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Abstract

The goal of classification is to develop a model that can be used to accurately assign

new observations to labeled classes based on the patterns learned from the training data.

K-nearest Neighbors algorithm (KNN) is a popular and widely used algorithm for clas-

sification, however, its performance can be adversely affected by the presence of outliers

in a dataset. In this study we have modified this existing KNN algorithm that can alle-

viate the effect of outliers in a dataset, thereby improving the performance of the KNN

algorithm. We compared the performances of the Modified KNN method and the Existing

KNN algorithm as well as other six machine learning algorithms – Naive Bayes algorithm,

Random Forest, Support Vector Machine (SVM Linear), Logistic Regression (logit), Linear

Discriminant (LDA), and Quadratic Discriminant Analysis (QDA). Utilizing a simulated

data and HCV dataset which is available at UCI machine learning repository (HCV data

2020), we compared the performances of these techniques in terms of F1 score, AUC-ROC,

and accuracy. The simulation study revealed that the Modified KNN method outperforms

the existing KNN algorithm when applied to a simulated datasets that contained different

proportion of outliers. Also, with the real data, the Modified KNN method outperforms the

existing KNN algorithm in predicting Hepatitis C. The performance evaluations confirm

the validity of the Modified KNN method.

Keywords: Classification,K-nearest Neighbors algorithm (KNN), modified KNNmethod,

UCI, HCV, evaluation metrics.
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Chapter 1

Introduction

The process of classifying data into several groups according to a pre-established set of rules

is known as statistical classification. In the domains of machine learning, data mining,

and other related research, it is a fundamental idea (Hastie et al. 2009). The goal in

classification is to take an input vector X and to assign it to one of K disjoint class Ck,

where k = 1, · · · , K. The input space is thereby divided into decision regions whose

boundaries are called decision boundaries or decision surfaces (Bishop & Nasrabadi 2006).

Using the pattern and relationship discovered from the training data, the objective of

statistical classification is to build a model that can precisely predict the class labels of

incoming instances. An optimal classification procedure should whenever possible account

for the cost associated with the misclassification.

For data setD, which contains the following objects, the categorization process is carried

out:

• Set size → A = {A1, A2, · · · |A|}, where |A| is the number of attributes or the size of

set A.

• Class label → C = {c1, c2, · · · |C|}, where |C| is the number of classes and |C| ≥ 2.

Given the data set D the main of goal machine learning is to construct a classification or

prediction function to connect the values of attribute in A and classes in C.

Statistical classification has been categorized into two: Supervised and Unsupervised.

In supervised classification, the model is trained using a set of training instances, where

each instance is related to a specific label class. The model uses this information to learn

underlying pattern and relationship in the data and then applies these patterns to new, un-
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labelled data to make predictions about their class labels. Popular supervised classification

algorithms include logistic regression, decision tress, and support vector machine. Unsuper-

vised classification is used when there are no pre-labeled samples and the objective is to find

hidden structures and patterns in the data without been aware of the classes beforehand.

Unsupervised classification algorithms organize the data into clusters based on similarity,

and each cluster represents a candidate class. The two commonly used unsupervised classi-

fication technique are K-means clustering and hierarchical clustering. Generally, statistical

classification is a powerful tool for identifying patterns and relationship in a data and can

be applied to wide range of real-world problems, such as image and speech recognition,

spam filtering, fraud detection and more (James et al. 2013).

1.1 Problem Statement and Goals

K-nearest Neighbors algorithm (KNN) is a popular and widely-used algorithm for classi-

fication and regression tasks. KNN uses proximity to make classifications or predictions

about the grouping of an individual data point. It works off the assumption that similar

point can be found near one another. However, its performance can be adversely affected

by the presence of outliers in a dataset. Outliers are data points that differ significantly

from the majority of the data, and they can have a substantial impact on the KNN algo-

rithm due to its reliance on local averaging. A study conducted by (Jiang & Zhou 2004)

pointed out that KNN classifiers are sensitive to outliers and noise contained in training

data. Therefore, they proposed approaches that can be used to edit the training data so

that the performance of the classifiers can be improved. Also, due to KNN’s sensitivity to

outliers, a study conducted by (Su & Tsai 2011) stated that distance-based approaches,

which includes KNN are popular in outlier detection algorithms in the computer science

literature.

In view of this problem of KNN algorithm, the ultimate goal of this study is to modify

the existing KNN algorithm that seek to dampen the effect of outliers in datasets, thereby

2



improving the performance of the algorithm. The modified method which we termed as

Modified KNN algorithm will allow us to predict the outcome of the new observation by

fitting a generalized linear model (with the Bernoulli distribution) to the training set that

correspond to the k-nearest neighbors based on their distances. Specifically, this study

aims to:

1 Modify the existing KNN algorithm

2 Compare the modified method with already existing methods for classification using

both real and simulated data

3



Chapter 2

Existing Classification Methods

As this thesis seeks to compare existing classification techniques and our proposed method,

we consider seven existing standard classification techniques: Naive Bayes algorithm, K-

Nearest Neighbors (KNN), Random Forest, Support Vector Machine (SVM),Logistic Re-

gression (logit), Linear Discriminant Analysis, and Quadratic Discriminant Analysis. For

details of these methods, we refer to Hastie et al. (2009). The chosen methods are briefly

discuss below:

2.0.1 Naive Bayes Algorithm

Naive Bayes classifier is a popular machine learning algorithm that is used for classification

task such as text classification. It belongs to the family of generative learning algorithms,

which means that it models the distribution of inputs for a given class or category. This

approach works on the principle of conditional probability as given by Bayes theorem and

the adjective naive refers to the assumption that the features in a dataset are mutually

independent. In reality, the independence assumption is often violated, although naive

Bayes classifiers nevertheless perform very well under this unrealistic assumption.

Mathematically, let k be a category of interest out of a set of categories l = {1 , · · · ,L}.

Let Xi = (xi1, xi2, · · · , xip)
T be a vector of p predictors and Yi be a vector of response

variable for individuals i ∈ {1 , · · · , n}.

P (Yi = k|X1, · · · , Xn) =
P (Yi = k)P (X1, · · · , Xn | Yi = k)∑

l P (Yi = l)P (X1, · · · , Xn|Yi = l)
. (2.1)

The model’s naivety allows us to replace the likelihood terms with the product the

4



probabilities of Xi given Yi.

P (Yi = k|X1, · · · , Xn) =
P (Yi = k)

∏
i P (Xi|Yi)∑

l P (Yi = l)
∏

i P (Xi|Yi)
. (2.2)

To estimate the probability that Yi belongs to category k given {X1, · · · , Xn}, we can

substitute estimates of elements of the right-hand side of the above equation.

The proportion of the training set that falls under category k can be substituted to

estimate the prior probability. That is:

P̂ (Yi = k) =
1

n

∑
i

I(Yi = k), (2.3)

where, I is an indicator variable via which the response variable is coded.

There are various methods for estimating the likelihood terms. In this research, our final

Naive Bayes model uses Nadaraya-Watson as used by Wigglesworth (2018) to estimate the

joint density functions for every unique combination of Xi and Yi, which we call fj|l(·):

P̂ (Xi|Yi = k) = {f̂1|l(Xi1), · · · , f̂p|k(Xip)}. (2.4)

Nadaraya-Watson estimator is a non-parametric method used to estimating a joint den-

sity function utilizing a multivariate kernel function such as multivariate Gaussian kernel.

The following assignment rule is used once the estimates are computed. We do not need

to take the denominator into account, because only the numerate of the Bayes rule varies

across categories.

Ŷi = argmax
k

[
P̂ (Yi = k) ·

∏
i

P̂ (Xi|Yi = k)

]
. (2.5)

This method is advantageous since they requires small number of training data to esti-

mate parameters, hence they are fast and reliable for making real-time predictions. They

can also handle continuous and discrete data. However, they encounter “zero frequency

problem”. Thus, if a categorical variable has a category in the test dataset that wasn’t
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included in the training dataset, the model will assign it a 0 probability and will be unable

to make a prediction. Also, the assumption that the predictors are conditionally indepen-

dent is exceedingly implausible in real-world settings. These models are computationally

expensive when used to classify large number of items.

2.0.2 Support Vector Machine (SVM)

SVM is a powerful and flexible classification algorithm that seeks to find the best line

or decision boundary that can divide n-dimensional space into classes so that we may

simply place new data points in the correct category in the future. This optimal decision

boundary is called hyperplane: one that maximizes the total of the orthogonal distances,

or margin, the hyperplane and closest training observation in each category. In some cases,

it’s not viable to find a hyperplane that completely separates the training observations in

p-dimensional space. In these instances, we can opt to apply a kernel, such as a linear,

polynomial, or radial bias function kernel, to map the training data to higher dimensions

where an acceptable hyperplane can be drawn. This approach helps us to achieve a suitable

separation of the training observations (Wigglesworth 2018). The general mathematical

definition of hyperplane of a p-dimensional space is given by the equation:

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0. (2.6)

Thus if a point X = (X1, X2, · · · , Xp)
T in a p-dimensional space (i.e. a vector of length p)

satisfies (2.6), the X lies on the hyperplane.

Suppose X does not satisfy (2.6) ; rather,

β0 + β1X1 + β2X2 + · · ·+ βpXp > 0, (2.7)
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then this tells us that X lies on one side of the hyperplane. On the contrary, if

β0 + β1X1 + β2X2 + · · ·+ βpXp < 0, (2.8)

then X lies on the other side of the hyperplane. Hence, a hyperplane can be seen as a line

dividing p-dimensional space into two halves. One can quickly determine on which side of

the hyperplane a point lies by computing the sign of the left side of (2.6).

The Maximal Margin Classifier

Typically, there exist an infinite number of hyperplanes that can perfectly separates our

data. To create a classifier that uses a separating hyperplane, a reasonable approach is to

choose the hyperplane with the maximal margin (i.e. the optimal margin hyperplane) from

the infinite potential hyperplanes. This hyperplane separates the training observations

at the farthest distance. In other words, we measure the distance between each training

observation and a given separating hyperplane and select the smallest distance as the

margin, which is the minimum distance from observations to the hyperplane. The maximal

margin hyperplane is the one with the largest margin, which means it has the farthest

minimum distance to the training observations. Then classifying a test observation based

on which side of the maximal margin hyperplane it lies in know as maximal margin classifier.

The maximal margin hyperplane is the solution to the optimization problem below:

Maximize
β0, β1, · · · , βp

M, (2.9)

subject to

p∑
j=1

βj = 1, (2.10)

yi(β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip) ≥ M ∀ i = 1, · · · , n. (2.11)
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The constraint (2.11) guarantees that each observation will be on the correct side of the

hyperplane, provided M is positive. Again, (2.10) is not really a constraint on the hyper-

plane, since if β0 + β1Xi1 + β2Xi2 + · · · + βpXip = 0 defines a hyperplane, then so does

k(β0+β1Xi1+β2Xi2+· · ·+βpXip) = 0 for any k ̸= 0. However, (2.10) gives a further context

to (2.11). One can demonstrate that with this constraint, the the perpendicular distance

from the ith observation to the hyperplane is given by β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip.

As a result , the constraints (2.10) and (2.11) guarantee that each observation is on

the correct side of the hyperplane and is at least M distance away from the hyperplane.

Hence, M represents the margin of our hyperplane, and the optimization problem chooses

β0, β1, · · · , βp to maximize M .

Support Vector Classifier

The support vector classifier is a method that uses a hyperplane to classify a test observation

based on its position relative to the hyperplane. The hyperplane is selected in such a

way that it can accurately separate the majority of training observation into two classes,

although there may be some misclassified observations. It is the solution to the optimization

problem

Maximize
β0, β1, · · · , βp, ϵ1, · · · , ϵn,

M, (2.12)

subject to

p∑
j=1

βj = 1, (2.13)

yi(β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip) ≥ M(1− ϵi), (2.14)

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C, (2.15)

where C is a non-negative tuning parameter. It establishes the upper bound of the sum

of ϵ
′
is which determines the number and severity of violations to the margin (and to the

hyperplane) that we will tolerate. Similar to (2.11), M is the width of the margin; our goal
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is to make this quantity as large as possible. In (2.14), ϵ1, · · · , ϵn are slack variables which

directly measures the distance from a wrongly classified observations xi to its corresponding

margin. Thus, the slack variables allow individual observations to be on the incorrect side

of the margin or hyperplane. After solving the optimization problem, we classify a test

observation x∗ by simply finding which side of the hyperplane it lies. That is, we classify

the test observation according to the sign of f(x∗) = β0 + β1x
∗
1 + β2x

∗
2 + · · ·+ βpx

∗
p.

How SVM classifier works

Here are the steps involved in how the SVM classifier works:

1 The SVM classifier starts with input data that consists of a set of labeled training

instances. Each instance is represented by a set of features or attributes.

2 The input data may contain a large number of features, which may not be relevant for

classification. Therefore, feature extraction is performed to select the most relevant

features that can best differentiate between the classes.

3 The selected features are then mapped to high-dimensional space, where the data

points can be linearly separable. In a case where the data points may not be linearly

separable in the feature space, the SVM uses a kernel function to map the data

points to a higher-dimensional space where they can be linearly separable. The most

commonly used kernel functions are linear, polynomial, and radial basis function

(RBF).

4 The SVM then finds the optimal hyperplane or decision boundary that best separates

the data points of different classes. The optimal hyperplane is the one that maximizes

the margin between the hyperplane and the nearest data points of each class.

5 Margin: The margin can be hard or soft. Hard margin is that kind of decision

boundary that ensures that all data points are classified correctly. While this leads

to SVM classifier not causing error, it can cause the margin to shrink thus making
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the whole running of the SVM classifier ineffective. Soft margin is a modified version

of the margin used in SVM that allows some misclassifications or errors to occur in

the training data. The soft margin is implemented by introducing a slack variable

or penalty term into SVM optimization problem. The slack variable allows the data

points to be classified on the wrong side of the hyperplane, but penalizes the misclas-

sifications by a cost proportional to the distance of the misclassified point from the

margin.

The amount of slack variable allowed is controlled by a parameter called regular-

ization parameter C. A smaller value of C allows more misclassifications and leads

to wider margin, while a large value of C results in a narrower margin and fewer

misclassifications.

2.0.3 Random Forest

The concept of random-subspace was first proposed by Ho (1995) and later evolved into

random forest algorithm, which was formally introduced by Breiman (2001). Random

forest is a classifier that uses numerous decision trees on different subsets of a given dataset

and takes the average to enhance the predicted accuracy of that dataset and it reduces

overfitting. It is built on the notion of ensemble learning, which is the process of merging

numerous classifiers to solve a complex problem and improve the model’s performance.

Since this algorithm creates trees, it tells us that the more the trees the more robust forest.

Random forest is one of the best-performing learning algorithms. Random forest tend

to predict better than other methods that make assumption of linearity as it easily adapt

to nonlinearity detected in the data. More precisely, ensemble algorithms like random

forests are well suited for medium to large dataset. The methods for linear regression and

logistic regression will not operate when the number of independent variables is greater than

the number of observations because there are too many estimated parameters. However,

random forest works because not all predictor variables are used simultaneously.
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According to (Breiman 2001), random forest algorithm provides a more accurate es-

timation of the error rate compared to decision trees. In particular, it has been proven

mathematically that the error rate consistently converges as the number of trees in the

model increases.

When training the random forest algorithm, the error rate is estimated using the out-of-

bag (OOB) error. This involves randomly leaving out around one-third of the observations

for each tree’s bootstrap sample, which creates the OOB sample. By minimizing the OOB

error, the algorithm selects the most appropriate parameters for the model, such as the

value of m that determines the subset of predictor variables. Tuning these parameters

during model selection is crucial to control the final depth of the trees and ensure accurate

predictions.

The variable importance of each variable is calculated to gain more insight on the

complex model. This involves calculating the total improvement in the objective function

for each predictor variable. The improvement is determined based on the splitting criterion

used at each internal node of the tree, and it is summed up across all internal nodes in each

tree and across all trees in the random forest.

Although, random forest algorithm provides high level of accuracy in predicting out-

come, it consumes more time compared to decision tree algorithm and also requires more

computational resources.

How Random Forest algorithm works

The algorithm uses the following steps in its execution;

1. Draw multiple random samples (bootstrap samples) with replacement from the orig-

inal dataset.

2. For each bootstrap sample, creation of decision trees are performed. During this

stage, at each node of the tree;

– A subset of features are randomly selected.
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– Find the best split based on these features using an impurity measure (e.g., Gini

impurity or entropy).

– The process continues recursively until a stopping criterion is met (e.g., max

depth, minimum samples per leaf).

3. Predictions are made by calculating the prediction for each decision tree, then taking

the most popular results.

2.0.4 Logistic Regression

Logistic regression is a statistical method that aim to model the posterior probabilities of

multiple (K) classes via linear function in the predictor variable (x), by ensuring that the

probabilities add up to one and stay within the (0,1) range (Hastie et al. 2009). This method

addresses the same question that Discriminant function analysis and Multiple regression

do but with no distributional assumptions on the predictors (predictors do not have to be

normally distributed, have equal variance in each group). The predictor variables can be

continuous or categorical. The goal of logistic regression is to find the best fitting model

that can predict the probability of outcome variable based on the predictor variables.

The logistic regression model uses a mathematical function called sigmoid function to

estimate the probability of the outcome variable. The sigmoid function maps any real-

valued number to a value between 0 and 1, which can be interpreted as the probability of a

particular outcome. The logistic regression model estimates the coefficients of the predictor

variables to maximize the likelihood of the observed data.

How Binary logistic regression works

A special case of logistic regression is binary logistic regression which seeks to develop a

classifier that is capable of making binary decision about new input observation.

Consider a single input observation x, represented by a vector of features [x1, x2, · · · , xp]

and the classifier output y which can be 1 (meaning the observation is a member of the class)
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or 0 (the observation is not a member of the class). Our aim is to know the probability

P (y = 1|x) that this observation is a member of the class. So maybe the decision is

“positive diagnosis” versus “negative diagnosis” for diabetes, the features represent the

factors related to diabetes, P (y = 1|x) is the probability that diabetes diagnosis is positive

given, and P (y = 0|x) is the probability that diabetes diagnosis is negative.

The way in which logistic regression works is by using a training set to learn a bias

term and a vector of weights. Each weight wi corresponds to one of the input features

xi, and it has a real number value. The weight represents the significance of that feature in

the classification decision, and can be either positive (indicating that the instance belongs

to positive class) or negative (indicating that the instance belongs to negative class). The

bias term, also called intercept, is another real number that is added to the weighted

inputs (Keselj 2009). Once the weights are learned in the training set, the method first

multiplies each xi by its weights wi, sum up the weighted features and add up the bias

term b. The results denote by z expresses the weighted sum of the evidence of the class of

the test instance.

z =

( n∑
i=1

wixi + b

)
= w · x+ b. (2.16)

The z is evaluated at the sigmoid function to create probability. The sigmoid function

is an S-shaped function which is also called logistic function. It tends to squash outliers

to 0 or 1 since it is virtually linear around 0 and flattens toward the ends. The sigmoid has

the following equation,

σ(z) =
1

1 + exp(z)
. (2.17)

By ensuring that the two cases, p(y = 1) and p(y = 0), sum to 1, we find probability

from (2.17);

p(y = 1) = σ(w · x+ b) =
1

1 + exp(w · x+ b)
, (2.18)

p(y = 0) = 1− σ(w · x+ b) =
exp(−(w · x+ b))

1 + exp(−(w · x+ b))
. (2.19)
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The algorithm uses maximum likelihood estimation to estimate the parameters. However,

maximizing the log-likelihood of the binary logistic function does not have a closed-form

solution. Therefore, we approximately solve it numerically using methods like gradient

descent.

2.0.5 Linear Discriminant Analysis (LDA)

LDA is a linear classification method which assumes that the joint density of all features,

conditional on the target’s class (qualitative response), is a multivariate Gaussian. This

means that the density P of the features X, given the target y is in class k, are assumed

to be given by

P (X|y = k) =
1

(2π)p/2 | Σ |1/2
exp

(
− 1

2
(X − µk)

tΣ−1(X − µk)
)
. (2.20)

where p is the number of features, µ is the mean vector, and Σk is the covariance matrix

of the Gaussian density for class k. The decision boundary between two classes, say k and

l, is the hyperplane on which the probability of the target belonging to either class is the

same. This implies that, on this hyperplane, the difference between the two densities (and

hence the log-odds ratio between them) should be zero.

An important assumption in LDA is that the Gaussian for different classes share the

same covariance matrix Σk = Σ ∀k. This assumption comes in handy for log-odds ratio

calculation as it makes the normalization factors and some quadratic parts in the exponent

cancel out. This yields a decision boundary between k and l that is linear in X:

log

(
P (y = k|X)

P (y = l|X)

)
=log

fk(x)

fl(x)
+ log

πk

πl

,

=log
πk

πl

− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl).

(2.21)

In order to calculate the density of the features P (X|y = k), we need to first estimate

the Gaussian parameters: µk as the sample mean (µ̂k) and covariance matrix Σ as the
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empirical covariance matrix Σ̂. These parameters are estimated based on the training data

and we can obtain the probability of the target belonging to class k from the Bayes rule

as:

P (y = k|X) =
P (X|y = k)P (y = k)

P (X)
, (2.22)

where P (y = k) is the prior probability of the target belonging to class k and can be

estimated by the proportion of k− class observations in the sample. This LDA method has

a closed-form solution and therefore has no hyperparameters. From (2.21), we see that

the decision rule, with G(x) = argmax
k

δk(x) is similar to linear discriminant functions :

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + logπk. (2.23)

2.0.6 Quadratic Discriminant Analysis (QDA)

In LDA, it is assumed that Gaussian for different classes share the same covariance matrix,

which is convenient but may not be correct for certain data. To allow for more flexibility

and accuracy, some may prefer to use k covariance matrices to be estimated instead of

the common covariance assumption. However, if there are many features, this can greatly

increase the number of parameters in the model, which is important to consider since the

decision boundaries are functions of these parameters. Additionally, when using multiple

covariance matrices, the quadratic terms in the Gaussians’ exponent no longer cancel out,

resulting in quadratic decision boundaries in X and increased model flexibility. We then

get quadratic discriminant function(QDA),

δk(x) = −1

2
log|Σk|−1 − 1

2
(x− µk)

TΣ−1
k (x− µk) + logπk. (2.24)

The quadratic equation {x : δk(x) = δl(x)} describes the decision boundary between

two classes k and l.

15



2.0.7 KNN Algorithm

The k-nearest neighbors algorithm is a non-parametric, supervised learning classifier that

employs proximity to classify or predict the grouping of a single data point. Whiles it

can be used to solve either regression or classification problems, it is more widely utilized

as a classification technique, working off the assumption that similar points can be found

near one another. The KNN algorithm is regarded as a lazy algorithm since it lacks an

explicit training stage and defers all computations until prediction (Aha 1997). As a result,

the processing of the training examples is postponed until prediction, and training consist

essentially of simply storing the training data.

The KNN algorithms compute the class label (classification) or continuous target (re-

gression) based on the k nearest (most “similar”) points when making a prediction. Instead

of approximating the target function f(x) = y globally, during each prediction, KNN ap-

proximates the target function locally. KNN is usually considered as a discriminative model

since it does not explicitly try to model the data generating process but models the posterior

probabilities (P (X|f(X))) directly.

The simplest iteration of the KNN model in the classification context is to forcast the

target class as the class label that is most frequently represented among the k most similar

training examples for a particular query point. In other words, the class label can be

thought of as the “mode” of the k training labels, or as a result of “plurality voting”. This

is always a majority or a tie in the case of binary predictions (classification problem with

two classes). As a result, a majority vote is always a plurality vote.

This technique is useful for it speedy computation and simplicity of execution. It

determines its nearest neighbors for continuous data using Euclidean distance, which is

defined as:

d(X[a],X[b]) =

√√√√ m∑
j=1

(
X

[a]
j ,X

[b]
j

)2

. (2.25)

Despite the classifier’s simplicity, the value of ‘k’ is crucial in classifying unlabeled input.

The value of ‘K’ can be decided through many way, but we just can run the classifier
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several times with various value to see which one produces the best results. Because all the

calculations are done when the training data is being classified rather than when it appears

in the dataset, the computation cost is a little higher.

Upon KNN’s easy implementation, it suffer the problem of “Curse of dimensionality”.

Because of this problem, KNN is also prone to overfitting. While feature selection and

dimensionality reduction techniques are used to prevent the problem, the value of ‘k’ can

also have an effect on the model’s behavior. Lower k values may overfit the data, but higher

k values may “smooth out” the forcast values by averaging the values over a larger area,

or neighborhood. However, if the value of ’k’ is too large, the data may be underfit.

How KNN algorithm works

The KNN algorithm uses the following steps in its process:

1 The algorithm starts with a labeled dataset containing a set of input features and

corresponding output labels. This dataset is used to train the KNN algorithm.

2 Determine the number of nearest neighbors (k) to consider when making predictions.

The ideal k value can be determine by cross-validation. It estimates the validation

error rate by holding out a subset of training set from the model building process.

3 Compute the distance between the new input sample and all the existing data points

in the dataset. The most commonly used distance metric is Euclidean distance, but

other metrics like manhattan distance or Minkowski distance can also be used.

4 Select k data points in the dataset that are closest to the new input sample based on

the computed distances.

5 The classification is done by determining the majority class among the k-nearest

neighbors and assign the new input sample. For regression, we calculate the average

of the output values of the k-nearest neighbors and assign that as the predicted value

of the new intput sample. The algorithm finally returns the predicted class.
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Chapter 3

Modified Method

3.1 Modified KNN Algorithm

The selection of the hyperparameter k is among several factors that impact the effectiveness

of the KNN algorithm. When k is too small, the algorithm becomes more sensitive to

outliers, whereas a large value for k may result in the inclusion of numerous points from

different classes within the neighborhood.

Additionally, determining how to combine the class labels poses another challenge. The

most straightforward technique involves using majority voting. However, this can lead to

issues when the nearest neighbors differ significantly in their distances, and closest neighbors

offer more reliable indications of the object’s class.

In view of these issues we have modified the prediction stage of the KNN algorithm

process. Modified KNN algorithm will allow us to predict the outcome of the new observa-

tion by fitting a generalized linear model (with the Bernoulli distribution) to the training

set that correspond to the k-nearest neighbors based on their distance. The distances aid

in selecting the set of data required to fit the model. A large k value was chosen to ensure

an appropriate linear model fit.

Generalized linear models (GLMs) are particularly useful when the relationship between

predictors and the response variable is not linear or when the response variable follow a

non-normal distribution. In GLMs, the response variable is assumed to follow a distribution

from the exponential family, such as the Gaussian, binomial, Poisson, or gamma distribution

(Myers & Montgomery 1997). The key components of a GLM are the linear predictor, the

link function, and the variance function. The linear predictor represents the relationship
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between the predictors and the response variable, similar to linear regression. The link

function maps the linear predictor to the mean of the response variable, enabling the model

to accommodate different types of the relationships. The logit link function is utilized in this

study. The variance function specifies the relationship between the mean and the variance

of the response variable. GLMs are estimated using maximum likelihood estimation, and

varoius techniques, such as iterated reweighted least squares, are employed for parameter

estimation.

Generally, GLMs provide a flexible and powerful framework for modeling data with dif-

ferent types of response variables, allowing for more accurate and interpretable predictions

in a wide range of applications, including regression and classification analysis.

3.2 Model Evaluation Metrics

In order to assess the performance of the machine learning models and generalize their

capabilities, we considered three machine learning evaluation metrics: F1 score, Area under

the ROC curve (AUC), Accuracy.

3.2.1 F1 Score

F1 score is a commonly used performance metric in classification task, such as evaluating the

performance of machine learning models. A study conducted by Whalen et al. (2016) made

use of F1 score as an evaluation measure when predicting enhancer-promoters interactions in

genomics. F1 score is calculated as the harmonic mean of precision and recall. It provides

a single value that considers both precision and recall, giving equal importance to both

measures. Precision measures the proportion of true positive predictions out of all positive

predictions made by the model. It focuses on accuracy of positive predictions. Recall,

also known as sensitivity, measures the proportion of true positive predictions out of all

positive samples in the dataset. It focuses on model’s ability to identify positive samples.

Mathematically, F1 Score is calculated as below:
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F1 score = 2× (Precision×Recall)/(Precision+ recall).

3.2.2 Area under ROC curve (AUC)

Area under the receiver operating characteristic (ROC) curve (AUC) is a performance

metric for classification problems at different threshold settings. ROC is a probability curve

that helps us to visualise the performance of a classification model and AUC represent the

degree of separability. It tells how much the model is capable of distinguishing between

classes. AUC is defined as a function of True Positive Rate (TPR), that is, the fraction of

true labels that are correctly classified as true and the False Positive Rate (FPR), that is,

the probability that a classifier is incorrect when it labels an instance as true. AUC ranges

from 0 to 1, where 0.5 indicates a model with no discrimination ability, and 1 indicates a

model with perfect discrimination. A higher AUC indicates a better-performing model with

strong ability to classify positive and negative samples correctly. AUC-ROC is insensitive

to class imbalance. It provides an aggregated performance measure that is affected by the

distribution of positive and negative samples.

3.2.3 Accuracy

The accuracy is a common evaluation measure used for classification models. It assesses

the overall correctness of the model’s prediction by calculating the proportion of correctly

classified instances over the total number of instances in the dataset. Mathematically,

accuracy is calculated as follows:

Accuracy =
Number of correct predictions

Total number of predictions
. (3.1)

The accuracy metric provides a simple and intuitive measure of how well the classifi-

cation model performs in terms of correctly predicting the class labels. A higher accuracy

indicates a more accurate and reliable model, while a lower accuracy suggests that the

model’s accuracy is less reliable. However, accuracy metric may not always provide a
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completed picture of a classification model’s performance, especially when dealing with

imbalanced datasets.
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Chapter 4

Simulation Study

In this section we run a simulation experiment to verify the performance of the models

based on F1 score, AUC-ROC, and accuracy measures. We considered three different set of

explanatory variables in this particular study, so p = 2, 5, and 10, where p is the number

of explanatory variables in each set. The explanatory variables are distributed according

to standard normal distribution N (0, 1). The response variable Yi was generated from a

Bernoulli distribution Bernoulli(θ), where p is given as:

θ =
exp(X · β0)

1 + exp(X · β0)
, (4.1)

where, X is n × p + 1 design matrix whose columns contains the values of explanatory

variables. β0 is vector of the true values of the parameters and it is randomly generated

from a standard normal distribution with size p+ 1, where p is the number of explanatory

variables. Thus β0 ∼ Np+1(0, 1). A sample size of n = 100, and 200 was considered.

We checked the performance of the estimators both in pure and contaminated data. We

inserted ϵ proportion of outliers to the response variable Y for the contaminated data. To

ensure our data is contaminated, we flipped the response variable Y values of 0 to 1 and 1

to 0. We considered the values of the contamination proportion as ϵi = 0, 0.05, and 0.1.

The dataset was partitioned into training and test data with a ratio of approxomately

2 : 1 on the sample. Thus, approximately 67% of the dataset were sampled without

replacement for the training process whiles the remaining 33% were used for the testing

process.

We have applied the generated data with different set of predictors and different thresh-
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old of outlier to KNN Algorithm, Naive Bayes classifier, Random Forest algorithm, SVM

Linear, Logistic Regression, LDA, QDA, and Modified KNN. The simulations run 100

times each starting with a random set of train and test data and each model’s F1 score,

AUC-ROC, and accuracy are computed. Hence, 100 classification percentage values are

achieved. To evaluate the model’s classification performance, the average values of the 100

runs are taken with respect to each evaluation metric considered. The R code used for this

simulation can be found in the Appendix.

4.1 Simulated Results

In this section, we have reported the model’s F1 score, AUC-ROC, and accuracy for the

testing data using sample size of n = 50 and n = 200 for different number of features (i.e.,

p = 2, 5, and 10) and different proportion of outliers (i.e., ϵi = 0, 0.05, and 0.1) in

the simulated data. Our main idea is to check the performance of the models when the

proportion of outliers is changed.

Table 4.1 shows the correct classification proportion values in terms F1 score, AUC-

ROC, and accuracy of the existing classification models considered and the Modified KNN

method applied to the simulated data with n = 100, p = 2 and different proportion of

outliers (i.e., ϵi = 0, 0.05, and 0.1). The Modified KNN seems to perform similarly as

the existing KNN and other models across all the performance metrics when the simulated

data contains no outlier (ϵ = 0). With 5% of outliers contained in the simulated data, the

Modified KNN is the clear winner in term of correctly predicting the class labels across all

the three performance metrics. Once again, when the simulated data contained 10% outly-

ing values, and across all the performance metrics considered the Modified KNN performed

best.

Table 4.2 illustrates the correct classification proportion values in terms F1 score, AUC-

ROC, and accuracy of the existing classification models considered and the Modified KNN

method applied on the simulated data with n = 200, p = 2 and different proportion of
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outliers (i.e., ϵi = 0, 0.05, and 0.1). The results on Table 4.2 favors the Modified KNN

in terms of best performance as Table 4.1 across all the performance metrics and when the

simulated data contained 5% and 10% outlying values. However, when there is 0% outlier

in the simulated data, existing methods like Naive bayes, SVM Linear, LDA and QDA

performed wwell.

Table 4.1: Summary of model performance in simulated data with n = 100, p = 2
and different values of ϵ.

Method
ϵ = 0 ϵ = 0.05 ϵ = 0.1

F1 score AUC ACC F1 score AUC ACC F1 score AUC ACC

KNN 0.83 0.78 0.79 0.82 0.76 0.78 0.81 0.79 0.79
Naive Bayes 0.84 0.78 0.80 0.84 0.78 0.80 0.82 0.79 0.80
Random Forest 0.81 0.76 0.77 0.82 0.78 0.79 0.80 0.79 0.79
Logistic Regression 0.84 0.78 0.80 0.75 0.65 0.68 0.67 0.62 0.63
SVM Linear 0.84 0.78 0.80 0.76 0.67 0.70 0.67 0.62 0.63
LDA 0.84 0.79 0.80 0.74 0.65 0.68 0.67 0.63 0.63
QDA 0.84 0.79 0.80 0.81 0.73 0.76 0.79 0.74 0.75
Modified KNN 0.84 0.79 0.80 0.84 0.81 0.82 0.84 0.83 0.83

Table 4.2: Summary of model’s performance of simulated data with n = 200, p = 2
and different values of ϵ.

Method
ϵ = 0 ϵ = 0.05 ϵ = 0.1

F1 score AUC ACC F1 score AUC ACC F1 score AUC ACC

KNN 0.83 0.77 0.79 0.83 0.79 0.80 0.82 0.80 0.81
Naive Bayes 0.85 0.80 0.81 0.84 0.80 0.81 0.83 0.79 0.80
Random Forest 0.82 0.76 0.77 0.81 0.78 0.79 0.81 0.79 0.79
Logistic Regression 0.85 0.79 0.81 0.73 0.64 0.66 0.69 0.64 0.64
SVM Linear 0.85 0.80 0.81 0.74 0.66 0.68 0.69 0.63 0.64
LDA 0.85 0.80 0.82 0.71 0.63 0.65 0.68 0.64 0.64
QDA 0.85 0.80 0.82 0.81 0.74 0.76 0.80 0.74 0.75
Modified KNN 0.84 0.79 0.80 0.84 0.81 0.82 0.84 0.82 0.82
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Table 4.3 depicts the correct classification proportion values in terms F1 score, AUC-

ROC, and accuracy of the existing classification models and the Modified KNN method

applied on the simulated data with n = 100, p = 5 and different proportion of outliers (i.e.,

ϵi = 0, 0.05, and 0.1). In the F1 score, AUC-ROC, and accuracy perspective and across

all proportion of outliers considered for the simulated data, Modified KNN outperforms

the existing KNN even though some existing models like random forest and naive bayes

similarly performed as the Modified KNN..

Table 4.4 illustrates the correct classification proportion values in terms F1 score, AUC-

ROC, and accuracy of the existing classification models considered and the Modified KNN

method applied on the simulated data with n = 200, p = 5 and different proportion of

outliers (i.e., ϵi = 0, 0.05, and 0.1). Table 4.4 produce similar results as Table 4.3 even

with n = 200. In particular, the Modified KNN outperforms the existing KNN across all

the performance metrics and across all the proportion of outliers considered.

Table 4.3: Summary of model’s performance of simulated data with n = 100, p = 5
and different values of ϵ.

Method
ϵ = 0 ϵ = 0.05 ϵ = 0.1

F1 score AUC ACC F1 score AUC ACC F1 score AUC ACC

KNN 0.80 0.73 0.75 0.77 0.72 0.73 0.77 0.75 0.75
Naive Bayes 0.82 0.76 0.78 0.79 0.71 0.74 0.79 0.71 0.74
Random Forest 0.82 0.76 0.78 0.80 0.77 0.77 0.80 0.79 0.79
Logistic Regression 0.83 0.78 0.80 0.70 0.64 0.65 0.70 0.67 0.68
SVM Linear 0.83 0.78 0.80 0.70 0.64 0.65 0.70 0.67 0.68
LDA 0.83 0.79 0.80 0.69 0.63 0.65 0.70 0.67 0.68
QDA 0.81 0.76 0.77 0.76 0.69 0.71 0.77 0.70 0.72
Modified KNN 0.82 0.77 0.78 0.78 0.76 0.76 0.80 0.78 0.79
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Table 4.4: Summary of model’s performance of simulated data with n = 200, p = 5
and different values of ϵ.

Method
ϵ = 0 ϵ = 0.05 ϵ = 0.1

F1 score AUC ACC F1 score AUC ACC F1 score AUC ACC

KNN 0.82 0.75 0.77 0.81 0.76 0.77 0.81 0.78 0.79
Naive Bayes 0.83 0.78 0.80 0.82 0.74 0.77 0.80 0.73 0.75
Random Forest 0.82 0.77 0.78 0.82 0.78 0.79 0.82 0.80 0.81
Logistic Regression 0.85 0.80 0.82 0.72 0.64 0.66 0.72 0.68 0.68
SVM Linear 0.85 0.80 0.82 0.73 0.65 0.67 0.72 0.68 0.69
LDA 0.85 0.80 0.82 0.72 0.64 0.66 0.72 0.68 0.69
QDA 0.84 0.79 0.81 0.79 0.70 0.73 0.79 0.72 0.74
Modified KNN 0.82 0.78 0.79 0.82 0.79 0.80 0.82 0.80 0.81

Table 4.5 shows the correct classification proportion values in terms F1 score, AUC-

ROC, and accuracy of the existing classification models considered and the Modified KNN

method applied on the simulated data with n = 100, p = 10 and different proportion of

outliers (i.e., ϵi = 0, 0.05, and 0.1). Once again, the Modified KNN performed better

than the existing KNN given the performance metrics across the different set of data. Other

existing models like SVM linear, LDA also performed well even better than the Modified

KNN.

Table 4.6 illustrates the correct classification proportion values in terms F1 score, AUC-

ROC, and accuracy of the existing classification models considered and the Modified KNN

method applied on the simulated data with n = 200, p = 10 and different proportion of

outliers (i.e., ϵi = 0, 0.05, and 0.1). The uniqueness about Table 4.6 is that there is no

clear winner between the Modified KNN and the existing KNN given the performance met-

rics and even across the proportion of outliers considered in the simulated data. However,

some existing models like SVM linear and LDA clearly outperforms the Modified KNN

when there is 0% outlier in the data.
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Table 4.5: Summary of model’s performance of simulated data with n = 100, p =
10 and different values of ϵ.

Method
ϵ = 0 ϵ = 0.05 ϵ = 0.1

F1 score AUC ACC F1 score AUC ACC F1 score AUC ACC

KNN 0.64 0.71 0.74 0.61 0.69 0.72 0.68 0.73 0.74
Naive Bayes 0.66 0.73 0.75 0.63 0.66 0.70 0.51 0.66 0.67
Random Forest 0.64 0.72 0.74 0.66 0.73 0.74 0.71 0.74 0.74
Logistic Regression 0.75 0.80 0.82 0.66 0.72 0.73 0.71 0.74 0.74
SVM Linear 0.75 0.80 0.81 0.68 0.74 0.75 0.72 0.75 0.75
LDA 0.76 0.81 0.82 0.68 0.73 0.74 0.72 0.75 0.75
QDA 0.63 0.71 0.74 0.59 0.69 0.71 0.62 0.70 0.70
Modified KNN 0.67 0.74 0.75 0.71 0.75 0.76 0.74 0.76 0.76

Table 4.6: Summary of model’s performance of simulated data with n = 200, p =
10 and different values of ϵ.

Method
ϵ = 0 ϵ = 0.05 ϵ = 0.1

F1 score AUC ACC F1 score AUC ACC F1 score AUC ACC

KNN 0.66 0.74 0.76 0.69 0.74 0.75 0.74 0.77 0.78
Naive Bayes 0.72 0.78 0.80 0.55 0.69 0.72 0.49 0.66 0.69
Random Forest 0.69 0.75 0.78 0.72 0.76 0.77 0.74 0.78 0.78
Logistic Regression 0.78 0.82 0.83 0.71 0.75 0.76 0.74 0.77 0.77
SVM Linear 0.78 0.82 0.83 0.72 0.76 0.76 0.75 0.77 0.78
LDA 0.79 0.83 0.84 0.72 0.76 0.76 0.75 0.77 0.77
QDA 0.72 0.78 0.79 0.66 0.73 0.75 0.66 0.73 0.75
Modified KNN 0.68 0.74 0.74 0.72 0.75 0.76 0.75 0.77 0.77
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Chapter 5

Real Data Analysis

In this section we explore the performance of the existing classification mehtods as well as

the modified KNN method by applying them on a real dataset. We compare the perfor-

mance of these methods in term of F1 score, AUC-ROC, and accuracy measures.

5.1 Data Source and Description

We considered the HCV dataset which is available at UCI machine learning repository

(HCV data 2020). The dataset contain 615 instances and 14 attributes which summarize

laboratory values of blood donors and Hepatitis C patients and demographic values like

age. However, the first column of the dataset which is the patient id number was excluded

because it is not important in predicting the target variable. The target attribute for

classification is Category: Blood donor (including blood donor and suspect blood donor)

versus Hepatitis C (including its progress “just” Hepatitis C, Fibrosis, Cirrhosis). We coded

blood donor (no Hepatitis C) as 0 and Hepatitis C as 1. Our aim was to make medical

diagnosis of Hepatitis C based on the results from of the lab work.

In order to evaluate the dataset we did some preprocessing operation, the reason to

preprocessing was to summarize the data in the best and suitable way for our algorithms.

Missing values of some of the features were adjusted using predictive mean matching im-

putation method through the mice package in R software. Our early exploration of the

data revealed that the variable sex does not determine whether a patient is a healthy blood

donor or Hepatitis C (p value = 0.098 at α = 0.05). Therefore, the variable sex was dis-

carded during the analysis. Also, it was evident that the features have different range and
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variations, so scaling was performed on the features to ensure standard unit of the features.

Table 5.1 summarizes the variables included in the dataset dataset post-cleaning. The ab-

breviated variables refer to laboratory data. Table 5.2 describes the tuning parameters for

each model considered in this study.

Table 5.1: Attributes of HCV dataset.

Variable Description

Category(diagnosis) Binary variable indicating a patient is diagnose of Hepatitis C or not
Age Continuous variable indicating age of the patient
Sex Categorical variable with two levels indicating gender of the patient
ALB Albumin Blood Test
ALP Alkaline Phosphatase
ALT Alanine Transaminase
AST Aspartate Transaminase
BIL Bilirubin
CHE Acetylcholinesterase
CHOL Cholesterol
CREA Creatinine
GGT Gamma-Glutamyl Transferase
PROT Proteins

Table 5.2: Tuning Methodology for each model.

Method Description No. of Cross Validations

KNN Number of neighbors 10-Fold CV
Naive Bayes Laplace Correction 10-Fold CV
Random Forest MTRY, No. of Trees (fixed at 500) 10-Fold CV
Logistic Regression - 10-Fold CV
SVM Linear Cost, kernel (fixed at linear) 10-Fold CV
LDA - 10-Fold CV
QDA - 10-Fold CV
Modified KNN N/A 2:1 CV
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5.2 Results

In this study, the HCV dataset were split into approximately 2:1 for the training set and

testing set, respectively. The model is built on the training dataset and later evaluated

based on the testing dataset. To assess the performance of the seven existing classification

models considered and the modified method in predicting Hepatitis C, the results of the

model’s performance metrics are evaluated and compared. Each model’s testing accuracy,

F1 score, and AUC-ROC are displayed in Table 5.3.

5.2.1 F1 Score

From the F1 score perspective, there is no clear winner in terms of the models predictive

performance. However, taking into consideration the purpose of this study, the Modi-

fied KNN method (97.8%) had a little predictive power over the existing KNN algorithm

(96.5%). Other algorithms, including Random Forest, QDA, SVM Linear also performed

well in predicting Hepatitis C using F1 Score.

5.2.2 AUC-ROC

When we consider AUC-ROC as our performance indicator, the clear winner is the Modified

KNN method, though, other existing methods like QDA, Random Forest and Naive Bayes

performed well. Again, the Modified KNN with AUC of 92% has outperformed the existing

KNN with AUC of 75.5%.

5.2.3 Accuracy

When we consider accuracy as our performance indicator, it is hard to determine the clear

winner because Random Forest, QDA, and the Modified - all have 96.1% prediction accu-

racy in predicting Hepatitis C. Once again, the Modified KNN method has outperformed

the existing KNN method (93.7%) in terms of prediction accuracy.
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Table 5.3: Summary of Model’s Performance Metrics based on real data.

Method F1 Score AUC Accuracy

KNN 0.9651 0.7554 0.9366
Naive Bayes 0.9725 0.8777 0.9512
Random Forest 0.9781 0.8831 0.9610
Logistic Regression 0.9704 0.7989 0.9463
SVM Linear 0.9756 0.8423 0.9561
LDA 0.9574 0.6902 0.9219
QDA 0.9780 0.9021 0.9610
Modified KNN 0.9779 0.9210 0.9610
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Chapter 6

Conclusion

In this thesis, we have described some existing classification algorithms as well as our

Modified KNN method for classification problem. In particular, we compared the Modified

KNN method with the existing KNN algorithm as well as other classification methods

– K-Nearest Neighbors (KNN), Naive Bayes algorithm, Random Forest, Support Vector

Machine (SVM Linear), Logistic Regression (logit), Linear Discriminant Analysis, and

Quadratic Discriminant Analysis. We compared the performance of these methods in

term of F1 score, AUC-ROC, and accuracy measures. The simulation study revealed that

the Modified KNN method outperformed the existing KNN method when the simulated

data contained different proportion of outliers (i.e., ϵi = 0, 0.05, and 0.1) across the

performance metrics considered in this study. The Modified KNN actually predict class

labels by fitting a linear model locally to the the training set indexed by the nearest

neighbors. Furthermore, we applied our methods to HCV dataset which is available at

UCI machine learning repository (HCV data 2020). We classified medical diagnosis of

Hepatitis C. The Modified KNN method outperformed the existing KNN algorithm in

predicting Hepatitis C patient. However, other classification methods like random forest,

QDA and naive bayes algorithm performed well in predicting Hepatitis C. The performance

evaluations confirm the validity of the Modified KNN method.

We take caution in making broad conclusion based on these results. For example,

we cannot always guarantee that the Modified KNN method will consistently produce

excellent performance. In particular, both simulated data and the HCV dataset features

many predictor variables with different levels and different proportion of outliers. It would

be interesting to observe how the results of methods considered in this thesis would vary
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when applied to different datasets, particularly those featuring more outcome categories,

numeric and categorical predictors, and different proportion of outliers.
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Appendix

R CODE

opt ions (warn = −1)

#Loading packages

l i b r a r y ( dplyr )

l i b r a r y ( e1071 )

l i b r a r y ( caTools )

l i b r a r y ( ca r e t )

l i b r a r y (cvAUC)

l i b r a r y (MASS)

l i b r a r y ( randomForest )

l i b r a r y (ModelMetrics )

l i b r a r y ( robustbase )

##−−−−−−−−SIMULATION CODE−−−−−−−##

genera te data <− f unc t i on (n=50, beta0=c (0 , 1 , 1 ) , e p s i l o n = 0 .05 , muC = 5 ,

mu = 0 , sigma = 1 , v e r t i c a l o u t l i e r=T, n i = 1){

#Inputes :

#I : number o f Binomial popu la t i ons
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# ni : paramaters o f i−th Binomial populat ion , cu r r en t l y a f i x ed value

# f o r a l l samples ( n i=1 i n d i c a t e s Be rnou l l i d i s t )

# k : number o f exp l a ina to ry va r i ab l e s , dimension o f X i s k+1 in c l ud ing

# f i r s t column o f one

# beta0 : t rue value o f the parameter ( vec to r o f l ength k+1)

# mu, sigma : x i ˜ N(mu, sigma ) i i d f o r a l l i

# ep s i l o n : propor t ion o f contaminat ion f o r x , i . e . l e v e r ag e po in t s

# muC: f o r l e v e r ag e po in t s x i ˜ N(muC, 0 .01∗ sigma )

# v e r t i c a l o u t l i e r : (T or F) l e v e r ag e po in t s are a l s o v e r t i c a l o u t l i e r s ,

#ie , y i i s f l i p ed , i e y i = ni − y i

# n i t e r : number o f i t e r a t i o n

# i n i t i a l i z e some va lue s and con ta i n e r s

I <− n

k <− l ength ( beta0 ) − 1 #number o f p r e d i c t o r s

Y <− vec to r (” numeric ” , l ength = I )

# number o f contaminated data f o r x ( Leverage po in t s )

I c on t = sum( run i f ( I )< ep s i l o n )

# X: des ign matrix with exp la ina to ry va r i ab l e s , I ∗( k+1) matrix with f i r s t

#co l 1 adds I c on t l e v e r ag e po in t s near muC

X = cbind ( rep (1 , I ) , rb ind ( matrix ( rnorm ( ( I−I c on t )∗k , mu, sigma ) , nco l=k ) ,

matrix ( rnorm ( I c on t ∗k , muC, .01∗ sigma ) , nco l=k) ) )

Xbeta0 = X %∗% beta0

# p i v e c : vec to r conta in ing p i i
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p i v e c = exp (Xbeta0 )/(1+exp (Xbeta0 ) )

#should we con s id e r the ca s e s where p i=0 or 1?

n i v e c = rep ( ni , I )

f o r ( y indx in 1 : I )

Y[ y indx ] = rbinom (1 , n i v e c [ y indx ] , p i v e c [ y indx ] )

# v e r t i c a l o u t l i e r s r e p l a c e s y i to ni−y i

i f ( I cont>0 & v e r t i c a l o u t l i e r )

Y[ ( I−I c on t +1): I ] = n i v e c [ ( I−I c on t +1): I ] − Y[ ( I−I c on t +1): I ]

l i s t (X=X, Y=Y)

}

## I l l u s t r a t i o n s

# For k=2, n=50,

#data1 <− gene ra te data ( )

g e t me t r i c s <− f unc t i on ( yobs , y pred ) {

yobs <− as . numeric ( yobs )

y pred <− as . numeric ( y pred )

# f1 s co r e

f 1 s c o r e <− MLmetrics : : F1 Score ( yobs , y pred ,

p o s i t i v e = NULL) #f o r binary c l a s s
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# AUC

AUC object <− c i . cvAUC( p r ed i c t i o n s = y pred , l a b e l s= yobs ,

f o l d s =1:NROW( yobs ) , con f idence =0.95)

auc <− AUC object$cvAUC

ACC = sum( yobs == y pred )/ l ength ( yobs )

re turn ( c (” f 1 s c o r e”=f 1 s c o r e , ”AUC”=auc , ACC ) )

}

#−−−−−−−−−Modif ied KNN algor i thm

euc l i d e an d i s t an c e = func t i on (a , b){

# We check that they have the same number o f obse rvat i on

i f ( l ength ( a ) == length (b ) ){

s q r t (sum( ( a−b )ˆ2 ) )

} e l s e {

stop ( ’ Vectors must be o f the same length ’ )

}

}

#Manhattan Distance
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manhattan distance = func t i on (a , b){

# We check that they have the same number o f obse rvat i on

i f ( l ength ( a ) == length (b ) ){

sum( abs (a−b ) )

} e l s e {

stop ( ’ Vectors must be o f the same length ’ )

}

}

#Cosine s im i l a r i t y

c o s s im i l a r i t y = func t i on (a , b){

i f ( l ength ( a ) == length (b ) ){

num = sum(a ∗b , na . rm = T)

den = sq r t (sum( a ˆ2 , na . rm = T) ) ∗ s q r t (sum(bˆ2 , na . rm = T) )

r e s u l t = num/den

return (1− r e s u l t )

} e l s e {

stop ( ’ Vectors must be o f the same length ’ )

}

}

#Minkowski Distance

minkowsk i d i s tance = func t i on (a , b , p){
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i f (p<=0){

stop ( ’ p must be h igher than 0 ’ )

}

i f ( l ength ( a)== length (b ) ){

sum( abs (a−b)ˆp )ˆ(1/p)

} e l s e {

stop ( ’ Vectors must be o f the same length ’ )

}

}

#=====================

#k near e s t ne ighbors

#=====================

nea r e s t n e i ghbo r s = func t i on (x , obs , k , FUN, p = NULL){

# Check the number o f ob s e rva t i on s i s the same

i f ( nco l ( x ) != nco l ( obs ) ){

stop ( ’ Data must have the same number o f va r i ab l e s ’ )

}

# Calcu la te d i s tance , c on s i d e r i ng p f o r Minkowski

i f ( i s . nu l l (p ) ){

d i s t = apply (x , 1 , FUN, obs )

} e l s e {
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d i s t = apply (x , 1 , FUN, obs , p )

}

# Find c l o s e s t ne ighbours

d i s t an c e s = so r t ( d i s t ) [ 1 : k ]

ne ighbor ind = which ( d i s t %in% so r t ( d i s t ) [ 1 : k ] )

i f ( l ength ( ne ighbor ind )!= k){

warning (

paste ( ’ Seve ra l v a r i a b l e s with equal d i s t anc e . Used k : ’ ,

l ength ( ne ighbor ind ) ) )

}

out = l i s t ( ne ighbor ind , d i s t an c e s )

re turn ( out )

}

#================

#Pred i c t i on

#================

knn pred i c t i on = func t i on (x , y , weights = NULL, x0 , i s . robust=FALSE){

# here , y i s supposed to be a column name ( charac t e r )

x = as . matrix ( x )

i f ( i s . f a c t o r ( x [ , y ] ) | i s . cha rac t e r ( x [ , y ] ) ) {
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groups = tab l e ( x [ , y ] )

pred = names ( groups [ groups == max( groups ) ] )

} e l s e i f ( i s . numeric ( x [ , y ] ) ) {

# Calcu la te weighted p r ed i c t i on

i f ( ! i s . nu l l ( weights ) ){

w = 1/weights / sum( weights )

pred = weighted .mean(x [ , y ] , w)

# Calcu la te standard p r ed i c t i on

} e l s e {

i f ( sum(x [ , y ] ) == nrow (x ) ) re turn (1 )

i f (sum(x [ , y ] ) == 0) re turn (0 )

# Robust Lo g i s t i c Regres s ion

i f ( i s . robust ){

y f i t = glmrob ( as . formula ( paste (y , ”˜ . ” ) ) , data = data . frame (x ) ,

f ami ly = ”binomial ” ,

c on t r o l = glmrobMqle . c on t r o l ( acc = 1e−17,

t e s t . acc = ” coe f ” , maxit = 100 , t c c = 1 . 345 ) )

} e l s e {

y f i t = glm ( as . formula ( paste (y , ”˜ . ” ) ) , data = data . frame (x ) ,

f ami ly = ”binomial ” , maxit = 50)

}

pred = pr ed i c t ( y f i t , newdata=data . frame ( x0 ) , type = ” response ”)

pred = i f e l s e ( pred < 0 . 5 , 0 , 1)
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#Bianco−Yohai Estimator f o r Robust L o g i s t i c Regres s ion

# y f i t = BYlogreg (x [ , ( ! colnames (x ) %in% y ) ] , x [ , y ] )

# pred = sum( y f i t $ c o e f f i c i e n t s ∗ c (1 , as . matrix ( x0 ) ) )

# pred = 1/(1 + exp(−pred ) )

# pred = i f e l s e ( pred < 0 . 5 , 0 , 1)

#For c l a s s i c a l KNN

#pred = mean(x [ , y ] )

}

} e l s e {

stop ( ’Y should be f a c t o r / cha rac t e r or numeric . ’ )

}

r e turn ( pred )

}

#=====================================================================

knn sc = func t i on ( x f i t , x pred , y , k , i s . robust=FALSE,

func = euc l i d e an d i s t anc e , weighted pred = F, p = NULL){

# i n i t i a l i z i n g p r e d i c t i o n s

p r e d i c t i o n s = c ( )

y ind = which ( colnames ( x pred ) == y)

44



f o r ( i in 1 : nrow ( x pred ) ){

ne ighbors = nea r e s t n e i ghbo r s ( x f i t [ ,− y ind ] ,

x pred [ i ,−y ind ] , k ,FUN = func )

i f ( weighted pred ){

pred = knn pred i c t i on ( x f i t [ ne ighbors [ [ 1 ] ] , ] , y , ne ighbors [ [ 2 ] ] ,

x0=x pred [ i ,−y ind ] , i s . robust=i s . robust )

} e l s e {

pred = knn pred i c t i on ( x f i t [ ne ighbors [ [ 1 ] ] , ] , y , x0=x pred [ i ,−y ind ] ,

i s . robust=i s . robust )

}

# I f more than 1 p r ed i c t i on s , make p r ed i c t i on with 1 more k

i f ( l ength ( pred )>1){

pred = knn ( x f i t , x pred [ i , ] , y , k = k+1,

func = func , weighted pred = weighted pred , p == p)

}

p r e d i c t i o n s [ i ] = pred

}

r e turn ( p r e d i c t i o n s )

}

# varying sample s i z e s f o r d i f f e r e n t s imulated data

# al low f o r vary ing percent o u t l i e r s
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#

### arguments

# n : sample s i z e

#

my sim <− f unc t i on (n=100 , p e r c e n t o u t l i e r =0.05 , beta0=c (0 , 1 , 1 ) , i t e r =10)

{

# i n i t i a l i z e c on ta i n e r s f o r model met r i c s

number o f metr i c s <− 3

knn metr ics <− nb metr i c s <− RF metrics <−

g lm metr i c s <− matrix ( nrow = i t e r , nco l = number o f metr i c s )

svm metr ics <− l d a me t r i c s <− qda metr i c s <− mod knn metrics <−

mod knn rob metr ics <− knn metr ics

f o r ( i in 1 : i t e r ) {

i f ( i%%10 == 0) cat ( s p r i n t f (” Step %d/%d\n” , i , i t e r ) )

data <− gene ra te data (n=n , e p s i l o n = pe r c e n t ou t l i e r , beta0 = beta0 )

y <− f a c t o r ( data$Y)

X <− as . data . frame ( data$X [ , −1 ] )

n <− l ength (y )

#se t . seed (1234)

t e s t i n d <− sample ( nrow (X) , trunc ( (1/3)∗ nrow (X) ) , r ep l a c e = FALSE)

y t e s t <− y [ t e s t i n d ]

y t r a i n <− y[− t e s t i n d ]
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X test <− X[ t e s t i nd , ]

X tra in <− X[− t e s t i nd , ]

#−−−−−F i t t i n g models

# Run a lgor i thms us ing 10− f o l d c r o s s v a l i d a t i o n

t ra inCont ro l <− t r a inCont ro l (method=”repeatedcv ” , number=10, r epea t s=3)

metr ic <− ”Accuracy”

#−−−−−−−−−KNN Algorithm

f i t . knn <− t r a i n (y=y t ra in , x=X train , method=”knn” ,

metr ic=metr ic , t rCont ro l=t ra inCont ro l )

y pred <− p r ed i c t ( f i t . knn , newdata = X tes t )

knn metr ics [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

#−−−−−−−−−Naive Bayes

nb <− t r a i n (y=y t ra in , x=X train , method=”nb” ,

metr ic=metr ic , t rCont ro l=t ra inCont ro l )

y pred <− p r ed i c t ( nb$ f inalModel , X tes t ) $ c l a s s

nb metr i c s [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

#−−−−−−−−−Random Forest
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f i t .RF <− t r a i n (y=y t ra in , x=X train , method=”r f ” , n t r ee = 500 ,

metr ic=metr ic , t rCont ro l=t ra inCont ro l )

y probs <− p r ed i c t ( f i t .RF, newdata=X test , type=”prob ” ) [ , 2 ]

y pred <− f a c t o r ( i f e l s e ( y probs >= 0 .5 , 1 , 0 ) )

RF metrics [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

#−−−−−−Log i s t i c Regres s ion

f i t . glm <− t r a i n (y=y t ra in , x=X train , method=”glmnet ” ,

fami ly = ”binomial ” ,

metr ic=metr ic , t rCont ro l=t ra inCont ro l )

y pred <− p r ed i c t ( f i t . glm , newdata = X tes t )

g lm metr i c s [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

#−−−−−−−−−Linear Discr iminant Ana lys i s

f i t .LDA <− t r a i n (y = y t ra in , x=X train , method=”lda ” ,

metr ic=metr ic , t rCont ro l=t ra inCont ro l )

y pred <− p r ed i c t ( f i t .LDA, newdata=X tes t )

l d a me t r i c s [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

#−−−−−−−Quadratic Discr iminant Ana lys i s

f i t .QDA <− t r a i n (y = y t ra in , x=X train , method=”qda ” ,

metr ic=metr ic , t rCont ro l=t ra inCont ro l )
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y pred <− p r ed i c t ( f i t .QDA, newdata=X tes t )

qda metr i c s [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

#−−−−−−−−SVM Linear

svm Linear <− suppressWarnings ( t r a i n (y=y t ra in , X train ,

method = ”svmLinear ” , t rCont ro l=tra inContro l ,

preProces s = c (” cent e r ” , ” s c a l e ” ) ) )

y pred <− p r ed i c t ( svm Linear , newdata = X tes t )

svm metr ics [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

Train <− cbind ( as . numeric ( y t r a i n )−1 , X tra in )

colnames ( Train ) [ 1 ] <− ”y”

Test <− cbind ( as . numeric ( y t e s t )−1 , X tes t )

colnames ( Test ) [ 1 ] <− ”y”

#−−−−−−−−−−Modif ied KNN

y pred <− knn sc ( Train , Test , y= ”y” , k = 30 , i s . robust=FALSE)

y pred <− f a c t o r ( y pred )

mod knn metrics [ i , ] <− g e t me t r i c s ( y t e s t , y pred )

#−−−−−−−−−Robust Modif ied KNN

try ({ y pred <− knn sc ( Train , Test , y= ”y” , k = 30 , i s . robust=TRUE)

y pred <− f a c t o r ( y pred )
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mod knn rob metr ics [ i , ] <− g e t me t r i c s ( y t e s t , y pred )} , s i l e n t = TRUE)

}

knn metr ics <− colMeans ( knn metr ics )

nb metr i c s <− colMeans ( nb metr i c s )

RF metrics <− colMeans ( RF metrics )

g lm metr i c s <− colMeans ( g lm metr i c s )

svm metr ics <− colMeans ( svm metr ics )

l d a me t r i c s <− colMeans ( l d a me t r i c s )

qda metr i c s <− colMeans ( qda metr i c s )

mod knn metrics <− colMeans ( mod knn metrics )

mod knn rob metr ics <− colMeans ( mod knn rob metr ics )

method <− c (”KNN” , ”Naive Bayes ” , ”Random Forest ” , ” Lo g i s t i c ” ,

”SVM Linear ” , ”LDA” , ”QDA” , ”Modif ied KNN” ,

”Robust Modif ied KNN ”)

metr i c s <− rbind ( knn metr ics , nb metr ics , RF metrics , g lm metr ics ,

svm metrics , l da met r i c s , qda metr ics ,

mod knn metrics , mod knn rob metr ics )

colnames ( met r i c s ) <− c (” f1 s co r e ” , ”AUC” , ”Accuracy ”)

rownames ( met r i c s ) <− NULL

metr i c s <− data . frame (method , met r i c s )

r e turn ( metr i c s )
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}

#−−−−−−−−−−d i sp l ay i ng r e s u l t s

s e t . seed (12222)

#==== k=2, p e r c e n t o u t l i e r =0, n=100

beta <− rnorm (3)

r e s u l t s 2 0 1 0 0 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 , beta0 = beta ,

i t e r = 100 ) ; r e s u l t s 2 0 1 0 0

#==== k=2, p e r c e n t o u t l i e r =0.05 , n=100

r e s u l t s 2 0 .05 100 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 .05 , beta0 = beta ,

i t e r = 100 ) ; r e s u l t s 2 0 .05 100

#==== k=2, p e r c e n t o u t l i e r =0.1 , n=100

r e s u l t s 2 0 . 1 100 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 .1 , beta0 = beta ,

i t e r = 100 ) ; r e s u l t s 2 0 . 1 100

#==== k=2, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 2 0 2 0 0 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 , beta0 = beta ,

i t e r = 100 ) ; r e s u l t s 2 0 2 0 0

#==== k=2, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 2 0 .05 200 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 .05 , beta0 = beta ,

i t e r = 100 ) ; r e s u l t s 2 0 .05 200

#==== k=2, p e r c e n t o u t l i e r =0, n=200

51



r e s u l t s 2 0 . 1 200 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 .1 , beta0 = beta ,

i t e r = 100 ) ; r e s u l t s 2 0 . 1 200

#==== k=5, p e r c e n t o u t l i e r =0, n=100

beta <− rnorm (6)

r e s u l t s 5 0 1 0 0 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 , beta0 = beta ,

i t e r = 100)

#==== k=5, p e r c e n t o u t l i e r =0.05 , n=100

r e s u l t s 5 0 .05 100 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 .05 , beta0 = beta ,

i t e r = 100)

#==== k=5, p e r c e n t o u t l i e r =0.1 , n=100

r e s u l t s 5 0 . 1 100 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 .1 , beta0 = beta ,

i t e r = 100)

#==== k=5, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 5 0 2 0 0 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 , beta0 = beta ,

i t e r = 100)

#==== k=5, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 5 0 .05 200 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 .05 , beta0 = beta ,

i t e r = 100)

#==== k=5, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 5 0 . 1 200 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 .1 , beta0 = beta ,

i t e r = 100)
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#==== k=10, p e r c e n t o u t l i e r =0, n=100

beta <− rnorm (11)

r e s u l t s 1 0 0 1 0 0 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 , beta0 = beta ,

i t e r = 100)

#==== k=10, p e r c e n t o u t l i e r =0.05 , n=100

r e s u l t s 1 0 0 .05 100 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 .05 , beta0 = beta ,

i t e r = 100)

#==== k=10, p e r c e n t o u t l i e r =0.1 , n=100

r e s u l t s 1 0 0 . 1 100 <− my sim (n=100 , p e r c e n t o u t l i e r = 0 .1 , beta0 = beta ,

i t e r = 100)

#==== k=10, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 1 0 0 2 0 0 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 , beta0 = beta ,

i t e r = 100)

#==== k=10, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 1 0 0 .05 200 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 .05 , beta0 = beta ,

i t e r = 100)

#==== k=10, p e r c e n t o u t l i e r =0, n=200

r e s u l t s 1 0 0 . 1 200 <− my sim (n=200 , p e r c e n t o u t l i e r = 0 .1 , beta0 = beta ,

i t e r = 100)
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