=1 )

𝑁𝑠
𝑠=1 ) (4) 

𝑃𝑔,𝑠 = ∑ 𝑃𝑔,𝑠
𝑠𝑒𝑔𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1   (5) 
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𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥  (6) 

−𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝐹𝑘

𝑚𝑎𝑥  (7) 

∑ 𝐹𝑘,𝑠𝑘∈𝜎+(𝑛) −  ∑ 𝐹𝑘,𝑠𝑘∈𝜎−(𝑛) + ∑ 𝑃𝑔,𝑠𝑔∈𝑔(𝑛) +    

∑ (𝑃𝑟,𝑠 − 𝑃𝑟,𝑠
𝐶 )𝑟∈𝑟(𝑛) = 𝐿𝑛,𝑠      (8) 

∑ 𝑅𝑔,𝑠
𝑈𝑁𝑔

𝑔=1 ≥ 𝑆𝑈       (9) 

∑ 𝑅𝑔,𝑠
𝐷𝑁𝑔

𝑔=1 ≥ 𝑆𝐷     (10) 

𝑅𝑔,𝑠
𝑈 ≤ 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔,𝑠       (11) 

𝑅𝑔,𝑠
𝐷 ≤ 𝑃𝑔,𝑠 − 𝑃𝑔

𝑚𝑖𝑛       (12) 

𝑅𝑔,𝑠
𝑈 ≥ 0   (13) 

𝑅𝑔,𝑠
𝐷 ≥ 0   (14) 

Δ𝜃𝑘
𝑚𝑖𝑛 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ Δ𝜃𝑘

𝑚𝑎𝑥 (15) 

𝜃1,𝑠 = 0  (16) 

𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐿) 𝑋𝑘𝐹𝑘,𝑠 ≥ 𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)   (17) 

𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐶) 𝑋𝑘𝐹𝑘,𝑠 ≤ 𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠) (18) 

0 ≤ 𝑥𝑘
𝐷 ≤ 𝑖𝑘

𝑚𝑎𝑥        (19) 

∑
𝑥𝑘

𝐷

max(𝑥𝑘
𝐷,1)

𝑁𝑘
𝑘=1 ≤ 𝑙𝑚𝑎𝑥

𝑎𝑙𝑙𝑜𝑐    (20) 

𝐶𝑖𝑛𝑣
𝐷 = ∑ ∑ 3𝑖𝐶𝑠ℎ

𝐷 𝑥𝑘,𝑖
𝐷𝑖𝑚𝑎𝑥

𝑖=1
𝑁𝑏𝑟
𝑘=1   (21) 

𝐶𝑖𝑛𝑣
𝐷 ≤ 𝐶𝑖𝑛𝑣

𝑚𝑎𝑥   (22) 

𝐶𝑠ℎ
𝐷 = 𝐶𝑠𝑖𝑛𝑔𝑙𝑒

𝐷 𝐼(1+𝐼)𝑁

8760((1+𝐼)𝑁−1)
   (23) 

0 ≤ 𝑃𝑟,𝑠
𝐶 ≤ 𝑃𝑟,𝑠   (24) 

In this formulation, the objectives are first to minimize the total expected operational costs, 

including generation and reserve costs as well as D-FACTS investment costs (3), and the curtailed 

renewable energy (as a percentage) to use as a rudimentary environmental impact metric (4).  

Equation (5) segments the generation to work with the linearized form of the generation cost curve, 

while (6) serves to establish the upper and lower generation limits for each generator that serves 

the system. Equation (7) indicates the transmission limits for each line, considering that the flow 



108 

can be described as positive or negative based on the flow direction. Based on previous models, 

the capacity of short lines (0-50 miles) is set to their thermal limits, the capacity of medium lines 

(50-156 miles) is determined by their voltage drop limit, and the for long lines (over 156 miles) 

the capacity is set by voltage angle stability limits. The power balance at each bus in the system is 

defined by (8) indicating the load at each bus to be equal to all the power generated at each bus 

plus the incoming line transfers minus the outgoing line transfers. Eqns. (9)-(14) define the reserve 

requirements, with (11) and (12) specifically defining reserve capacities. Equations (15) and (16) 

define the voltage angle constraints, setting the angle at bus 1 to be 0 by definition. Furthermore, 

(17) and (18) show the DC power flow equations for each line, regardless of whether D-FACTS 

are installed in the line or not, considering the flow direction. Equation (19) serves to define the 

limit of how many D-FACTS may be installed at each line based on the adjustment limits for the 

simulation and the length of the line. Eq. (20) limits the number of lines at which the devices may 

be installed, in order to assist with feasibility of implementation and prevent too many lines from 

having devices allocated to them, which could make installation unfeasible under realistic 

circumstances. Eq. (21) defines the total investment cost, which is limited in (22) to account for 

possible budget limits, and calculated into an hourly figure in (23) considering the discount rate 

and expected lifespan of the modules. Additionally, (24) defines the upper and lower bounds for 

the renewable energy curtailment. 

B. The Evolutionary Algorithm 

A metaheuristic algorithm is a type of stochastic search algorithm inspired by natural 

evolution processes. In its base form, an EA seeks to encode a computational problem into a set of 

strings which can represent a solution to a problem, and then combine these using a heuristic 

process in order to approximate an optimal solution. Since its proposal in 1975, this type of 

algorithm has been used for solving various computationally burdensome problems arising in real-

world applications which then require computationally efficient algorithms to achieve near-

optimal solutions within a reasonable timeframe by performing an intelligent search of the solution 
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space [17]. In the present research, we develop a new MOEA to efficiently find possible solutions 

to the problem and identify which meet optimality conditions. 

As this is a multiple-objective optimization problem, it is possible and expected that the 

objective functions are in opposition to each other, and thus a single solution cannot be obtained 

without receiving input from a decision-maker who either has experience in the field or who works 

in the industry and has some priorities already in mind. In this case, a type of optimality called 

Pareto Optimality is used. Pareto-optimal solutions are those for which no other solution is equal 

or better in all objectives. At the end of a multi-objective optimization problem, the result is then 

a set of Pareto-optimal solutions or a Pareto front to be presented to a decision maker. 

 
Figure 6.2.1. Chromosome Example 

 

First, the problem is solved without considering D-FACTS in order to obtain the flow 

directions which will be used in (17) and (18). The algorithm then starts by generating random 

values within the solution space in order to pre-allocate the D-FACTS devices within the network, 

following constraints (19) and (20). These are used in a reduced LP problem with constraints (3-

8, 15-24) in order to minimize the generation costs and renewable energy curtailment throughout 

the system, using cost as the objective function and then obtaining the energy curtailment from the 

LP output. After, the reserves defined in (9-14) are allocated by the use of a greedy algorithm, to 

further reduce computational burden from the LP. The greedy algorithm works by allocating 

reserves from the available space described in (11-14) based on the lowest possible cost, until the 

up and down spinning reserve requirements formulated in (9-10) are satisfied. Figure 1 shows how 

a solution or chromosome may be interpreted within the algorithm, each value within the vector 

representing the number of D-FACTS allocated at each line, with 0 representing that no devices 

are installed in that line. A set of solutions (or population) is thus stored as a 2-D matrix in which 

each row is a chromosome vector that represents a solution. 
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Figure 6.2.2. Evolutionary Algorithm Flowchart 

 

Fig. 2 contains a flowchart detailing the steps taken by the algorithm. At first, a random 

first set of solutions is generated and the LP and greedy algorithm mentioned before are used to 

obtain the objective function values described in (3,4). After each iteration, all current solutions 

are cross-checked for dominance, with the non-dominated solutions being stored separately. In 

order to rank the solutions for the crossover step, two new fitness metrics are incorporated and 

later combined to obtain a single combined fitness metric with which to rank solutions prior to 

crossover. The first metric is based on dominance count, to ensure proximity to the true Pareto 

frontier, while the second metric is based on inter-solution distance, to ensure a widespread range 

of solutions, as described in the method developed by [18]. Both metrics are then normalized and 

added to create a combined fitness metric in order to rank the solutions for elitism and perform a 

crossover. The metrics are described below in (25)-(27). In Eq. (25), 𝐷𝑖,𝑗 = 1 if 𝑂𝐹1𝑖 ≤ 𝑂𝐹1𝑗   & 

𝑂𝐹2𝑖 ≤ 𝑂𝐹2𝑗   or 0 if otherwise. In these equations, i and j refer to a solution number, while Npop 

refers to the number of solutions at each iteration. OF1 and OF2 refer to the objective functions 

described in (1) and (2), normalized to the [0,1] range. 

𝐹𝑀1𝑖 = ∑ 𝐷𝑖,𝑗
𝑁𝑝𝑜𝑝

𝑗≠𝑖
    (25) 

𝐹𝑀2𝑖 = ∑ (|𝑂𝐹1𝑖 − 𝑂𝐹1𝑗|
2

+ |𝑂𝐹2𝑖 − 𝑂𝐹2𝑗|
2

)

1

2𝑁𝑝𝑜𝑝

𝑗=1
   (26) 



111 

𝐹𝑀𝑖 =
𝐹𝑀1𝑖

max 𝐹𝑀1
+

𝐹𝑀2𝑖

max 𝐹𝑀2
    (27) 

At the end of each iteration, a part of the solutions continues into the next iteration by a 

process called elitism, which serves to ensure that good solutions are not lost as the algorithm 

progresses. Additionally, a new set of solutions is created via a single-point crossover. A cut-point 

is generated, and two randomly selected solutions are combined by taking parts of the parent 

solutions before and after the cut-point, and enforcing the limits in Eqs. (19-23) afterwards to 

ensure validity of the solutions. This process repeats until a set number of iterations has been run 

or there is no improvement for the optimal objective function value after a set number of iterations 

and no new solutions are being added to the non-dominated storage. Another aspect of generating 

a new population is mutation, which can occur on newly generated solutions by randomly 

switching some values within the new solutions. Mutation is used in an EA to add variety into the 

solution space and preventing the algorithm from converging around local optima. 

IV. Case Study 

A. Simulation Setup 

In this study, the model in Section III-A is adopted to study the cost savings associated to 

the installation of D-FACTS devices using the algorithm proposed in section III-B. The 

computational efficiency of the solution method is also briefly discussed. The case study uses the 

same modifications over the IEEE RTS-96 test system as Ref. [3]. Uncertainties in the model are 

represented by four different load scenarios, with load factors of 0.65, 0.75, 0.85, and 0.95, as well 

as by renewable energy generation factors of 0, 0.2, 0.6, and 1, resulting in a total of 16 scenarios. 

It is assumed that each D-FACTS module is capable of adjusting the reactance of the line in which 

it is installed by ±2.5% per phase per mile, and that the maximum reactance adjustment range 

allowed for a 3-phase line is ±20%. This would result in a line limit of 𝑖𝑘
𝑚𝑎𝑥 =

20

2.5
𝑙𝑘 = 8𝑙𝑘 devices 

per line. D-FACTS allocation results were obtained with the D-FACTS allocated evenly per line 

per phase. 
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Device costs were determined based on industry data and previous academic studiesError! R

eference source not found.. Based on studies which account for it, the cost for a D-FACTS device 

is assumed to be $100/kVA; where the compensation level in kVA is dependent on the parameters 

of the transmission line in which the D-FACTS device is installed. For simplicity, the 

compensation level for the most demanding line was adopted. In the modified RTS-96 system, the 

largest compensation level is 30kVA/module. Thus, a total cost of $3000/module is used in this 

study. Since the cost functions are on hourly units, it is necessary to use Eq. (23) to convert this to 

an hourly value, considering an expected lifespan of 30 years and a discount rate of 6%. 

Additionally, industry practices would impose a limit on investment for the installation of modules, 

denoted by (22). An allowance of $25/hour is assumed in this study. 

B. Trade-off between Cost and Renewable Energy Curtailment 

The MOEA was run with the following parameters: 500 individuals in the population 

iterated over 100 generations, with 5% elitism and 5% chance of mutation. The algorithm was run 

on a Dell computer with 256GB of RAM and an Intel ® Xeon ® W-2195 CPU, and had a total 

runtime of 52.62 seconds. With two objectives, namely, minimizing both power system operating 

costs and renewable energy curtailment, a Pareto front consisting of nondominated feasible 

solutions was generated from the optimization problem and shown in Fig. 3. From the results, it 

can be seen that a solution with a low cost can have a high percentage of renewable energy 

curtailment, and vice versa. The solutions obtained have a cost ranging between $71,075 and 

$71,307 and a renewable energy curtailment ranging between 59.48% and 60.45%, while the base 

case solution has an expected cost of $78,716 and a curtailment of 64.45%. It can be seen that all 

solutions provide some level of improvement to both objective functions, with some solutions 

providing a more reduced cost function while others provide a lower level of curtailment. Based 

on such a pareto front, a system planner can choose a solution according to their budget and 

renewable energy integration goals. 
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Figure 6.2.3. Pareto-Front representation of the objective functions of non-dominated solutions 

C. D-FACTS Allocation 

 To compare the results, we listed the cost savings, renewable energy curtailment reduction 

and optimal D-FACTS allocation from a few representative solutions and compared them with the 

base case, in which no D-FACTS was allocated, in Table I. The base case solution with no D-

FACTS is also presented and highlighted with light blue color in the table. In terms of the number 

of D-FACTS allocated, the number tends to vary over all the solutions between 900-1000 devices. 

In terms of locations, all the obtained solutions placed a large number of D-FACTS modules in 

line 22, which leads to the conclusion that this is a crucial line in the transmission of the renewable 

energy, and so installing the devices along this line helps distribute more renewable energy and 

thus reduce the total curtailment and costs. 

Table 6.2.1. Selected Solutions 

Cost ($) Cost Reduct. Curt.  Curt. Reduct. Line Alloc. 

78,716 - 64.45% - - - 

71,075 9.71% 60.35% 10.52% 

4 255 

13 72 

22 675 

71,122 9.65% 59.84% 11.28% 22 738 



114 

36 90 

37 174 

71,307 9.41% 59.48% 11.82% 

11 12 

20 177 

22 711 

23 75 

36 21 

D. Computational Efficiency 

In terms of computational time, a similar problem which does not consider renewable 

energy and only the objective of minimizing costs was run on a full mixed-integer linear program 

with a total computational time of 804.50 seconds. This new approach, with a solution time of 

52.62 seconds, has at least a 93% improvement in computational time over a conventional MILP 

solver. 

V. Conclusions and Future Work 

This study presented a metaheuristic multi-objective approach for solving a scenario-based 

stochastic D-FACTS allocation model. The model optimally allocates D-FACTS devices along 

transmission lines per phase. It mitigates transmission congestion, reduces power system operating 

costs, and facilitates the integration of renewable energies, which can result in better social welfare 

in the electricity market as well as lower environmental impacts. The model considers uncertainties 

introduced by fluctuating loads in the system and volatile renewable energy generation. The 

algorithm allocates D-FACTS modules with static investment limits, optimizing the objective of 

minimizing both total costs and the percentage of curtailed renewable energy. Additionally, 

computational times show that this type of algorithm is very efficient in solving the problem. In 

future work, a more in-depth study of environmental impacts, using more thorough methods such 

as Global Warming Potential of the whole system including non-renewable generators. 

Additionally, for a more realistic allocation of devices, constraints will be introduced to limit the 
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number of lines in which devices may be installed, as it is not necessarily realistic to install devices 

throughout most of the system. Other work includes refining of the algorithm to further reduce 

computational time as well as making it feasible to apply over larger networks. 
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6.3. FINE-TUNING THE PARAMETERS FOR SOLVING THE MULTI-OBJECTIVE D-FACTS 

OPTIMAL ALLOCATION PROBLEM 

Abstract 

Distributed Flexible AC Transmission Systems (D-FACTS) and D-FACTS allocation are 

new topics that are gaining traction in the field of power systems. The reason for this is that they 

are a simple yet effective tool for improving power flow control, power system flexibility, and 

reducing overall power systems cost by manipulating some properties of the transmission lines on 

which they are installed. So far, most research has focused on improving the algorithms used to 

optimally allocate the D-FACTS along existing networks in order to maximize or minimize a 

certain objective. However, much of this research has been based on the assumption that all the 

parameters are pre-defined and immutable. The key objective of this study is thus to study how 

the changing of different parameters may affect the final solutions found by the optimization 

algorithm. The key parameters studied are the line reactance adjustment limit, the number of lines 

on which D-FACTS are allowed, and the investment cost limit. Results show that all these 

parameters have an effect on the final solution set, and decisions need to be made by carefully 

weighing the available resources, convenience for deployment, and the potential benefits that 

could be brought by utilizing D-FACTS devices. 

Keywords 

Power Systems, D-FACTS, Optimization, Multi-Objective Optimization and Sensitivity 

Analysis.  

1. Introduction 

American electric grids are facing an increasing number of issues, some of which are 

related to an ever-increasing changing climate; from the now yearly phenomenon of wildfires 

caused by fallen PG&E lines in California to the weeks-long outages in Texas in early 2021 due 

to freezing temperatures. While some of the issues may be weather-related and harder to control 

or prepare for, many issues stem from increased demand, such as congestion and line overloading. 
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Congestion is such a major issue in U.S. power grids that $40 billion were spent on congestion 

reduction projects in 2018 alone, and yet congestion costs are still measured in the billions of 

dollars per year (US DOE, 2020).  In order to help mitigate this problem, we propose the use of 

variable-impedance series flexible AC transmission systems (FACTS), which help provide 

effective power flow control as part of smart transmission systems (Li, et al, 2010). FACTS, as 

well as Distributed FACTS (D-FACTS), can help improve the utilization of an existing network 

and provide a more reliable and sustainable power delivery network (Gotham and Heydt, 1998). 

As an extension of FACTS technology, D-FACTS are a lightweight version of traditional 

FACTS. These have the associated benefits of reduced cost and spatial footprint, as well as a 

capacity for being re-deployed based on shifting power needs. Traditional FACTS require large 

spaces for installation next to buses in the system, but D-FACTS can be installed along existing 

transmission lines or towers in a modular fashion (Sang and Sahraei-Ardakani, 2019). That is why 

D-FACTS devices have become more popular and are being implemented in various electric grid 

improvement projects throughout the country, and their benefits in the integration of renewable 

energies into new grids has been previously demonstrated by Gandoman et al (2018). However, 

D-FACTS allocation is still a new field and has not been studied in full detail. The expectations 

and some preliminary studies indicate that they will be similarly useful in the integration of 

renewable energy into existing and established grids, but more research is needed to see to what 

extent this will be possible and under what conditions and parameters they would be able to do so.  

Although arguably more versatile and effective, the allocation of D-FACTS modules rather 

than traditional FACTS devices introduces nonlinearities to the optimal allocation model which 

can be computationally exhausting to solve (Sang & Sahraei-Ardakani, 2018). For some time, the 

challenge was then to improve on the computational complexity of the algorithms in order to solve 

the allocation problem. Castillo Fatule (2021) proposed a new formulation and algorithm to 

eliminate the nonlinearities by the use of metaheuristic optimization and greatly reducing the 

computational time for this problem. 
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Since the benefits of incorporating D-FACTS devices into a network have been thoroughly 

studied and demonstrated, and progress has been made into improving the optimization process, 

the main objective in this research is now to estimate under which parameters the D-FACTS 

devices will be able to perform best to improve upon the objectives being studied. 

The main objectives considered for the optimization process are the total expected system 

costs, the total expected Global Warming Potential (GWP), and Line Utilization Factor (LUF). 

These three objectives are to be minimized simultaneously, but they are conflicting with each 

other, thus a multi-objective optimization process is utilized to obtain a set of non-dominated 

Pareto-optimal solutions. The optimization algorithm will be then executed repeatedly while 

varying the parameters being studied in order to perform a sensitivity analysis of the parameters. 

The key objective of this study is thus to use Design of Experiments tools to study the 

change of the objective function values in the Pareto sets and analyze the impact of each of the 

parameters being modified. 

2. Literature Review 

FACTS and D-FACTS are thyristor-based controllers designed to manage series 

impedance, shunt impedance, phase angle, or some other parameter in electric transmission 

systems (Hingorani, 1993). Some of the most common types of FACTS are Static Series Var 

Compensator (SSVC), used to control voltage, Thyristor Controlled Series Capacitor (TCSC) used 

to increase transfer capability and stability, Static synchronous series Compensator (SSSC) used 

for power transmission series compensation with synchronous voltage, and Unified Power Flow 

Controller (UPFC) for enhancing steady state, dynamic, and transient stability (Murali et al, 2010). 

Similarly, there is a distributed version for most of these types of devices. 

Previous research such as Habur and O’Leary’s (2004) has shown that the installation of 

FACTS devices can not only improve the stability of transmission networks, but also reduce 

operational costs and open the possibility for increased sales by utility companies. Others such as 

Wibowo et al (2011) and Torino et al (2003) have used FACTS to reduce congestion, stabilize 
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voltage, integrate new energy sources into the grid and improve network security. In addition, it is 

by design that all the applications for which traditional FACTS can be used are also applicable for 

D-FACTS devices. 

The allocation of FACTS devices has been a relatively established research field for some 

time now. Jordehi (2015) shows various uses Particle Swarm Optimization (PSO) algorithms for 

determining optimal location and size of STATCOM-type FACTS devices in power systems, 

optimal type and location of multi-type FACTS devices including TCSC, SVC, and UPFC to 

maximize voltage stability, optimal FACTS settings to optimize system loadability and installation 

costs, minimization of copper losses, etc. In fact, various authors have implemented different 

methods for optimizing the allocation of FACTS and D-FACTS devices around a specific 

parameter in the power system, including optimizing voltage stability during outages as a Line 

Stability Index (LSI) using a modified PSO algorithm (Srivastava et al, 2014); minimizing total 

operation and installation costs (Mohamed et al, 2010); optimization of system security and 

installation costs using Genetic Algorithms (GA) (Radu and Besanger, 2006); as well as various 

other parameters by the use of less commonly used optimization algorithms.  

Similarly, the allocation of D-FACTS devices has also been a popular field in recent years 

since D-FACTS were first proposed by Divan and Johal in 2005, emphasizing their added benefits 

of a reduced investment cost, space requirements, system stress, and reliability requirements. In 

addition to these benefits, it has been studied that the potential economic benefits of D-FACTS 

devices outperform those of FACTS devices (Sang and Sahraei-Ardakani, 2018). This is not 

considering the long-term benefit of re-deployability that D-FACTS have, which have yet to be 

studied given the additional complexity for the problem, but that promises further reduced costs if 

a situation arises in which the network configuration changes and re-allocation becomes necessary. 

D-FACTS also help integrate new renewable energy sources into the grid. An analysis 

performed by Suresh and Sreejith (2017) showed that the use of D-FACTS can improve the voltage 

profile and reduce line power loss when integrating new power sources to the grid. It is estimated 
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that by 2050 at least 20% of energy in global grids will come from renewable sources (Jha et al, 

2017). As it stands, power flow control devices will become more relevant in managing 

distribution networks and grid congestion. Also, more than FACTS, D-FACTS are more attractive 

control devices for the dynamic management of voltage, reactive power, and power quality, since 

they can provide more precise and dynamic management of microgrids to mitigate the uncertainty 

associated with the incorporation of renewable energies (Gupta and Kumar, 2016; Gaigowal and 

Renge, 2016). 

The problem of allocating D-FACTS has been studied through various algorithms and 

mathematical models. One very common optimization method is Linear Programming (LP), 

formulated in 1947. However, the allocation of D-FACTS created non-linearities in the equations 

used to model the problem, not to mention that for problems that are NP-hard or NP-complete, a 

pure LP approach is computationally expensive. A better approach to avoid excessive 

computational burdens is the use of a metaheuristic algorithm. Metaheuristic algorithms are 

advanced search algorithms designed to search for an optimal solution by testing possible solutions 

around the search space, testing their objective functions, and adjusting the solutions further until 

convergence around an optimum or some other condition occurs. For the purpose of this study, a 

genetic algorithm will be used to search the solution space by testing possible combination of D-

FACTS allocated along the power network and using these combinations to eliminate the 

nonlinearities in the mathematical model to solve the reduced problem using a LP approach. GAs 

were first proposed by Holland in 1975 around the idea of mimicking natural evolution processes. 

Their basic procedure is to initialize a population or set of possible solutions, evaluate them, and, 

while the termination criteria is not reached, select solutions for the next population and perform 

crossover and mutation before evaluating this new population (Srinivas and Patnaik, 1994). 

Although not as much as PSO methods, GAs have been also used to allocate FACTS and D-

FACTS devices such as the allocation of multi-type FACTS for improving voltage stability by 

Baghaee et al (2008), among others. 
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Multi-Objective optimization is an optimization procedure used to optimize more than one 

conflicting objective function simultaneously. While some approaches attempt to use linear 

functions to combine the objectives into a single aggregated objective, the approach we take in 

this study is instead to store all the solutions that can be objectively be considered “not worse” 

than any others by not being worse in all objectives compared to the rest. This is usually called a 

non-dominated set of solutions or a Pareto set. This concept implies that there will be no other 

solution in the feasible region which is quantifiably better in all objectives than the Pareto-Optimal 

set, and allows for trade-offs to be made from the decision-maker’s point of view (Zitzler et al, 

2002). Because of the nature of a Pareto-optimal set, the decision maker must have some expertise 

in the field for which the problem is solved, as well as knowledge on the resulting set of solutions, 

in order to make an educated choice as to which solution would be best, as well as to give weights 

to the objectives being evaluated. The Pareto-optimal set can help reduce the design alternatives 

from a feasible region into optimal trade-offs (Yancang et al, 2010). 

In this study, the multi-objective algorithm used is one similar to the Non-Dominated 

Sorting Genetic Algorithm (NSGA), an approach in which all non-dominated solutions are 

classified into a separate category and assigned a fitness value based around population size, but a 

different fitness assigning metric, as proposed by Taboada et al (2017). This metric is based on 

both inter-solution distance and dominance, and is based around attempting to increase the spread 

of solutions over the Pareto set as well as improve proximity to the true Pareto frontier. This 

method has been proven useful in D-FACTS allocation with the dual objectives of minimizing 

total system costs and renewable energy curtailment (Castillo Fatule et al, 2021), as well as in 

solving various other engineering problems including some in the areas of logistics and biofuel 

production. 

As shown in the literature, D-FACTS optimization is an active research topic in the area 

of power systems and transmission system optimization, but there is still much to study in the field. 

Very few studies consider quantified environmental impact metrics as an objective to optimize, 
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which becomes a more significant topic as climate change effects worsen. Additionally, while 

some studies such as Sang and Sahraei-Ardakani (2019) have considered varying load scenarios, 

none have accounted for generator or line failures, opting for less computationally-burdensome 

deterministic approaches, considering only the most likely scenario of optimal operating 

conditions. Also, sensitivity analysis of the operating parameters for the D-FACTS devices has not 

been a focus on any research in the found literature. As such, the present research will use some 

previously-developed multi-objective optimization algorithms in order to analyze the effects of 

adjusting some of the parameters of D-FACTS allocation. 

3. Methods 

In order to solve the D-FACTS allocation algorithm, the following mathematical model 

was created based on Sang and Sahraei-Ardakani’s (2019) model. This model was created not only 

to address the nonlinearities created by the incorporation of the D-FACTS devices but also to 

account for the calculations of environmental impacts, and combine some constraints that become 

redundant after addressing the nonlinearities in the previous models. The full model is described 

below. In addition, the flow direction of power lines is relevant when adjusting impedance, so the 

following DC power flow constraints are applicable: 

𝐼𝑓 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≥ 0, (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘
max ≤ 𝐹𝑘,𝑠 ≤  (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘

min 

𝐼𝑓 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ 0, (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘
min ≤ 𝐹𝑘,𝑠 ≤ (𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)/𝑋𝑘

𝑚𝑎𝑥 

Having considered flow constraints, the objective functions for the model are as follows: 

min 𝑂𝐹1 =  ∑ 𝑃𝑠 (∑ ( ∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

+ 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 + 𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿)

𝑁𝑔

𝑔=1

+ ∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

) + 𝐶𝑖𝑛𝑣
𝐷

𝑁𝑠

𝑠=1

 (1) 

min 𝑂𝐹2 = ∑ 𝑃𝑠 (∑ ∑ 𝐺𝑊𝑃𝑔,𝑐,𝑠

𝑁𝑐

𝑐=1

𝑁𝑔

𝑔=1

)

𝑁𝑠

𝑠=1

 (2) 

min 𝑂𝐹3 =
1

𝑁𝑘
∑ ∑ 𝑃𝑠 (

𝐹𝑘,𝑠

𝐹𝑘
max)

100𝑁𝑘

𝑘=1

𝑁𝑠

𝑠=1

 (3) 

These objective functions correspond with the three key objectives considered in this study 

which are (1) minimize total system operational costs, including a transformed investment cost, 
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(2) minimize the total environmental impacts expressed in terms of Global Warming Potential 

(100kg CO2 equivalent), and (3) minimize the line utilization factor, a measure of congestion 

proposed by Das et al (2009). The model constraints are below: 

𝑃𝑔,𝑠 = ∑ 𝑃𝑔,𝑠
𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

 (4) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥  (5) 

−𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝐹𝑘

𝑚𝑎𝑥 (6) 

∑ 𝐹𝑘,𝑠

𝑘∈𝜎+(𝑛)

− ∑ 𝐹𝑘,𝑠

𝑘∈𝜎−(𝑛)

+ ∑ 𝑃𝑔,𝑠

𝑔∈𝑔(𝑛)

+ ∑ (𝑃𝑟,𝑠 − 𝑃𝑟,𝑠
𝐶 )

𝑟∈𝑟(𝑛)

= 𝐿𝑛,𝑠 (7) 

∑ 𝑅𝑔,𝑠
𝑈

𝑁𝑔

𝑔=1

≥ 𝑆𝑈  (8) 

∑ 𝑅𝑔,𝑠
𝐷

𝑁𝑔

𝑔=1

≥ 𝑆𝐷 (9) 

𝑅𝑔,𝑠
𝑈 ≤ 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔,𝑠 (10) 

𝑅𝑔,𝑠
𝐷 ≤ 𝑃𝑔,𝑠 − 𝑃𝑔

𝑚𝑖𝑛 (11) 

𝑅𝑔,𝑠
𝑈 , 𝑅𝑔,𝑠

𝐷 ≥ 0 (12) 

Δ𝜃𝑘
𝑚𝑖𝑛 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ Δ𝜃𝑘

𝑚𝑎𝑥 (13) 

𝜃1,𝑠 = 0 (14) 

𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐿) 𝑋𝑘𝐹𝑘,𝑠 ≥ 𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠) (15) 

𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐶) 𝑋𝑘𝐹𝑘,𝑠 ≤ 𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠) (16) 

0 ≤ 𝑥𝑘
𝐷 ≤ 𝑖𝑘

𝑚𝑎𝑥 (17) 

∑
𝑥𝑘

𝐷

max(𝑥𝑘
𝐷 , 1)

𝑁𝑘

𝑘=1

≤ 𝑙𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑐 (18) 

𝐺𝑊𝑃𝑔,𝑐,𝑠 = ∑ 𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔
𝐺𝑔,𝑠𝑊𝑐

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔

 (19) 

𝐶𝑖𝑛𝑣
𝐷 = ∑ 3𝑥𝑘

𝐷𝐶𝑠ℎ
𝐷

𝑁𝑘

𝑘=1

 (20) 
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𝐶𝑖𝑛𝑣
𝐷 ≤ 𝐶𝑖𝑛𝑣

𝑚𝑎𝑥 (21) 

𝐶𝑠ℎ
𝐷 = 𝐶𝑠𝑖𝑛𝑔𝑙𝑒

𝐷
𝐼(1 + 𝐼)𝑁

8760((1 + 𝐼)𝑁 − 1)
 (22) 

0 ≤ 𝑃𝑟,𝑠
𝐶 ≤ 𝑃𝑟,𝑠 (23) 

𝑓𝑘,𝑠 =
𝐹𝑘,𝑠

|𝐹𝑘,𝑠|
 (24) 

Equation (4) segmentizes the power generation at each generator in order to match with the 

segments of the linearized cost functions. Eq. (5) defines the minimum and maximum generation 

level for each generator. Eq. (6) defines the maximum flow capacity for each line, in either positive 

or negative direction. Eq (7) defines the load at each bus as the sum of all incoming energy flows 

minus the sum of all outgoing flows, plus the sum of all power generated at this bus via traditional 

generators and the sum of all non-curtailed renewable energy attached to this bus. Equations (8-9) 

define the up and down reserve requirements for the system, with eqs. (10-12) defining the reserves 

at each generator. Eq. (13) defines the voltage angle stability limits at each bus and eq. (14) defines 

the angle at bus 1 to be 0 as a reference point. 

Eqs. (15-16) are the DC power flow equations considering the reactance adjustment effect 

of the D-FACTS devices in both inductive and capacitive modes, and the flow directions. Eq. (17) 

serves to define the number of D-FACTS that can be installed at each line, with eq. (18) limiting 

the number of lines in which the devices may be installed. Eq. (19) serves to define the Global 

Warming Potential of the generator configurations. Eq. (20) defines the D-FACTS investment cost, 

which is then limited by eq. (21). Eq. (22) converts the cost of the devices into an hourly value via 

a compound interest function in order to have the same units as the rest of the data, and finally eq. 

(23) defines the curtailment of renewable energy as no more than the amount produced. Eq. (24) 

is not part of the optimization model, but is used as an intermediate step in order to obtain the 

power flow directions required in other equations. 

In addition, the following equations describe the Pareto dominance criteria: 

𝐼𝑓 𝑂𝐹𝑜𝑏𝑗,𝑎 ≤ 𝑂𝐹𝑜𝑏𝑗,𝑏 ∀𝑜𝑏𝑗;  𝐷𝑎,𝑏 = 1;  𝑒𝑙𝑠𝑒, 𝐷𝑎,𝑏 = 0 (25) 
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∑ 𝐷𝑎,𝑏

𝑁𝑝𝑜𝑝

𝑎=1

= 0 (26) 

Where a solution is non-dominated if it meets equation 26 

The fitness metrics used in the algorithm for parent selection are: 

𝐹𝑀1,𝑎 = ∑ √ ∑ (𝑂𝐹𝑖,𝑎 − 𝑂𝐹𝑖,𝑏)
2

 

𝑁𝑜𝑏𝑗

𝑖=1

𝑁𝑝𝑜𝑝

𝑏=1

 (27) 

𝐹𝑀2,𝑎 = ∑ 𝐷𝑎,𝑏

𝑁𝑝𝑜𝑝

𝑏=1

(28) 

And an aggregated fitness metric is obtained by normalizing both these values and adding 

them together. 

 

For solving the problem associated to this model, a modified multi-objective evolutionary 

algorithm is proposed. This algorithm follows the following steps: 

0. START 

1. Using a reduced model consisting of Eqns. (1), (4-9), (13-17), and (23), with 𝑥𝑘
𝐷 =

0 𝑎𝑛𝑑 𝑓𝑘,𝑠 = 1  solve the linear problem to obtain the values of 𝐹𝑘,𝑠. 

2. Obtain the values of 𝑓𝑘,𝑠 via equation (24). 

3. Generate an initial population using the parameters 𝑖𝑘
𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥

𝑎𝑙𝑙𝑜𝑐 defined in equations 

(17) and (18). 

4. For each chromosome, solve the linear problem consisting of equations (1), (4-7), (13-

17), and (20-23). 

5. Using the outputs from each linear problem, use a greedy algorithm to allocate the up 

and down spinning reserves as defined in Eqns. (10-14). 

6. From this information, calculate the values for the objective functions in (2, 3).  

7. Use the Pareto Dominance criteria in Eqns. (25-26) on all solutions and store the non-

dominated ones. 
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8. IF the stopping criteria have been met, go to step (13). Otherwise, go to step 9. 

9. Obtain the Fitness Metrics and calculate the Aggregated Fitness Metric. 

10. Rank solutions according to the Aggregated Fitness Metric obtained in step 9. 

11. Select Parents from the current population. 

12. Generate a new population and return to step 4. 

13. Retrieve the stored solutions and re-check for dominance to obtain the Pareto-Optimal 

set 

14. END 

This process is summarized below in fig. 1: 

 

 

Figure 6.3.1. Evolutionary Algorithm Flowchart 

 

Tournament selection for the parents and single-point crossover method are used in the 

algorithm for creating a new population. 

4. Data Collection 

As the base of analyzing electrical grids, a modified version of the IEEE 1996 Reliability 

Test System was used. The modifications are described in Sang and Sahraei-Ardakani’s (2017) 
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study. These modifications consist mainly of modifying load and generation capacities in order to 

produce additional congestion in the system. 

In summary, the IEEE RTS-96 is a fairly simple network consisting of 24 buses, 38 

transmission lines, 32 traditional generators, and 2 renewable energy sources. It was originally 

proposed by Cliff Grigg in the 1996 IEEE Winter Power meeting. While there are extensions to 

increase the system to three areas, only a single area is used for this study. 

In addition, the base case used as reference for this study is the one described by Castillo 

Fatule (2021), with the following parameters for the D-FACTS allocation. The number of lines in 

which devices may be installed is limited to 5 lines for feasibility in installation (corresponding to 

eq. 18), the maximum change in reactance is 20% of the line’s current reactance for stability 

purposes (reflected in eq. 17), and the hourly investment limit has been set to $25/hr 

(corresponding to eq. 21). 

These are the three key parameters that will be modified for the sensitivity analysis. In 

addition, the other parameters used in the algorithm which will not be studied are the following: 

• Number of generations used in the MOEA: 100 

• Number of Individuals in each generation: 100 

• Mutation Factor: 5% 

• Elitism: 10% 

• Reactance change in inductive and capacitive mode per device: 2.5% per phase per mile 

• Life Expectancy of the devices: 10 years 

• Interest rate on the devices: 6% 

For reference, the results from the original study are summarized below in figure 2: 
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Figure 6.3.2. Matrix scatterplot for Cost, GWP, and LUF for original optimization problem 

without sensitivity analysis 

 

Results and analysis from the sensitivity analysis are presented in section 5 below. 

5. Results and Discussion 

5.1. Numerical Results 

The sensitivity analysis involved changing three factors in the D-FACTS parameters in 

order to study their effects on the non-dominated Pareto set. These factors and their levels are 

summarized below in Table 1. 

 

Table 6.3.1. Sensitivity Analysis Factors 

 

Factor Reference 

Level 

Test Levels 

𝑪𝒉𝒍𝒊𝒎 20% 15%, 25% 

𝒏𝒍𝒊𝒏𝒆𝒔 5 10 

𝑪𝒎𝒂𝒙
𝑫  $25 $20, $30, $35  
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The twenty-four experiments were carried out using the algorithm described in section 3 

on a Dell Computer with an Intel® Xeon ® W-2195 CPU and 256GB of RAM, with an average 

computing time of 19s. 

The results of the tests are summarized below in Table 2. The objectives in the Pareto Front 

are summarized as Best value, Worst value, and Average value for each of the objectives being 

considered. The number of non-dominated solutions are also recorded under NOBS in the table. 

For the purpose of simplicity, these values will also be used in the sensitivity analysis. 

In Addition, Table 3 will show the p-values for the ANOVA analysis of each of the below 

columns against the factors being studied, including an interaction between the maximum 

investment limit and the line limit, which was found to be significant in some cases. In Table 3, an 

asterisk will be used to indicate factors that have a small but significant effect at a 10% significance 

level, two asterisks for a moderately significant effect on the response variable at significance level 

of 5% is used for the statistical analysis, and three asterisks will be shown on highly significant 

effects with a significance level of 1%. Interestingly, the reactance change limit is not a very 

significant factor (marked with ** or *** in table 3) in any of the responses except in the worst-

case LUF. Additionally, the worst-case responses for both cost and GWP are seemingly 

independent from all the factors with a slightly significant effect from the reactance change limit 

in the worst-case cost response). However, worst-case responses in one objective function usually 

correspond with best-case responses in a different objective function, and thus we cannot 

automatically assume that there is no benefit from studying these responses. 

 

Table 6.3.2. Summarized Experiment Data 

 
EX

P 

BCO

ST 

BG

WP 

BL

UF 

WCO

ST 

WG

WP 

WL

UF 

ACO

ST 

AG

WP 

AL

UF 

NO

BS 

CHLI

M 

NLIN

ES 

CDM

AX 

1 

7101

1.2 

88.0

25 

0.05

0 

72925

.0 

88.05

4 

0.05

4 

7222

0.9 

88.0

42 

0.05

3 24 0.2 5 20 

2 

7040

6.0 

82.8

74 

0.04

4 

72778

.5 

88.05

1 

0.05

6 

7194

7.5 

87.8

48 

0.05

3 28 0.2 5 25 

3 

7044

6.2 

83.5

56 

0.04

4 

72786

.2 

88.05

0 

0.05

5 

7169

6.7 

87.6

96 

0.05

3 24 0.2 5 30 
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4 

6965

1.6 

75.9

57 

0.04

3 

72777

.2 

88.05

0 

0.06

0 

7113

5.9 

85.5

30 

0.05

4 14 0.2 5 35 

5 

7121

4.4 

88.0

26 

0.04

8 

72899

.3 

88.05

3 

0.05

4 

7212

4.5 

88.0

41 

0.05

3 20 0.15 5 20 

6 

7084

7.7 

87.0

41 

0.04

8 

72561

.8 

88.04

5 

0.05

5 

7172

1.4 

87.9

52 

0.05

3 12 0.15 5 25 

7 

7090

3.5 

86.7

92 

0.04

7 

72889

.6 

88.05

3 

0.05

8 

7210

7.6 

87.9

44 

0.05

3 17 0.15 5 30 

8 

7034

2.6 

78.2

77 

0.04

6 

72869

.9 

88.05

2 

0.06

0 

7153

6.2 

87.0

05 

0.05

4 23 0.15 5 35 

9 

7104

5.5 

88.0

23 

0.05

3 

72779

.9 

88.05

1 

0.05

4 

7195

5.9 

88.0

38 

0.05

4 23 0.25 5 20 

10 

7104

5.5 

88.0

23 

0.05

3 

72779

.9 

88.05

1 

0.05

4 

7195

5.9 

88.0

38 

0.05

4 23 0.25 5 25 

11 

7041

0.0 

83.2

09 

0.04

3 

72790

.4 

88.05

1 

0.05

5 

7162

3.1 

87.5

44 

0.05

3 23 0.25 5 30 

12 

7040

2.9 

83.2

99 

0.04

3 

72737

.3 

88.05

0 

0.05

5 

7152

9.9 

87.6

28 

0.05

2 23 0.25 5 35 

13 

7167

1.0 

88.0

34 

0.05

1 

72847

.7 

88.05

2 

0.05

4 

7248

1.0 

88.0

46 

0.05

3 22 0.2 10 20 

14 

7138

9.1 

88.0

28 

0.04

6 

72810

.9 

88.05

1 

0.05

4 

7220

7.1 

88.0

41 

0.05

3 20 0.2 10 25 

15 

7121

0.1 

88.0

18 

0.04

5 

72717

.3 

88.04

9 

0.05

5 

7189

3.1 

88.0

36 

0.05

3 27 0.2 10 30 

16 

7070

1.2 

86.0

89 

0.04

9 

72597

.9 

88.04

8 

0.05

7 

7194

1.9 

87.9

39 

0.05

3 23 0.2 10 35 

17 

7186

3.9 

88.0

36 

0.05

2 

72880

.6 

88.05

3 

0.05

4 

7241

6.1 

88.0

45 

0.05
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Table 6.3.3. ANOVA p-values 

 

Response 

Var 

Ch lim p-

value 

N lines p-

value 

CDmax p-

value 

Nlines*CDmax 

Best Cost 0.778 0.000*** 0.000*** 0.473 

Average 

Cost 

0.997 0.000*** 0.000*** 0.144 
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Worst 

Cost 

0.092* 0.372 0.065* 0.107 

Best GWP 0.947 0.005* 0.000* 0.010*** 

Average 

GWP 

0.848 0.038** 0.019** 0.012** 

Worst 

GWP 

0.202 0.315 0.160 0.170 

Best LUF 0.437 0.148 0.010*** 0.255 

Average 

LUF 

0.314 0.596 0.192 0.300 

Worst 

LUF 

0.034** 0.017** 0.001*** 0.045** 

 

After removing the non-significant factors for each response column, the following 

regression equations were obtained. Only responses with at least one significant factor at a 5% 

significance level were considered: 

𝐵𝑒𝑠𝑡𝐶𝑜𝑠𝑡 = 71872 + 120.6 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 − 66.59 ∗ 𝐶𝑚𝑎𝑥
𝐷  

𝐴𝑣𝑔𝐶𝑜𝑠𝑡 = 72243 + 88.6 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 − 32.34 ∗ 𝐶𝑚𝑎𝑥
𝐷  

𝐵𝑒𝑠𝑡𝐺𝑊𝑃 = 107.84 − 1.603 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 − 0.958 ∗ 𝐶𝑚𝑎𝑥
𝐷 + 0.0796 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 ∗ 𝐶𝑚𝑎𝑥

𝐷  

𝐴𝑣𝑔𝐺𝑊𝑃 = 91.69 + 0.357 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 − 0.1637 ∗ 𝐶𝑚𝑎𝑥
𝐷 + 0.01604 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 ∗ 𝐶𝑚𝑎𝑥

𝐷  

𝐵𝑒𝑠𝑡𝐿𝑈𝐹 = 0.05618 − 0.00031 ∗ 𝐶𝑚𝑎𝑥
𝐷  

𝑊𝑜𝑟𝑠𝑡𝐿𝑈𝐹 = 0.04734 − 0.01525 ∗ 𝐶ℎ𝑙𝑖𝑚 − 0.000779 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 + 0.000474 ∗ 𝐶𝑚𝑎𝑥
𝐷

− 0.000039 ∗ 𝑁𝑙𝑖𝑛𝑒𝑠 ∗ 𝐶𝑚𝑎𝑥
𝐷  

Based on these equations we can perform some analyses on the effects on the significant 

variables on the Pareto front. First, increasing the number of lines over which the D-FACTS may 

be allocated actually increases both the total costs and GWP of the system, but it decreases the 

LUF. A reasoning for this is that it can reduce strain on more lines as the devices are allocated 

throughout the system, but by not focusing improving the transmission around more cost-efficient 

and environmentally friendly generators, it forces the system to rely on more expensive and/or 

more polluting generators which are more distributed throughout the system. 
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Another interesting observation is the effect of increasing the investment limit over the 

objectives. While it reduces both the cost objective and the Global Warming Potential throughout 

the system, as is expected for an improved network with improved transmission capacity from 

more efficient generators, it actually has an undesirable effect (at least linearly) on the worst-case 

of line utilization. This can also be attributed once again to the increased transfer capability from 

the generator nodes and into the rest of the network, with those specific lines being utilized more 

heavily, but it still has a desirable effect on the best-case LUF, possibly due to an overall network 

health improvement. 

Further, the effect of the number of lines in which D-FACTS may be installed actually has 

different effects on the best-case and the average-case for the GWP. While part of this result can 

be explained by the interaction effect with the investment limit, it is hard to fully understand this 

difference, especially when considering that these results come from a metaheuristic algorithm, 

and so we not only not have a full representation of the Pareto frontier, but also we may be looking 

at a local optimal set rather than the true optimal set. 

Overall, however, increasing the investment limit on the DFACTS devices in order to 

install more of them seems to have, overall, a positive effect on the objective functions being 

studied. Section 5.2 below has some illustrative graphs to help further the analysis. 

5.2. Graphical Results 

Below, Figure 3 is a scatterplot with trend line of the cost vs investment limit, for both 5 

lines and 10 lines max. allocation and with both the best and average cases for the objective. Figure 

4 is a scatterplot with trend line of the average cases for GWP. Only the average cases were used 

here since the range of the best cases is very wide and there are outliers in the data which impair 

visualization by over-expanding the axis range. Finally, Figure 5 shows the LUF values against 

the investment limit in all three cases. 
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Figure 6.3.3. Expected Cost vs. Investment limit 

 

 
Figure 6.3.4. Average-case Global Warming Potential vs. Investment limit 

 

 

 

Figure 6.3.5. Line Utilization Factor vs. Investment limit 

 

Overall, as described in the analysis in section 5.1, it’s very apparent that both the Cost and 

Global Warming Potential appear to go down as the investment limit increases. Although there 
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will be a limit to how much this limit can increase before the objectives stop improving, this value 

is larger than the scope of this sensitivity analysis. 

Furthermore, in the LUF, while the worst and average case do slightly increase with the 

investment limit, the best case does have a downward trend, although it has very high variability 

which is attributed to noise, as it was found that none of the other factors have a significant enough 

effect on this variable. 

In addition, as reflected in figure 3, an increased number of lines in which installation of 

D-FACTS devices does not improve the overall system costs or environmental impacts. In Figure 

3, the trends of the best and average cases have very similar slopes despite the number of lines, 

but the intercepts are different based on whether we look at the cases with 5 lines max. or with 10 

lines max. In Figure 4, the effect is even more pronounced. The trend for the case with 5 lines max 

appears to decrease almost quadratically as the investment limit increases (although this may be 

caused by to outliers in the data, since the regression equations do not have any significant 

quadratic terms), while the case with 10 lines decreases linearly and at a much slower rate. 

6. Conclusion 

This study performed a sensitivity analysis of the D-FACTS allocation problem taking into 

account three key parameters relevant to network properties rather than the optimization algorithm. 

These parameters were the amount of reactance change allowed on transmission lines, which 

affects voltage stability and total transfer along the line; the maximum number of lines over which 

D-FACTS may be installed, which affects how many lines will receive the devices and the 

feasibility of having the resources to perform the installation; and finally the monetary investment 

limit, which affects the amount of devices which will be installed throughout the system. The 

effects of these parameters are measured based on the resulting changes in the objective functions 

of the solutions remaining in the Pareto-optimal set after running the optimization algorithm, 

which are summarized into best-case, average-case, and worst-case for total expected operating 
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costs, expected Global Warming Potential, and Line Utilization Factors, which correspond to 

economic, environmental, and sustainable effects. 

The sensitivity analysis was performed mainly by the use of statistical regression analysis, 

with a significance level of 5% as a standard. These calculations were assisted by the use of 

Minitab ® software. Statistical analysis found that the reactance change limit has little impact on 

most of the objectives and that it is not a very significant parameter in the optimization process. 

On the other hand, number of lines and investment limit have a much more significant effect, with 

number of lines having an apparent inverse relation with most objectives, while the investment 

limit has a direct relation with improving the objective function values. The main drawback, 

however, is that investors and decision-makers may oppose increasing their investments despite 

obvious long-term benefits. Since each D-FACTS device has an estimated cost of $3000, and the 

hourly cost is calculated to be approximately 2.5 cents, an increase of $5/hr to the investment limit 

translates to approximately $600,000 in initial investment, which would discourage change and 

risk-averse executives, even despite previous studies estimating hourly savings in the tens of 

thousands of dollars. 
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6.4. ANALYZING THE EFFECTS OF LINE SWITCHING PROTOCOLS ON MULTI-OBJECTIVE 

D-FACTS ALLOCATION OPTIMIZATION 

Abstract—Distributed Flexible AC Transmission Systems (D-FACTS) and their allocation 

are emerging topics in the field of Power and Transmission Systems. They are simple yet effective 

tools for improving power flow control, system flexibility, and overall reliability. Line switching, 

on the other hand, refers to the practice of disconnecting transmission lines to change the topology 

of the transmission network and reroute the power flow. This study proposes a co-optimization 

model of D-FACTS and transmission switching and analyzes the synergy between the installation 

of D-FACT devices and line switching practices to reduce both the operating costs and 

environmental impacts of power systems. Case studies were carried out on a modified RTS-96 test 

system, and results show favorable results when implementing both practices in the test system. 

Keywords—Distributed flexible AC transmission systems (D-FACTS), evolutionary 

algorithm, line switching, multi-objective optimization, optimal allocation 

I. Nomenclature 

 

Indices 
a, b Solutions 
c Contaminant 

𝑘 Transmission line.  

𝑔 Generator. 

𝑛 Node. 

𝑠 Scenario. 

𝑠𝑒𝑔 Segment of linearized generator cost function. 

i Objective or Fitness Function 
  
Sets 

𝜎+(𝑛) Transmission lines with their “to” bus connected to node 𝑛. 

𝜎−(𝑛) Transmission lines with their “from” bus connected to node 𝑛. 

𝑔(𝑛) Generators connected to node 𝑛. 

𝑟(𝑛)  Renewable generators connected to node n. 

  
Variables 

𝐶𝑖𝑛𝑣
𝐷  Total investment in D-FACTS ($). 

𝐷𝑎,𝑏 Dominance of solution a over solution b 

𝐹𝑘,𝑠 Real power flow through transmission line 𝑘 in scenarios 𝑠. 
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𝐹𝑀𝑖𝑎 Value of fitness function i for solution a 

𝑂𝐹𝑖,𝑎 Value of objective function i for solution a 

𝑃𝑔,𝑠 Real power generation of generator 𝑔 in scenario 𝑠. 

𝑃𝑟,𝑠
𝐶  Curtailed renewable generation from renewable generator r in scenario s 

𝑃𝑔,𝑠
𝑠𝑒𝑔

 Real power generation of generator 𝑔 in scenarios 𝑠 in segment 𝑠𝑒𝑔. 

𝑅𝑔,𝑠
𝐷  Spinning down reserve available through generator 𝑔 in scenario 𝑠. 

𝑅𝑔,𝑠
𝑈  Spinning up reserve available through generator 𝑔 in scenario 𝑠. 

𝑥𝑘
𝐷 Integer indicating the number of D-FACTS installed on transmission line 𝑘 

𝜃𝑏,𝑠 Voltage angle at bus 𝑏 in scenarios 𝑠. 

𝜃𝑓𝑟,𝑘,𝑠 Voltage angle at the “from” node of line 𝑘 in scenarios 𝑠. 

𝜃𝑡𝑜,𝑘,𝑠 Voltage angle at the “to” node of line 𝑘 in scenarios 𝑠. 

𝑧𝑘  Indicator of whether a line k is switched on or off 

  
Parameters 

𝐶𝑔
𝑁𝐿 No load cost of generator 𝑔. 

𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟 Linear cost of generator 𝑔 in segment 𝑠𝑒𝑔. 

𝐶𝑔
𝐷 Down reserve cost of generator 𝑔. 

𝐶𝑔
𝑈 Up reserve cost of generator 𝑔. 

𝐶𝑠𝑖𝑛𝑔𝑙𝑒
𝐷  Cost a of single D-FACTS unit ($). 

𝐶𝑠ℎ
𝐷  Cost a of single D-FACTS unit converted to an hourly figure ($/h). 

𝐶𝑖𝑛𝑣
𝑚𝑎𝑥 Maximum investment allowed for D-FACTS. 

𝑓𝑘,𝑠 Flow direction for line k in scenario s. 

𝐹𝑘
𝑚𝑎𝑥 Thermal capacity/voltage drop limit of transmission line 𝑘. 

𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟  Linearized Heat production of generator g in generation segment seg 

(MMBTU/MW) 

𝐺𝑔,𝑐  Gaseous contaminant c released by generator g (kg/MMBTU) 

𝐺𝑊𝑃𝑔,𝑐,𝑠  Global Warming Potential caused by contaminant c from generator g in scenario s 

𝑖𝑘
𝑚𝑎𝑥  Maximum number of D-FACTS that can be allocated per line. 

𝐼  Interest rate/discount rate. 

𝑙𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑐 Maximum number of lines in which D-FACTS devices may be allocated 

𝑙𝑘  Length of line k 

𝐿𝑛,𝑠 Load at bus 𝑛 in scenario 𝑠.  

𝑁  Lifespan of D-FACTS. 

𝑁𝑔 Total number of generators. 

𝑁𝑘  Total number of lines. 

𝑁𝑠 Number of scenarios. 

𝑁𝑠𝑒𝑔 Number of segments for the linearized generator cost function. 

𝑁𝑝𝑜𝑝 Population size for the algorithm. 

𝑁𝑟  Number of renewable generators. 

𝑝𝑠 Probability of scenario 𝑠. 

𝑃𝑔
𝑚𝑎𝑥 Upper generation limit of generator 𝑔. 

𝑃𝑔
𝑚𝑖𝑛 Lower generation limit of generator 𝑔. 

𝑃𝑟,𝑠  Renewable generation produced by renewable generator r in scenario s  

𝑃𝑟,𝑠
𝐶   Renewable energy curtailed from renewable generator r in scenario s. 
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𝑆𝐷 Spinning down reserve requirement 𝑔. 

𝑆𝑈 Spinning up reserve requirement 𝑔. 

𝑊𝑐  GWP factor for contaminant c (1kg CO2 eq.) 

𝑋𝑘 The reactance of transmission line 𝑘. 

𝑋𝑘
𝑚𝑎𝑥  The maximum reactance of line k if D-FACTS are installed on this line. 

𝑋𝑘
𝑚𝑖𝑛    The minimum reactance of line k if D-FACTS are installed on this line. 

𝜂𝐶 , 𝜂𝐿 The maximum adjustment percentage of the line’s reactance in the capacitive or 
inductive mode that a single D-FACTS module (1 device/phase/mile) can achieve. 

∆𝜃𝑘
𝑚𝑎𝑥 Maximum value of bus voltage angle difference to maintain stability for line 𝑘. 

∆𝜃𝑘
𝑚𝑖𝑛 Minimum value of bus voltage angle difference to maintain stability for line 𝑘. 

𝑧𝑙𝑖𝑚  Maximum number of lines that can be switched off 

 

II. Introduction 

Energy infrastructure is used to generate, transmit, and distribute electricity. While 

investments have increased significantly to meet energy demands, the transmission and 

distribution sections still struggle with reliability, as over 70% the approximate 600,000 miles of 

transmission lines in the U.S. are nearing their expected lifespan [1]. Despite recent government 

initiatives to improve grid reliability and resistance to extreme conditions [2], it is expected that 

simple infrastructure expansion is not enough to fully remedy the problem. As an option to help in 

mitigating some of the issues in the transmission side of the grid, flexible AC transmission systems 

(FACTS) devices can be used to provide effective power flow control as part of smart transmission 

systems [3]. These same benefits can also be obtained by the use of D-FACTS, which are smaller, 

lightweight versions of traditional FACTS devices, with the added benefits of improved reliability, 

portability, and redeployability [4]. 

While D-FACTS devices have become more widespread in recent years, and their 

economic benefits have long been proven, it is important to consider environmental impacts when 

looking at large infrastructure projects. Some positive environmental effects have been previously 

associated with the integration of D-FACTS devices, as they can also improve renewable energy 

integration into power grids [5].  However, more specific measures of environmental impacts are 

not commonly studied for the D-FACTS allocation problem. As such, one objective of this study 

is to include the optimization of Global Warming Potential (GWP) alongside with the expected 
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cost. Since D-FACTS devices can improve transmission capacity in the network, it is expected 

that, by improving the integration of renewable energy and reduce the generation from fossil fuel-

based sources, the environmental impacts of power systems can be reduced. 

To effectively utilize D-FACTS, D-FACTS modules need to be optimally allocated. D-

FACTS allocation optimization is still a relatively new topic, with a limited number of studies and 

mathematical models published. These models have different levels of complexity depending on 

the main objective of the study, whether it being minimizing line congestion or system costs. One 

of the earliest studies on D-FACTS allocation can be attributed to Li et al. [6], who proposed a 

non-linear DC-based optimization model for allocating D-FACTS devices with the objective of 

minimizing congestion within the lines. Other studies such as Das et al. (Das, Prasaj, Harley, & 

Divan, 2009), who proposed a particle swarm-based approach for D-FACTS allocation in order to 

reduce load in overloaded lines using static generation and loads. Other proposed methods include 

the use of graph theory [8], linear programming [9], and mixed-integer programming[10]. 

However, these methods can be very computationally intensive, creating heavy burdens when 

analyzing larger systems. As a solution, a metaheuristic approach was created to avoid excessive 

computational times while maintaining optimal or near-optimal solutions. 

The use of D-FACTS devices has been recommended for effective flow control in systems 

with distributed generation, including less predictable sources such as renewable energies [11]. 

The D-FACTS devices are also advantageous for improving grid utilization, increasing flexibility 

and power flow control, as well as increasing grid security and reliability. Multiple-objective 

optimization of their allocation has previously been performed with focus on specific issues. Ref. 

[12], for example, used an enhanced bacterial foraging optimization method in order to minimize 

voltage deviation and power losses, maximize security, and optimize load balancing by the use of 

D-FACTS. Particle swarm optimization has also been used by [13] to optimize VA rating, power 

loss, and undervoltage problems by allocating unified power quality conditioners (a type of D-

FACTS). However, despite the optimization of multiple objectives, they are considered as separate 
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problems and thus optimizes separately rather than simultaneously in order to present the 

advantages of the devices rather to optimize all objectives. In addition, environmental impacts 

have not been considered by other authors in the found literature. 

Unlike the fairly recent development of D-FACTS, Transmission switching has been in 

use since the 1980s in order to relieve overload and voltage problems, reduce losses, and improve 

security [14]. Nowadays, it is used more commonly to reduce generation costs in congested 

systems, for day ahead or real time planning, by taking some lines out of service [15]. Based on 

the DCOPF problem, a mixed-integer program was proposed by [16] to minimize generation costs 

while simultaneously choosing to open some transmission-line switches, and this problem is 

named as optimal transmission switching (OTS). Related studies found that significant savings 

were possible by the use of transmission switching. 

Despite all the research in both fields, there have been no previous studies which consider 

the effects of both transmission switching and D-FACTS allocation. In order to fill this gap, this 

paper proposed a multiple-objective evolutionary algorithm (MOEA) to solve a D-FACTS optimal 

allocation and transmission switching problem. The main innovations of this algorithm are that it 

(1) considers optimization of not only cost but also environmental impacts in the form of GWP, 

and (2) incorporates both D-FACTS allocation and transmission switching to control the power 

flow and reduce operating costs as well as the environmental impacts. The algorithm can generate 

a Pareto front with feasible solutions, and a system planner or utility company can thus choose the 

best solution based on their needs and requirements.  

The remainder of this paper is organized as follows: Sec. III will describe the mathematical 

formulation of the model as well as the algorithm to solve it, Sec. IV will propose the simulation 

setup and results from the case study, and finally Sec. V will contain the concluding remarks. 
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III. Mathematical Model 

A. D-FACTS Allocation and Transmission Switching Model 

The proposed model is based on the DC Optimal Power Flow (DCOPF) problem. Variable-

impedance type of D-FACTS modules are used in this study, and these modules mainly affect real 

power flow. Thus, the DCOPF model is adopted instead of ACOPF to improve computational 

efficiency. This allocation model has the main purpose of allocating both D-FACTS modules in 

each phase of the lines and choosing lines to switch off with the objective of optimizing cost and 

environmental impacts while meeting the load demands. It is a stochastic optimization model, 

where different scenarios with associated probabilities are considered in order to account for some 

level of uncertainty. It differs from the model in [10] in the following key aspects: (1) The proposed 

model in this study is nonlinear, while the model in [10] is linear, however, the algorithm described 

in Sec. III-B can solve the model computationally efficiently despite the nonlinearities; (2) the 

proposed model allocates the D-FACTS devices in a per-phase basis for each line rather than per-

phase per-mile for each line; (3) the proposed model has the additional objective of minimizing 

the expected GWP; and (4) the proposed model co-optimizes the location of D-FACTS modules 

and transmission switching.  

Despite the introduction of additional objectives and nonlinearities, the problem can still 

be solved in a computationally-efficient manner by using the algorithm described in section III-B. 

In the proposed model, variable-impedance series D-FACTS modules are allocated. As the 

reactances of the lines are to be adjusted, the applicable power flow constraints will depend on 

power flow directions, as discussed by [17]: 

If 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≥ 0,   

𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘
𝑚𝑎𝑥⁄ ≤ 𝐹𝑘,𝑠 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘

𝑚𝑖𝑛⁄  (1) 

If 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ 0,  

 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘
𝑚𝑖𝑛⁄ ≤ 𝐹𝑘,𝑠 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 𝑋𝑘

𝑚𝑎𝑥⁄  (2) 
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The model for optimal D-FACTS allocation considering reserve requirements, multiple 

scenarios, and line switching practices is described below by Equations (3)-(26): 

min 𝑂𝐹1 =

 ∑ 𝑃𝑠 (∑ (∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1 + 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 +
𝑁𝑔

𝑔=1
𝑁𝑠
𝑠=1

𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿) + ∑ 𝑐𝑟𝑃𝑟,𝑠

𝐶𝑁𝑟
𝑟=1 ) + 𝐶𝑖𝑛𝑣

𝐷   (3) 

min OF2 = ∑ 𝑃𝑠 (∑ ∑ 𝐺𝑊𝑃𝑔,𝑐,𝑠
𝑁𝑐
𝑐=1

𝑁𝑔

𝑔=1 )
𝑁𝑠
𝑠=1   (4) 

𝑃𝑔,𝑠 = ∑ 𝑃𝑔,𝑠
𝑠𝑒𝑔𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1   (5) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥  (6) 

−𝑧𝑘𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝑧𝑘𝐹𝑘

𝑚𝑎𝑥  (7) 

∑ 𝐹𝑘,𝑠𝑘∈𝜎+(𝑛) −  ∑ 𝐹𝑘,𝑠𝑘∈𝜎−(𝑛) +

∑ 𝑃𝑔,𝑠𝑔∈𝑔(𝑛) + ∑ (𝑃𝑟,𝑠 − 𝑃𝑟,𝑠
𝐶 )𝑟∈𝑟(𝑛) = 𝐿𝑛,𝑠  (8) 

∑ 𝑅𝑔,𝑠
𝑈𝑁𝑔

𝑔=1 ≥ 𝑆𝑈  (9) 

∑ 𝑅𝑔,𝑠
𝐷𝑁𝑔

𝑔=1 ≥ 𝑆𝐷  (10) 

𝑅𝑔,𝑠
𝑈 ≤ 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔,𝑠  (11) 

𝑅𝑔,𝑠
𝐷 ≤ 𝑃𝑔,𝑠 − 𝑃𝑔

𝑚𝑖𝑛  (12) 

𝑅𝑔,𝑠
𝑈 ≥ 0  (13) 

𝑅𝑔,𝑠
𝐷 ≥ 0  (14) 

Δ𝜃𝑘
𝑚𝑖𝑛 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ Δ𝜃𝑘

𝑚𝑎𝑥  (15) 

𝜃1,𝑠 = 0  (16) 

𝑧𝑘𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐿) 𝑋𝑘𝐹𝑘,𝑠 ≥

𝑧𝑘𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)    (17) 

𝑧𝑘𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐶) 𝑋𝑘𝐹𝑘,𝑠 ≤

𝑧𝑘𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠)    (18) 

𝐺𝑊𝑃𝑔,𝑐,𝑠 = ∑ 𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔
𝐺𝑔,𝑠𝑊𝑐

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔   (19) 

0 ≤ 𝑥𝑘
𝐷 ≤ 𝑖𝑘

𝑚𝑎𝑥  (20) 

∑
𝑥𝑘

𝐷

max(𝑥𝑘
𝐷,1)

𝑁𝑘
𝑘=1 ≤ 𝑙𝑚𝑎𝑥

𝑎𝑙𝑙𝑜𝑐  
(21) 
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𝐶𝑖𝑛𝑣
𝐷 = ∑ ∑ 3𝑖𝐶𝑠ℎ

𝐷 𝑥𝑘,𝑖
𝐷𝑖𝑚𝑎𝑥

𝑖=1
𝑁𝑏𝑟
𝑘=1   (22) 

𝐶𝑖𝑛𝑣
𝐷 ≤ 𝐶𝑖𝑛𝑣

𝑚𝑎𝑥  (23) 

𝐶𝑠ℎ
𝐷 = 𝐶𝑠𝑖𝑛𝑔𝑙𝑒

𝐷 𝐼(1+𝐼)𝑁

8760((1+𝐼)𝑁−1)
  (24) 

0 ≤ 𝑃𝑟,𝑠
𝐶 ≤ 𝑃𝑟,𝑠  (25) 

∑𝑧𝑘 + 𝑧𝑙𝑖𝑚  ≥ 𝑁𝑘  (26) 

 

In this formulation, the objectives are first to minimize the total expected operating costs 

over all scenarios considering generation and reserve costs as well as the D-FACTS investment 

costs (3), and the total GWP of the generators (4). Eqn. (5) segments the generation to be on the 

same intervals as the linearized cost curve, while (6) denotes the upper and lower limits for each 

generator in the system. Eqn. (7) indicates the transmission limits for each line, accounting for the 

switched lines by using the binary variable 𝑧𝑘, which takes a value of 1 for lines in service, and 0 

for lines that are switched off. Based on previous models, the capacity of short lines (0-50 miles) 

is set to their thermal limits, the capacity of medium lines (50-156 miles) is determined by their 

voltage drop limit, and for long lines (over 156 miles) the capacity is set by voltage angle stability 

limits. The power balance at each bus is defined by (8), indicating the load at each bus to be equal 

to all power generated at the bus plus all incoming transfers and minus all outgoing transfers. Eqns. 

(9)-(14) define the reserve requirements, with (11) and (12) defining the reserve capacities. Eqns. 

(15) and (16) define the voltage angle constraints and set the angle at bus 1 to 0 for reference. 

Furthermore, (17) and (18) show the DC power flow equations at each line, regardless of the 

installation of D-FACTS and considering the flow direction and the line status. Eqn. (19) defines 

the GWP for each generator based on the Intergovernmental Panel on Climate Change 5th 

Assessment Report (AR5). A limit on the number of D-FACTS per line is defined in (20), while 

the total number of lines with D-FACTS devices is restrained in (21). The cost conversion and 

investment limit for D-FACTS are defined in (22)-(24). Finally, (25) defines the limits for 

renewable energy curtailment and (26) defines the maximum number of lines that may be switched 
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off. In addition, as the power flow direction 𝑓𝑘,𝑠 is a necessary but unknown parameter for 

optimizing the problem, a reduced model consisting of Eqns. (3), (5)-(8), (15)-(18) is used to 

calculate a simplified base scenario and the flow directions are then obtained using Eqn. (27), with 

all the values for 𝑓𝑘,𝑠 and 𝑥𝑘
𝐷 initialized to 1 and 0 respectively, turning Eqns. (17) and (18) into 

the DC power flow equation. 

𝑓𝑘,𝑠 =
𝐹𝑘,𝑠

max(|𝐹𝑘,𝑠|, 1)
 (27) 

B. The Evolutionary Algorithm 

A metaheuristic algorithm is a type of stochastic search algorithm that seeks to iteratively 

approach an optimal solution to a problem by performing a guided search over a solution space. 

An evolutionary algorithm, in turn, is a metaheuristic algorithm that mimics natural evolutionary 

processes by encoding a problem into a set of strings that can represent a solution to this problem. 

Since its proposal in 1975, this type of algorithm has been used for solving various computational 

problems that arise in real-world applications which require efficient algorithms to solve them 

within reasonable time frames. In the present research, we develop and present a new MOEA to 

efficiently find possible solutions to the problem and identify which of them meet optimality 

conditions. Since this model is nonlinear and nonconvex, an optimal solution cannot be 

guaranteed. However, previous research, as done by [18], shows that this type of algorithm can 

reduce the computational time by a large margin. 

As this is a multi-objective optimization problem, it is both possible and expected that the 

objectives are in opposition to each other, and thus a single solution cannot usually be obtained 

without receiving input from an outside decision-maker. For this situation, a type of optimality 

called Pareto Optimality is used. A Pareto-optimal solution is a solution for which no other existing 

solution is equal or better than it in all objectives. At the end of the optimization process, the result 

should be a set of Pareto-optimal solutions, called a Pareto front. 

 
Fig. 6.4.1. Chromosome Example 
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In the proposed algorithm, the first step is to generate an initial set of possible solutions. 

These are encoded following the example in Fig. 1: A possible solution consists of a vector of 

length 𝑁𝑘, with positive values representing how many D-FACTS are to be installed at each line, 

and a -1 value representing lines that are to be shut off. Initially, these values are allocated 

randomly following constraints (20)-(24) and (26), with the negative values representing a 𝑧𝑘of 0 

and all other representing a value of 1. 

As line switching can affect the power flow directions, the values for 𝑓𝑘,𝑠 are re-calculated 

for each candidate solution. Afterwards, this information is used to consecutively solve reduced 

LPs consisting of (3)-(8), (15)-(19), and (25) while the reserves in (9)-(14) are allocated using a 

greedy algorithm in order to further reduce the computational time. The objective functions are 

then obtained and dominance is checked in order to store the non-dominated solutions before 

performing a crossover and generating new solutions until the termination criteria are satisfied. 

Fig. 2 contains a more detailed flowchart of the steps taken by the algorithm. 

 
Fig. 6.4.2. MOEA Flowchart 

At each iteration, after evaluating each solution, all current solutions that resulted in valid 

configurations are cross-checked for dominance, with the non-dominated solutions being stored 

separately. In order to rank the solutions for the crossover step, two new fitness metrics are 

calculated and aggregated to obtain a single combined fitness metric with which to rank the 
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solutions prior to crossover. The first metric is based on dominance count to ensure proximity to 

the true Pareto front, while the second is based on inter-solution distance, in order to ensure a wider 

range of solutions, as described by the method developed by [19]. Both metrics are normalized 

before being added into a combined fitness metric that can be used to rank each solution. These 

metrics are shown below in (28)-(30). In Eq. (28), 𝐷𝑖,𝑗 = 1 if 𝑂𝐹1𝑖 ≤ 𝑂𝐹1𝑗  & 𝑂𝐹2𝑖 ≤ 𝑂𝐹2𝑗 , or 

0 if otherwise. In these equations, i and j refer to a solution number, while 𝑁𝑝𝑜𝑝 refers to the total 

number of solutions at each iteration. OF1 and OF2 refer to the objective functions described in 

(3) and (4), respectively, normalized to the [0,1] range. 

 𝑂𝐹1𝑖 = ∑ 𝐷𝑖,𝑗
𝑁𝑝𝑜𝑝

𝑗≠𝑖
  (28) 

𝐹𝑀2𝑖 = ∑ (|𝑂𝐹1𝑖 − 𝑂𝐹1𝑗|
2

+ |𝑂𝐹2𝑖 − 𝑂𝐹2𝑗|
2

)

1

2𝑁𝑝𝑜𝑝

𝑗=1
  (29) 

𝐹𝑀𝑖 =
𝐹𝑀1𝑖

max 𝐹𝑀1
+

𝐹𝑀2𝑖

max 𝐹𝑀2
   (30) 

At the end of each iteration, a small part of the solutions is kept and inserted into the next 

iteration by a process called elitism to ensure good quality of solutions. Additionally, a new set of 

solutions is generated via single-point crossover, where randomly chosen solutions will be split 

along a cut-point and their parts combined. To avoid falling into local optima, there is also a small 

chance of mutation occurring, in which case some genes will be moved around the solution. After 

generating a new solution, they are adjusted if needed to ensure the enforcement of (20)-(24). This 

whole process repeats until a number of iterations has been run.  

IV. Case Study 

A. Simulation Setup 

In this study, the model described in Sec. III-A is adopted to study the cost and 

environmental impact reductions associated with the installation of D-FACTS devices and 

implementation of line-switching protocols using the algorithm described in Sec. III-B. The test 

system used is the IEEE RTS-96, with some modifications as described in [10] so as to simulate 

additional congestion. To model uncertainty, various load and renewable energy production 

scenarios are created. For the load scenarios, load factors of 0.65, 0.75, 0.85, and 0.95 are applied 
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to the system, while renewable generation factors of 0, 0.2, 0.6, and 1 are considered, resulting in 

a total of 16 scenarios after combining them. It is assumed that each D-FACTS module is capable 

of adjusting the reactance of the line in which it is installed by ±2.5% per phase per mile, and that 

the maximum reactance change allowed for a 3-phase line is ±20%. This would result in a limit of 

𝑖𝑘
𝑚𝑎𝑥 =

20

2.5
𝑙𝑘 = 8𝑙𝑘 devices per phase.  

The cost of the devices was determined based on industry data and previous academic 

studies. Based on the literature, the cost of a single D-FACTS device is assumed to be 

approximately $100/kVA; where the compensation level in kVA is dependent on the parameters 

of the transmission line on which it is installed. For simplicity, the compensation level of the most 

demanding line was adopted. In the RTS-96, this value is 30kVA/module, and so a total cost of 

$3000 per D-FACTS module was adopted. Since all generation-related costs are in hourly units, 

(24) is used to convert this cost into an hourly rate, considering an expected lifespan of 30 years 

and a discount rate of 6%. Additionally, industry practices would impose a limit on investment on 

the modules, denoted by (23). An allowance of $25/hour is assumed. The MOEA was run with the 

following parameters: 200 individuals in the population iterated over 100 generations, using 5% 

elitism and 5% chance of mutation. The algorithm was run on a DELL® computer with 256GB of 

RAM and an Intel® Xeon® W-2195 CPU, with each simulation averaging around 165 seconds. 

The number of lines at which D-FACTS could be installed was limited to 5 lines, as the sensitivity 

study in [20] showed little improvement of the system above this number. The number of lines 

that can be switched off will vary between 0 and 10% of the existing lines in the system, rounded 

to the nearest number. As the RTS-96 has 38 lines, the largest number of lines that can be switched 

was set to 4.  

B. Simulation Results 

This model alleviates transmission congestion by using both transmission switching and 

D-FACTS, and the alleviation can be reflected in the optimal generation dispatch cost. A higher 

optimal generation dispatch cost reflects a higher congestion level. The results from each of the 
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simulations are summarized below in Fig. 3 and Table I. For reference, the base-case solution in 

which no D-FACTS are installed, and no lines are switched off is also included. This solution is 

marked in Fig. 1 with a red circle. Due to space limitations, all Pareto fronts are graphed together 

in Fig. 1, with different color and shape markers to differentiate the solutions from each different 

value of 𝑧𝑙𝑖𝑚. The results in Table I show that the optimal generation dispatch cost were reduced 

by using transmission switching and D-FACTS, which reflected a reduced level of transmission 

congestion. 

 
Fig. 6.4.3. Combined Pareto Fronts for all simulations 

 

Table 6.4.1.  Detailed Solutions 

Sol.  ∑ 𝒙𝒌
𝑫  

D-FACTS 

locations 
zlim Lines OFF Cost GWP 

Base 0 - 0 - 73,114  88.06 

1 999 2,22,27,36 0 - 71,207  88.026 

2 999 10,18,22 0 - 71,331  88.023 

3 999 21,22,24,36 0 - 71,117  88.022 

4 999 1,8,22,36 1 35 68,639  69.49 

5 996 9,11,18,19,33 1 29 69,007  64.97 

6 981 8,22,35 1 29 69,705  64.26 

7 828 11,24,28,30 2 29,32 66,817  59.07 

8 915 5,8,21,37 2 29,33 66,823  55.46 

9 894 5,24 2 3,29 72,141  43.17 

10 957 24,31,32,36 3 16,29,33 66,425  72.25 

11 609 1,12,37 3 9,29,33 67,375  60.49 

12 990 3,5,19,20,37 3 11,29,32 68,237  54.76 

13 990 19,33,36,38 3 3,29,30 69,993  30.23 

14 984 2,6,10,30 4 16,29,35,37 67,632  67.91 

15 657 8,11,21,22 4 13,29,34,37 68,674  61.48 
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16 858 4,23,25,32 4 5,11,29,37 69,797  59.66 

 

Based on the results, the largest cost savings can be obtained with a maximum switch-off 

of three lines, while the largest reduction on environmental impacts can be obtained with switching 

only two. The most common line to switch off seems to be line 29, appearing in 12 out of 13 

solutions. Other lines that are commonly off in these solutions are lines 33 and 37, each appearing 

3 and times. Another interesting observation is an apparently inverse relation between the number 

of lines switched off and the number of D-FACTS modules installed. On average, there are 999 

modules installed when no lines are switched off, but this number reduced to 992, 879, 886, and 

finally 833 when 4 lines are switched off. This overall down trend is because less input from the 

D-FACTS is required to optimize the objective functions and obtain the desired flow when the 

power flow is partially controlled by the line switching protocols, 

To further showcase the overall objective value improvements based on the number of lines 

switched off, each objective value is plotted against the number of switched lines in Figs. 4 and 5. 

It can be seen that there is a downward trend on the cost for the first three switched lines, while a 

downward trend exists in for the GWP until the second switched line. After the 3rd and 2nd line, 

the average cost and average GWP start increasing again, respectively. It is worth noting that the 

results are only for non-dominated solutions. While constraint (26) does not prevent the algorithm 

from switching off fewer than 𝑧lim lines, no non-dominated solution had fewer than 𝑧𝑙𝑖𝑚 lines 

switched. 
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Fig. 6.4.4. Cost vs. 𝑧lim with average trendline 

 

 
Fig. 6.4.5. GWP vs. 𝑧lim with average trendline 

V. Conclusions 

This study presented a metaheuristic multi-objective approach for solving a scenario-based 

stochastic D-FACTS allocation and line switching co-optimization model which optimally 

allocates D-FACTS devices considering transmission switching. This model mitigates congestion 

and reduces both expected operating costs and environmental impacts of power systems. The 

algorithm allocates D-FACTS modules with static investment limits while optimizing the 

objectives of expected total cost and expected GWP in a computationally efficient manner. Results 

show that, with transmission switching, fewer D-FACTS modules are needed to achieve effective 

power flow control. Results also show that there is an inverse relationship between the operating 

costs and GWP, and a trade-off needs to be made by decision-makers.  
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Chapter 7: Further Studies 

7.1. LINE SWITCHING ANALYSIS 

As it was mentioned in Chapter 6, the comparison of pure line-switching approaches to 

congestion relief against pure D-FACTS and combined D-FACTS and line-switching approaches 

was not performed. This subsection aims to address this. The mathematical model is the same as 

the one presented in the 4th publication in Chapter 6, which is also similar to the one presented in 

section 3.3, with some modifications to accommodate the line switching and different objective 

functions. This model is also shown below in eqs. (7.1 – 7.24). For this analysis, the D-FACTS 

allowance, 𝐶𝑚𝑎𝑥
𝑖𝑛𝑣  is set to 0. This allows us to be able to run the exact same program with no 

significant changes, and observe the results of switching system lines off without any D-FACTS 

installed. 

min 𝑂𝐹1 =  ∑ 𝑃𝑠 (∑ ( ∑ 𝐶𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

+ 𝐶𝑔
𝑈𝑅𝑔,𝑠

𝑈 + 𝐶𝑔
𝐷𝑅𝑔,𝑠

𝐷 + 𝐶𝑔
𝑁𝐿)

𝑁𝑔

𝑔=1

+ ∑ 𝑐𝑟𝑃𝑟,𝑠
𝐶

𝑁𝑟

𝑟=1

) + 𝐶𝑖𝑛𝑣
𝐷

𝑁𝑠

𝑠=1

 (7.1) 

min OF2 = ∑ 𝑃𝑠 (∑ ∑ 𝐺𝑊𝑃𝑔,𝑐,𝑠

𝑁𝑐

𝑐=1

𝑁𝑔

𝑔=1

)

𝑁𝑠

𝑠=1

(7.2) 

𝑃𝑔,𝑠 = ∑ 𝑃𝑔,𝑠
𝑠𝑒𝑔

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1

(7.3) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥 (7.4) 

−𝑧𝑘𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝑧𝑘𝐹𝑘

𝑚𝑎𝑥 (7.5) 

∑ 𝐹𝑘,𝑠

𝑘∈𝜎+(𝑛)

− ∑ 𝐹𝑘,𝑠

𝑘∈𝜎−(𝑛)

+ ∑ 𝑃𝑔,𝑠

𝑔∈𝑔(𝑛)

+  ∑ (𝑃𝑟,𝑠 − 𝑃𝑟,𝑠
𝐶 )

𝑟∈𝑟(𝑛)

= 𝐿𝑛,𝑠 (7.6) 

∑ 𝑅𝑔,𝑠
𝑈

𝑁𝑔

𝑔=1

≥ 𝑆𝑈 (7.7) 

∑ 𝑅𝑔,𝑠
𝐷

𝑁𝑔

𝑔=1

≥ 𝑆𝐷 (7.8) 

𝑅𝑔,𝑠
𝑈 ≤ 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔,𝑠 (7.9) 

𝑅𝑔,𝑠
𝐷 ≤ 𝑃𝑔,𝑠 − 𝑃𝑔

𝑚𝑖𝑛 (7.10) 

𝑅𝑔,𝑠
𝑈 ≥ 0 (7.11) 

𝑅𝑔,𝑠
𝐷 ≥ 0 (7.12) 

Δ𝜃𝑘
𝑚𝑖𝑛 ≤ 𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠 ≤ Δ𝜃𝑘

𝑚𝑎𝑥 (7.13) 

𝜃1,𝑠 = 0 (7.14) 

𝑧𝑘𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐿) 𝑋𝑘𝐹𝑘,𝑠 ≥ 𝑧𝑘𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠) (7.15) 
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𝑧𝑘𝑓𝑘,𝑠 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐶) 𝑋𝑘𝐹𝑘,𝑠 ≤ 𝑧𝑘𝑓𝑘,𝑠(𝜃𝑓𝑟,𝑘,𝑠 − 𝜃𝑡𝑜,𝑘,𝑠) (7.16) 

𝐺𝑊𝑃𝑔,𝑐,𝑠 = ∑ 𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑠

𝑠𝑒𝑔
𝐺𝑔,𝑠𝑊𝑐

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔

(7.17) 

0 ≤ 𝑥𝑘
𝐷 ≤ 𝑖𝑘

𝑚𝑎𝑥 (7.18) 

∑
𝑥𝑘

𝐷

max(𝑥𝑘
𝐷 , 1)

𝑁𝑘

𝑘=1

≤ 𝑙𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑐 (7.19) 

𝐶𝑖𝑛𝑣
𝐷 = ∑ ∑ 3𝑖𝐶𝑠ℎ

𝐷 𝑥𝑘,𝑖
𝐷

𝑖𝑚𝑎𝑥

𝑖=1

𝑁𝑏𝑟

𝑘=1

(7.20) 

𝐶𝑖𝑛𝑣
𝐷 ≤ 𝐶𝑖𝑛𝑣

𝑚𝑎𝑥 (7.21) 

𝐶𝑠ℎ
𝐷 = 𝐶𝑠𝑖𝑛𝑔𝑙𝑒

𝐷
𝐼(1 + 𝐼)𝑁

8760((1 + 𝐼)𝑁 − 1)
(7.22) 

0 ≤ 𝑃𝑟,𝑠
𝐶 ≤ 𝑃𝑟,𝑠 (7.23) 

∑𝑧𝑘 + 𝑧𝑙𝑖𝑚  ≥ 𝑁𝑘 (7.24) 
 

In this model, the new variables incorporated are 𝑧𝑘, which has a value of 0 if line k is 

switched off and 1 if it is switched on, and 𝑧𝑙𝑖𝑚, the maximum number of lines which can be 

switched off. The new equation (7.24) simply limits the number of lines that can be switched off 

as a number lesser or equal to the limit 𝑧𝑙𝑖𝑚. The program was executed with 𝑧𝑙𝑖𝑚 values of 0 (base 

case), 1, 2, 3, and 4, the same values as in the conference article. For reference, the results from 

that article are below in table 7.1. Table 7.2, in contrast, has the results with 𝑐𝑖𝑛𝑣
𝑚𝑎𝑥 = 0. 

 

Table 7.1. Solutions from line switching model 
Sol.  ∑ 𝒙𝒌

𝑫  D-FACTS locations zlim Lines OFF Cost GWP 

Base 0 - 0 - 73,114  88.06 

1 999 2,22,27,36 0 - 71,207  88.026 
2 999 10,18,22 0 - 71,331  88.023 
3 999 21,22,24,36 0 - 71,117  88.022 

4 999 1,8,22,36 1 35 68,639  69.49 
5 996 9,11,18,19,33 1 29 69,007  64.97 

6 981 8,22,35 1 29 69,705  64.26 
7 828 11,24,28,30 2 29,32 66,817  59.07 
8 915 5,8,21,37 2 29,33 66,823  55.46 

9 894 5,24 2 3,29 72,141  43.17 
10 957 24,31,32,36 3 16,29,33 66,425  72.25 

11 609 1,12,37 3 9,29,33 67,375  60.49 
12 990 3,5,19,20,37 3 11,29,32 68,237  54.76 
13 990 19,33,36,38 3 3,29,30 69,993  30.23 

14 984 2,6,10,30 4 16,29,35,37 67,632  67.91 
15 657 8,11,21,22 4 13,29,34,37 68,674  61.48 

16 858 4,23,25,32 4 5,11,29,37 69,797  59.66 
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Table 7.2. Solutions from line switching models without D-FACTS 
Sol. 𝒛𝒍𝒊𝒎 Lines OFF Cost GWP 

1 0 - 73,114  88.06 

2 1 29 69,063  65.52 

3 2 29, 35 69,032  65.52 

4 2 3, 4 77,783  58.42 

5 2 3, 5 81,431  25.26 

6 2 29, 36 69,039  65.52 

7 2 3, 12 79,648  50.02 

8 3 9, 31, 34 70,027  86.28 

9 3 4, 5, 29 70,173  66.19 

10 3 12, 34, 35 72,384  54.10 

11 3 3, 6, 32 79,054  44.46 

12 3 16, 30, 34 68,701  71.52 

13 3 15, 29, 35 69,321  68.37 

14 4 8, 14, 28, 35 68,359  66.40 

15 4 5, 34, 35 65,221  54.06 

16 4 12, 13, 29, 33 77,378  46.41 

17 4 3, 6, 33 79,054  44.46 

18 4 4, 13, 29, 35 69,103  65.26 

19 4 8, 12, 13, 36 83,102  63.22 

20 4 3, 5, 25, 37 83,299  26.80 

To compare the solutions from the cases with D-FACTS and the cases without, the below 

figures were created. The case where 𝑧𝑙𝑖𝑚 = 0 will not be considered for the comparisons. 

 

 
Figure 7.1. Pareto front of solutions with 𝑧𝑙𝑖𝑚 = 1 
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Figure 7.2. Pareto front of solutions with 𝑧𝑙𝑖𝑚 = 2 

 

 
Figure 7.3. Pareto front of solutions with 𝑧𝑙𝑖𝑚 = 3 
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Figure 7.4. Pareto front of solutions with 𝑧𝑙𝑖𝑚 = 4 

 

As can be seen in figures 7.1-7.4, the inclusion of D-FACTS generally does improve the 

system operating conditions even further than simply using line-switching protocols. It must be 

mentioned, however, that the use of D-FACTS can bring about logistical issues regarding 

deployment of devices, as well as installation time and costs, which are not issues that would arise 

with a pure line-switching approach to congestion relief. However, D-FACTS can bring about 

improved and more precise flow control, particularly over more congested networks where line 

switching is less feasible. 

In effect, line switching is a very powerful tool for congestion relief, but its effects are 

limited precisely by how rudimentary of a technique it is. In combination with D-FACTS, 

however, it can become an even more useful tool for precise power flow control and together both 

can have the ability to improve electric transmission systems by reducing costs and emissions as 

well as increasing the penetration of renewable energies into the grid. 
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Chapter 8: Conclusions and Future Work 

8.1. CONCLUSIONS 

The main objective of this work is to analyze the D-FACTS allocation problem using a 

modified version of the IEEE RTS-96 test system in order to show the cost and environmental 

benefits of installing DSI-type devices throughout the transmission system in order to best serve 

the system loads and optimize resource utilization. For this, a new multi-objective evolutionary 

algorithm was developed in order to efficiently and effectively allocate D-FACTS devices. 

Stochasticity is considered in the algorithm in the form of various scenarios which model 

distinctive behaviors for both the system loads and the renewable energy generation. As the system 

was studied as a multiple objective optimization problem, a Pareto-optimal set of solutions was 

created and presented, to be further analyzed in further studies. 

In order to demonstrate the effectiveness of the algorithm on transmission networks, the 

D-FACTS allocation problem was presented with a new formulation, with some equations 

combined or reduced to better adapt to the algorithm’s implementation. This formulation simplifies 

previous attempts at optimizing D-FACTS allocation thanks to the properties of metaheuristic 

algorithms: by having the EA randomly generate allocations, and by pre-calculating the flow 

directions on a reduced LP, many of the nonlinearities that arose in previous models were 

converted back into linear equations, reducing the number of variables needed to be solved as well 

as the number of equalities and inequalities needed to be balanced. 

The results showed, as expected, some level of conflict between various objectives, as well 

as some synergies between others. For example, there is a direct relation between the total system 

cost and the curtailment of renewable energy, as renewable energies have no associated generation 

cost once the generators have been installed and would thus reduce the total cost of the system by 

satisfying loads, if the transmission lines were capable of transmitting all the power. However, 

transmission capacity limits, storage, and reliability are usually the biggest limitations for the 
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integration of renewable energy into existing power grids, and thus it is not possible to fully utilize 

these resources without larger infrastructure investments. 

As shown, the results indicate that the implementation of D-FACTS devices does have 

significant benefits to both network sustainability and generational dispatch costs, which both 

would result in both short- and long-term economic benefits to utility companies, their subsidiaries, 

and their customers. 

In addition to this, various articles were presented in which this author expands upon the 

research on D-FACTS devices, by performing a sensitivity analysis in which the most important 

factors for further reducing costs were found to be the investment limits and the number of lines 

in which the devices were allowed to be installed. Additionally, various secondary objectives were 

proposed and analyzed, as well as the incorporation of other congestion-reducing protocols such 

as line switching. In the studies, it was generally found that the deployment of D-FACTS devices 

on transmission grids has positive effects even in (and even more in) conjunction with other 

protocols and technologies thanks to their flexibility and versatility in power flow control 

applications. 

 

8.2. FUTURE WORK 

Significant work remains to be done under this research, both in the analysis of benefits on 

the implementation of D-FACTS devices and in the analysis of the algorithm’s applicability in 

other networks. 

For starters, other elements in the network could have associated probabilities for 

reliability. Some data in the RTS-96 system includes generator reliability. For further analysis of 

the benefits of D-FACTS devices, new scenarios can be created in which some generator or line 

failures may occur, to not only expand the scenario pool, but also study how and if the use of D-

FACTS devices can help mitigate outages and improve power systems reliability metrics such as 

expected energy not supplied (EENS) or others.  
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To guarantee the efficacy of the algorithm, it must be tested in other case studies and 

compare the results with existing benchmarks. For this purpose, data has been acquired for a 2,000 

bus system, on which the algorithm will be tested in future studies for the purpose of both 

validating the algorithm and also once again showing the benefits of D-FACTS devices on 

transmission networks. In addition to this system, updates have been proposed to the IEEE 

Reliability Test System which was used in the current case study. The publication by Barrows et 

al. (2020) delineates a new update to the 1996 system, updating some line and generator capacities 

and bus loads for more updated simulations of energy demand, removing outdated generator types, 

and including new generator types and renewable energy systems not accounted for in the older 

version. While this new RTS has not been yet officially adopted, it could still prove very beneficial 

as a tool to demonstrate the applicability of D-FACTS devices in more modern grids with more 

renewable generation and heavier demand loads. However, these test systems need modifications 

in order to simulate congestion, and are thus not suitable for D-FACTS allocation in their current 

state. Further work needs to be done to create congested test systems before the algorithm can be 

implemented and tested. At the current time, while the algorithm is capable of running with these 

new data sets, the obtained results are not useful for studies, as there are no benefits for the 

implementation of D-FACTS devices in a non-congested system.  

Finally, other objectives such as social impacts or power system reliability metrics could 

be added as objectives to optimize, and other objectives, or a combination of them, could be used 

for the main objective function in the LP, in order to further diversify the solution process. More 

research is required to see how social impacts can be measured in this situation and whether 

prioritizing a different objective would be a realistic or feasible situation in industry. In addition, 

studies on health impacts have been submitted for review. 

Other than testing the functionality of the algorithm, other studies are currently underway 

on testing marginal costs and emissions on congested systems before and after the implementation 

of D-FACTS into a system based on the El Paso, TX distribution network. 
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