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Abstract 

 

 

Wind turbines are subjected to continuous rotational stresses and unusual external forces such as 

storms, lightning, strikes by flying objects, etc., which may cause defects in turbine blades. Hence, 

it requires a periodical inspection to ensure proper functionality and avoid catastrophic failure. The 

task of inspection is challenging due to the remote location and inconvenient reachability by 

human inspection. Researchers used images with cropped defects from the wind turbine in the 

literature. They neglected possible background biases, which may hinder real-time and 

autonomous defect detection using aerial vehicles such as drones or others. To overcome such 

challenges, in this paper, we experiment with defect detection accuracy by having the defects with 

the background using a two-step deep-learning methodology. In the first step, we develop virtual 

models of wind turbines to synthesize the near-reality images for four types of common defects - 

cracks, leading edge erosion, bending, and light striking damage. The Unity® perception package 

is used to generate wind turbine blade defects images with variations in background, randomness, 

camera angle, and light effects. In the second step, a customized U-Net architecture is trained to 

classify and segment the defect in turbine blades. The outcomes of U-Net architecture have been 

thoroughly tested and compared with 5-fold validation datasets. The proposed methodology 

provides reasonable defect detection accuracy, making it suitable for autonomous and remote 

inspection through aerial vehicles. 

 

Keywords: Defect detection, virtual reality, deep learning, U-Net, segmentation 
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Chapter 1: Introduction 

 

Wind Turbine plays a vital role in the energy generation of the United States of America. Wind 

turbines provided almost 8.4 % of total generated electricity in 2020 in the United States 

(According to US Energy Information Administration). According to the U.S Wind Turbine 

Database (2022), more than 700,800 wind turbines are running across 44 states resulting in the 

fourth number of sources for electric energy generation. Most importantly, it is the number one 

renewable energy source for the USA in power generation. For that reason, if the US wants to be 

a country of Green Energy, Wind Turbine will be their priority. As the European countries are now 

more focused on renewable energy for global warming and the US is lagging in this sector, the US 

government is now taking initiatives to grow their renewable energy source like wind turbines. 

Even recently, some states have set the target to maintain a percentage of energy that should come 

from renewable energy. So, to make the US a sustainable and low carbon emission country, wind 

turbine can contribute a lot.  

 

1.1 Background 

Wind Turbines are generally installed in remote and rural areas where there is a constant and strong 

wind. The constant and strong wind can be found in both onshore and offshore locations. Hills, 

open fields, or coastal areas can be a very good source of wind power for onshore settlements. On 

the other hand, oceans or lakes are the prime sources of wind for onshore settlement. Because of 

wind speed and the visual impact of nature, the onshore wind turbine is preferable for installation. 

But both locations are remote for proper inspections of the wind turbine. After installing the wind 

turbine, the blade defects generally start over time. Though blade defects can occur anytime, 

environmental factors like lightning, flying objects, and high wind plays an important part in it. 
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Along with that, poor inspections and maintenance are part of the gradual process of blade defects. 

For that reason, the detection of wind turbine defects in the initial phase is necessary for 

uninterrupted power generation. 

 

1.2 Problem Statement 

Wind turbines show different types of defects in its blade during their lifetime. But for 

generalizations and understanding, in this paper, four main types of defects have been studied such 

as 1) Blade Crack, 2) Leading Edge Erosion, 3) Delamination, and 4) Lighting Strike Damage. 

Blade cracks are a serious issue for wind turbines. If the crack is not identified in the initial phases 

of its origin, the blade will eventually fail to operate. So, the identification of Blade Crack in the 

primary phase is a must. In this case, the proper inspection of the blade by drone or watch tower 

is a measure towards safe operations of wind turbines. On the contrary, leading edge Erosion is 

another most common defect in wind turbines as the flowing air and dust continuously cause 

erosions in the edges. Over time, leading edge erosion reduces the efficiency of power generation. 

Similarly, the delamination of wind turbines is caused by extreme weather, humidity, or 

mechanical stresses. This is a significant concern for the power company as it has long downtime 

and safety issues. The manufacturing process and materials selections play a key factor in 

overcoming delamination defects. Ultrasonic testing and using adhesives are part of maintenance 

for delamination. The lighting strike damage in wind turbines results due to the lightning effect. It 

may damage the generator, control systems, power electronics, or blades. The blade may be 

affected by direct impact or through shock waves.  
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1.3 Thesis Objectives 

This thesis paper addresses the problem of automated detection of the above-mentioned defects in 

wind turbine blades, which is a critical issue in the renewable energy industry. Traditionally, 

detecting blade defects is time-consuming and expensive and may not be effective in identifying 

all types of defects. To address this problem, the paper proposes a novel approach that combines 

virtual reality and deep learning techniques to develop an automated and efficient defect detection 

system for wind turbine blades. The proposed system aims to reduce inspection time and cost while 

improving the accuracy and effectiveness of defect detection from synthetic images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

Chapter 2: Literature Review 

 

 

For working on defect detection of wind turbine using virtual reality and deep learning, it is needed 

to go through the literature about the synthetic images, wind turbine images, and deep learning. In 

recent years, the integration of VR based images and deep learning techniques has come out as a 

novel approach to increase the accuracy and efficiency of defect detection processes. Such 

synthetic images have achieved a significant attention in the field of deep learning due to their 

ability to generate large-scale, diverse, and labeled datasets. Synthetic image generation techniques 

help to create realistic virtual environments for wind turbine defect detection. The integration of 

virtual reality and deep learning gives a new opportunity to create immersive training 

environments for wind turbine defect detection. Synthetic images can help overcome the 

limitations of real-world datasets and the remove barrier for limited availability, annotation errors, 

and variability in environmental conditions. 

There are various techniques available to generate synthetic wind turbine images, including 3D 

modeling, physics-based rendering, and generative adversarial networks (GANs). These 

approaches help to the create of virtual wind turbine environments with realistic appearance. 

Whereas, Procedural generation involves algorithms to generate virtual environments, including 

wind turbine models and surroundings environment, based on needs. This procedure allows for 

the creation of different customizable wind turbine scenes. Other technique usually used is data-

driven synthesis, which uses existing real-world wind turbine images and data to generate new 

images. Both approach leverages machine learning algorithms to learn patterns and characteristics 

from the input data and then generates new images that closely visualize the real-world examples. 

With the help of images of the wind turbine blades, the inspections can be done automatically and 

quickly by deploying deep learning-based image segmentation and classification techniques [1,2].  
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Hence, in this work, the U-Net based semantic segmentation technique is used to detect the defects 

in turbine blades [3]. The U-Net architecture is selected because it can give an accurate and detailed 

segmentation map from a small image dataset. A multilevel convolutional recurrent neural network 

(MCRNN) is also good for detecting wind turbine blade icing [4]. MCRNN is a good choice 

because it combines CNNs and RNNs in a hierarchical manner. In real-time supervisory control 

[5] and Non-destructive testing [6], An Unmanned Aerial Vehicle (UAV) [7] is always preferable. 

An UAV takes images for segmentations with the help of the embedded camera. Then those images 

become a great source of datasets. On the other hand, the blade defect detection's accuracy can be 

increased by analyzing and identifying the distinctive spectral signature [8]. Again, there may not 

have enough real-world data available to train a deep learning model. Moreover, getting real-world 

data, in some cases, are expensive and time costuming. Therefore, it comes to the essence of using 

synthetic data [9]. As an example of using synthetic data, capturing the relationship among 

synthetic features [10] and pedestrian data can be used for Deep Convolutional Neural Networks 

(DCNN) [11]. And in defect detection, Fuzzy Failure Mode and Effect Analysis (FMEA) can also 

give a structured method for defect analysis [12,13] or any Android application [14].  Infrared 

thermography (IRT) [15] and continuous line laser thermography for damage visualizations for 

wind turbines [16] are other methods. However, after extensively evaluating various deep learning 

architectures, we have chosen U-Net as the most suitable one for this paper.  
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Chapter 3: Methodology 

 

3.1 Designing the Wind Turbine 

3.1.1 Selecting a CAD Software 

To generate synthetic images, it is necessary to design a virtual model of wind turbines. The design 

of wind turbines can be done with the help of different Computer Aided Design (CAD) software 

like SolidWorks, Maya, or Blender. These software  are commonly known for their ability to create 

3D models. Among these options, SolidWorks 2021 was specifically selected for to its advanced 

assembly tools facilitating the assembly process of complex parts in the model. SolidWorks 2021 

offers a comprehensive set of features and capabilities for designing various models as well as 

wind turbines models. Solidworks user-friendly interface and robust tools helps modeling and 

detailing the features. By utilizing SolidWorks, the wind turbine can be precisely designed in IPS 

(Inchi, Pound, Second) measurements, maintaining the model's desired specifications. 

One of the benefits of using the SolidWorks 2021 is its ability to design complex assembly of 

models. Wind turbines consisting of numerous interconnected components,  SolidWorks' assemble 

them together using tools. This capability helps simplifing the modeling process which allows fthe 

creation of complex and real-like wind turbine models. SolidWorks 2021's built in  range of 

features including parametric modeling enables the creation of flexible and adaptable designs. This 

feature is particularly valuable designing wind turbines and it allows for easy modification of blade 

length, hub size, and tower height. Such flexibility ensures  the generated synthetic images 

presenting different configurations of wind turbines. 

 

Again, SolidWorks 2021 provides simulation capabilities enabling designers to analyze the 

structural integrity and performance of the wind turbine model. This feature helps in optimizing 
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the design to identify potential issues and allow for necessary adjustments before physical 

production. The accuracy and precision provided by SolidWorks 2021 makes it an ideal choice for 

wind turbine design. Furthermore, the software's advanced rendering capabilities contribute 

creating visually beautiful and realistic virtual models. These models can be utilized for various 

purposes including visual simulations and presentations. In conclusion, SolidWorks 2021's 

selection for wind turbine modeling in IPS measurements is driven by its assembly tools, 

parametric modeling capabilities, simulation features, and advanced rendering options.  

3.1.2 Designing the Wind Turbine in SOLIDWORKS 2021 

The base of the wind turbine is constructed exclusively using the boss extrude tool. For facilitating 

the modeling process, the structural component called mast has been divided into two sections, 

each of which has created using the revolve tool. Then, the motor housing and rotor were designed 

using a combination of the boss extrude tool and the shell tool. The distance between the base and 

the center of the rotor was set at Z=380 inches. After that, surface modeling techniques have 

employed to design a single blad and then it has replicated using the circular pattern tool to create 

two additional blades. These blades have been evenly distributed across a 360-degree span, with 

the rotor serving as the central point. The resulting circle created by the blade measures 200 inches 

in diameter. 

To visualize various possibilities of delamination in the blades, the flex tools has bent and twisted 

the blades in ten different ways. Additionally, the extrude cut function has deployed to simulate 

lightning strike damage and blade cracks in twenty different scenarios. Another defect type, 

leading edge erosion has been created by using surfacing tools to remove specific sections of the 

blades, with ten different erosion patterns created. In short, the wind turbine design created in a a 

step-by-step process using various modeling tools such as boss extrude, revolve, shell, circular 
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pattern, surface modeling, flex, and extrude cut. These techniques allow for the creation of a base, 

mast, motor housing, rotor, and blades, as well as the simulation of delamination, lightning strike 

damage, blade cracks, and leading edge erosion in different configurations. 

Finally, Keyshot 10 has been utilized to incorporate dirt, rust materials, and corrosion textures, 

which enhances the visual realism of the models. Through the advanced capabilities of Keyshot 

10, all the models have been seamlessly exported into the FBX format. This format ensures quality 

and facility of their seamless integration into Unity, a widely recognized cross-platform game 

engine known for creating immersive virtual environments. Unity's  capabilities makes it an 

ultimate choice for further simulations and interactive experiences. By using Keyshot 10 and Unity 

in conjunction, the models' aesthetics and functionality can be synergistically increased, providing 

users with an engaging and visually appealing virtual environment. The integration of dirt, rust, 

and corrosion textures adds an authentic touch, lending a sense of realism and depth to the virtual 

scenes. The FBX format's versatility facilitate transition between Keyshot 10 and Unity, 

streamlining the workflow for developers and artists alike. The combination of these cutting-edge 

tools gives designers confident to deliver high-quality virtual experiences and captivate audiences 

across multiple platforms. 



9 

 

Figure 1 Designing the Wind Turbine 

 

3.1.3 Deciding the Amount of Wind Turbine Needed to Generate 

Determining the optimal number of wind turbine models is a critical task as it directly impacts the 

assessment of environmental randomness. A greater number of models, each with variations, 

introduces a higher degree of randomness in the testing environment. This heightened level of 

randomness serves to thoroughly challenge and evaluate the deep learning model's robustness. 

However, generating a substantial number of models tends to be time-consuming and complex, 

particularly due to the requirement for distinct defect shapes in each model. After careful 

consideration, it has been decided to proceed with a total of 40 different wind turbine models, with 

10 models allocated to each of the four blade defect types. This approach aims to strike a balance 

between generating a diverse set of models and managing the practical constraints of the task. Each 

of the 40 models will exhibit unique characteristics pertaining to their respective defect type, 

ensuring a comprehensive representation of potential scenarios. 

By implementing this strategy, the testing process can visualize a broad range of defect shapes, 

providing valuable insights into the deep learning model's performance across various realistic 
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scenarios. Although the generation of 40 distinct models presents difficulties, the resulting dataset 

will serve as a valuable resource for training and validating the deep learning model, ultimately 

contributing to more reliable and efficient wind turbine operations. 

 

 

Figure 2 Schematic Overview of Wind Turbine Defect Type And Generated Model Amount 

3.2 Creating the Virtual Environment in Unity 

In this paper, the virtual world has been made inside the Unity in two different scenes: a. Terrain, 

b. Cube Map.  

3.2.1 Creating the Virtual Environment in Unity Terrain 

The Unity terrain system facilitate designers a wide range of options to create diverse rural 

environments. By working on the vertices of the terrain, developers can shape hills, valleys, and 

lowlands, giving the terrain a natural and realistic appearance. Moreover, in the heightmap option, 

it allows for the addition of different surface textures, further enhancing the visual appeal of the 

terrain. In this particular case, the terrain has been textured with painted green grass which gives 

it a lush and vibrant look. To add even more variety, three types of ground textures have been 

incorporated, creating a more immersive and believable environment. The inclusion of a 

downloaded tree asset from the Unity asset store adds an extra layer of realistic looks, as the trees 

are seamlessly integrated into the terrain. Furthermore, a rural road has been crafted using various 

brushes, adding a sense of ruggedness and practicality to the environment. Finally, to complete the 

Wind Turbine

1. Blade Crack

Total No. of Models: 10

2. Leading Edge Errosion

Total No. of Models: 10

3. Delamination

Total No. of Models: 10

4.Lightning Strike Damage

Total No. of Models: 10
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scene, a defective wind turbine has been imported, adding an intriguing element and capturing 

attention. 

 

Figure 3 Setting up Unity Terrain 

The Unity terrain system gives the developers a powerful tool for creating the appealing 

environment for their games or simulations. Through careful assuages of vertexes, texture painting, 

and asset integration, developers can visualize the stunning and immersive landscapes. The 

combination of painted grass, ground textures, tree assets, and a muddy road in this specific terrain 

adds depth and authenticity to the scene. The addition of the defective wind gives us the 

environment we need to capture images realistic look-like. For simulation image capturing 

purposes, the Unity terrain system provides an accessible and effective means of creating 

captivating environments. 
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Figure 4 Inserting Trees in Terrain 

3.2.2 Creating the Virtual Environment in Unity Cube Map 

The second virtual scene used is Unity Cube Map technology, which is commonly found in 3D 

graphics and 360-degree environments. This mapping technique allows for the creation of three-

dimensional spaces by combining multiple images of the top, bottom, front, back, left, and right 

perspectives. Where you can see the 360 degree by rotating the images. With Unity Cube Map, 

the creates the 3D geometry seamlessly integrates into the overall environment. To incorporate the 

cube map into the project, users can easily import the free version available from the Unity Asset 

Store. There are numerous cube map images are available in the Unity Asset Store. You can buy 

the cube images or even can get it free. In our case, it has been downloaded free from there. After 

that, the map has been uploaded in the unity projects. Then a material has been created in the asset 

store. Because for applying the cube map, you need to create material first.  
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Figure 5 Setting Up Unity Cube Map 

Then the downloaded cube map has been applied to the material created. In our case, there are 

several types of cube map in the asset store with different background environment. But we select 

the cube map with semi desert hilly area because wind turbines are generally installed area like 

that. Once imported, the cube map is applied as a material within the scene, providing a visually 

stunning backdrop against which the defective model can be placed. 

In this particular scenario, the defective model was added into the scene to be observed and 

captured images from various angles. The cube map's contribution shows apparent as it envelops 

the model, creating a lifelike setting that accurately reflects its surroundings. By leveraging Unity's 

Cube Map technology, designers can obtain a high level of fidelity and detail in their virtual 

environments, enhancing the overall visual experience. The usages of the cube map and the 

defective model provides engaging visual representation and users can examine and analyze the 
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model's intricacies from different perspectives and lighting conditions. Most importantly, the 

perception packages can work in such in environment. 

 

Figure 6 Inserting Wind Turbine in Unity Cube Map 

3.3 Generating Synthetic Images Using Unity Perception Package 

The Unity Perception Package is a useful tool for capturing images from a Unity environment. The 

perception package is still in experimental stage. But the package can be downloaded from Unity 

Package Manager. To use it, you can download the package from there and it would be stored in 

the Unity project. The perception package has five components and it can be seen in the project 

windows: forward renderers, sample scene, universal RP – high quality, universal RP – low 

quality, and universal RP – medium quality.  

Before applying the perception packages, it is needed to select forward renderer. There it is needed 

to add ground truth renderer feature. Renderer pipeline is the feature to generate images from all 

the world in the Unity. It also allows to generate the segmentations data. Firstly, we need to create 
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a empty scene. There we need to rename the scene too. And in the scene window, we will create 

the scene with the unity terrain and unity cube map. And there needs to upload the defective wind 

turbine too. Then we need to select the camera from the hierarchy window.  

In the project window, the wind turbine model has different parts combination. All the parts of it 

like turbine, blade, engines, are made differently and then combine to make it. The defect part is 

also different, and the defect part has been given add label config. After that, the main camera has 

been set in the direction of the wind turbine. The main camera needs to set the perception package 

setting in a set by set way. Firstly, the perception camera is added with the main camera of the 

scene. Then, it is needed to make sure the camera is in a scheduled mode. That means the images 

will be captured automatically from the camera. There is a simulation delta time in the setting. 

This is actually simulations time; the camera will capture the images in a rate. By changing the 

simulation delta time you can change the time needed to capture the images. In our case, we used 

the simulation delta time 40.   

The resolution of the images can also be controlled from the game window free aspect setting. It 

has been used here 512*512 binary images. So that means, all the images generate here will be 

512*512 binary images. Then it is needed to include bounding box 2D labeler in the camera. Then 

in the asset package, it is needed to find out the tutorial id label config, then needed to set the 

defect label name in the id label config. Similarly, it is needed to add semantic segmentation labeler 

in the asset and set the label from defect part. And finally set the semantic segmentation labeler in 

the main camera. The other labeler name is bounding box 3D labeler. 
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Figure 7 Adding Perception Package in Main Camera in Unity 

 

After that, it is needed to select the folder to store the all the images. As it creates huge amount of 

images in a single click, it needs a big storage to keep it. Then, the wind turbine needs to focus on 

the game window to see how images will be captured from the scene. After refocusing the wind 

turbine, it is needed to hit the play button of the scene. In this set up the perception camera will 

capture the same images according of the simulation delta time. But the problem is that the images 

will not be identical. It is needed to have variation images. For creating variations, the images are 

moved in different directions to have variations. So, when the play button is played the simulations 

is started, and the whole wind turbine model is then moved along different direction to have 
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different images. From the different images and their perspective semantic segmentation can be 

found like the following images. 

 

 

 
Figure 8 Blade Crack Image and Its Perspective 

Semantic Segmentation 
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Figure 9 Delamination Image and Its Perspective Semantic Segmentation 

Figure 10 Leading Edge Erosion Image and Its Perspective Semantic Segmentation 
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This process was repeated for all 40 models, that results in a total of 642 images. Additionally, all 

images have corresponding semantic segmentation/ground truth in the desired folders. Even, the 

images have its corresponding text data file too which in dot json format. The text file can also be 

read through Sublime Text software. Overall, this approach provides a way to capture images from 

a Unity scene and generate corresponding semantic segmentation/ground truth labels for further 

analysis. 

 

 

 

 

 

 

Figure 11 Lightning Strike Damage Image and Its Perspective Semantic Segmentation 



20 

3.4 Setting Up Basic U-Net Network 

After generating the image datasets from Unity, it is needed to select a better deep learning model 

to detect the defect. Deep learning models like U-Net, faster R-CNN, SSD (Single Shot MultiBox 

Detector), DeepLab, Mask R-CNN are available to use for the synthetic dataset generated. But we 

used the basic U-Net architecture [17] for image segmentation. Because U-Net has higher level of 

accuracy. The network consists of encoding and decoding parts that are connected by the 

bottleneck. The convolutional layers create the contracting paths. One or more convolutional 

layers make up the bottleneck, which joins the contracting and expanding paths. Its goal is to 

portray the most significant aspects of the input image in a compressed manner. Here, the input 

images are 512*512 Pixels in size. Figure 5 shows the architecture of the U-Net which is employed 

for our purposes. In the experimental settings, Google Colaboratory is utilized for model training 

and testing.  

 

Figure 12 Illustration of U-Net Convolutional Network Structure 
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To evaluate the model outcomes, Jaccard Index is generally used to measure the similarity between 

predicted masks and ground truth masks. It measures the overlap between the ground truth and 

segmentation outcomes. 

𝐽(𝑊1, 𝑊2) =  
|𝑊1∩𝑊2|

|𝑊1∪𝑊2|
                                                                                                  (1) 

Where, 𝑊1and 𝑊2 are the ground truth and segmentation outcome, respectively. The Jaccard Index 

ranges from 0 to 1, with 0 denoting no overlap and 1 indicating complete overlap between the sets. 

In the basic cross entropy loss, per-pixel loss is calculated discretely, measuring as the average of 

per-pixel loss. It takes into account loss in a micro sense as opposed to taking it into account 

globally. For handling this, we have used Dice Loss which originates from the Dice Coefficient 

(DSC). Jaccard Loss is calculated from the coefficient value by applying 1 −

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶). 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶) =  
2×|𝐴∩𝐵|

|𝐴|+|𝐵|
                                                                                         (2) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶)                                                                                (3)                                                                                           

Where, A represents the predicted mask set and B represents the ground truth mask set.  

The coding for the dataset can be visualized as follows (taken from Google Colab) 

from google.colab import drive 

drive.mount('/content/drive') 

%cd /content/drive/My Drive/Unet-Rabbi 

 

#import all the libraries 

import numpy as np 

from keras.preprocessing.image import ImageDataGenerator 
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import os 

import glob 

import skimage.io as io 

from PIL import Image 

from skimage.viewer import ImageViewer 

import matplotlib.pyplot as plt 

def trainGenerator(image_path,mask_path,flag_multi_class = False,num_class = 2,image_prefix 

= "images",mask_prefix = "masks",image_as_gray = True,mask_as_gray = True): 

    image_name_arr = glob.glob(os.path.join(image_path,"*.PNG")) 

    mask_name_arr = glob.glob(os.path.join(mask_path, "*.PNG")) 

    image_arr = [] 

    mask_arr = [] 

    for index,item in enumerate(image_name_arr): 

        img = io.imread(item,as_gray = image_as_gray) 

        img = np.reshape(img,img.shape + (1,)) if image_as_gray else img 

        img = img / 255 

        image_arr.append(img) 

 

    for index, item in enumerate(mask_name_arr): 

        mask = io.imread(item, as_gray = image_as_gray) 

        mask = np.reshape(mask,mask.shape + (1,)) if mask_as_gray else mask 

        mask = mask/255 

        mask[mask>0.5] = 1 
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        mask[mask<=0.5] = 0 

        mask_arr.append(mask) 

    image_arr = np.array(image_arr) 

    mask_arr = np.array(mask_arr) 

    return image_arr,mask_arr 

def testGenerator(test_path, image_num): 

    for i in range(image_num): 

        #idx = str(i+69).zfill(5) + ".png" 

        idx = 'rgb_'+ str(i+70) + ".png" 

        img = io.imread(os.path.join(test_path, idx), as_gray=True) 

        img = img / 255 

        img = np.reshape(img, img.shape + (1,)) 

        img = np.reshape(img,(1,)+img.shape) 

        yield img 

def testMask(test_path, image_num): 

    Y_test = np.zeros((image_num, 512, 512, 1), dtype=np.bool) 

    for i in range(image_num): 

        #idx = str(i+69).zfill(5) + ".png" 

        idx = 'segmentation_'+ str(i+70) + ".png" 

        msk = io.imread(os.path.join(test_path, idx), as_gray=True) 

        msk = msk / 255 

        msk = np.reshape(msk, msk.shape + (1,)) 

        msk = np.reshape(msk,(1,)+msk.shape) 
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        Y_test[i] = msk 

    return Y_test 

def getItem(img_path, item): 

    idx = str(item+1).zfill(5) + ".png" 

    img = io.imread(os.path.join(img_path, idx), as_gray=True) 

    img = img/255.0 

    img = np.reshape(img, img.shape + (1,)) 

    img = np.reshape(img,(1,)+img.shape) 

    return img 

def saveResult(save_path, files): 

    for i, item in enumerate(files): 

        img = item[:,:,0] 

        idx = str(i+1).zfill(5) + ".png" 

        io.imsave(os.path.join(save_path, idx), img) 

def viewImage(array1, array2, i): 

    img = np.reshape(array1[i], (512, 512)) 

    mask = np.reshape(array2[i], (512, 512)) 

    f, axarr = plt.subplots(1,2) 

    axarr[0].imshow(img, cmap=plt.cm.gray) 

    axarr[1].imshow(mask, cmap=plt.cm.gray) 

    plt.show() 

os.getcwd() 

# Load the train data and their corresponding labels 
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# Visualize a sample image 

imgs_train,imgs_mask_train= trainGenerator("train/images/","train/masks/") 

print(imgs_train.shape)    

print(imgs_mask_train.shape) 

index = np.random.randint(1, 50) 

 

#viewImage(imgs_train, imgs_mask_train, index) 

!pip install -U segmentation-models 

import os 

os.environ["SM_FRAMEWORK"] = "tf.keras" 

from segmentation_models import Unet, FPN 

from segmentation_models import  get_preprocessing # this line has an error in the docs 

from segmentation_models.losses import bce_jaccard_loss 

from segmentation_models.metrics import iou_score 

from segmentation_models.losses import dice_loss 

 

#from segmentation_models.metrics import dice_score 

 

from segmentation_models.utils import set_trainable 

from keras import backend as K 

def iou_coef(y_true, y_pred, smooth=1): 

  intersection = K.sum(K.abs(y_true * y_pred), axis=[1,2,3]) 

  union = K.sum(y_true,[1,2,3])+K.sum(y_pred,[1,2,3])-intersection 
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  iou = K.mean((intersection + smooth) / (union + smooth), axis=0) 

  return iou 

def dice_coef(y_true, y_pred, smooth=1): 

  intersection = K.sum(y_true * y_pred, axis=[1,2,3]) 

  union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) 

  dice = K.mean((2. * intersection + smooth)/(union + smooth), axis=0) 

  return dice 

from keras import backend as K 

def jaccard_loss(y_true, y_pred, smooth=100): 

    intersection = K.sum(K.abs(y_true * y_pred), axis=-1) 

    sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1) 

    jac = (intersection + smooth) / (sum_ - intersection + smooth) 

    return (1 - jac) * smooth 

import numpy as np  

import os 

import skimage.io as io 

import skimage.transform as trans 

import numpy as np 

from keras.models import * 

from keras.layers import * 

from keras.optimizers import * 

from keras.callbacks import ModelCheckpoint, LearningRateScheduler 

from keras import backend as keras 



27 

 

def unet(input_size = (512, 512,1)): 

    inputs = Input(input_size) 

    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(inputs) 

    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv1) 

    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) 

    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(pool1) 

    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv2) 

    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) 

    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(pool2) 

    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv3) 

    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) 

    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(pool3) 

    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv4) 

    drop4 = Dropout(0.5)(conv4) 
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    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) 

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(pool4) 

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv5) 

    drop5 = Dropout(0.5)(conv5) 

    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(UpSampling2D(size = (2,2))(drop5)) 

    merge6 = concatenate([drop4,up6], axis = 3) 

    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(merge6) 

    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv6) 

    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(UpSampling2D(size = (2,2))(conv6)) 

    merge7 = concatenate([conv3,up7], axis = 3) 

    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(merge7) 

    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv7) 

    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(UpSampling2D(size = (2,2))(conv7)) 

    merge8 = concatenate([conv2,up8], axis = 3) 
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    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(merge8) 

    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv8) 

    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(UpSampling2D(size = (2,2))(conv8)) 

    merge9 = concatenate([conv1,up9], axis = 3) 

    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(merge9) 

    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv9) 

    conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 

'he_normal')(conv9) 

    conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9) 

    model = Model(inputs, conv10) 

    model.compile(optimizer = Adam(lr = 1e-4), loss = [dice_loss], metrics = [iou_score]) 

    return model 

# laod model and show the model summary 

model = unet() 

model_checkpoint = ModelCheckpoint('windTurbine_segmentation.hdf5', 

monitor='loss',verbose=1, save_best_only=True) 

model.summary() 

# train the model 
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hm_epochs = 100 

batch_size = 4 

model.fit(imgs_train, imgs_mask_train, batch_size=batch_size, epochs=hm_epochs, verbose=1, 

          validation_split=0.2, shuffle=True, callbacks=[model_checkpoint]) 

test_path = 'test/images/' 

test_image_arr = glob.glob(os.path.join(test_path, "*.png")) 

num_of_test_images = len(test_image_arr) 

testGene = testGenerator(test_path, num_of_test_images) 

results = model.predict(testGene, num_of_test_images, verbose=1) 

# print(results) 

print(results[0]) 

results = results >= 0.1 

print(results) 

#plt.imshow(results[0], cmap='Reds', alpha=0.3) 

plt.imshow(np.squeeze(results[0]), cmap='Reds', alpha=0.3) 

test_path = 'test/masks/' 

test_image_arr = glob.glob(os.path.join(test_path, "*.png")) 

num_of_test_images = len(test_image_arr) 

testMsk = testMask(test_path, num_of_test_images) 

print(testMsk[0]) 

plt.imshow(np.squeeze(testMsk[1]), cmap='Reds', alpha=0.3) 

plt.imshow(np.squeeze(results[1]), cmap='Reds', alpha=0.3) 

idx = 0 
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true = testMsk[idx] 

predicted = results[idx] 

intersection = np.logical_and(predicted, true) 

union = np.logical_or(predicted, true) 

iou_score = np.sum(intersection) / np.sum(union) 

print('IoU is %s' % iou_score) 

def Jaccard_img(y_true, y_pred): #https://www.jeremyjordan.me/evaluating-image-

segmentation-models/ 

    iou_score=0 

    counter=0 

    for i in range(y_true.shape[0]): 

        if np.sum(y_true[i])>0:#Considering only the slices that have hemorrhage regions, if y_true 

is all zeros -> iou_score=nan. 

            im1 = np.asarray(y_true[i]).astype(np.bool) 

            im2 = np.asarray(y_pred[i]).astype(np.bool) 

            intersection = np.logical_and(im1, im2) 

            union = np.logical_or(im1, im2) 

            iou_score+= np.sum(intersection) / np.sum(union) 

            counter+=1 

    if counter>0: 

        return iou_score/counter 

    else: 

        return np.nan 
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jac_indx = Jaccard_img(predicted, true) 

print(jac_indx) 

print('*_--------------------------------------------') 

 

The output of the above basic U-Net code has been discussed in discussion and conclusion chapter. 
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Chapter 4: Results and Discussions 

 

 
Figure 13 Visualization of Model’s Output 

Unity generates images automatically based on the setup as discussed above. During the 

simulation, unity can generate tons of images within a very short period with variations with 

precise annotation of semantic segmentation. We use the simulated images and their corresponding 

annotation (ground truth) to train the U-Net model. The Adam optimizer [18] is used to train the 

network. Adam is a well-known optimization algorithm for deep neural network training which 

gives adaptive learning rate.  

As the Dice coefficient gives the similarity between the predicted segmentation map and the 

ground truth, Dice coefficient is used here. Then, Jaccard loss has been used as loss function here 

because Jaccard loss function is complementary to Dice coefficient. They are related but not 

interchangeable to each other. To calculate the Jaccard loss, one needs to subtract the Dice 

coefficient from 1. In this synthetic image segmentation in U-Net, the goal is to partition an image 



34 

into different regions or objects of interest. The Dice coefficient gives a measure of how well the 

algorithm's segmentation result aligns with the ground truth segmentation. It is particularly useful 

when dealing with binary segmentation tasks, where each pixel is classified as either foreground 

(object) or background. So, the dice coefficient selection is perfect here. However, the total number 

of datasets used here are 642 with four main defect types: blade crack, leading edge erosion, 

delamination, and lightning strike damage. And each defect has 10 different types of variations 

positioning the defect in a different area and in size. 

The dataset was divided into the train set (75%) and test set (25%) and the model was trained for 

100 epochs. The improvement rate in each epoch is moderate while training the model. After 

training and testing the basic U-Net model, we obtain the Dice coefficient of 0.658. A Dice 

coefficient of 0.658 suggests that the U-Net model has achieved moderate segmentation accuracy, 

but there is still scope for improvement. In other words, the model is correctly segmenting 65.8% 

of the pixels in the image. On the other hand, Dice coefficient of 0.658 in the model means the 

Jaccard loss of the model is 0.342. The model fails to visualize 34.2% of the ground truth in the 

predicted mask. 

As the classes are more balanced in our experiment, the Dice Loss indicates that the model needs 

further refinement. Figure 6 also supports the finding of our experiment. As we can see in Figure 

6 (both delamination and blade crack defects), the predicted masks from U-Net are close to the 

Unity-generated ground truth. But notice that the segmented result is still missing some of the 

pixels compared to the ground truth. Despite the limitation, the proposed methodology can 

segment the defects with reasonable accuracy. Table 1 provides a summary of trained model and 

evaluation metrics. 
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Table 1: Summary of Trained Model and Evaluation Metrics. 

Dataset 642 (images & masks) 

Defects 4 types 

Segmentation Architecture U-Net 

Optimizer  Adam 

Loss Function  Jaccard Loss 

Dice Coefficient (Test) 0.658 
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Chapter 5: Conclusion 

 

This thesis paper focuses on data synthesis using Unity and its perception package. The proposed 

work can successfully generate tons of images in the virtual settings. The real-like images have 

been used for the training of the U-Net. It is known to all that training the deep learning model 

needs voluminous images, where image data generation techniques can be useful. The synthetic 

data were used to train the U-Net architecture. After training of 100 epochs, we obtained the Dice 

coefficient of 0.658. The model shows reasonable performance in detecting the defects in wind 

turbine blades. The dice coefficient value could have been better if all blade defects can be 

identified well in the U-Net model. Leading edge erosion defect is most vulnerable for detection 

for its shape. If you see the generated images and its respective masks, it is slight straight line in 

the edge of the blade. Even camera angle from Unity sometimes make it more tough to detect. The 

slim shape and camera angle make it harder to detect them in U-Net. So, those Leading edge 

erosion images give very bad dice coefficient results and overall affects the models output. In 

future, we can improve the model for better segmentation and add the classification module. In 

addition, we will investigate the work using wide range of defects and real wind turbine images. 
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