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Abstract

This thesis examines some properties of atoms and molecules using one-electron self-

interaction-correction (SIC) methods such as the Perdew-Zunger SIC (PZSIC) and the

locally scaled SIC method of Zope and coworkers within the Fermi-Lowdin SIC formal-

ism. The accuracy of electron density is examined by comparing moments of the den-

sity, ⟨rn⟩ =
∫
ρ(r)rndτ =

∫∞
0

4πr2ρ(r)rndr (n = −2,−1, 0, 1, 2, 3) with the corresponding

available values from the Coupled cluster (CC) singles, doubles, and perturbative triples

(CCSD(T)) method. Three test sets are considered: boron through neon neutral atoms,

two and four electron cations, and 3d transition metals. Each set was tested with PBE,

LDA, PZSIC-PBE, and PZSIC-LSDA functionals using default-NRLMOL basis, aug-cc-

pwcvtz, and aug-cc-pwcvqz basis sets. Results show that for the transition metals, PBE

and LDA with default basis have smaller deviations compared to PZSIC-PBE and PZSIC-

LSDA. The second part of the thesis examines the possibility of obtaining good energetics

by perturbatively applying the SIC to the energy using the self-consistent density of var-

ious density functionals as well as the Hartree-Fock approximation(s). Such an approach

provides significantly improved barrier heights compared to uncorrected DFAs. Our results

show that the LSIC method [Zope et al., J. Chem. Phys. 151, 214108 (2019)] consistently

performs better than the PZSIC method. This preliminary work suggests such an approach

can be useful for certain properties.

Keywords:Self-interaction error, self-interaction correction, density function-

als, electron density, moments of density
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Chapter 1

Density Functional Theory

There are many fields within the physical sciences and engineering where the key to tech-

nological progress is understanding and controlling the properties of matter at the level of

individual atoms and molecules.

Density functional theory (DFT) in its Kohn-Sham formulation[1] is, an exact theory

for describing the ground state properties of matter and offers an attractive alternative to

the wave function theory (WFT). An important difference between DFT and WFT is the

principal quantity of interest. In DFT, this quantity is the ground state electron density

which, unlike the wavefunction, is an observable. The computational advantage of DFT

originates from the fact that electron density has three spatial coordinates, regardless of the

number of electrons in the chemical system. Thus DFT allows the calculation of structures

and properties of molecules with a couple of hundred atoms, a feat not generally possible

with high-level WFT methods[2].

1.0.1 Atomic Units

To facilitate a more concise, readable mathematical formalism, this manuscript will use

Hatree atomic units. specifically, we shall set[3]

h̄ = e = me = ao = 1 (1.0.1)

where h̄ is the reduced plank constant, e the charge of the electron, ao the Bohr radius

and me the mass of the electron. occasionally, however, this symbols will be included in

equations for clarity[3]
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1.0.2 The Electronic Structure theory

From the non-relativistic quantum theory, the state of any given system is represented by

a time-dependent vector in Hilbert space, | ψ⟩. This vector obeys the famous Schrodinger

equation

Ĥ | ψ⟩ = −ıh̄ ∂
∂t

| ψ⟩ (1.0.2)

where i denotes the imaginary unit, h̄ denotes the reduced plank constant, ∂
∂t

denotes

the partial time derivatives and Ĥ denotes the Hamiltonian operator. For the so-called

stationary state Schrödinger equation gives:

Ĥ | ψ⟩ = E | ψ⟩ (1.0.3)

Herein E denotes the total energy of the system in the stationary state | ψ⟩ [4]. All real

atomic systems larger than hydrogen consist of multiple electrons, and all molecular systems

include multiple atomic nuclei. Such a system, consisting of M nuclei and N electrons, is

described by the many-body Hamiltonian[3]:

Ĥ = −
M∑
A

▽2
A

2mA

−
N∑
i

▽2
i

2me

+
1

2

M∑
A ̸=B

ZAZB

rAB

+
1

2

N∑
i ̸=j

e2

rij
−

N,M∑
i,A

eZA

rij
(1.0.4)

= Tn + Te + Vnn + Vee + Ven (1.0.5)

The first two terms of (1.4) are the nuclear and electronic kinetic energies, respectively.

The latter three terms are the potential energy of nuclear and electronic repulsion and

nuclear-electronic attraction. The wavefunction that describes such a system depends upon

the positions of all the nuclei and electrons[3].

Neglecting spin for the moment, the stationary state | ψ⟩ can be reformulated as the

many-body wave function ψ⟩ = ψ(r⃗1, ..r⃗N , R⃗1, .., R⃗M) The mass of the nuclei is so enor-

mous in comparison to the electron mass me that, the nuclei stand still from the electronic
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point of view, while the electrons themselves appear to be moving instantaneously from

the perspective of the nuclei. This is referred as the Born-Oppenheimer or adiabatic ap-

proximation, and it leads to a separation of electron dynamics from nuclear dynamics,

introducing the electronic Hamiltonian Ĥe This electronic Hamiltonian is written as[4]

Ĥe = T̂e + V̂ee + V̂en (1.0.6)

and the total energy is simply the electronic energy plus the internuclear potential, Ee+Vnn

As the stationary nuclei still interact with the electrons via Coulomb attraction, ψ still

depends parametrically upon the nuclear coordinates R[3]

1.0.3 The Hohenberg-Kohn (HK) Theorems

The development of DFT began with the discovery of the HK theorem and according to

a widely adopted point of view the HK theorem plays the central role within DFT[5].

The first HK theorem proved in 1964[6] guarantees that the ground state properties of a

molecular electronic system can be fully described by the electron density[6].

Theorem 1

For molecules with a nondegenerate ground state, the ground state molecular energy, wave-

function and other electronic properties are uniquely determined by the ground state electron

probability density ρo(r) The first HK theorem allows us to write down an expression for

the electronic energy as a function of the density.

Eo = E[ρo] = T [ρo] + Ven[ρo] + Vee[ρo] = Ven[ρo] + F [ρo] (1.0.7)

The electron-nuclear interaction energy Ven is known and determined by the parametric

positions of the atomic nuclei. However, the unknown functional F, containing the electron

kinetic energy and correlation terms, is unknown and must be approximated. The second

3



HK theorem provides a variational principle for the ground state energy as a functional of

the electron density, and renders the above equation practically applicable.

Theorem 2

The energy as a functional of some trial electron density, ρ(r) ≥ 0 such that
∫
drρ(r) = N ,

provides an upper bound to the ground state energy.

Eo ≤ E[ρ(r)] (1.0.8)

Furthermore, the ground state electron density is that which minimizes the energy func-

tional, and provides the true ground state energy.

E[ρ(r)] = Eo ⇐⇒ ρ(r) = ρo(r) (1.0.9)

These two facts allow for the self-consistent calculation of the ground state energy of a

molecular system.

1.0.4 The Kohn-Sham (KS) Equation

While the HK theorems are powerful formal statements, they must be exploited to create

a practical tool for calculating energies. In 1965, Kohn and Sham devised a method for

finding ρo and then calculating Eo[1]. In principle, the method permits an exact solution,

however since the unknown functionals T and Vee must be approximated, the solutions are

necessarily also approximate.

Kohn and Sham began by considering a reference system, s, consisting of N noninter-

acting electrons in an external potential Vs(r), whose ground state electron density ρs(r)

is the same as the true system’s ground state density ρo(r). The Hamiltonian of the non-

interacting system is:

Hs =

∫ N

i

(−∇2
i

2
+ Vs(r)) =

N∑
i

hKS
i (1.0.10)

4



Furthermore, the noninteracting system’s ground state wavefunction can be represented

as a Slater determinant of the lowest-energy Kohn-Sham spin orbitals ψKS
i that are eigen-

functions of the one-electron Hamiltonian.

Ψo =| ψKS
1 , ψKS

2 , ..., ψKS
N ⟩ (1.0.11)

hKS
i ψKS

i = ϵKS
i ψKS

i (1.0.12)

Kohn and Sham then rewrote (1.10) by considering the deviations of the kinetic and po-

tential energy of the real system from the reference system

△T [ρ] = T [ρ]− Ts[ρ] (1.0.13)

△Vee[ρ] ≡ Vee[ρ]−
1

2

∫∫
dr1dr2

ρ(r1)ρ(r2)

r1,2
(1.0.14)

(1.10) can then be written as

E[ρ] = Ts[ρ] + Ven[ρ] + U [ρ] + EXC [ρ] (1.0.15)

where U [ρ] is the classical coulomb potential and introduces the newly defined exchange-

correlation energy that characterizes the energy associated with electron exchange and

correlation effects.

EXC ≡ △T [ρ] +△Vee[ρ] (1.0.16)

As no exact form of EXC is known, it must be approximated, and doing so is key

to accurate DFT calculations, as well as a long-ongoing area of active research. Because

the reference system is defined to have the same ground-state electron density as the true

system, we may construct a guess (or ‘trial’) ground-state density as the superposition of

5



probability densities of the constituent KS wavefunctions.

ρ = ρs =
N∑
i

| ψKS
i |2 (1.0.17)

Now, in a manner analogous to the HF method, we can vary ρ by varying the KS

orbitals ψKS
i (subject to the constraint that they remain orthogonal) in order to minimize

E[ρ]. The orbitals that minimize the molecular ground state energy can be shown to satisfy

the Kohn-Sham equations.

(−▽2
i

2
+ Veff (r)) | ψKS

i = ϵi | ψKS
i ⟩ (1.0.18)

Thus, we have arrived at a set of N nonlinear equations that can be solved using a selfcon-

sistent variational process akin to the HF method. The Kohn-Sham equations describe the

motion of noninteracting electrons in the field of an effective potential

Veff ≡ Ven[ρ] + Vc[ρ] + VXC [ρ] (1.0.19)

which captures the effects of the interactions of the electrons with the nuclei and each other.

The unknown exchange-correlation potential is defined as the functional derivative of the

exchange-correlation energy.

VXC [ρ] ≡
δEXC [ρ]

δρ
(1.0.20)

Kohn-Sham density functional theory is analogous to HF in many ways. However, the

principal difference is that where HF depends upon approximating the ground state wave-

functions using a single determinant, the electron density of DFT can be known exactly.

Conversely, the effective potential of DFT must be approximated due to the exchange-

correlation term. Stated more plainly, HF is an exact theory with an approximate solution,

DFT is an approximate theory with an exact solution.

6



1.0.5 Functional for Exchange And Correlation

Local Density Approximation LDA

The local spin density approximation[7, 3, 4] LDA was developed by Kohn and Sham

and it tells that, for systems where the electron density varies over space the exchange and

correlation are primarily local phenomena [7]. for spin- unpolarized homogenous system the

exchange energy is analytically as a functional of the density in the LDA approximation[7,

3, 4].

Exc[ρ] =

∫
d3rϵLDA

xc (ρ(r)) (1.0.21)

Where ϵxc = ϵx + ϵc

ϵLDA
xc (ρ(r)) is the exchange energy density that depend on (ρ(r)) and is defined as:

ϵLDA
xc (ρ) = − 3

3
4

4π
1
3

ρ
4
3 (1.0.22)

for spin polarized homogenous system the exchange energy is analytically as a functional

of the density in the LDA approximation

Exc[ρ
↑, ρ↓] =

1

2
(Exc[2ρ

↑] + Exc[2ρ
↓]) (1.0.23)

LDA gives close to correct exchange-correlation energy to systems that have similar prop-

erties to homogenous system like the close shell system, metal, and electron gas[4].

Generalized Gradient Approximation, GGA

The generalized gradient approximation[4] exchange-correlation energy is a functional of

both the local spin densities and the local spin density gradients[4, 3]. It uses the dimen-

sionless enhancement factor F (s) as

EGGA
xc [ρ,▽ρ] =

∫
d3rϵLDA

xc (ρ(r))Fxc(s(r)) (1.0.24)

7



where

S =
| ▽ρ |

[2(3π2)
1
3ρ

4
3 ]

(1.0.25)

Further Exchange-Correlation Approximation

While LDA represents the simplest form of the exchange-correlation functional, and the one

used by the methods discussed in this manuscript, many more sophisticated approximate

functionals exist. This area in particular has historically been one of the most active areas of

research in DFT. While the mathematical and physical detail of other functionals is beyond

the scope of this work, a summary of developments beyond LDA and GGA includes:

local spin-density approximations (LSDA), whose construction depends upon separating

the up and down spin electron densities [8, 9]

hybrid functionals, first proposed by Becke [10] that exploit some exact exchange results

from HF theory.

And most recently, meta-generalized-gradient approximations that also take into account

the kinetic energy density, such as the ‘strongly-constrained and appropriately normed’

(SCAN) approximation [11].

It can be noted that each functionals possess their characteristic strengths and weak-

nesses, and their usefulness is heavily dependent on the system at hand[4]. The devel-

opment of new and better functionals remains one of the main challenges in advancing

density functional theory within the Kohn-Sham ansatz[3, 4]. However, instead of creating

an entirely original functional, it is often more practical to add a term to those already

existing functionals, in order to correct some of their more apparent shortcomings. Many

of the corrections currently in use aim to eliminate the so-called self-interaction error (SIE)

[12, 4, 7, 13, 14]. The cause of this error and the different approaches to tackle it will be

the topic of the following section.
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Chapter 2

Self-Interaction Corrections to

Density Functional Theory

Amajor problem of solid-state theory and quantum chemistry is to understand the behavior

of many electrons interacting via Coulomb’s law

V̂ee =
1

2

∑
1

∑
i ̸=j

1

| r⃗i − r⃗j |
(2.0.1)

In the earliest quantum-mechanical theory, Thomas and Fermi replaced the expectation

value ⟨V̂ee⟩ by the direct Coulomb energy, a functional of the electron number density ρ(r)

:

U [ρ] =
1

2

∫
d3r

∫
d3r′

ρ(r⃗)ρ(r⃗′)

| r⃗ − r⃗′ |
(2.0.2)

As early as 1934, Fermi and Amaldi’ observed the failure of the above equation to

vanish for one-electron systems due to the spurious self-interaction inherent in it, and

proposed the first and crudest version of self-interaction correction[14]. Most of the available

approximations are semilocal approximations, where the XC energy density at a certain

point only depends on the density and derivatives of the density at that point. These

approximations have been extensively used thanks to their computational efficiency and

they generally work well, but they all contain the self-interaction error (SIE), which means

that the sum of the Hartree interaction energy and the approximated XC energy does not

properly vanish for all one-electron systems. SIE causes a wide range of problems, such as

9



the XC potential decaying too fast asymptotically, the orbital energies of occupied orbitals

lying too high in a nonsystematic way, and the total energy varying in a strongly nonlinear

way between adjacent integer electron numbers[15]

For solids, the SIE has been identified as the cause of the systematic underestimation of

the semiconductor band gaps[4]. These gaps are calculated as differences of orbital energy

eigenvalues - specifically, as the differences between the HOMO (highest occupied molecular

orbital) and the LUMO (lowest unoccupied molecular orbital) energies[7, 13, 4]. In general,

uncorrected DFT does not fulfil Koopman’s theorem, which identifies the HOMO energy

as the negative of the ionization potential and the LUMO energy as the negative of the

electron affinity[12, 7, 16]

For example, in neutral systems the long-range behavior of the KohnSham (KS) poten-

tial does not reduce to the −1
r
form expected from general considerations, this and other

SIEs lead to a range of related issues, sometimes referred to as delocalization errors when

using DFT approximations to understand chemistry, materials, and physics[16, 4].

Zacks and Zope put it in a more simpler term: for a charge density describing any

number of electrons, a given electron will ‘see’ itself in any interaction it has with the whole

density[3]. This is the basics of SIE. Eliminating SIE is thus the aim of self-interaction

corrections (SIC) to density functional theory. The SIC methods, proposed by Perdew

and Zunger and the approach used by Rajendra Zope[17], Mark Pederson[13] et al will be

presented in the following subsections

2.0.1 Perdew-Zunger Self Interaction Correction

The problem of self-interaction error which occur in density functional theory such as

Rydberg state missing, mis-ordering of states of some systems, incorrect description of

stretch bonds, problems with unstable anions due to the fact that the sum of the Hartree

interaction energy and the approximated exchange correlation energy does not properly

vanish for all one-electron system[4].

To relieve the effects of SIE[17], Perdew and Zunger proposed a self-interaction cor-
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rection (SIC) method in 1981 now known as Perdew-Zunger self-interaction correction

(PZSIC)[17]. PZSIC seeks to correct SIE by subtracting the self-Coulomb and self-exchange

energies on an orbital-by-orbital basis[3].

EPZSIC
XC = EXC −

∑
i

(U [ρi]− EXC [ρi]) (2.0.3)

2.0.2 Fermi Lowdin Self-Interaction Correction

For a Perdew-Zunger self-interaction-corrected XC functional to find the true minimum

energy in a variational calculation, it has been shown that the molecular orbitals used to

construct ρ must satisfy the localization equation[18, 19]

⟨ψi | V PZSIC
i − V SIC

j | ψi⟩ = 0 (2.0.4)

The computational difficulty of satisfying this constraint using KS orbitals led to the de-

velopment of Fermi-Lowdin SIC (FLO-SIC)[3] which uses a Lowdin-orthogonalized set of

Fermi orbitals, that are localized by construction. For a given set of KS orbitals, a Fermi

orbital (FO) can be defined at any point in space ai as

Fiσ(r) =

∑
j ψ

∗
jσ(ai)ψjσ(r)√∑
j | ψjσ(ai) |2

=
ρσ(ai, r)√
ρσ(ai)

(2.0.5)

where σ is the spin index and the point ai is called the Fermi orbital descriptor (FOD). The

FO is constructed by a relatively simple transformation of the KS orbitals, and is essentially

the ratio of the one-electron spin density to the square root of the total spin-density.

The principal advantage of the FLO-SIC method over PZSIC is its computational ef-

ficiency. Optimizing a set of N FOs requires optimizing 3N FODs, compared to the N2

parameters that must be optimized to satisfy the localization equation (2.4) with normal

KS orbitals.
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2.0.3 The Paradox of SIC and Local-Scaling SIC

A curious side effect of SIC-DFT calculations is the appearance of the so-called paradox

of SIC, in which SIC tends to improve the accuracy of some energetic predictions, while

degrading others. In particular, SIC-DFT tends to worsen equilibrium molecular properties

of molecules and solids such as atomization energies and equilbrium geometries, and this

degradation of accuracy only increases as a DFT calculation climbs Jacob’s ladder and SIC

is applied to semilocal and hybrid XC functionals. On the other hand, SIC-DFT performs

well for nonequilibrium geometries such as stretched molecular bonds.

In 2019, Zope and coworkers were able to partially resolve the paradox by implementing

a more selective SIC referred to as local-scaling SIC (LSIC) [19]. Fundamentally, LSIC

corrects SIE in the same orbital wise fashion as PZSIC:

ELSIC−DFA
XC = EDFA

XC [ρ↑, ρ↓]−
∑
i

(ULSIC [ρiσ]− ELSIC
XC [ρiσ,O]) (2.0.6)

However, the correction is scaled throughout space in such a way that it is only applied

in regimes where it is actually needed[19].

ULSIC [ρiσ] =
1

2

∫∫
dr1dr2

(zσ(r1))
kρiσ(r1)ρiσ(r2)

r12
(2.0.7)

ELSIC
XC [ρiσ,0] =

∫
dr(Zσ(r1))

kρiσ(r)ϵ
DFA
XC ([ρiσ,0], r) (2.0.8)

The titular local-scaling comes in the form of the factor zσ which is defined as the ratio of

the von Weizsacker kinetic energy density and the Kohn-Sham kinetic energy density[3].

zσ ≡ τWσ (r)

τσ(r)
(2.0.9)
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The noninteracting (Kohn-Sham) kinetic energy density is given as

τσ(r) =
1

2

∑
i

| ▽ψiσ(r) |2 (2.0.10)

and the von Weiszacker kinetic energy density is the single-orbital limit of τσ(r)

τWσ (r) =
| ▽ρiσ(r) |2

8ρσ(r)
(2.0.11)

By definition, zσϵ[0, 1], where zσ = 0 corresponds to uniform densities, and zσ = 1 to

one-electron densities. For this reason, zσ is called an iso-orbital indicator, as it detects

single-orbital regions of the electron density. The exponent k is a tunable parameter. In

particular, k = 0 disables the scaling completely and recovers the PZSIC limit, while

k → ∞ reduces to a standard DFA by zeroing out SIC entirely. The simplest choice of

k = 1 interpolates smoothly between the uniform density and one-electron limits.
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Chapter 3

Accuracy of PZSIC and Kohn-Sham

Density

The success of Kohn-Sham (KS) density functional theory (DFT) depends upon three[20],

inter-related quantities: the functional (EXC), the potential (VXC), usually defined as the

functional derivative, and the density represented by the first n-KS orbitals, ρ(x1) =
∑

i |

ψi |2 generated by the selfconsistent potential. If all are exact, then so is the total ground

state energy. The functionals can be reasonably accurate for many problems, but the

potential is more sensitive to a correct description of exchange and correlation; and if that

potential is not accurate, then the orbitals to construct the density will not be either[20].

Although density functional theory (DFT)is one of the important methods for the study

of the electronic structures of molecules,[21] it is difficult to improve the approximations

and corrections embedded therein[22, 23, 24]. We have previously suggested that an ac-

curate representation of the electron density can serve as the basis for the development of

functionals for use in DFT[23]. The advantage of this approach is that the electron density

is a scalar quantity covering all space and can thus provide much more information than

integrated quantities such as the total energy. Also, the electron density is more sensitive

to the errors introduced by the use of an approximate wave function than the total energy.

An accurate density will in general, result in good values for the energy as well as other

related quantities, whereas a low energy does not have to be associated with an accurate

total density[22, 23].

Kohn–Sham density functional theory (KS-DFT)[25] has been very successful for cal-

culating energetic quantities like reaction energies and barrier heights and for calculating
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geometries of molecules and lattice constants of solids.[25] A question that has been less

well studied is, how accurate are the electron densities that it predicts?[26].

Pragya Verma and Donald G. Truhlar[26] said the first nonzero moment of the charge

density of a neutral molecule is its dipole moment[27], and so – before one considers more

detailed characteristics of charge distributions – it is important to first examine how well

KS-DFT can predict that leading moment[26, 27]. Furthermore, an exchange-correlation

functional that leads to an accurate representation of the charge distribution of a molecule

should accurately predict the dipole moments of the molecule[26]

It is well known that Kohn–Sham density functional theory (DFT) is more accurate for

the energetics of single-reference systems than for the energetics of multi-reference ones[26],

but there has been less study of charge distributions. Verma in his work benchmarked

48 density functionals using organic and inorganic molecules, all the 48 methods tested

here were found to give good performance for single-reference molecules. For other multi-

reference molecules, functionals with high HF exchange or high local exchange were found to

give large errors. He concluded that there is not a lot of difference in the ability of various

density functionals to represent the first moment of the electron density. Furthermore,

all density functionals he tested so far are considerably better for charge distributions of

single-reference molecules than for charge distributions of multireference molecules[26].

Xuefei Xu et al[28] concluded in their work that conventional CC methods including

CCSD-(T), CCSDT, and CCSDT(2)Q have performance (judged by comparison to avail-

able experimental data) only comparable to, but not necessarily better than KS density

functional calculations with a wide set of choices of xc functionals, and they cannot be

assumed to provide validated benchmarks for KS theory.[28].

3.0.1 Expectation Values of Densities

The correctness of the density is a logical figure of merit in electronic structure theory and

is the objective for this contribution. One can view the KS-DFT equations as an approxi-

mation to a correlated orbital theory[29, 30] (COT) whose effective one-particle equations
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contain a potential for electron correlation, along with the kinetic energy and exchange

contributions and the classical coulomb interaction hx = t̂ + v̂ + Ĵ + V̂x + V̂c = t̂ + V̂s. In

KS-DFT as long as the energy functional is convex, it should provide an energy that is

correct to the second order in ρ(r). However, the potential Vs(r) =
∂E

∂ρ(r)
, used to generate

the orbitals in the Kohn–Sham (KS) determinant is only accurate to the first order in

ρ(r) This raises concern about the accuracy of the potential [30]. Modern day KS-DFT

calculations pay little attention to the accuracy of the Vxc, and consequently, the orbitals

and the density ρ(r) they define can suffer. Construction of many density functionals is

semi-empirically adjusted to produce accurate total energy properties, particularly, ther-

mochemistry. Recent publications by Medvedev et al [31] and Brorsen et al [32] suggest

that after the year 2000, there is a decrease in the accuracy of the density produced by

such modern semiempirical functionals. in other words, recent functional development has

strayed from the path of better approximations to the exact functional. The recent study

of Medvedev et al [31] used “normalized” maximum errors, or root mean square deviation

of the density, gradient of the density, and Laplacian of the density of beryllium through

neon neutral atoms and cations to rank the density functionals compared to coupled cluster

singles and doubles (CCSD).[31, 30, 33] A similar analysis by Kallay et al recently used

a composite coupled cluster (CC) singles, doubles, triples, and quadruples (CCSDTQ) as

reference density for some atoms and a small collection of molecules.[34] Brorsen et al [32]

argue that many atoms in the study of Medvedev et al. are positively charged and the

bulk of the density is localized in core regions which can cancel in a reaction. Therefore,

the accuracy of the electron density near the valence region is deemed more important and

in this work, the density of interest is the all-electron (core + valence) density.

There are several differences in the present study on the accuracy of densities compared

to previous publications. [31, 32, 34, 35, 36, 37] First, the reference for the correct density

is CCSD(T) which can be readily evaluated for essentially any system of interest. Why

CCSD(T)? Couple Cluster (CC) theory is usually considered to be the most accurate and

most powerful electronic structure method that is applicable to moderate-sized molecules,
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and it has been successfully applied for the prediction and in-depth understanding of chem-

ical structure, properties, reactivity, and mechanisms[28]. CC theory becomes exact as one

includes successively higher and higher excitation operators (double, triple, quadruple,

...), but for many complex systems, CC calculations are not affordable (although recent

advances are changing this situation dramatically), and even when such calculations are

affordable, one is often limited to double excitations with a quasi-perturbative treatment of

connected triple excitations. However, this theory, called CCSD(T)[38], is very successful

and has even been called the “gold standard” of quantum chemistry[38, 28]. The trust

in CCSD(T) calculations is so high that, in the absence of experimental data, CCSD(T)

results are frequently used as reference values (also called benchmark values) of chemical

properties; for example, CCSD(T) calculations are often used for validation of the accuracy

of other theoretical methods, such as KS methods [39, 28]

Second, the study includes 3d transition metals. Third, instead of taking pointwise

differences on a grid relative to a reference density to evaluate the accuracy of a method,

following, Schweigert et al [40] the difference is assessed by computing the expectation value

of rn, ⟨rn⟩ where r is the distance from the nucleus and n = −2,−1, 0, 1, 2, 3. The perfor-

mance of PBE functional is compared to PZIC PBE and PZSIC LSDA while CCSD(T) as

reference.

⟨rn⟩ =
∫
ρ(r)rndτ =

∫ ∞

0

4πr2ρ(r)rndr (3.0.1)

The ⟨rn⟩ moments of the density can be interpreted as representing different regions in

space, particularly, the short- and long-range behavior of the density ρ(r) The values n < 0

weigh more toward emphasizing the core region and the values n > 0 weigh the valence

region of the density.

Density functional approximations PBE[41], and LDA[41] are considered in this study

along with PZSIC PBE[42] and PZSIC LSDA[42]. The focus of this work is to study and

assess the accuracy of PZSIC densities.

In this work, we consider three test sets. The first test set consists of neutral atoms:
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B, C, N, O, F, and Ne. The second test set consists of cations with 2 and 4 electrons:

B+, C2+, N3+, O4+, F 5+, Ne6+, B3+, C4+, N5+, O6+, F 7+, and Ne8+. The third test set

consists of the neutral ground state transition metals Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,

and Zn. The summary is in the table below:
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Table 3.1: Test Sets for Calculation of Expectation values
Test Sets Systems
Set1 B, C, N , O, F , and Ne.
Set2a B+, C2+, N3+, O4+, F 5+, and Ne6+.
Set2b B3+, C4+, N5+, O6+, F 7+, and Ne8+.
Set3 Sc, Ti, V , Cr, Mn, Fe, Co, Ni, Cu, and Zn.

For the three sets, the DEFAULT-NRLMOL basis, aug-cc-pwCVQZ[30], and aug-cc-

pwCVTZ[30] basis sets were used for the calculations. The KS-DFT calculations are per-

formed with the NRLMOL program package. One assumes that CCSD(T) calculations

provide the best reference density[38, 28]. Hence, the deviation of ⟨rn⟩ compared to results

from CCSD(T)[38] is one measure of the accuracy of the density. Another is the comparison

to the radial distribution functions themselves.

For the purpose of brevity to avoid long tables, the basis set will be represented with

symbols

Table 3.2: Basis Sets representation
Basis Sets Symbols

Default Basis a
Aug-cc-pwcvqz b
Aug-cc-pwcvtz c

The result obtained are presented in the following tables
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Table 3.3: Expectation values of Set1 with DFA-PBE
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne a 415.2076 31.0916 10.0000 8.0027 9.8302 15.9557 31.1036 0.04

b 415.1240 31.0881 10.0000 8.0043 9.8406 16.0382 31.1036 0.05

c 414.7148 31.0829 10.0000 8.0059 9.8467 16.0631 31.1036 0.07

F a 331.3192 26.5030 9.0000 7.8846 10.7323 19.2835 26.5131 0.04

b 331.2609 26.5014 9.0000 7.8847 10.7394 19.3773 26.5131 0.04

c 330.8505 26.4939 9.0000 7.8894 10.7609 19.4916 26.5131 0.07

O a 257.4288 22.2472 8.0000 7.7101 11.7004 23.3446 22.2580 0.05

b 257.4336 22.2447 8.0000 7.7139 11.7262 23.5447 22.2580 0.06

c 256.7026 22.1714 8.0000 7.8349 12.2475 25.7300 22.2580 0.39

Ni a 193.4038 18.3254 7.0000 7.4334 12.5745 27.6240 18.3400 0.08

c 193.1533 18.3218 7.0000 7.4373 12.6079 27.9206 18.3400 0.10

b 193.3915 18.3248 7.0000 7.4356 12.5943 27.7990 18.3400 0.08

C a 138.9391 14.6862 6.0000 7.1918 14.1685 36.2147 14.6988 0.09

b 138.9483 14.6859 6.0000 7.1966 14.2166 36.6409 14.6988 0.09

c 138.7929 14.6839 6.0000 7.1984 14.2296 36.7553 14.6988 0.10

B a 93.8111 11.3800 5.0000 6.8051 15.9524 48.6200 11.3936 0.12

b 93.8174 11.3777 5.0000 6.8191 16.0665 49.5507 11.3936 0.14

c 93.7053 11.3784 5.0000 6.8115 16.0219 49.3384 11.3935 0.13

Table 3.4: Expectation values of Set1 with PZSIC-LSDA
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne a 414.4972 31.1788 10.0000 7.8455 9.2743 14.1812 31.1036 -0.24

c 414.6949 31.1846 10.0000 7.8456 9.2761 14.1887 31.1036 -0.26

b 414.6853 31.1842 10.0000 7.8457 9.2762 14.1888 31.1035 -0.26

F a 330.9344 26.5866 9.0000 7.7173 10.0833 17.0047 26.5130 -0.28

c 330.9344 26.5867 9.0000 7.7173 10.0833 17.0047 26.513 -0.28

b 330.9344 26.5867 9.0000 7.7173 10.0833 17.0047 26.5131 -0.28

O a 257.1392 22.3209 8.0000 7.5404 10.9793 20.5734 22.2580 -0.28

c 257.1392 22.3209 8.0000 7.5404 10.9793 20.5734 22.2580 -0.28

b 257.1392 22.3209 8.0000 7.5404 10.9793 20.5734 22.2580 -0.28

Ni a 193.1799 18.3875 7.0000 7.2796 11.8741 24.7318 18.3400 -0.26

c 193.1799 18.3875 7.0000 7.2796 11.8741 24.7318 18.3400 -0.26

b 193.1799 18.3875 7.0000 7.2796 11.8741 24.7318 18.3400 -0.26

C a 138.7408 14.7383 6.0000 7.0309 13.3369 32.3302 14.6988 -0.27

c 138.7281 14.7367 6.0000 7.0329 13.3451 32.3608 14.6988 -0.26

b 138.7366 14.7379 6.0000 7.0312 13.3381 32.3346 14.6988 -0.27

B a 93.6941 11.4223 5.0000 6.6481 15.0063 43.4250 11.3936 -0.25

c 93.6941 11.4223 5.0000 6.6481 15.0063 43.4250 11.3936 -0.25

b 93.6941 11.4222 5.0000 6.6481 15.0063 43.4250 11.3936 -0.25
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Table 3.5: Expectation values of Set1 with PZSIC-PBE
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne a 414.4821 31.0987 10.0000 7.9006 9.4067 14.4952 31.1036 0.02

c 414.4821 31.0987 10.0000 7.9006 9.4067 14.4952 31.1036 0.02

b 414.4821 31.0987 10.0000 7.9006 9.4067 14.4952 31.1035 0.02

F a 330.7770 26.5156 9.0000 7.7740 10.2309 17.3786 26.5131 -0.01

c 330.5322 26.5006 9.0000 7.7810 10.2493 17.4246 26.5130 0.05

b 330.7770 26.5155 9.0000 7.7740 10.2309 17.3786 26.5130 -0.01

O a 257.0186 22.2629 8.0000 7.5991 11.1461 21.0209 22.2581 -0.02

c 257.0186 22.2628 8.0000 7.5991 11.1461 21.0209 22.2580 -0.02

b 257.0186 22.2628 8.0000 7.5991 11.1461 21.0208 22.2580 -0.02

Ni a 193.1077 18.3384 7.0000 7.3486 12.1012 25.4340 18.3400 0.01

c 193.1077 18.3384 7.0000 7.3486 12.1012 25.4340 18.3400 0.01

b 193.1077 18.3384 7.0000 7.3486 12.1012 25.4341 18.3400 0.01

C a 138.6218 14.7018 6.0000 7.1015 13.6071 33.2729 14.6988 -0.02

c 138.6218 14.7018 6.0000 7.1015 13.6071 33.2729 14.6988 -0.02

b 138.6218 14.7018 6.0000 7.1015 13.6071 33.2729 14.6988 -0.02

B a 93.5775 11.3988 5.0000 6.7142 15.3098 44.6656 11.3936 -0.05

c 93.5775 11.3988 5.0000 6.7142 15.3098 44.6656 11.3936 -0.05

b 93.5774 11.3988 5.0000 6.7142 15.3098 44.6656 11.3936 -0.05

Table 3.6: Expectation values of Set1 with DFA-LDA using default basis
System R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

B 92.44263 11.30304 5.0000 6.83934 16.11308 49.30866 11.39359 0.79

C 137.18534 14.60756 6.0000 7.20961 14.22438 36.33558 14.6988 0.62

Ni 191.26562 18.24564 7.0000 7.44698 12.60774 27.64547 18.34004 0.51

O 254.92965 22.15974 8.0000 7.72765 11.74121 23.38411 22.25804 0.44

F 328.40300 26.41291 9.0000 7.89565 10.74284 19.21651 26.51308 0.38

Ne 411.87457 30.99827 10.0000 8.01488 9.84766 15.93488 31.10355 0.34
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Table 3.7: Expectation values of Set2a with PZSIC-PBE
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne6+ a 411.6825 23.4370 4.0000 1.7315 1.2432 1.1249 23.4396 0.01

c 410.9172 23.4361 4.0000 1.7313 1.2429 1.1243 23.4395 0.01

b 411.1184 23.4368 4.0000 1.7312 1.2428 1.1239 23.4395 0.01

F 5+ a 330.1928 20.9378 4.0000 1.9596 1.6001 1.6483 20.9391 0.01

c 329.4766 20.9367 4.0000 1.9591 1.5995 1.6470 20.9391 0.01

b 329.7693 20.9395 4.0000 1.9587 1.5984 1.6449 20.9391 0.00

O4+ a 257.5334 18.4376 4.0000 2.2577 2.1377 2.5568 18.4385 0.01

c 256.9906 18.4358 4.0000 2.2573 2.1374 2.5560 18.4385 0.01

b 257.3152 18.4388 4.0000 2.2568 2.1359 2.5531 18.4385 0.00

N3+ a 193.9979 15.9359 4.0000 2.6654 3.0064 4.2906 15.9377 0.01

c 193.7032 15.9361 4.0000 2.6647 3.0051 4.2884 15.9376 0.01

b 193.8599 15.9364 4.0000 2.6649 3.0059 4.2897 15.9377 0.01

C2+ a 139.4451 13.4343 4.0000 3.2578 4.5522 8.0703 13.4363 0.01

c 139.3757 13.4368 4.0000 3.2559 4.5461 8.0527 13.4363 0.00

b 139.4437 13.4359 4.0000 3.2568 4.5491 8.0613 13.4363 0.00

B+ a 94.0207 10.9320 4.0000 4.2069 7.7588 18.2395 10.9335 0.01

c 93.7966 10.9176 4.0000 4.2209 7.8145 18.4344 10.9335 0.15

b 94.0171 10.9326 4.0000 4.2073 7.7616 18.2474 10.9335 0.01

Table 3.8: Expectation values of Set2a with DFA-PBE using Default basis
System R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

B+ 94.18063 10.91566 4.0000 4.21903 7.80540 18.44864 10.93351 0.16

C2+ 139.60964 13.41853 4.0000 3.26378 4.56779 8.12222 13.43626 0.13

N3+ 194.05954 15.91899 4.0000 2.66950 3.01513 4.31337 15.93769 0.12

O4+ 257.48357 18.41881 4.0000 2.26110 2.14386 2.56971 18.43854 0.11

F 5+ 330.03506 20.92033 4.0000 1.96203 1.60398 1.65549 20.93912 0.09

Ne6+ 411.52590 23.42062 4.0000 1.73340 1.24583 1.12930 23.43957 0.08

Table 3.9: Expectation values of Set2a with DFA-LDA using default basis
System R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne6+ 408.49864 23.33769 4.0000 1.73779 1.25151 1.13626 23.43957 0.43

F 5+ 327.37272 20.83857 4.0000 1.96781 1.61267 1.66785 20.93912 0.48

O4+ 255.15316 18.33898 4.0000 2.26806 2.15602 2.58988 18.43854 0.54

N3+ 192.06153 15.84014 4.0000 2.67974 3.03725 4.35866 15.93769 0.61

C2+ 137.92229 13.34111 4.0000 3.27761 4.60475 8.21717 13.43626 0.71

B+ 92.83974 10.84138 4.0000 4.24007 7.88137 18.71346 10.93351 0.84
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Table 3.10: Expectation values of Set2a with PZSIC-LSDA
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne6+ a 411.7987 23.4472 4.0000 1.7274 1.2366 1.1161 23.4396 -0.03

c 411.7988 23.4472 4.0000 1.7274 1.2366 1.1161 23.4396 -0.03

b 411.7988 23.4471 4.0000 1.7274 1.2365 1.1160 23.4395 -0.03

F 5+ a 330.2977 20.9481 4.0000 1.9542 1.5903 1.6335 20.9391 -0.04

c 330.2962 20.9480 4.0000 1.9542 1.5903 1.6335 20.9391 -0.04

b 330.2813 20.9474 4.0000 1.9544 1.5906 1.6338 20.9391 -0.04

O4+ a 257.6707 18.4487 4.0000 2.2505 2.1228 2.5308 18.4385 -0.06

c 257.5747 18.4437 4.0000 2.2518 2.1255 2.5354 18.4385 -0.03

b 257.5468 18.4422 4.0000 2.2522 2.1262 2.5368 18.4385 -0.02

N3+ a 194.1737 15.9494 4.0000 2.6548 2.9805 4.2373 15.9377 -0.07

c 194.1796 15.9498 4.0000 2.6546 2.9802 4.2366 15.9377 -0.08

b 194.1795 15.9498 4.0000 2.6546 2.9802 4.2366 15.9377 -0.08

C2+ a 139.6544 13.4508 4.0000 3.2405 4.5003 7.9382 13.4363 -0.11

c 139.6543 13.4508 4.0000 3.2405 4.5003 7.9382 13.4363 -0.11

b 139.6545 13.4507 4.0000 3.2405 4.5003 7.9382 13.4363 -0.11

B+ a 94.0161 10.9318 4.0000 4.1945 7.7116 18.0988 10.9335 0.02

c 94.0160 10.9317 4.0000 4.1945 7.7116 18.0989 10.9335 0.02

b 94.0161 10.9318 4.0000 4.1946 7.7116 18.0989 10.9335 0.02

Table 3.11: Expectation values of Set2b with PZSIC-PBE
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne8+ a 379.1373 19.3768 2.0000 0.3119 6.5E-02 1.7E-02 19.3745 -0.01

c 378.3279 19.3747 2.0000 0.3117 6.5E-02 1.7E-02 19.3745 0.00

b 378.4985 19.3749 2.0000 0.3116 6.5E-02 1.7E-02 19.3745 0.00

F 7+ a 305.2221 17.3769 2.0000 0.3480 8.1E-02 2.4E-02 17.3745 -0.01

c 304.5079 17.3745 2.0000 0.3478 8.1E-02 2.4E-02 17.3745 0.00

b 304.6874 17.3749 2.0000 0.3478 8.1E-02 2.4E-02 17.3745 0.00

O6+ a 239.1462 15.3763 2.0000 0.3935 1.0E-01 3.4E-02 15.3745 -0.01

c 238.6204 15.3738 2.0000 0.3935 1.0E-01 3.4E-02 15.3745 0.01

b 238.8772 15.3750 2.0000 0.3934 1.0E-01 3.4E-02 15.3745 0.00

N5+ a 181.2291 13.3759 2.0000 0.4529 1.4E-01 5.3E-02 13.3745 -0.01

c 180.8993 13.3742 2.0000 0.4529 1.4E-01 5.3E-02 13.3745 0.00

b 181.0631 13.3751 2.0000 0.4528 1.4E-01 5.3E-02 13.3745 0.00

C4+ a 131.2909 11.3752 2.0000 0.5334 1.9E-01 8.6E-02 11.3746 -0.01

c 131.1588 11.3747 2.0000 0.5334 1.9E-01 8.6E-02 11.3746 0.00

b 131.2488 11.3752 2.0000 0.5334 1.9E-01 8.6E-02 11.3745 -0.01

B3+ a 89.4641 9.3753 2.0000 0.6488 2.8E-01 1.6E-01 9.3746 -0.01

c 89.3750 9.3749 2.0000 0.6487 2.8E-01 1.6E-01 9.3746 0.00

b 89.4321 9.3753 2.0000 0.6487 2.8E-01 1.6E-01 9.3746 -0.01
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Table 3.12: Expectation values of Set2b with PZSIC-LSDA
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Ne8+ a 379.2531 19.3795 2.0000 0.3118 6.5E-02 1.7E-02 19.3745 -0.03

c 378.4549 19.3775 2.0000 0.3117 6.5E-02 1.7E-02 19.3745 -0.02

b 378.6281 19.3775 2.0000 0.31166 6.5E-02 1.7E-02 19.37453 -0.02

F 7+ a 305.3365 17.3799 2.0000 0.3479 8.1E-02 2.4E-02 17.37452 -0.03

c 305.3365 17.3799 2.0000 0.3479 8.1E-02 2.4E-02 17.37452 -0.03

b 305.3365 17.3799 2.0000 0.3479 8.1E-02 2.4E-02 17.3745 -0.03

O6+ a 239.2618 15.3796 2.0000 0.3935 1.0E-01 3.4E-02 15.3745 -0.03

c 239.2618 15.3796 2.0000 0.3935 1.0E-01 3.4E-02 15.3745 -0.03

b 239.26176 15.3796 2.0000 0.3935 1.0E-01 3.4E-02 15.3745 -0.03

N5+ a 181.3462 13.3797 2.0000 0.4528 1.4E-01 5.3E-02 13.3745 -0.04

c 181.3462 13.3797 2.0000 0.4528 1.4E-01 5.3E-02 13.3745 -0.04

b 181.3462 13.3797 2.0000 0.4528 1.4E-01 5.3E-02 13.3745 -0.04

C4+ a 131.4104 11.3796 2.0000 0.5333 1.9E-01 8.6E-02 11.3745 -0.04

c 131.4104 11.3796 2.0000 0.5332 1.9E-01 8.6E-02 11.3745 -0.04

b 131.4104 11.3796 2.0000 0.5332 1.9E-01 8.6E-02 11.3745 -0.04

B3+ a 89.5808 9.3805 2.0000 0.6485 2.8E-01 1.6E-01 9.3746 -0.06

c 89.5808 9.3805 2.0000 0.6486 2.8E-01 1.6E-01 9.3746 -0.06

b 89.5808 9.3805 2.0000 0.6486 2.8E-01 1.6E-01 9.3746 -0.06

Table 3.13: Expectation values of Set2b with DFA-PBE using default basis
System R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

B3+ 89.64855 9.36231 2.0000 0.65313 0.28877 1.6E-01 9.37463 0.13

C4+ 131.48918 11.36190 2.0000 0.53632 0.19417 8.9E-02 11.37455 0.11

N5+ 181.33980 13.36063 2.0000 0.45499 0.13947 5.4E-02 13.37454 0.10

O6+ 239.22201 15.36112 2.0000 0.39505 0.10499 3.5E-02 15.37453 0.09

F 7+ 305.21201 17.36152 2.0000 0.34912 0.08190 2.4E-02 17.37452 0.07

Ne8+ 379.12317 19.36147 2.0000 0.31274 0.06567 1.7E-02 19.37453 0.07

Table 3.14: Expectation values of Set2b with DFA-LDA using default basis
System R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

B3+ 88.36397 9.29693 2.0000 0.65722 0.29212 1.6E-01 9.37463 0.83

C4+ 129.89416 11.29503 2.0000 0.53913 0.19604 9.0E-02 11.37455 0.70

N5+ 179.47524 13.29393 2.0000 0.45701 0.14061 5.4E-02 13.37454 0.60

O6+ 237.05225 15.29315 2.0000 0.39662 0.10576 3.5E-02 15.37453 0.53

F 7+ 302.75298 17.29307 2.0000 0.35037 0.08244 2.4E-02 17.37452 0.47

Ne8+ 376.35939 19.29250 2.0000 0.31375 0.06606 1.7E-02 19.37453 0.42
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Table 3.15: Expectation values of Set3 with PZSIC-LSDA
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Sc a 2032.000 85.825 21 20.720 47.678 179.295 85.699 -0.15

c 2032.020 85.829 21 20.706 47.573 178.593 85.699 -0.15

b 2032.020 85.829 21 20.706 47.573 178.593 85.699 -0.15

Ti a 2241.523 91.593 22 20.637 44.039 156.078 91.407 -0.20

c 2241.518 91.596 22 20.624 43.964 155.662 91.407 -0.21

b 2241.463 91.822 22 19.684 38.573 127.599 91.407 -0.45

V a 2461.582 97.549 23 20.269 39.462 131.990 97.258 -0.30

c 2461.651 97.538 23 20.322 39.699 132.701 97.258 -0.29

b 2461.682 97.572 23 20.221 39.183 130.279 97.258 -0.32

Cr a 2692.784 103.578 24 20.084 34.843 99.223 103.422 -0.15

c 2692.784 103.578 24 20.084 34.843 99.223 103.422 -0.15

b 2692.784 103.578 24 20.084 34.843 99.223 103.422 -0.15

Mn a 2935.884 109.964 25 19.756 31.254 80.305 109.389 -0.53

c 2935.884 109.964 25 19.756 31.254 80.305 109.389 -0.53

b 2935.884 109.964 25 19.756 31.254 80.305 109.389 -0.53

Fe a 3188.137 115.889 26 20.896 35.304 99.074 115.628 -0.23

c 3188.138 115.889 26 20.896 35.304 99.077 115.628 -0.23

b 3188.138 115.889 26 20.896 35.304 99.078 115.628 -0.23

Co a 3450.992 122.428 27 20.450 31.294 79.936 122.018 -0.34

c 3450.956 122.425 27 20.448 31.277 79.870 122.018 -0.33

b 3450.928 122.410 27 20.477 31.398 80.344 122.018 -0.32

Ni a 3725.204 128.965 28 20.557 30.300 75.055 128.547 -0.33

c 3724.968 128.993 28 20.523 30.155 74.502 128.547 -0.35

b 3725.199 128.963 28 20.561 30.316 75.117 128.547 -0.32

Cu a 4010.271 135.663 29 20.625 29.330 70.977 135.414 -0.18

c 4010.271 135.663 29 20.625 29.330 70.977 135.414 -0.18

b 4010.271 135.663 29 20.625 29.330 70.977 135.414 -0.18

Zn a 4308.055 142.243 30 21.578 32.332 81.967 142.025 -0.15

c 4308.055 142.243 30 21.578 32.332 81.967 142.025 -0.15

b 4308.055 142.243 30 21.578 32.332 81.967 142.025 -0.15
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Table 3.16: Expectation values of Set3 with PZSIC-PBE
System Basis R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Sc a 2031.4243 85.7365 21 20.9839 49.5224 191.3557 85.6988 -0.04

c 2031.4243 85.7365 21 20.9839 49.5224 191.3558 85.6988 -0.04

b 2031.4082 85.7319 21 21.0003 49.6221 191.8949 85.6988 -0.04

Ti a 2241.0106 91.4842 22 20.9523 46.0684 168.4126 91.4069 -0.08

c 2241.0110 91.4842 22 20.9526 46.0701 168.4210 91.4069 -0.08

b 2241.0106 91.4842 22 20.9523 46.0684 168.4126 91.4069 -0.08

V a 2460.8400 97.4415 23 20.5076 41.0574 142.6302 97.2585 -0.19

c 2461.1457 97.4096 23 20.7003 41.8888 144.5877 97.2585 -0.16

b 2461.1457 97.4096 23 20.7003 41.8886 144.5865 97.2585 -0.16

Cr a 2691.9919 103.4631 24 20.2604 35.7787 104.4324 103.4223 -0.04

c 2691.9919 103.4631 24 20.2604 35.7787 104.4324 103.4223 -0.04

b 2691.9919 103.4631 24 20.2604 35.7787 104.4324 103.4223 -0.04

Mn a 2935.1003 109.9089 25 19.7733 31.3712 81.3798 109.3886 -0.48

c 2935.1003 109.9089 25 19.7733 31.3712 81.3798 109.3886 -0.48

b 2935.1003 109.9089 25 19.7733 31.3712 81.3798 109.3886 -0.48

Fe a 3187.3592 115.7360 26 21.2629 37.3786 110.1839 115.6285 -0.09

c 3187.3197 115.7407 26 21.2271 37.1411 108.8063 115.6285 -0.10

b 3187.3592 115.7360 26 21.2629 37.3784 110.1833 115.6285 -0.09

Co a 3449.9215 122.2790 27 20.6697 32.4123 85.7759 122.0179 -0.21

c 3449.9135 122.2632 27 20.6997 32.5344 86.2101 122.0179 -0.20

b 3450.4630 122.1559 27 21.2756 35.7565 102.2015 122.0179 -0.11

Ni a 3724.0448 128.8197 28 20.7414 31.2255 79.9014 128.5468 -0.21

c 3724.0389 128.8301 28 20.7233 31.1599 79.6954 128.5468 -0.22

b 3724.0073 128.8170 28 20.7446 31.2452 80.0205 128.5468 -0.21

Cu a 4009.0005 135.5151 29 20.7921 30.1634 75.3807 135.4143 -0.07

c 4009.0005 135.5151 29 20.7921 30.1634 75.3807 135.4143 -0.07

b 4009.0005 135.5151 29 20.7921 30.1634 75.3807 135.4143 -0.07

Zn a 4306.6779 142.0925 30 21.7657 33.2731 86.6628 142.0253 -0.05

c 4306.6779 142.0925 30 21.7657 33.2731 86.6628 142.0253 -0.05

b 4306.6779 142.0925 30 21.7657 33.2731 86.6628 142.0253 -0.05
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Table 3.17: Expectation values of Set3 with DFA-PBE using default basis
System R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Sc 2032.4042 85.7299 21 21.0087 49.0622 184.9691 85.6988 0

Ti 2241.9595 91.4416 22 21.1042 46.0529 162.6741 91.4069 -0.04

V 2462.2491 97.3118 23 21.1378 43.4441 146.3514 97.2585 -0.05

Cr 2692.3519 103.4387 24 20.7285 39.2733 126.7591 103.4223 -0.02

Mn 2935.8261 109.3710 25 21.6259 41.0492 127.8818 109.3886 0.02

Fe 3187.7345 115.7053 26 21.2420 36.8158 105.5405 115.6285 -0.07

Co 3450.8013 122.1410 27 21.1017 34.1761 91.6548 122.0179 -0.10

Ni 3724.8204 128.6775 28 21.1180 32.6041 83.6792 128.5468 -0.10

Cu 4009.7536 135.3693 29 21.1573 31.4709 78.9512 135.4143 0.03

Zn 4307.3830 141.9877 30 21.9013 33.4212 85.3913 142.0253 0.03

Table 3.18: Expectation values of Set3 with DFA-LDA using default basis
System R−2 R−1 R0 R1 R2 R3 CCSD(T )R−1 %ErrR−1

Sc 2026.9378 85.6144 21 21.1323 49.6067 186.6034 85.6988 0

Ti 2236.6114 91.3472 22 21.1208 46.0425 162.0352 91.4069 0.07

V 2456.7819 97.1848 23 21.2271 43.8276 147.8891 97.25847 0.08

Cr 2687.4422 103.2990 24 20.8762 39.7900 127.8245 103.4223 0.12

Mn 2930.4356 109.2858 25 21.5859 40.6331 124.8207 109.3886 0.09

Fe 3182.4814 115.7050 26 21.0270 35.6005 99.0260 115.6285 -0.07

Co 3445.2653 122.0570 27 21.0822 33.9404 89.8916 122.0178 -0.03

Ni 3719.1515 128.6179 28 21.0263 32.0039 80.2297 128.5468 -0.06

Cu 4004.0955 135.2899 29 21.1243 31.1697 76.9437 135.4143 0.09

Zn 4301.4832 141.9053 30 21.8653 33.1049 83.3837 142.0253 0.08
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3.0.2 Results And Discussion

By comparing ⟨r−1⟩ to the CCSD(T) value, the performance of different systems with

corresponding Basis sets and functionals for ⟨r−1⟩ in set1 through to set3 are represented

using the Mean absolute error (MAE) in table 3.19, 3.20, 3.21, and 3.22 below

Table 3.19: MAE of ⟨r−1⟩ for Set1
Data Sets Functionals Basis Set ⟨r−1⟩ MAE
Set 1 DFA-PBE default 0.0123

cc-pwcvtz 0.0291
cc-pwcvqz 0.0141

Set 1 PZSIC LSDA Default 0.0545
cc-pwcvtz 0.0552
cc-pwcvqz 0.0554

Set 1 PZSIC PBE Default 0.0037
cc-pwcvtz 0.0054
cc-pwcvqz 0.0037

Set 1 DFA-LDA Default 0.0967

Table 3.20: MAE of ⟨r−1⟩ for Set2a
Data Sets Functionals Basis Set ⟨r−1⟩ MAE
Set 2a PZSIC LSDA Default 0.0091

cc-pwcvtz 0.0083
cc-pwcvqz 0.0080

Set 2a PZSIC PBE Default 0.0017
cc-pwcvtz 0.0044
cc-pwcvqz 0.0009

Set 2a DFA-PBE Default 0.0186
Set 2a DFA-LDA Default 0.0978
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Table 3.21: MAE of ⟨r−1⟩ for Set2b
Data Sets Functionals Basis Set ⟨r−1⟩ MAE
Set 2b PZSIC LSDA Default 0.0052

cc-pwcvtz 0.0049
cc-pwcvqz 0.0050

Set 2b PZSIC PBE Default 0.0015
cc-pwcvtz 0.0003
cc-pwcvqz 0.0006

Set 2b DFA-PBE Default 0.0131
Set 2b DFA-LDA Default 0.0804

Table 3.22: MAE of ⟨r−1⟩ for Set3
Data Sets Functionals Basis Set ⟨r−1⟩ MAE
Set 3 PZSIC LSDA Default 0.2891

cc-pwcvtz 0.2911
cc-pwcvqz 0.3125

Set 3 PZSIC PBE Default 0.1669
cc-pwcvtz 0.1636
cc-pwcvqz 0.1506

Set 3 DFA-PBE Default 0.0566
Set 3 DFA-LDA Default 0.0875

The density analysis for ⟨r−1⟩ in Set1 to Set3 is represented in Table 3.19, 3.20, 3.21,

and 3.22. The MAE for the different data sets is small, indicating small deviation for any

KS density functional tested in different data sets. PZSIC PBE gives the least deviation

from the CCSD(T) reference value for ⟨r−1⟩ and this is true for Set1, Set2a and Set2b

The long-range moments of densities; ⟨r1⟩, ⟨r2⟩, and ⟨r3⟩ MAE could not be calculated

as CCSD(T) reference values for those were not available, this is the same for ⟨r−2⟩. The

⟨r0⟩ is the zero moments of the density which corresponds to the charge (atomic numbers)

of the systems. The ⟨r0⟩ tested for all data sets were accurate and corresponded to the

charge (atomic numbers) of the systems.

Data set Set2a and Set2b are hardly representative for most problems of ⟨rn⟩ as there

are too few electrons and too much dependence on charges and FOD’s were more localized
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in the core regions. Nonetheless, they were studied and MAE for ⟨r−1⟩ is presented in table

3.20 and 3.21.

In Set1, DFA-PBE performs better than PZSIC-LSDA while PZSIC-PBE has the least

deviation from the CCSD(T) reference value. But in Set3, DFA-PBE and DFA-LDA with

the default NRLMOL basis set performed better than PZSIC PBE and PZSIC LSDA.

The radial distribution of the closed shell systems (Neon and Zinc); compared the

performance of the density functional approximation DFA-PBE and the PZSIC-PBE, as

represented by the graphs below fig 3.1 and fig 3.2.

Figure 3.1: Radial Distribution of Ne with DFA-PBE and PZSIC-PBE using De-
fault Basis
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Figure 3.2: Radial Distribution of Zn with DFA-PBE and PZSIC-PBE using De-
fault Basis
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3.0.3 Summary

The accuracy of PZSIC and KS densities was investigated using the moment of densities

from short-range to long-range regions. Three sets of data sets were investigated using

LDA, PBE, PZSIC PBE, and PZSIC LSDA with different basis sets for all data set and

functionals tested. The performance of the different functionals as represented in the radial

distribution, indicated that the performance of different functionals were the same. The

MAE of functionals with tested basis sets shows that basis sets has little or no influence on

the accuracy of KS densities as the deviation of each basis sets and functionals were small

in fraction of fractions. In Set1 through set2b, PZSIC-PBE with the least MAE shows the

greatest accuracy while for transition metals in set3, DFA-PBE has the least MAE against

the trend in set1 through set2b.
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Chapter 4

Frozen Density Assessment of the

Locally Scaled and Perdew-Zunger

Self-interaction-Corrected Density

Functional Approximations

A curious side effect of SIC-DFT calculations is the appearance of the so-called paradox

of SIC, in which SIC tends to improve the accuracy of some energetic predictions, while

degrading others. In particular, SIC-DFT tends to worsen equilibrium molecular properties

of molecules and solids such as atomization energies and equilbrium geometries, and this

degradation of accuracy only increases as a DFT calculation climbs Jacob’s ladder and SIC

is applied to semilocal and hybrid XC functionals. On the other hand, SIC-DFT performs

well for nonequilibrium geometries such as stretched molecular bonds.

In 2019, Zope and coworkers were able to partially resolve the paradox by implementing

a more selective SIC referred to as local-scaling SIC (LSIC) [19]. Fundamentally, LSIC

corrects SIE in the same orbital wise fashion as PZSIC:

Zope and co-workers uses a pointwise iso-orbital indicator to identify the one-electron

self-interaction regions in the many-electron system and to determine the magnitude of SIC

in the many-electron regions[19, 43, 44].

ELSIC−DFA
XC = EDFA

XC [ρ, ρ]−
∑
i

(ULSIC [ρiσ]− ELSIC
XC [ρiσ,0]) (4.0.1)
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However, the correction is scaled throughout space in such a way that it is only applied

in regimes where it is actually needed[19].

ULSIC [ρiσ] =
1

2

∫∫
dr1dr2

(zσ(r1))
kρiσ(r1)ρiσ(r2)

r12
(4.0.2)

ELSIC
XC [ρiσ,0] =

∫
dr(zσ(r1))

kρiσ(r)ϵ
DFA
XC ([ρiσ,0], r) (4.0.3)

The titular local-scaling comes in the form of the factor zσ which is defined as the

ratio of the von Weizsacker kinetic energy density and the Kohn-Sham kinetic energy

density[3, 43, 44, 45].

zσ ≡ τwσ (r)

τσ(r)
(4.0.4)

The noninteracting (Kohn-Sham) kinetic energy density is given as

τσ(r) =
1

2

∑
i

| ▽ψiσ(r) |2 (4.0.5)

and the von Weiszacker kinetic energy density is the single-orbital limit of τσ(r)

τwσ (r) =
| ▽ρiσ(r) |2

8ρσ(r)
(4.0.6)

By definition, zσϵ[0, 1], where zσ = 0 corresponds to uniform densities, and zσ = 1 to

one-electron densities. For this reason, zσ is called an iso-orbital indicator, as it detects

single-orbital regions of the electron density. The exponent k is a tunable parameter. In

particular, k = 0 disables the scaling completely and recovers the PZSIC limit, while

k → ∞ reduces to a standard DFA by zeroing out SIC entirely. The simplest choice of

k = 1 interpolates smoothly between the uniform density and one-electron limits[3].
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4.0.1 Computational Details

The LSIC methods[43, 44, 45, 19, 3] using FLO’s are implemented in the developmental

version of the FLOSIC code[46, 45]. The FLOSIC code is based on the UTEP-NRLMOL

code, which itself is a modernized version of legacy NRLMOL (FORTRAN 77) code[47] with

many additional new capabilities[44]. We used the NRLMOL default basis set throughout

our calculations.

In this work, we compare the performance of PZSIC and LSIC using frozen densities of

different functionals and the Hatree Fock. FOD’s from different functionals were optimized

over the frozen densities for PZSIC and LSIC respectively and results were compared using

different properties for PZSIC and LSIC. The self-consistency in the PZSIC calculations

is obtained using Jacobi-like iterative procedure[43]. For LSIC calculations, we used the

respective DFA densities and PZSIC FODs as a starting point.

The geometries used in our calculations are the same as in the respective databases and

no further optimizations were performed. We used the SCF energy convergence criteria

of 10−6Eh for the total energy and an FOD force tolerance of 10−3Eh per bohr for FOD

optimizations in FLOSIC calculations[43]. To assess the performance of LSIC in comparison

with PZSIC using frozen density calculations, we have calculated the atomization energies,

barrier heights, etc.

4.0.2 Results And Discussion

We assessed the performance of LSIC and PZSIC using the wide array of electronic prop-

erties. We consider total energies, atomization energies, and the reaction barrier heights

for molecules. The results are presented in this section.

Total Energies of Atoms

We compared the total atomic energies of the atoms Z = 1–18 against accurate non-

relativistic values reported by Chakravorty et al [48]. The deviation of our calculation
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from the reference value is represented in table 4.1 and also shown in fig 4.1

Table 4.1: MAE of atomic total energies (in Eh)
Method FOD’s Densities MAE (Eh)
PZSIC LSDA HF 0.373

LSDA LSDA 0.370
LSDA PBE 0.375
LSDA SCAN 0.374
PBE HF 0.166
PBE LSDA 0.171
PBE PBE 0.165
PBE SCAN 0.165

LSIC LSDA HF 0.042
LSDA LSDA 0.041
LSDA PBE 0.039
PBE LSDA 0.039
LSDA SCAN 0.039
SCAN LSDA 0.042

DFA PBE 0.083
LSDA 0.726
SCAN 0.019

Table 4.1 compared the total atomic energy from hydrogen through argon using LSIC

and PZSIC methods, the deviation from the reference value in [48] were presented using

the Mean Absolute Error (MAE). The MAE in PZSIC methods ranges from 0.165Eh to

0.375Eh, this is comparable to the result obtained by Yamamoto et al in [44] where PZSIC-

PBE, PZSIC-SCAN and PZSIC-LSDA have MAE’s of 0.159, 0.147 and 0.381Eh respectively.

Yamamoto et al presented result for LSIC-LSDA pertubative, and LSIC-LSDA SCF, and

SCF FOD optimized with MAE’s of 0.041, 0.040 and 0.040Eh respectively, and this is

consistent with our results in table 4.1. Overall, LSIC methods predict accurately the total

energies of atoms more than PZSIC methods, this might be part of the paradox of SIC as

PZSIC might not accurately correct SIE. LSIC-LSDA optimized over PBE densities, LSIC-

PBE optimized over LSDA densities, and LSIC-LSDA optimized over the SCAN densities,

all have the least and same MAE of 0.039Eh. These methods are sufficient to get good

estimates of atomic energies.
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Figure 4.1: Total energies of atoms in Eh compared against reference values
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Atomization Energies

We studied the performance of LSIC on atomization energies using the AE6 set[49] of

molecules. The AE6 set is part of the Minnesota Database and is often used for bench-

marking the performance of density functional approximations for atomization energies[44].

The AE6 set is composed of six molecules: SiH4, S2, SiO, C3H4 (propyne), HCOCOH

(glyoxal), and C4H8 (cyclobutane). The atomization energy EA is obtained as the en-

ergy difference of the sum of fragment atomic energies Ei
fragments and the complex energy

Ecomplex as follows:

EA =
∑
i

Ei
fragments − Ecomplex (4.0.7)

The MAE’s are summarized in Table 4.2. Frozen density calculation with LSIC meth-

ods gave better performance than the PZSIC method. These results were compared with

previously obtained results from the Electronic structure lab as reported in the publica-

tion reference [44]. Our results in table 4.2 is comparable with results in [44]. Yamamoto

et al result indicated LSIC-LSDA, quasi-SCF method with MAE 6.57 kcal/mol, in table

4.2, LSDA density optimized over LSIC-LSDA FOD’s performed better than other LSIC

methods with MAE 9.67kcal/mol.
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Table 4.2: MAE of the AE6 set of atomization energy
Method FOD’s Densities MAE (Kcal/mol)
PZSIC LSDA HF 57.46

LSDA LSDA 58.00
LSDA PBE 57.55
LSDA SCAN 81.14
PBE HF 19.23
PBE LSDA 21.33
PBE PBE 21.72
PBE SCAN 20.79

LSIC LSDA HF 10.06
LSDA LSDA 9.67
LSDA PBE 10.39
PBE LSDA 9.75
LSDA SCAN 28.23
SCAN LSDA 10.82

DFA PBE 13.43
LSDA 74.26
SCAN 2.85

Barrier Heights

An accurate description of chemical reaction barriers is challenging for DFAs since it in-

volves the calculation of energies in non-equilibrium situations (i.e. at stretched bond

distances). In most cases, the saddle point energies are underestimated since DFAs do not

perform well for a non-equilibrium state that involves a stretched bond. This shortcoming

of DFAs in a stretched bond case arises from SIE; when an electron is shared and stretched

out, SIE incorrectly lowers the energy of transition states. SIC handles the stretched bond

states accurately and provides a correct picture of chemical reaction paths. We studied the

reaction barriers using the BH6 set of molecules for the LSIC and PZSIC method[43].

We used the BH6 set[49] of reactions to study the LSIC and PZSIC performance on

barrier heights[44]. BH6 is a representative subset of the larger BH24[50] set consisting of

three hydrogen transfer reactions

1. OH + CH4 → CH3 +H2O
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2. OH +H → O +H2

3. H +H2S → HS +H2

For each reaction, single point energies of the left- and right-hand side and saddle

point of the reactions were calculated, and then forward and reverse barrier heights were

computed[43, 44]. The barrier heights for the forward (f) and reverse (r) reactions were

obtained by taking the energy differences of their corresponding reaction states[43]. The

mean absolute errors (MAEs) of computed barrier heights are compared against the refer-

ence values[49] in table 4.3

Table 4.3: MAE of the BH6 set of barrier heights
Method FOD’s Densities MAE (Kcal/mol)
PZSIC LSDA HF 4.7

LSDA LSDA 14.02
LSDA PBE 3.23
LSDA SCAN 3.69
PBE HF 5.64
PBE LSDA 14.91
PBE PBE 5.60
PBE SCAN 5.44

LSIC LSDA HF 2.80
LSDA LSDA 7.16
LSDA PBE 1.36
PBE LSDA 1.41
LSDA SCAN 1.18
SCAN LSDA 1.37

DFA PBE 9.6
LSDA 17.6
SCAN 7.9

Most PZSIC calculations improve the barrier heights for semilocal functionals except

for PZSIC-LSDA optimized with LSDA density, and PZSIC-PBE optimized with LSDA

density have 14.02kcal/mol and 14.91kcal/mol as their respective MAE’s. Application of

LSIC raises barrier height and further reduces the MAE to as low as 1.18kcal/mol for

LSIC-LSDA optimized with SCAN density. We note that LSIC barrier heights are not

necessarily between those predicted by DFA and PZSIC-DFA’s since energy shifts vary for

40



reactants, products, and transition states. It is also noted that LSIC-LSDA FOD’s with

PBE density and LSIC-SCAN FOD optimized with LSDA density perform very similarly.
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4.0.3 Summary

To summarize, in this work, we present frozen density calculations with LSIC and PZSIC

methods. Performance assessment using standard benchmark database has been carried out

on total energies, atomization energy, and barrier heights of reaction on standard data sets

of molecules. Our results were compared with previously obtained results from the UTEP

electronic structure laboratory. The result shows that LSIC performs better than PZSIC

for all properties (total energies, atomization energies, and barrier heights) investigated.
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