
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2023-08-01

A Novel Approach For Defect Detection Of Wind Turbine Blade A Novel Approach For Defect Detection Of Wind Turbine Blade

Using Virtual Reality And Deep Learning Using Virtual Reality And Deep Learning

Md Fazle Rabbi
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Rabbi, Md Fazle, "A Novel Approach For Defect Detection Of Wind Turbine Blade Using Virtual Reality And
Deep Learning" (2023). Open Access Theses & Dissertations. 3933.
https://scholarworks.utep.edu/open_etd/3933

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3933?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

A NOVEL APPROACH FOR DEFECT DETECTION OF WIND TURBINE

BLADE USING VIRTUAL REALITY AND DEEP LEARNING

Md Fazle Rabbi

Master’s Program in Industrial Engineering

 APPROVED

 Tzu-Liang (Bill) Tseng, Ph.D., Chair

Md Fashiar Rahman, Ph.D., Co-Chair

 Yirong Lin, Ph.D.

Stephen L. Crites, Jr., Ph.D.

Dean of Graduate School

Copyright ©

by

 Md Fazle Rabbi

Dedication

To my parents, teachers, and friends

Who always helps me in every ways possible.

They are the reason I am the way I am today.

A NOVEL APPROACH FOR DEFECT DETECTION OF WIND TURBINE

BLADE USING VIRTUAL REALITY AND DEEP LEARNING

by

Md Fazle Rabbi

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso in

Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Industrial, Manufacturing and Systems Engineering Department

THE UNIVERSITY OF TEXAS AT EL PASO

August 2023

v

Acknowledgement

 I would like to express my sincere gratitude to Dr. Tzu-Liang (Bill) Tseng, my thesis advisor

for all his guidance, patience, and assistance. His continuous support and enthusiasm have

motivated me to write this thesis. Thank you for giving me the opportunity, especially as an

international student, to be involved in research activities. Special thanks as well to Dr. Md Fashiar

Rahman, and Dr. Yirong Lin, my committee members, for all your suggestions and support.

vi

Abstract

Wind turbines are subjected to continuous rotational stresses and unusual external forces such as

storms, lightning, strikes by flying objects, etc., which may cause defects in turbine blades. Hence,

it requires a periodical inspection to ensure proper functionality and avoid catastrophic failure. The

task of inspection is challenging due to the remote location and inconvenient reachability by

human inspection. Researchers used images with cropped defects from the wind turbine in the

literature. They neglected possible background biases, which may hinder real-time and

autonomous defect detection using aerial vehicles such as drones or others. To overcome such

challenges, in this paper, we experiment with defect detection accuracy by having the defects with

the background using a two-step deep-learning methodology. In the first step, we develop virtual

models of wind turbines to synthesize the near-reality images for four types of common defects -

cracks, leading edge erosion, bending, and light striking damage. The Unity® perception package

is used to generate wind turbine blade defects images with variations in background, randomness,

camera angle, and light effects. In the second step, a customized U-Net architecture is trained to

classify and segment the defect in turbine blades. The outcomes of U-Net architecture have been

thoroughly tested and compared with 5-fold validation datasets. The proposed methodology

provides reasonable defect detection accuracy, making it suitable for autonomous and remote

inspection through aerial vehicles.

Keywords: Defect detection, virtual reality, deep learning, U-Net, segmentation

vii

Table of Contents

Acknowledgement .. v

Abstract .. vi

List of Figures .. viii

Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Thesis Objectives .. 3

Chapter 2: Literature Review .. 4

Chapter 3: Methodology ... 6

3.1 Designing the Wind Turbine ... 6

3.1.1 Selecting a CAD Software ... 6

3.1.2 Designing the Wind Turbine in SOLIDWORKS 2021 ... 7

3.1.3 Deciding the Amount of Wind Turbine Needed to Generate .. 9

3.2 Creating the Virtual Environment in Unity .. 10

3.2.1 Creating the Virtual Environment in Unity Terrain ... 10

3.2.2 Creating the Virtual Environment in Unity Cube Map .. 12

3.3 Generating Synthetic Images Using Unity Perception Package ... 14

3.4 Setting Up Basic U-Net Network ... 20

Chapter 4: Results and Discussions .. 33

Chapter 5: Conclusion... 36

References: .. 37

Vita .. 40

viii

List of Figures

Figure 1 Designing the Wind Turbine .. 9

Figure 2 Schematic Overview of Wind Turbine Defect Type And Generated Model Amount ... 10

Figure 3 Setting up Unity Terrain ... 11

Figure 4 Inserting Trees in Terrain ... 12

Figure 5 Setting Up Unity Cube Map ... 13

Figure 6 Inserting Wind Turbine in Unity Cube Map .. 14

Figure 7 Adding Perception Package in Main Camera in Unity .. 16

Figure 8 Blade Crack Image and Its Perspective Semantic Segmentation 17

Figure 9 Delamination Image and Its Perspective Semantic Segmentation 18

Figure 10 Leading Edge Erosion Image and Its Perspective Semantic Segmentation 18

Figure 11 Lightning Strike Damage Image and Its Perspective Semantic Segmentation 19

Figure 12 Illustration of U-Net Convolutional Network Structure ... 20

Figure 13 Visualization of Model’s Output .. 33

file:///C:/Users/mrabbi1/Desktop/Thesis/Thesis%20(Md%20Fazle%20Rabbi).docx%23_Toc139559588
file:///C:/Users/mrabbi1/Desktop/Thesis/Thesis%20(Md%20Fazle%20Rabbi).docx%23_Toc139559589
file:///C:/Users/mrabbi1/Desktop/Thesis/Thesis%20(Md%20Fazle%20Rabbi).docx%23_Toc139559590
file:///C:/Users/mrabbi1/Desktop/Thesis/Thesis%20(Md%20Fazle%20Rabbi).docx%23_Toc139559591

1

Chapter 1: Introduction

Wind Turbine plays a vital role in the energy generation of the United States of America. Wind

turbines provided almost 8.4 % of total generated electricity in 2020 in the United States

(According to US Energy Information Administration). According to the U.S Wind Turbine

Database (2022), more than 700,800 wind turbines are running across 44 states resulting in the

fourth number of sources for electric energy generation. Most importantly, it is the number one

renewable energy source for the USA in power generation. For that reason, if the US wants to be

a country of Green Energy, Wind Turbine will be their priority. As the European countries are now

more focused on renewable energy for global warming and the US is lagging in this sector, the US

government is now taking initiatives to grow their renewable energy source like wind turbines.

Even recently, some states have set the target to maintain a percentage of energy that should come

from renewable energy. So, to make the US a sustainable and low carbon emission country, wind

turbine can contribute a lot.

1.1 Background

Wind Turbines are generally installed in remote and rural areas where there is a constant and strong

wind. The constant and strong wind can be found in both onshore and offshore locations. Hills,

open fields, or coastal areas can be a very good source of wind power for onshore settlements. On

the other hand, oceans or lakes are the prime sources of wind for onshore settlement. Because of

wind speed and the visual impact of nature, the onshore wind turbine is preferable for installation.

But both locations are remote for proper inspections of the wind turbine. After installing the wind

turbine, the blade defects generally start over time. Though blade defects can occur anytime,

environmental factors like lightning, flying objects, and high wind plays an important part in it.

2

Along with that, poor inspections and maintenance are part of the gradual process of blade defects.

For that reason, the detection of wind turbine defects in the initial phase is necessary for

uninterrupted power generation.

1.2 Problem Statement

Wind turbines show different types of defects in its blade during their lifetime. But for

generalizations and understanding, in this paper, four main types of defects have been studied such

as 1) Blade Crack, 2) Leading Edge Erosion, 3) Delamination, and 4) Lighting Strike Damage.

Blade cracks are a serious issue for wind turbines. If the crack is not identified in the initial phases

of its origin, the blade will eventually fail to operate. So, the identification of Blade Crack in the

primary phase is a must. In this case, the proper inspection of the blade by drone or watch tower

is a measure towards safe operations of wind turbines. On the contrary, leading edge Erosion is

another most common defect in wind turbines as the flowing air and dust continuously cause

erosions in the edges. Over time, leading edge erosion reduces the efficiency of power generation.

Similarly, the delamination of wind turbines is caused by extreme weather, humidity, or

mechanical stresses. This is a significant concern for the power company as it has long downtime

and safety issues. The manufacturing process and materials selections play a key factor in

overcoming delamination defects. Ultrasonic testing and using adhesives are part of maintenance

for delamination. The lighting strike damage in wind turbines results due to the lightning effect. It

may damage the generator, control systems, power electronics, or blades. The blade may be

affected by direct impact or through shock waves.

3

1.3 Thesis Objectives

This thesis paper addresses the problem of automated detection of the above-mentioned defects in

wind turbine blades, which is a critical issue in the renewable energy industry. Traditionally,

detecting blade defects is time-consuming and expensive and may not be effective in identifying

all types of defects. To address this problem, the paper proposes a novel approach that combines

virtual reality and deep learning techniques to develop an automated and efficient defect detection

system for wind turbine blades. The proposed system aims to reduce inspection time and cost while

improving the accuracy and effectiveness of defect detection from synthetic images.

4

Chapter 2: Literature Review

For working on defect detection of wind turbine using virtual reality and deep learning, it is needed

to go through the literature about the synthetic images, wind turbine images, and deep learning. In

recent years, the integration of VR based images and deep learning techniques has come out as a

novel approach to increase the accuracy and efficiency of defect detection processes. Such

synthetic images have achieved a significant attention in the field of deep learning due to their

ability to generate large-scale, diverse, and labeled datasets. Synthetic image generation techniques

help to create realistic virtual environments for wind turbine defect detection. The integration of

virtual reality and deep learning gives a new opportunity to create immersive training

environments for wind turbine defect detection. Synthetic images can help overcome the

limitations of real-world datasets and the remove barrier for limited availability, annotation errors,

and variability in environmental conditions.

There are various techniques available to generate synthetic wind turbine images, including 3D

modeling, physics-based rendering, and generative adversarial networks (GANs). These

approaches help to the create of virtual wind turbine environments with realistic appearance.

Whereas, Procedural generation involves algorithms to generate virtual environments, including

wind turbine models and surroundings environment, based on needs. This procedure allows for

the creation of different customizable wind turbine scenes. Other technique usually used is data-

driven synthesis, which uses existing real-world wind turbine images and data to generate new

images. Both approach leverages machine learning algorithms to learn patterns and characteristics

from the input data and then generates new images that closely visualize the real-world examples.

With the help of images of the wind turbine blades, the inspections can be done automatically and

quickly by deploying deep learning-based image segmentation and classification techniques [1,2].

5

Hence, in this work, the U-Net based semantic segmentation technique is used to detect the defects

in turbine blades [3]. The U-Net architecture is selected because it can give an accurate and detailed

segmentation map from a small image dataset. A multilevel convolutional recurrent neural network

(MCRNN) is also good for detecting wind turbine blade icing [4]. MCRNN is a good choice

because it combines CNNs and RNNs in a hierarchical manner. In real-time supervisory control

[5] and Non-destructive testing [6], An Unmanned Aerial Vehicle (UAV) [7] is always preferable.

An UAV takes images for segmentations with the help of the embedded camera. Then those images

become a great source of datasets. On the other hand, the blade defect detection's accuracy can be

increased by analyzing and identifying the distinctive spectral signature [8]. Again, there may not

have enough real-world data available to train a deep learning model. Moreover, getting real-world

data, in some cases, are expensive and time costuming. Therefore, it comes to the essence of using

synthetic data [9]. As an example of using synthetic data, capturing the relationship among

synthetic features [10] and pedestrian data can be used for Deep Convolutional Neural Networks

(DCNN) [11]. And in defect detection, Fuzzy Failure Mode and Effect Analysis (FMEA) can also

give a structured method for defect analysis [12,13] or any Android application [14]. Infrared

thermography (IRT) [15] and continuous line laser thermography for damage visualizations for

wind turbines [16] are other methods. However, after extensively evaluating various deep learning

architectures, we have chosen U-Net as the most suitable one for this paper.

6

Chapter 3: Methodology

3.1 Designing the Wind Turbine

3.1.1 Selecting a CAD Software

To generate synthetic images, it is necessary to design a virtual model of wind turbines. The design

of wind turbines can be done with the help of different Computer Aided Design (CAD) software

like SolidWorks, Maya, or Blender. These software are commonly known for their ability to create

3D models. Among these options, SolidWorks 2021 was specifically selected for to its advanced

assembly tools facilitating the assembly process of complex parts in the model. SolidWorks 2021

offers a comprehensive set of features and capabilities for designing various models as well as

wind turbines models. Solidworks user-friendly interface and robust tools helps modeling and

detailing the features. By utilizing SolidWorks, the wind turbine can be precisely designed in IPS

(Inchi, Pound, Second) measurements, maintaining the model's desired specifications.

One of the benefits of using the SolidWorks 2021 is its ability to design complex assembly of

models. Wind turbines consisting of numerous interconnected components, SolidWorks' assemble

them together using tools. This capability helps simplifing the modeling process which allows fthe

creation of complex and real-like wind turbine models. SolidWorks 2021's built in range of

features including parametric modeling enables the creation of flexible and adaptable designs. This

feature is particularly valuable designing wind turbines and it allows for easy modification of blade

length, hub size, and tower height. Such flexibility ensures the generated synthetic images

presenting different configurations of wind turbines.

Again, SolidWorks 2021 provides simulation capabilities enabling designers to analyze the

structural integrity and performance of the wind turbine model. This feature helps in optimizing

7

the design to identify potential issues and allow for necessary adjustments before physical

production. The accuracy and precision provided by SolidWorks 2021 makes it an ideal choice for

wind turbine design. Furthermore, the software's advanced rendering capabilities contribute

creating visually beautiful and realistic virtual models. These models can be utilized for various

purposes including visual simulations and presentations. In conclusion, SolidWorks 2021's

selection for wind turbine modeling in IPS measurements is driven by its assembly tools,

parametric modeling capabilities, simulation features, and advanced rendering options.

3.1.2 Designing the Wind Turbine in SOLIDWORKS 2021

The base of the wind turbine is constructed exclusively using the boss extrude tool. For facilitating

the modeling process, the structural component called mast has been divided into two sections,

each of which has created using the revolve tool. Then, the motor housing and rotor were designed

using a combination of the boss extrude tool and the shell tool. The distance between the base and

the center of the rotor was set at Z=380 inches. After that, surface modeling techniques have

employed to design a single blad and then it has replicated using the circular pattern tool to create

two additional blades. These blades have been evenly distributed across a 360-degree span, with

the rotor serving as the central point. The resulting circle created by the blade measures 200 inches

in diameter.

To visualize various possibilities of delamination in the blades, the flex tools has bent and twisted

the blades in ten different ways. Additionally, the extrude cut function has deployed to simulate

lightning strike damage and blade cracks in twenty different scenarios. Another defect type,

leading edge erosion has been created by using surfacing tools to remove specific sections of the

blades, with ten different erosion patterns created. In short, the wind turbine design created in a a

step-by-step process using various modeling tools such as boss extrude, revolve, shell, circular

8

pattern, surface modeling, flex, and extrude cut. These techniques allow for the creation of a base,

mast, motor housing, rotor, and blades, as well as the simulation of delamination, lightning strike

damage, blade cracks, and leading edge erosion in different configurations.

Finally, Keyshot 10 has been utilized to incorporate dirt, rust materials, and corrosion textures,

which enhances the visual realism of the models. Through the advanced capabilities of Keyshot

10, all the models have been seamlessly exported into the FBX format. This format ensures quality

and facility of their seamless integration into Unity, a widely recognized cross-platform game

engine known for creating immersive virtual environments. Unity's capabilities makes it an

ultimate choice for further simulations and interactive experiences. By using Keyshot 10 and Unity

in conjunction, the models' aesthetics and functionality can be synergistically increased, providing

users with an engaging and visually appealing virtual environment. The integration of dirt, rust,

and corrosion textures adds an authentic touch, lending a sense of realism and depth to the virtual

scenes. The FBX format's versatility facilitate transition between Keyshot 10 and Unity,

streamlining the workflow for developers and artists alike. The combination of these cutting-edge

tools gives designers confident to deliver high-quality virtual experiences and captivate audiences

across multiple platforms.

9

Figure 1 Designing the Wind Turbine

3.1.3 Deciding the Amount of Wind Turbine Needed to Generate

Determining the optimal number of wind turbine models is a critical task as it directly impacts the

assessment of environmental randomness. A greater number of models, each with variations,

introduces a higher degree of randomness in the testing environment. This heightened level of

randomness serves to thoroughly challenge and evaluate the deep learning model's robustness.

However, generating a substantial number of models tends to be time-consuming and complex,

particularly due to the requirement for distinct defect shapes in each model. After careful

consideration, it has been decided to proceed with a total of 40 different wind turbine models, with

10 models allocated to each of the four blade defect types. This approach aims to strike a balance

between generating a diverse set of models and managing the practical constraints of the task. Each

of the 40 models will exhibit unique characteristics pertaining to their respective defect type,

ensuring a comprehensive representation of potential scenarios.

By implementing this strategy, the testing process can visualize a broad range of defect shapes,

providing valuable insights into the deep learning model's performance across various realistic

10

scenarios. Although the generation of 40 distinct models presents difficulties, the resulting dataset

will serve as a valuable resource for training and validating the deep learning model, ultimately

contributing to more reliable and efficient wind turbine operations.

Figure 2 Schematic Overview of Wind Turbine Defect Type And Generated Model Amount

3.2 Creating the Virtual Environment in Unity

In this paper, the virtual world has been made inside the Unity in two different scenes: a. Terrain,

b. Cube Map.

3.2.1 Creating the Virtual Environment in Unity Terrain

The Unity terrain system facilitate designers a wide range of options to create diverse rural

environments. By working on the vertices of the terrain, developers can shape hills, valleys, and

lowlands, giving the terrain a natural and realistic appearance. Moreover, in the heightmap option,

it allows for the addition of different surface textures, further enhancing the visual appeal of the

terrain. In this particular case, the terrain has been textured with painted green grass which gives

it a lush and vibrant look. To add even more variety, three types of ground textures have been

incorporated, creating a more immersive and believable environment. The inclusion of a

downloaded tree asset from the Unity asset store adds an extra layer of realistic looks, as the trees

are seamlessly integrated into the terrain. Furthermore, a rural road has been crafted using various

brushes, adding a sense of ruggedness and practicality to the environment. Finally, to complete the

Wind Turbine

1. Blade Crack

Total No. of Models: 10

2. Leading Edge Errosion

Total No. of Models: 10

3. Delamination

Total No. of Models: 10

4.Lightning Strike Damage

Total No. of Models: 10

11

scene, a defective wind turbine has been imported, adding an intriguing element and capturing

attention.

Figure 3 Setting up Unity Terrain

The Unity terrain system gives the developers a powerful tool for creating the appealing

environment for their games or simulations. Through careful assuages of vertexes, texture painting,

and asset integration, developers can visualize the stunning and immersive landscapes. The

combination of painted grass, ground textures, tree assets, and a muddy road in this specific terrain

adds depth and authenticity to the scene. The addition of the defective wind gives us the

environment we need to capture images realistic look-like. For simulation image capturing

purposes, the Unity terrain system provides an accessible and effective means of creating

captivating environments.

12

Figure 4 Inserting Trees in Terrain

3.2.2 Creating the Virtual Environment in Unity Cube Map

The second virtual scene used is Unity Cube Map technology, which is commonly found in 3D

graphics and 360-degree environments. This mapping technique allows for the creation of three-

dimensional spaces by combining multiple images of the top, bottom, front, back, left, and right

perspectives. Where you can see the 360 degree by rotating the images. With Unity Cube Map,

the creates the 3D geometry seamlessly integrates into the overall environment. To incorporate the

cube map into the project, users can easily import the free version available from the Unity Asset

Store. There are numerous cube map images are available in the Unity Asset Store. You can buy

the cube images or even can get it free. In our case, it has been downloaded free from there. After

that, the map has been uploaded in the unity projects. Then a material has been created in the asset

store. Because for applying the cube map, you need to create material first.

13

Figure 5 Setting Up Unity Cube Map

Then the downloaded cube map has been applied to the material created. In our case, there are

several types of cube map in the asset store with different background environment. But we select

the cube map with semi desert hilly area because wind turbines are generally installed area like

that. Once imported, the cube map is applied as a material within the scene, providing a visually

stunning backdrop against which the defective model can be placed.

In this particular scenario, the defective model was added into the scene to be observed and

captured images from various angles. The cube map's contribution shows apparent as it envelops

the model, creating a lifelike setting that accurately reflects its surroundings. By leveraging Unity's

Cube Map technology, designers can obtain a high level of fidelity and detail in their virtual

environments, enhancing the overall visual experience. The usages of the cube map and the

defective model provides engaging visual representation and users can examine and analyze the

14

model's intricacies from different perspectives and lighting conditions. Most importantly, the

perception packages can work in such in environment.

Figure 6 Inserting Wind Turbine in Unity Cube Map

3.3 Generating Synthetic Images Using Unity Perception Package

The Unity Perception Package is a useful tool for capturing images from a Unity environment. The

perception package is still in experimental stage. But the package can be downloaded from Unity

Package Manager. To use it, you can download the package from there and it would be stored in

the Unity project. The perception package has five components and it can be seen in the project

windows: forward renderers, sample scene, universal RP – high quality, universal RP – low

quality, and universal RP – medium quality.

Before applying the perception packages, it is needed to select forward renderer. There it is needed

to add ground truth renderer feature. Renderer pipeline is the feature to generate images from all

the world in the Unity. It also allows to generate the segmentations data. Firstly, we need to create

15

a empty scene. There we need to rename the scene too. And in the scene window, we will create

the scene with the unity terrain and unity cube map. And there needs to upload the defective wind

turbine too. Then we need to select the camera from the hierarchy window.

In the project window, the wind turbine model has different parts combination. All the parts of it

like turbine, blade, engines, are made differently and then combine to make it. The defect part is

also different, and the defect part has been given add label config. After that, the main camera has

been set in the direction of the wind turbine. The main camera needs to set the perception package

setting in a set by set way. Firstly, the perception camera is added with the main camera of the

scene. Then, it is needed to make sure the camera is in a scheduled mode. That means the images

will be captured automatically from the camera. There is a simulation delta time in the setting.

This is actually simulations time; the camera will capture the images in a rate. By changing the

simulation delta time you can change the time needed to capture the images. In our case, we used

the simulation delta time 40.

The resolution of the images can also be controlled from the game window free aspect setting. It

has been used here 512*512 binary images. So that means, all the images generate here will be

512*512 binary images. Then it is needed to include bounding box 2D labeler in the camera. Then

in the asset package, it is needed to find out the tutorial id label config, then needed to set the

defect label name in the id label config. Similarly, it is needed to add semantic segmentation labeler

in the asset and set the label from defect part. And finally set the semantic segmentation labeler in

the main camera. The other labeler name is bounding box 3D labeler.

16

Figure 7 Adding Perception Package in Main Camera in Unity

After that, it is needed to select the folder to store the all the images. As it creates huge amount of

images in a single click, it needs a big storage to keep it. Then, the wind turbine needs to focus on

the game window to see how images will be captured from the scene. After refocusing the wind

turbine, it is needed to hit the play button of the scene. In this set up the perception camera will

capture the same images according of the simulation delta time. But the problem is that the images

will not be identical. It is needed to have variation images. For creating variations, the images are

moved in different directions to have variations. So, when the play button is played the simulations

is started, and the whole wind turbine model is then moved along different direction to have

17

different images. From the different images and their perspective semantic segmentation can be

found like the following images.

Figure 8 Blade Crack Image and Its Perspective

Semantic Segmentation

18

Figure 9 Delamination Image and Its Perspective Semantic Segmentation

Figure 10 Leading Edge Erosion Image and Its Perspective Semantic Segmentation

19

This process was repeated for all 40 models, that results in a total of 642 images. Additionally, all

images have corresponding semantic segmentation/ground truth in the desired folders. Even, the

images have its corresponding text data file too which in dot json format. The text file can also be

read through Sublime Text software. Overall, this approach provides a way to capture images from

a Unity scene and generate corresponding semantic segmentation/ground truth labels for further

analysis.

Figure 11 Lightning Strike Damage Image and Its Perspective Semantic Segmentation

20

3.4 Setting Up Basic U-Net Network

After generating the image datasets from Unity, it is needed to select a better deep learning model

to detect the defect. Deep learning models like U-Net, faster R-CNN, SSD (Single Shot MultiBox

Detector), DeepLab, Mask R-CNN are available to use for the synthetic dataset generated. But we

used the basic U-Net architecture [17] for image segmentation. Because U-Net has higher level of

accuracy. The network consists of encoding and decoding parts that are connected by the

bottleneck. The convolutional layers create the contracting paths. One or more convolutional

layers make up the bottleneck, which joins the contracting and expanding paths. Its goal is to

portray the most significant aspects of the input image in a compressed manner. Here, the input

images are 512*512 Pixels in size. Figure 5 shows the architecture of the U-Net which is employed

for our purposes. In the experimental settings, Google Colaboratory is utilized for model training

and testing.

Figure 12 Illustration of U-Net Convolutional Network Structure

21

To evaluate the model outcomes, Jaccard Index is generally used to measure the similarity between

predicted masks and ground truth masks. It measures the overlap between the ground truth and

segmentation outcomes.

𝐽(𝑊1, 𝑊2) =
|𝑊1∩𝑊2|

|𝑊1∪𝑊2|
 (1)

Where, 𝑊1and 𝑊2 are the ground truth and segmentation outcome, respectively. The Jaccard Index

ranges from 0 to 1, with 0 denoting no overlap and 1 indicating complete overlap between the sets.

In the basic cross entropy loss, per-pixel loss is calculated discretely, measuring as the average of

per-pixel loss. It takes into account loss in a micro sense as opposed to taking it into account

globally. For handling this, we have used Dice Loss which originates from the Dice Coefficient

(DSC). Jaccard Loss is calculated from the coefficient value by applying 1 −

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶).

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶) =
2×|𝐴∩𝐵|

|𝐴|+|𝐵|
 (2)

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶) (3)

Where, A represents the predicted mask set and B represents the ground truth mask set.

The coding for the dataset can be visualized as follows (taken from Google Colab)

from google.colab import drive

drive.mount('/content/drive')

%cd /content/drive/My Drive/Unet-Rabbi

#import all the libraries

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

22

import os

import glob

import skimage.io as io

from PIL import Image

from skimage.viewer import ImageViewer

import matplotlib.pyplot as plt

def trainGenerator(image_path,mask_path,flag_multi_class = False,num_class = 2,image_prefix

= "images",mask_prefix = "masks",image_as_gray = True,mask_as_gray = True):

 image_name_arr = glob.glob(os.path.join(image_path,"*.PNG"))

 mask_name_arr = glob.glob(os.path.join(mask_path, "*.PNG"))

 image_arr = []

 mask_arr = []

 for index,item in enumerate(image_name_arr):

 img = io.imread(item,as_gray = image_as_gray)

 img = np.reshape(img,img.shape + (1,)) if image_as_gray else img

 img = img / 255

 image_arr.append(img)

 for index, item in enumerate(mask_name_arr):

 mask = io.imread(item, as_gray = image_as_gray)

 mask = np.reshape(mask,mask.shape + (1,)) if mask_as_gray else mask

 mask = mask/255

 mask[mask>0.5] = 1

23

 mask[mask<=0.5] = 0

 mask_arr.append(mask)

 image_arr = np.array(image_arr)

 mask_arr = np.array(mask_arr)

 return image_arr,mask_arr

def testGenerator(test_path, image_num):

 for i in range(image_num):

 #idx = str(i+69).zfill(5) + ".png"

 idx = 'rgb_'+ str(i+70) + ".png"

 img = io.imread(os.path.join(test_path, idx), as_gray=True)

 img = img / 255

 img = np.reshape(img, img.shape + (1,))

 img = np.reshape(img,(1,)+img.shape)

 yield img

def testMask(test_path, image_num):

 Y_test = np.zeros((image_num, 512, 512, 1), dtype=np.bool)

 for i in range(image_num):

 #idx = str(i+69).zfill(5) + ".png"

 idx = 'segmentation_'+ str(i+70) + ".png"

 msk = io.imread(os.path.join(test_path, idx), as_gray=True)

 msk = msk / 255

 msk = np.reshape(msk, msk.shape + (1,))

 msk = np.reshape(msk,(1,)+msk.shape)

24

 Y_test[i] = msk

 return Y_test

def getItem(img_path, item):

 idx = str(item+1).zfill(5) + ".png"

 img = io.imread(os.path.join(img_path, idx), as_gray=True)

 img = img/255.0

 img = np.reshape(img, img.shape + (1,))

 img = np.reshape(img,(1,)+img.shape)

 return img

def saveResult(save_path, files):

 for i, item in enumerate(files):

 img = item[:,:,0]

 idx = str(i+1).zfill(5) + ".png"

 io.imsave(os.path.join(save_path, idx), img)

def viewImage(array1, array2, i):

 img = np.reshape(array1[i], (512, 512))

 mask = np.reshape(array2[i], (512, 512))

 f, axarr = plt.subplots(1,2)

 axarr[0].imshow(img, cmap=plt.cm.gray)

 axarr[1].imshow(mask, cmap=plt.cm.gray)

 plt.show()

os.getcwd()

Load the train data and their corresponding labels

25

Visualize a sample image

imgs_train,imgs_mask_train= trainGenerator("train/images/","train/masks/")

print(imgs_train.shape)

print(imgs_mask_train.shape)

index = np.random.randint(1, 50)

#viewImage(imgs_train, imgs_mask_train, index)

!pip install -U segmentation-models

import os

os.environ["SM_FRAMEWORK"] = "tf.keras"

from segmentation_models import Unet, FPN

from segmentation_models import get_preprocessing # this line has an error in the docs

from segmentation_models.losses import bce_jaccard_loss

from segmentation_models.metrics import iou_score

from segmentation_models.losses import dice_loss

#from segmentation_models.metrics import dice_score

from segmentation_models.utils import set_trainable

from keras import backend as K

def iou_coef(y_true, y_pred, smooth=1):

 intersection = K.sum(K.abs(y_true * y_pred), axis=[1,2,3])

 union = K.sum(y_true,[1,2,3])+K.sum(y_pred,[1,2,3])-intersection

26

 iou = K.mean((intersection + smooth) / (union + smooth), axis=0)

 return iou

def dice_coef(y_true, y_pred, smooth=1):

 intersection = K.sum(y_true * y_pred, axis=[1,2,3])

 union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])

 dice = K.mean((2. * intersection + smooth)/(union + smooth), axis=0)

 return dice

from keras import backend as K

def jaccard_loss(y_true, y_pred, smooth=100):

 intersection = K.sum(K.abs(y_true * y_pred), axis=-1)

 sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)

 jac = (intersection + smooth) / (sum_ - intersection + smooth)

 return (1 - jac) * smooth

import numpy as np

import os

import skimage.io as io

import skimage.transform as trans

import numpy as np

from keras.models import *

from keras.layers import *

from keras.optimizers import *

from keras.callbacks import ModelCheckpoint, LearningRateScheduler

from keras import backend as keras

27

def unet(input_size = (512, 512,1)):

 inputs = Input(input_size)

 conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(inputs)

 conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv1)

 pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

 conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(pool1)

 conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv2)

 pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

 conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(pool2)

 conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv3)

 pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

 conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(pool3)

 conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv4)

 drop4 = Dropout(0.5)(conv4)

28

 pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

 conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(pool4)

 conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv5)

 drop5 = Dropout(0.5)(conv5)

 up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(UpSampling2D(size = (2,2))(drop5))

 merge6 = concatenate([drop4,up6], axis = 3)

 conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(merge6)

 conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv6)

 up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(UpSampling2D(size = (2,2))(conv6))

 merge7 = concatenate([conv3,up7], axis = 3)

 conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(merge7)

 conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv7)

 up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(UpSampling2D(size = (2,2))(conv7))

 merge8 = concatenate([conv2,up8], axis = 3)

29

 conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(merge8)

 conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv8)

 up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(UpSampling2D(size = (2,2))(conv8))

 merge9 = concatenate([conv1,up9], axis = 3)

 conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(merge9)

 conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv9)

 conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer =

'he_normal')(conv9)

 conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)

 model = Model(inputs, conv10)

 model.compile(optimizer = Adam(lr = 1e-4), loss = [dice_loss], metrics = [iou_score])

 return model

laod model and show the model summary

model = unet()

model_checkpoint = ModelCheckpoint('windTurbine_segmentation.hdf5',

monitor='loss',verbose=1, save_best_only=True)

model.summary()

train the model

30

hm_epochs = 100

batch_size = 4

model.fit(imgs_train, imgs_mask_train, batch_size=batch_size, epochs=hm_epochs, verbose=1,

 validation_split=0.2, shuffle=True, callbacks=[model_checkpoint])

test_path = 'test/images/'

test_image_arr = glob.glob(os.path.join(test_path, "*.png"))

num_of_test_images = len(test_image_arr)

testGene = testGenerator(test_path, num_of_test_images)

results = model.predict(testGene, num_of_test_images, verbose=1)

print(results)

print(results[0])

results = results >= 0.1

print(results)

#plt.imshow(results[0], cmap='Reds', alpha=0.3)

plt.imshow(np.squeeze(results[0]), cmap='Reds', alpha=0.3)

test_path = 'test/masks/'

test_image_arr = glob.glob(os.path.join(test_path, "*.png"))

num_of_test_images = len(test_image_arr)

testMsk = testMask(test_path, num_of_test_images)

print(testMsk[0])

plt.imshow(np.squeeze(testMsk[1]), cmap='Reds', alpha=0.3)

plt.imshow(np.squeeze(results[1]), cmap='Reds', alpha=0.3)

idx = 0

31

true = testMsk[idx]

predicted = results[idx]

intersection = np.logical_and(predicted, true)

union = np.logical_or(predicted, true)

iou_score = np.sum(intersection) / np.sum(union)

print('IoU is %s' % iou_score)

def Jaccard_img(y_true, y_pred): #https://www.jeremyjordan.me/evaluating-image-

segmentation-models/

 iou_score=0

 counter=0

 for i in range(y_true.shape[0]):

 if np.sum(y_true[i])>0:#Considering only the slices that have hemorrhage regions, if y_true

is all zeros -> iou_score=nan.

 im1 = np.asarray(y_true[i]).astype(np.bool)

 im2 = np.asarray(y_pred[i]).astype(np.bool)

 intersection = np.logical_and(im1, im2)

 union = np.logical_or(im1, im2)

 iou_score+= np.sum(intersection) / np.sum(union)

 counter+=1

 if counter>0:

 return iou_score/counter

 else:

 return np.nan

32

jac_indx = Jaccard_img(predicted, true)

print(jac_indx)

print('*_--')

The output of the above basic U-Net code has been discussed in discussion and conclusion chapter.

33

Chapter 4: Results and Discussions

Figure 13 Visualization of Model’s Output

Unity generates images automatically based on the setup as discussed above. During the

simulation, unity can generate tons of images within a very short period with variations with

precise annotation of semantic segmentation. We use the simulated images and their corresponding

annotation (ground truth) to train the U-Net model. The Adam optimizer [18] is used to train the

network. Adam is a well-known optimization algorithm for deep neural network training which

gives adaptive learning rate.

As the Dice coefficient gives the similarity between the predicted segmentation map and the

ground truth, Dice coefficient is used here. Then, Jaccard loss has been used as loss function here

because Jaccard loss function is complementary to Dice coefficient. They are related but not

interchangeable to each other. To calculate the Jaccard loss, one needs to subtract the Dice

coefficient from 1. In this synthetic image segmentation in U-Net, the goal is to partition an image

34

into different regions or objects of interest. The Dice coefficient gives a measure of how well the

algorithm's segmentation result aligns with the ground truth segmentation. It is particularly useful

when dealing with binary segmentation tasks, where each pixel is classified as either foreground

(object) or background. So, the dice coefficient selection is perfect here. However, the total number

of datasets used here are 642 with four main defect types: blade crack, leading edge erosion,

delamination, and lightning strike damage. And each defect has 10 different types of variations

positioning the defect in a different area and in size.

The dataset was divided into the train set (75%) and test set (25%) and the model was trained for

100 epochs. The improvement rate in each epoch is moderate while training the model. After

training and testing the basic U-Net model, we obtain the Dice coefficient of 0.658. A Dice

coefficient of 0.658 suggests that the U-Net model has achieved moderate segmentation accuracy,

but there is still scope for improvement. In other words, the model is correctly segmenting 65.8%

of the pixels in the image. On the other hand, Dice coefficient of 0.658 in the model means the

Jaccard loss of the model is 0.342. The model fails to visualize 34.2% of the ground truth in the

predicted mask.

As the classes are more balanced in our experiment, the Dice Loss indicates that the model needs

further refinement. Figure 6 also supports the finding of our experiment. As we can see in Figure

6 (both delamination and blade crack defects), the predicted masks from U-Net are close to the

Unity-generated ground truth. But notice that the segmented result is still missing some of the

pixels compared to the ground truth. Despite the limitation, the proposed methodology can

segment the defects with reasonable accuracy. Table 1 provides a summary of trained model and

evaluation metrics.

35

Table 1: Summary of Trained Model and Evaluation Metrics.

Dataset 642 (images & masks)

Defects 4 types

Segmentation Architecture U-Net

Optimizer Adam

Loss Function Jaccard Loss

Dice Coefficient (Test) 0.658

36

Chapter 5: Conclusion

This thesis paper focuses on data synthesis using Unity and its perception package. The proposed

work can successfully generate tons of images in the virtual settings. The real-like images have

been used for the training of the U-Net. It is known to all that training the deep learning model

needs voluminous images, where image data generation techniques can be useful. The synthetic

data were used to train the U-Net architecture. After training of 100 epochs, we obtained the Dice

coefficient of 0.658. The model shows reasonable performance in detecting the defects in wind

turbine blades. The dice coefficient value could have been better if all blade defects can be

identified well in the U-Net model. Leading edge erosion defect is most vulnerable for detection

for its shape. If you see the generated images and its respective masks, it is slight straight line in

the edge of the blade. Even camera angle from Unity sometimes make it more tough to detect. The

slim shape and camera angle make it harder to detect them in U-Net. So, those Leading edge

erosion images give very bad dice coefficient results and overall affects the models output. In

future, we can improve the model for better segmentation and add the classification module. In

addition, we will investigate the work using wide range of defects and real wind turbine images.

37

References:

 [1] Rahman, Md Fashiar, et al. "A deep learning-based approach to extraction of filler

morphology in SEM images with the application of automated quality inspection." AI

EDAM 36 (2022).

 [2] Rahman, Md Fashiar, et al. "Improving lung region segmentation accuracy in chest X-ray

images using a two- model deep learning ensemble approach." Journal of Visual

Communication and Image Representation 85 (2022): 103521.

 [3] Yu, Junfeng, et al. "An Improved U-Net Model for Infrared Image Segmentation of Wind

Turbine Blade." IEEE Sensors Journal (2022).

 [4] Tian, Weiwei, et al. "A multilevel convolutional recurrent neural network for blade icing

detection of wind turbine." IEEE Sensors Journal 21.18 (2021): 20311-20323.

 [5] Rezamand, Milad, et al. "A new hybrid fault detection method for wind turbine blades using

recursive PCA and wavelet-based PDF." IEEE Sensors journal 20.4 (2019): 2023-2033.

 [6] Márquez, Fausto Pedro García, and Ana María Peco Chacón. "A review of non-destructive

testing on wind turbines blades." Renewable Energy 161 (2020): 998-1010.

 [7] Barker, Jack, Neelanjan Bhowmik, and Toby Breckon. "Semi-Supervised Surface Anomaly

Detection of Composite Wind Turbine Blades From Drone Imagery." arXiv preprint

arXiv:2112.00556 (2021).

 [8] Rizk, Patrick, et al. "Wind turbine blade defect detection using hyperspectral

imaging." Remote Sensing Applications: Society and Environment 22 (2021): 100522.

 [9] Rahman, Md Fashiar, Jianguo Wu, and Tzu Liang Bill Tseng. "Automatic morphological

extraction of fibers from SEM images for quality control of short fiber-reinforced composites

38

manufacturing." CIRP Journal of Manufacturing Science and Technology 33 (2021): 176-

187.

 [10] Abay, Nazmiye Ceren, et al. "Privacy preserving synthetic data release using deep

learning." Machine Learning and Knowledge Discovery in Databases: European Conference,

ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18.

Springer International Publishing, 2019.

 [11] Ekbatani, Hadi Keivan, Oriol Pujol, and Santi Segui. "Synthetic Data Generation for Deep

Learning in Counting Pedestrians." ICPRAM. 2017.

 [12] Rabbi, Fazle. "Assessment of fuzzy failure mode and effect analysis (FMEA) for reach

stacker crane (RST): A case study." International journal of research in industrial

engineering 7.3 (2018): 336-348.

 [13] Rabbi, Md Fazle, and Bangladesh Khulna. "Assessment of Fuzzy Failure Mode and Effect

Analysis (FMEA)…· 2020-06-26· FMEA (Failure..." Int. J. Res. Ind. Eng. Vol 7.3 (2018):

336-348.

 [14] Kamal, Tamanna, Fabiha Islam, and Mobasshira Zaman. "Designing a Warehouse with RFID

and Firebase Based Android Application." Journal of Industrial Mechanics 4.1 (2019): 11-

19.

 [15] Galleguillos, C., et al. "Thermographic non-destructive inspection of wind turbine blades

using unmanned aerial systems." Plastics, Rubber and Composites 44.3 (2015): 98-103.

 [16] Hwang, Soonkyu, Yun-Kyu An, and Hoon Sohn. "Continuous line laser thermography for

damage imaging of rotating wind turbine blades." Procedia Engineering 188 (2017): 225-

232.

39

 [17] Fan, Qiancong, et al. "Ship detection using a fully convolutional network with compact

polarimetric SAR images." Remote Sensing 11.18 (2019): 2171.

 [18] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv

preprint arXiv:1412.6980 (2014).

40

Vita

Md Fazle Rabbi is a Research Assistant in the Department of Industrial, Manufacturing and

Systems Engineering (IMSE) at the University of Texas at El Paso. Presently, he is completing his

M.S. degree in Industrial Engineering and he has completed a B.Sc. degree in Industrial and

Production Engineering. Moreover, he is working in the field of Augmented Reality (AR), Virtual

Reality (VR), Deep Learning, and Smart Manufacturing Systems for Industrial Applications.

Previously, he has experience in the field of Product Development, Computer-Aided Design

(CAD), Advanced Quality Management, and Reliability.

	A Novel Approach For Defect Detection Of Wind Turbine Blade Using Virtual Reality And Deep Learning
	Recommended Citation

	tmp.1695161163.pdf.PbwsR

