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Abstract

Cyberspace, with its multiple forms of device integration, is rapidly evolving and intro-

ducing loopholes within the cyber infrastructure, which creates opportunities for attackers.

Despite the presence of network security devices such as firewalls, anti-virus, intrusion de-

tection, and prevention systems, network intrusions still occur due to vulnerabilities within

organizational assets or socially engineered cyber attacks. The lack of information about

threats, vulnerabilities, and threat actors often leaves cyber defenders on a wild goose chase,

making it critical to evaluate network security to mitigate adversarial threats periodically.

Various risk assessment frameworks, third-party tools, and online databases containing

comprehensive threat information have been proposed in the past. However, obtaining

infrastructure-specific information using these resources is challenging and laborious for a

cyber defender. This dissertation focuses on equipping cyber defenders with the necessary,

relevant, and infrastructure-specific information to better evaluate their cyber-risk posture

and offer potential mitigation approaches to secure organizational security. We present

Cyber-threats and Vulnerability Information Analyzer (CyVIA), a dynamic and scalable

framework for conducting continuous risk assessments of any given cyber infrastructure.

CyVIA leverages concrete ways of analyzing anomalies and is designed to: 1) model the

organizational security posture to evaluate security controls in place, 2) effectively com-

bine vulnerability information from multi-formatted open-sourced vulnerability databases

(VDBs) into a unified knowledge-base that is used to derive specific information, 3) map

adversarial and control policies, services dependencies, applications, and vulnerabilities

from the network nodes, 4) classify network nodes based on severities, and 5) provide

consequences, mitigation, and relationship information of the found vulnerabilities.

CyVIA has been empirically evaluated on a simulated network environment containing

various flavors of Microsoft Windows and Linux operating systems and compare the results

with other state-of-the-art tools. The evaluation demonstrates the effectiveness of CyVIA

v



in providing relevant and infrastructure-specific information for evaluating and securing

organizational security. CyVIA exhibits promising potential to assist cyber defenders in

proactively identifying and mitigating vulnerabilities, thereby improving network security

posture and reducing the risk of adversarial threats. This research’s findings contribute

to the cybersecurity field by addressing the challenges of obtaining infrastructure-specific

information for effective risk assessment and mitigation.
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Chapter 1

Introduction

Exponential rise to cyber adoption has led significant expansion to threat landscape, thus

impacting everything, including the public health sector, economics, electric grids, the

Internet of Things (IoT), and many other sectors, including national security. The main

reason organizations struggle to protect themselves is due to a lack of understanding about

the importance and role of cybersecurity [2]. As reported by PwC [3], many organizations

are actively seeking solutions to address cybersecurity issues.

Furthermore, with the transformation of cyber infrastructures into increasingly com-

plex and competitive Cyber-Physical Systems (CPS), there are numerous uncertainties

and challenges in modeling and analyzing cybersecurity, which prevent achieving 100%

security [4, 5]. The number of reported vulnerabilities has also significantly increased in

the past five years, as reported by the National Vulnerability Database (NVD) [Figure.

1.1], which further highlights the vulnerabilities within organizational infrastructures. The

prevalence of IoT applications within CPS environments introduces additional uncertain-

ties, as unanticipated or unmanaged risks create a highly competitive landscape for cyber

defenders. Compromised security in such cases not only results in financial losses but also

poses risks to human safety, particularly in the medical and healthcare sectors.

The structure of CPS (Cyber-Physical Systems) environments consists of two distinct

parts: the cyber part and the physical part. However, most of the existing research in the

field of CPS security has primarily focused on the cyber assessment aspects, neglecting the

physical aspects. A typical CPS is comprised of various hardware and software compo-

nents, including commercial and proprietary products, as well as embedded systems. This

diversity in components introduces not only security concerns but also privacy concerns.
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Despite the heterogeneity of CPS components, there is a lack of comprehensive review of

CPS security literature, particularly in reference to [5]. Hence, there is a need for a system-

atic framework that can capture the essential aspects of any CPS. In the following sections

of this chapter, we will discuss the critical aspects of CPS risk assessment, the motivation

behind our research, the research objectives, the significance of our research, and provide

an overview of this dissertation document.

Figure 1.1: Vulnerability Severity Distribution Over Time [1]

1.1 Risk Assessment for Cyber-Physical Systems

The present-day threats posed by cyber attacks are of a grave nature and have a significant

impact on various aspects of our surroundings. The continuously increasing number of

evolving threats and reported vulnerabilities in recent years has become a severe concern,

as malicious entities exploit every possible loophole to infiltrate organizational security.

Keeping up with the rapidly changing threat landscape has become an onerous task for

cyber defenders in such a scenario. Typically, organizational security is assessed through a

combination of manual and semi-automated approaches or tools, with analyses generated

periodically based on need. However, threat actors are constantly active and engaged

2



in adversarial activities. Therefore, it is crucial to monitor and track these activities in

real-time to effectively prevent successful cyber attacks.

1.1.1 Real-Time Risk Assessment

Real-time risk assessment for CPS is a vital process to continuously identify how vulnerable

the infrastructure is at any given point in time. Adversarial entities utilize vulnerabilities

within the systems to gain unauthorized access and obtain sensitive information. The

number of vulnerabilities reported to NIST’s NVD has drastically increased starting from

the year 2017 [6]. Various organizations like Cybersecurity Coalition [7], NCSC [8], GFCE

[9], ENISA [10], Software Engineering Institute at Carnegie Mellon University [11] are

working on emphasizing the importance Vulnerability management. Cyber attacks are

either socially motivated for pleasure or politically motivated with specific goals. According

to cybersecurity reports by Cisco, approximately one out of every three small and midsize

businesses has experienced a cyber attack [12]. Furthermore, more than half of all cyber

attacks result in financial damages totaling around $500,000 in US dollars. This highlights

the significant financial impact that cyber attacks can have on businesses, emphasizing the

importance of robust cybersecurity measures. The main reason many organizations fail to

protect themselves is the lack of understanding of the importance and role of cybersecurity

[4].

Ensuring cybersecurity has become a major challenge that requires ongoing efforts for a

cyber defender, especially in the case of a large scale densely-connected environment such

as a CPS mainly due to the complex and heterogeneous structure [5, 13, 14]. Periodic risk

assessment plays an increasingly important role in securing any CPS and supports a cyber

defender to identify critical areas of the infrastructure. Risk Assessment is also enforced

by regulatory standards such as the FISMA [15], HIPAA [16], ISO 27001 [17], etc. In-

creasing cyber threats urge organizations to continuously emphasize information security.

Commonly used risk assessment frameworks such as FRAP, OCTAVE, NIST’s guide [18],

ISO/IEC 27005, etc. define structured approaches and guidelines for risk assessment. How-
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ever, these standards lack a metrics framework with attention to calculating risk. Other

qualitative risk assessment techniques followed by organizations include What-if analysis,

Checklists, HAZOP, Fault tree analysis (FTA), etc. However, the main challenge with any

qualitative approach is that it is subjective and carried out by individuals based on their

perceptions of the risk likelihood and consequences. Moreover, these approaches do not

allow for the determination of probabilities and results using numerical measures.

As a result, a quantitative risk assessment model is required that not only is capable of

providing asset-specific but also the overall risks for a particular CPS but also takes into

account risk propagation among dependent nodes. On the other hand, vulnerabilities may

also exist within highly secured facilities, offering adversarial entities the opportunity to

infiltrate organizational security. Vulnerability assessment must also be included as part of

a continuous risk assessment process.

1.1.2 Continuous Vulnerability Assessment

From our home networks to large-scale cyber-physical systems, vulnerabilities from soft-

ware, hardware, and firmware are unavoidable. Traditional defenses, such as Firewalls,

Antivirus, Internet Security suites, etc., may not offer complete protection against ad-

vanced cyber attacks including zero-days. Preventing adversarial access requires identify-

ing attacker techniques, tactics, and procedures, employing security policies and controls to

prevent such exploitation, and most importantly, patching security vulnerabilities on time.

However, achieving effective cyber defense in large-scale computing environments could be

challenging without a continuous risk monitoring approach that leverages up-to-date vul-

nerability information. Many vulnerability databases (VDBs) such as NIST’s NVD [19],

Symantec DeepSight, OSVDB, MITRE [20], etc. provide detailed information related to

discovered vulnerabilities and their target products. However, obtaining, translating, and

utilizing this information can be a very arduous task due to different data formats and

consistency, scoring systems being used, and data integrity [21,22]. Furthermore, vulnera-

bilities and cyber attacks vary from organization to organization, depending on the devices,
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applications, security controls, and operating systems being used.

The number of reported vulnerabilities is increasing at an alarming rate [6] and it is

quite challenging for cyber defenders to keep up with the emerging threats. To perform ef-

fective risk assessment, the availability of accurate and contextual cyber-threat information

is vital. Although several vulnerability scanning tools [23–26] are available, these do not

offer detailed insights into the overall risk of the computing infrastructure and mitigation

approaches are primarily expert driven. Most tools are proprietary and business-driven

where the implementation details are generally abstracted without any customization flex-

ibility. Researchers developing vulnerability/risk assessment frameworks make use of the

publicly available VDBs to fuel the assessment process [27,28], and track the latest trends

in cybersecurity vulnerabilities. Given the high need for continuous risk monitoring, it is

vital to not only maintain consistency, quality, and integrity of the underlying vulnerability

information set but also derive contextual information from the VDBs relevant to the com-

puting infrastructure. Many studies [28–35] have identified various inconsistencies such as

incompleteness, quality, and reliability of data. These inconsistencies exist mainly due to

human error in various descriptive features of vulnerabilities which leads to incomplete or

outdated information [21,22]. Relying on and processing such inconsistent data can result

in inaccurate results. The aforementioned studies solely address inconsistencies and do not

include VDB integration or context-specific analysis in real-time.

Therefore, a data-driven framework that is capable of identifying infrastructure-specific

vulnerabilities and obtaining vulnerability-specific information from various VDBs that can

be used with the risk assessment framework is essentially needed. The knowledge driven

from this framework can be further expanded to a Cyber Threat Intelligence (CTI) system

that can be used not only within one organizational unit but across multiple units and

multiple organizations.
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1.1.3 Cyber Threat Intelligence

Awareness of a cyber defender plays a significant role in finding the potential attack paths

an intruder might choose to invade organizational security. Securing digital assets depends

on what kind of security controls are in place, and the degree of protection offered by

such controls. However, inside these controls or other organizational assets, the presence of

vulnerabilities or weaknesses can allow a threat actor to infiltrate highly protected facilities.

A defender must not only rely on and retain information relevant to security controls but

would also maintain an updated vulnerability information system in order to get a clear

overall picture of the organizational security posture at regular intervals. According to

National Vulnerability Database (NVD), the number of reported vulnerabilities is increasing

at an alarming rate. In the year 2020 alone, not only the highest number of vulnerabilities

(18,352) were reported to date [6], but also 57% of the reported vulnerabilities were classified

as critical or high severity [36].

To perform vulnerability assessment, cyber defenders can either manually obtain and

process information about the discovered computer security vulnerabilities from the pub-

licly available vulnerability databases (VDBs) [27,28,37] such as NVD, Common Vulnera-

bilities And Exposures (CVE), Open Source Vulnerability Database (OSVDB), etc. or use

vulnerability scanning tools [23–25]. Both options have their trade-offs [23]. In the case of

VDBs, one can run into issues like data formats, data consistency and integrity, scoring sys-

tems, and metrics being used [21, 22]. The third-party vulnerability scanning tools on the

other hand in most cases use the Common Vulnerability Scoring System (CVSS) [38] as a

standard, however, they are still not widely adopted due to varied coverage, customization

inflexibility, and the abstracted implementation details [23].

Ensuring cybersecurity is a major challenge that requires ongoing efforts for a cyber

defender, especially in the case of a large scale densely-connected environment such as

a CPS, mainly due to the complex and heterogeneous structure [5, 13, 14]. Periodic risk

assessment supports a cyber defender in quantifying risks and identifying critical areas of

the infrastructure. Relevant and timely received information about potential risks, threats,
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and vulnerabilities aid the risk assessment process to derive more accurate and effective

risk analysis on one hand, and an opportunity for a cyber defender to defend against

these threats on the other. However, existing literature on cyber risk assessment often

lacks consideration of vulnerabilities, or proposed frameworks are purely theoretical with

limited implementation details. Additionally, contextual information related to the cyber

infrastructure may be missing in current approaches. This highlights a gap in the current

state-of-the-art, where a more holistic approach that incorporates vulnerabilities, practical

implementation details, and contextual information is needed to accurately assess cyber

risks. This lack of standardized contextual information creates blind spots in the defender’s

analysis of systems. Furthermore, highly secured organizational infrastructure can also get

compromised by socially engineered cyber-attacks [39].

A threat intelligence system specifically tailored for large-scale environments that covers

security for both, cyber and physical aspects of a CPS to provide contextual analyses

and continuous risk assessment is required. For the cyber aspect, risks related to found

vulnerabilities, whereas, the physical aspect should focus on risks related to the employed

security controls, policies, network/service dependencies among network nodes, adversarial

actors, and their capabilities. Furthermore, this system can be combined with an AI-Based

model to make scenario-based predictions from the gathered knowledge and historical data.

1.1.4 Accelerating Cyber Risk Assessment with AI

Artificial intelligence (AI) in recent years has rapidly progressed in main domains such as

robotics, personal assistants, smart homes, self-driving cars, etc. AI-Based systems can

significantly reduce the amount of work for cyber defenders in case of conducting various

analyses and predictions. AI on one hand is playing a major role in cybersecurity and is

capable of making the most intelligent decisions a human would take [40]. Threat actors are

constantly improving and updating their attack strategies using AI-Based cyber-attacks on

the other hand [41], leaving no choice for cyber defenders but to develop intelligent systems

that can utilize AI-Based solutions to anticipate risks in advance. Various AI techniques
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such as data mining, natural language processing, machine learning, etc. can be used for

solving cybersecurity issues like data/traffic analysis, risk predictions, behavioral patterns,

and many more [42]. As the device heterogeneity in our networks is growing, the number

of threats, types of cyber-attacks, and data produced by these devices are also growing,

introducing various loopholes in the organizational infrastructures, constantly challenging

cyber defenders [43]. With the exponential increase in the amount of data produced by

several devices, it is essential to have an AI-Based intelligent system for monitoring and

analysis of data. Commonly used AI applications in cybersecurity include spam filtering,

fraud detection, botnet detection, hacking incidents, network intrusion detection, and many

more [42].

Cybersecurity has become a major challenge in present times as our networks are not

only limited to computers and networking devices but every other device is interconnected

and requires internet connectivity. As a result of the rising interconnection and autonomy,

there has been an increase in the number of cyber-attacks [41]. Conventional intrusion

detection and prevention systems are not useful against zero-day attacks as the signa-

tures/behaviors are not defined in the database [44]. AI-Based intelligent solutions on the

other hand are gaining popularity in the cybersecurity domain and are very useful in such

cases. Furthermore, 56% of cyber analysts are overwhelmed by the huge amount of data

points they must monitor to detect and prevent intrusions, and 74% said that AI enables

a faster response time [45]. AI can improve organizational security for cyber defenders

in many ways such as monitoring incidents or intrusion detection, reducing the labori-

ous human monitoring tasks [40]. Moreover, AI-Based techniques using machine learning

algorithms are very helpful in bringing down the security breaches [42].

As a result, the present state-of-the-art requires a threat intelligence system that is

not only capable of understanding threats and vulnerabilities for CPS but also capable of

inferencing various threats using AI-based techniques to mitigate the found threats.
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1.2 Motivation

The evaluation of cyber risk poses a significant challenge due to the heterogeneity and

complexities of modern cyber infrastructures. The rapid growth of software and hardware

components has made it difficult for cyber defenders to keep up with the latest cybersecurity

trends. Furthermore, the ever-evolving nature of cyber threats and increasing sophistica-

tion of cyber attacks further complicates the accurate assessment of cyber risk. Existing

risk evaluation frameworks and tools often lack practical industrial use cases and do not

adequately incorporate vulnerability assessment as a critical component of risk assessment.

Moreover, many of these frameworks are either purely theoretical or not publicly available,

limiting their effectiveness in real-world cyber defense scenarios.

The use of AI in cyber risk evaluation is also limited to specific scenarios, despite its

potential to significantly accelerate the risk analysis process. The lack of comprehensive and

accessible AI-powered tools for cyber risk evaluation further adds to the challenges faced

by cyber defenders. To address these limitations, there is a need for a framework that not

only includes vulnerability assessment as a critical component of risk evaluation but also

harnesses the power of AI to enhance the accuracy and efficiency of the risk assessment

process. Such a framework would bridge the gap between the current state-of-the-art and

the practical needs of cyber defenders, enabling them to not only evaluate cyber risk but

also effectively mitigate it.

The main motivation of this research work is to fill the existing gaps in current cyber

risk evaluation frameworks and propose a comprehensive framework that addresses the

challenges faced by cyber defenders. The proposed framework aims to incorporate vulnera-

bility assessment as an essential component of risk evaluation and leverage AI techniques to

enhance the speed and accuracy of risk analysis. By including practical industrial use cases

and making the framework publicly available, it aims to provide a practical and accessible

tool for cyber defenders to evaluate and mitigate cyber risk in real-world scenarios. The

proposed framework has the potential to significantly advance the field of cyber risk eval-
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uation and contribute to improved cybersecurity practices in the face of the ever-evolving

cyber threat landscape.

1.3 Research Objectives and Questions

This research aims to provide cyber defenders with the knowledge and information they

need to protect their cyber infrastructures. As the modern cyber infrastructures com-

prise a diverse set of connecting devices as compared to a traditional computer network,

it is quite challenging to gather device-specific information for every connecting device.

This is mainly due to the kind of operating/embedded systems running on each device.

Obtaining the infrastructure-specific information such as the employed security controls,

organizational assets and their applications, network and service-based dependencies, run-

ning processes, and so on is essentially needed as the first step to assess risk for any given

cyber infrastructure. These information pieces further allow the determination of various

organizational loopholes and related mitigation techniques. Similarly, we use the obtained

information to find the hidden patterns using various machine learning models, and use

these models to predict potential cyber attacks within the organization in real-time. To

summarize all of the above, we focus on the following objectives:

(A) Quantify the cyber asset’s risk and security achieved through different controls.

Cyber defenders typically implement a range of software and hardware-based security

controls to safeguard organizational infrastructures from intrusions. In a typical

scenario, these defenders adjust the controls based on recommended security settings

provided by vendors or security experts. However, the effectiveness of these controls in

providing actual security is rarely evaluated. Therefore, the objective of this research

is to address the following research questions in order to fill this gap and improve the

understanding of cyber defense effectiveness:

Q1) How organizations can evaluate organizational security and quantify the security
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risks related to organizational assets?

Q2) When adversaries are aware of the implemented security controls, how does this

affect the overall security posture of the organizational cyber infrastructure?

Q3) How can we model the propagation of risks associated with controls and nodes

to other nodes? Under this propagation scenario, how does it affect the overall risk

of the infrastructure?

(B) Design and develop a scalable cyber-risk assessment and evaluation framework.

In a traditional industrial setup, cyber defenders employ a variety of tools, frame-

works, manual, and automated approaches to detect anomalies within their organiza-

tional infrastructures that may impact the security of the organization. Additionally,

they rely on various online information sources to gather information about the conse-

quences of these threats and potential mitigation strategies. In light of this objective,

this research aims to address the following research questions:

Q1) Given the node/service heterogeneity in standard infrastructures, how to track

the dynamic system components including, but not limited to applications, processes,

memory utilization, and port usage to effectively assess present security posture.

Q1a) How organizations can integrate information collected from external sources to

accurately estimate the security risks in a continuous and real-time fashion.

Q2) How can we evaluate cyber risk considering adversarial capabilities, vulnerabili-

ties, network dependencies, administrative policies, and provide mitigation techniques

to produce cyber threat intelligence?

(C) Enabling accurate detection of risk anomalies from the operating environment and

dynamically devising risk mitigation plans.

Artificial Intelligence (AI) has emerged as a crucial component in strategic decision-

making, enabling organizations to make informed judgments with improved speed and

accuracy. In the domain of risk assessment, the current state-of-the-art approaches
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are often limited to risk-specific, vulnerability-specific, or threat intelligence-focused

methodologies. However, there is a pressing need for AI-powered threat intelligence

systems that can provide real-time risk assessment and mitigation capabilities. There-

fore, the objective of this research is to address the following research questions in

order to advance the field of AI-powered threat intelligence:

Q1) Identify and classify the risks associated with the cyber infrastructure into mul-

tiple uniform groups by leveraging the unstructured and unlabeled threat data.

Q2) Design a mitigation recommendation subsystem to assist in resolving anomaly

alerts in real-time.

The primary objective of this research is to investigate and evaluate state-of-the-art

frameworks, open-sourced and proprietary tools, and suggested techniques in the field of AI-

powered threat intelligence for risk assessment and mitigation. By conducting a thorough

examination of existing ideas, we aim to identify gaps in this domain and propose an

innovative real-time risk assessment framework.

The research questions formulated for this study will shed light on the current state-of-

the-art frameworks, open-sourced and proprietary tools, and suggested techniques related

to AI-powered threat intelligence for risk assessment and mitigation. Through rigorous

investigation and evaluation of these ideas, we will ascertain the limitations and shortcom-

ings of existing approaches and propose a novel framework that addresses these gaps and

offers real-time capabilities.

The ultimate goal of this research is to contribute to the advancement of AI-powered

threat intelligence for risk assessment and mitigation by proposing a cutting-edge frame-

work. This framework is expected to overcome the limitations of existing approaches and

enable real-time risk assessment and mitigation, providing valuable insights and guidance

to organizations and practitioners in the field of cybersecurity. The findings of this re-

search have the potential to improve the effectiveness and efficiency of risk assessment and

mitigation strategies in the dynamic landscape of cyber threats.
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1.4 Contributions

This research introduces the Cyber-threats and Vulnerability Information Analyzer (CyVIA)

framework, which is designed and implemented to enable continuous and comprehensive

risk analysis of the target environment. CyVIA provides several key functionalities for

effective risk assessment and mitigation:

1) Asset and infrastructure-wise risk assessment: CyVIA considers applied security

controls, administrative policies, and adversarial capabilities to assess the risk associated

with each asset and infrastructure in the target environment.

2) Asset and infrastructure-wise vulnerability assessment: CyVIA leverages mul-

tiple online sources, vulnerability types, severity, relationships, and computing products to

assess vulnerabilities associated with each asset and infrastructure in the target environ-

ment.

3) Community-wide cyber threat intelligence sharing: CyVIA facilitates the sharing

of cyber threat intelligence across the community, allowing for collaborative defense efforts

and improved situational awareness.

4) Interdependencies between assets: CyVIA considers the interdependencies between

assets, such as network and services, to identify potential risks and vulnerabilities associated

with these interdependencies.

5) Identification of critical nodes on the network: CyVIA employs various factors,

such as risk, vulnerabilities, severity scores, access vectors, and weakness types, to identify

critical nodes on the network that require prioritized attention.

6) Consequences and mitigation information: CyVIA provides information on the

consequences of found threats and suggests mitigation strategies to effectively address them.

The CyVIA framework offers a comprehensive and continuous risk analysis approach

that encompasses various aspects of cyber threats, vulnerabilities, and interdependencies

between assets. It provides valuable insights for cyber defenders to assess, prioritize, and

mitigate risks in their target environment, ultimately enhancing the cybersecurity posture
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of organizations.

1.5 Significance of the Research

The proliferation of new and evolving threats, as well as the increasing number of re-

ported vulnerabilities, has seen a significant surge in recent years. Adversarial entities are

constantly seeking loopholes to exploit organizational security, making it imperative for cy-

ber defenders to stay vigilant. However, traditional approaches to organizational security

assessment, which rely on manual and semi-automated methods, are typically generated

periodically based on need, posing challenges in keeping up with the ever-changing threat

landscape. Real-time monitoring of adversarial activities is crucial to prevent successful

attacks. Therefore, this research underscores the importance of continuous risk and vul-

nerability assessment, cyber threat intelligence (CTI), and an AI-based prediction engine

in the field of cybersecurity.

Need of Continuous Risk and Vulnerability Assessment: Continuous risk and vul-

nerability assessment are imperative in the realm of cybersecurity, as existing frameworks

often remain theoretical, lacking in implementation details, and ill-suited for industrial

scenarios. Moreover, these frameworks typically do not offer real-time protection and fail

to integrate risk and vulnerability assessments into a unified approach. To address these

limitations, this research proposes a novel framework called Cyber-threats and Vulnerabil-

ity Information Analyzer (CyVIA). CyVIA is designed to integrate risk and vulnerability

assessment into a single framework, providing continuous cyber risk assessment that cap-

tures all changes occurring within the network. By consolidating risk and vulnerability

assessments and enabling real-time monitoring, CyVIA aims to overcome the limitations

of existing frameworks and enhance the accuracy and effectiveness of cyber risk evaluation

in practical, real-world scenarios.
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Need of Cyber Threat Intelligence: CTI plays a pivotal role in educating cyber defend-

ers about adversarial tactics, techniques, motives, targets, and attack behaviors. Existing

CTI frameworks typically revolve around public or private knowledge bases and provide

threat-specific data in its entirety. However, in order to gain more contextual information

about specific threats, cyber defenders often need to manually search for related informa-

tion, which can be laborious and time-consuming. In contrast, the proposed Cyber-threats

and Vulnerability Information Analyzer (CyVIA) framework aims to streamline this process

by automatically gathering operating environment-specific information and threat-specific

data from multiple online databases. This allows CyVIA to provide relevant CTI, including

information on applicable threats, their relationships with other threats, and associated con-

sequences and mitigation techniques. By leveraging multiple data sources and automating

the collection of threat-related information, CyVIA aims to enhance the comprehensiveness

and efficiency of CTI, providing cyber defenders with a more comprehensive and contextual

understanding of threats for effective risk assessment and mitigation.

Need of AI-Based Prediction Engine: AI-based solutions have been widely used in

the field of cybersecurity, but they can have both positive and negative implications, as

they can be leveraged by both attackers and defenders. Additionally, AI-based learning

algorithms may exhibit erratic behavior when confronted with adversarial examples in

datasets. Despite these challenges, the utilization of AI approaches is crucial for defenders

to proactively anticipate risks based on threats, user behavior, network intrusions, and other

factors. Therefore, the proposed Cyber-threats and Vulnerability Information Analyzer

(CyVIA) framework seeks to combine CTI capabilities with an AI-based learning model to

effectively anticipate future risks and enhance overall cybersecurity posture.

In summary, this research identifies the limitations of current state-of-the-art approaches

in cybersecurity, which include the lack of continuous risk assessment, the need for con-

textual CTI, and the utilization of AI-based prediction engines. The CyVIA framework

proposed in this study addresses these limitations by integrating risk and vulnerability
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assessments, providing relevant CTI from multiple online databases, and incorporating an

AI-based learning model. Furthermore, CyVIA takes into account risk propagation among

dependent nodes at different layers, making it a comprehensive and effective framework for

cyber risk management.

1.6 Dissertation Overview

The remaining sections of this dissertation are organized as follows: Chapter 2 provides

an extensive discussion of related works in the fields of risk and vulnerability assessment,

cyber threat intelligence, and AI-based solutions for cybersecurity, as well as their limita-

tions. Chapter 3 presents the foundational quantitative risk model used in the presented

framework. Chapter 4 outlines the initial work on vulnerability assessment. Chapter 5

integrates risk and vulnerability assessment in the CyVIA 2.0 framework. In Chapter 6,

the AI-based prediction engine is presented, which allows for speedy analysis by predict-

ing specific attack types from identified loopholes in the cyber infrastructure. Chapter 7

highlights the AI-based inference engine, which proposes mitigation strategies for identified

risks. Finally, Chapter 8 concludes the dissertation by discussing the contributions of this

research and potential future directions for further study.
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Chapter 2

Related Work

Cyberspace has been expanding drastically integrating new generation hardware, software,

and other devices. The scope of adversary risks expands exponentially as the depth and

variety of this integration rises. Attackers can use sophisticated tools and strategies to

continually investigate these systems for crippling flaws. Cyber defenders on the other

hand are constantly challenged to find and patch these flaws. However, having limited

resources and information, cyber defenders generally fail to identify intrusions in real-time.

In this Chapter, we discuss the current state-of-the-art methodologies suggested by various

studies to keep the organizational infrastructure safe. We investigate different options to

address the research questions as described in Chapter 1, Section 1.3.

2.1 Cyber Risk Assessment

Cybersecurity is very broad and detecting malicious activities on the network is quite chal-

lenging [4]. Typically the cyber defenders have limited resources and awareness which makes

it more difficult to analyze and model cybersecurity. The prevalent IoT applications, on

the other hand, introduce numerous uncertainties in the CPS; unanticipated or unmanaged

risks yield a highly competitive infrastructure for a cyber defender. Compromised security

can cause not only financial loss but also endangers humans in the case of the medical

and healthcare sectors. The adversarial entities either exploit the system vulnerabilities or

use socially engineered attacks [46]. Detecting, reporting, and fixing vulnerabilities can be

very tedious and a prolonged process. Preventing or reducing the impact of cyber-attacks

largely depends on the quality of defense mechanisms for any cyber-terrain, and how well
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the dependencies are modeled.

Reference [47] propose a framework that heavily relies on historical attack data and

CVSS scores, and is limited to abstract analysis of situational awareness. Authors in

[48] propose a CVSS v3 based risk assessment methodology that is limited to traditional

computer networks. As in [49] propose a quantitative model where ”Risk = Threat (T) x

Vulnerability (V) x Consequence (C)”. The model heavily relies on SME interaction and

historical data to determine results. Reference [50] published their ongoing research model

that maps the top-level business processes with the digital assets utilizing [51] to make

better decisions. Working on similar lines, researchers from MITRE corporation, introduce

crown jewel analysis (CJA) [52], the model is further updated to as Cyber Mission Impact

Business Process Modeling tool (CMIA) [53], where the key accomplishment is representing

the cyber dependencies between assets. Furthermore, in [4], the authors present a complete

product that quantitatively identifies cybersecurity risks and provides suggestions on how to

implement optimal security against the identified risks. Reference [54] presents a modeling

and visualization tool, Cauldron, that maps the entire network, and the potential cyber

threats with scenarios to improve overall security posture. The CMIA model and other

models suggested by the MITRE corporation are only available to government agencies

with more theoretical and no implementation details. The cauldron framework is also a

part of military-funded research more focused on the implementation side, and missing

granular work.

Authors in [55] present an information-sharing model, information sharing is first pro-

posed by [56], and later by [57–59]. The main challenge with cybersecurity information

sharing is that none of the organizations share attack information with others due to repu-

tational damage. Similarly, other studies [60–63] suggest various quantitative approaches,

whereas the industry typically follows a qualitative approach for risk assessment. Cyber

insurance is also proposed as a potential and promising solution for risk elimination [64],

and security spending optimization. However, risk interdependency introduces investment

inefficiency and cyber insurance is ineffective in this case.
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Understanding the challenges of CPS and performing the risk assessment is quite chal-

lenging and requires continuous efforts. The aforementioned quantitative models are rel-

atively new and are not implemented in the industry directly as a case study. A publicly

available model implemented on an industrial scenario such as IoT, transportation, manu-

facturing, supply chain, etc. can provide a clearer idea of the current state of the art, and

what needs to be done to improve these models. Our goal is to develop a versatile industrial

model that can be customized for implementation in any industrial environment, offering

a transparent overview of the associated risks for the given CPS (Cyber-Physical System).

This comprehensive model will encompass the evaluation of cyber risks from various di-

mensions, including but not limited to network nodes, security controls, and administrative

policies. The outcomes of this model will specifically address the research questions Q1-

Q3, as outlined in objective A in Chapter 1, Section 1.3. By fulfilling these objectives, we

aim to provide valuable insights and actionable information to enable effective risk man-

agement and decision-making in industrial settings, contributing to the advancement of

cybersecurity practices in the industrial domain.

2.2 Vulnerability Assessment

Several open VDBs including NVD, MITRE, and OSVDB provide information related to

software and hardware security concerns thus enabling an opportunity for defenders to

quickly detect and defend against network threats. Most VDBs use MITRE assigned CVE

IDs and NVD assigned CVSS scores for vulnerabilities; therefore, inconsistencies in the

data provided by NVD or MITRE can be devastating. Authors of [29] find inconsistencies

in the publication dates, vendor and product names, severity scores, and vulnerability types

in NVD data. 40.18% CVEs in the NVD have incorrect software names or versions [30,31].

Authors in [34] compare the NVD’s scoring system with other VDBs and observe poor

and uncertain results in the access complexity and authentication metrics. Authors in [35]

propose an improved scoring system by adding the host environment (services and operating

19



systems) to the base metric group. Authors from MITRE [32], highlight the bias and noise

in the vulnerability data and stress cautious use while performing studies. Several studies

propose various Natural Language Processing and Machine Learning techniques to address

the inconsistencies [21,27,28,31], however, none of them focus on how to use the corrected

vulnerability information to detect vulnerabilities in cyber infrastructures.

Similarly, several authors have compared and evaluated different VDBs. In [33], au-

thors compare seven VDBs and observe that vulnerabilities in each database are listed

under different classifications. This creates complications in conducting risk analysis based

on information gathered from multiple sources. The authors propose CWE as the ideal

classification taxonomy. Reference [65] compares four VDBs and observes 30%-35% miss-

ing CVE IDs in Symantec and Security Focus. Working on similar lines, [66] proposes

combining CVE, NVD, and IBM X-Force in a local relational database, emphasizing on

integrity and accuracy of CVE data. The quality of information maintained by VDBs is

put to the test when researchers rely on this information to predict the trends and patterns

in software vulnerabilities. The errors identified in the VDBs, particularly the NVD, are

highlighted in the aforementioned studies. Therefore, it’s vital to develop a dependable

vulnerability analysis framework that is capable of merging contextual yet error-free data

from multiple sources for accurate risk analysis of any given cyber infrastructure. We aim

to answer Q1 and Q1a specifically under objective B as discussed in Chapter 1, Section

1.3.

2.3 Cyber Threat Intelligence

Traditional computer networks have transformed into Cyber-Physical Systems (CPS) with

an ever-growing number of connected devices and increased numbers of various applications

and services. Internet of things (IoT) and Industrial Internet of Things (IIoT) on the

other hand are also reshaping our traditional networks to highly convoluted infrastructures

introducing several uncertainties. Identification of cyber and physical aspects is extremely
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important to evaluate network security. Authors in [67] propose a novel method that helps

in solving the network structure identification problem by comparing various classical sparse

recovery methods on noisy observed data. Similarly, authors in [68] use a similar approach

to identify the bottlenecks within the given network. On the other hand, securing such

a wide range of integration has become a major challenge in recent times where cyber

defenders either have limited awareness or limited resources [2]. On average, organizations

spend $18.4 million annually on cybersecurity tools [69] where 58% are willing to increase

the budget by an average of 14% for the following years. However, 53% of information

technology experts are unsure whether the cybersecurity tools are working as expected, and

only 39% admit they are confident in the investment [70]. Global spending on cybersecurity

products and services is expected to exceed $1 trillion in 2021 [71].

Vulnerability scanning tools provide insights into the cyber aspect of any network and

proactive defense against application threats and are still not widely used as compared

with malware or antivirus software. Authors in [23] provide a comparative evaluation of

different tools and provide guidelines to practitioners for selecting the right tool. Authors

in [38] evaluate nine different cybersecurity risk assessment tools. The study shows that

most of these tools use the Common Vulnerability Scoring System (CVSS) as a standard

and can integrate with other commercial technology partners for enhanced vulnerability

management. Similarly, authors in [23–26] propose many other vulnerability scanning tools.

However, the main issue with vulnerability scanning tools is that they do not offer insights

about the overall infrastructural risk, and the implementation details on the other hand

are generally abstracted.

Cybersecurity is an ongoing effort and organizations can not afford to look away in order

to manage their cyber risk effectively. A cybersecurity evaluation tool (CET) is proposed

in [72]. CET consists of 35 self-rate question survey that identifies organizational vulner-

abilities based on a set of standard measures. CET helps in identifying the fundamental

post-breach efforts that can proactively secure sensitive data. Romilla Syed proposes a

cyber intelligence alert (CIA) system that informs common users about vulnerabilities and
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their potential countermeasures [37]. CIA collects vulnerability from Twitter, CVE, NVD,

vendor websites, and uses a machine-learning approach to reason if the alert should be

raised for a vulnerability or not. Evaluating cybersecurity has also become a challenge

with the increased number of cyber threats. Authors in [73] propose a cybersecurity audit

model (CSAM) that implements the cybersecurity awareness training model (CATRAM).

Similar to CET, CSAM also presents an ontology that can be used to evaluate cybersecu-

rity assurance, however, the main challenge with these ontological schemes or tools is that

they are subjective and carried out by individuals based on their perceptions of the risk.

Understanding the potential threats in CPS itself is challenging [74], authors in [5]

present a security framework that studies the four main security concerns of CPS, i.e.

threats, vulnerabilities, attacks, and controls. The proposed framework can be used to

develop effective controls for CPS. The main challenge in CPS security is the increasing

number of IoT devices that leads to a rise in the number of vulnerabilities, and eventually

leading to successful exploitation [75]. Unlike [5], authors in [13] focus on the impact of

cyber attacks on authenticity, confidentiality, reliability, resilience, and integrity. Similar

to [5], the main challenges with CPS are raised in [13] and a tree of potential attacks

on CPS is proposed. The difference between CPS, IoT, and Industry 4.0 is still very ill-

defined, defining layers for each can help security researchers and professionals to develop

more concrete security frameworks. Authors in [14] try to differentiate CPS from IoT and

traditional information technology systems. The authors also present security issues at

various layers of CPS, the affected security parameters, and the associated countermeasures

to address these issues. Authors in [76] propose and implement a risk-informed approach

that identifies critical CPS assets and the impact of affecting vulnerabilities on a smart

grid system and plans to develop a tool to automate the process.

Cyber threat intelligence (CTI) sharing is another risk-informed approach that provides

evidence-based knowledge about cyber threats that may exist within any cyber infrastruc-

ture. Utilizing such knowledge can be very beneficial in aiding the decision-making process

to detect and prevent catastrophic events. However, how and what type of information to
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share still remains unclear since there is no common definition or ontology available for CTI

sharing [77,78]. Most of the current CTI platforms operate manually and the slow sharing

process becomes an obstacle for CTI sharing [79]. On the other hand, certain organizational

risks such as free-riding, trust violation, negative publicity, reputational damage, etc. also

prevent CTI sharing [80, 81]. Authors in [82, 83] stress the need for rules and regulations

for CTI sharing in the existing policies.

Researchers at MITRE took a different approach to CTI. At first, they introduced

Common Attack Pattern Enumeration and Classification (CAPEC) in 2007 that provides

a range of commonly used attack patterns [84]. Later in 2015 MITRE introduced the Ad-

versarial Tactics Techniques & Common Knowledge (ATT&CK) framework [85]. ATT&CK

is a behavioral model that provides specific information on adversary tactics, techniques,

and procedures as observed by the community for known actors. Which can be used for

adversary emulation, red teaming, behavioral analytics development, defensive gap assess-

ment, and cyber threat intelligence. The ATT&CK model consists of a set of techniques

and sub-techniques that an adversary can take to accomplish their objectives which are

represented in the ATT&CK Matrix as shown in [86]. ATT&CK also provides mitigation

techniques for preventing the listed adversary techniques and sub-techniques. ATT&CK is

further extended to focus on industrial control systems with additional use cases [87].

The aforementioned studies either do not satisfy the evolving security needs of CPS,

highlight the security concerns related to CPS, or propose theoretical concepts to address

the same. MITRE ATT&CK on the other hand is a community-based knowledge base

with the focal point on adversary emulation and provides threat-actor-based information. A

proactive cyber threat intelligence system specifically tailored for CPS to provide contextual

information is critically needed. To ensure CPS or any infrastructural security it is vital

to understand and identify the 1) various layers and the integrated devices in each layer

as seen in Figure. 5.2, 2) assets that need protection, 3) controls protecting the assets and

integrated devices, 4) threats, vulnerabilities, and VDBs, and finally, 5) users and other

environmental variables such as running applications, open ports, processes, etc. A context-

23



aware framework that considers all of the above and can be used to mitigate malicious and

harmful threats to answer specific research questions Q2 under objective B as mentioned

in Chapter 1, Section 1.3.

2.4 AI-based Models for Cybersecurity

The accuracy and reliability of cybersecurity data are extremely important to derive the

most useful and accurate decisions or analyses. Many researchers have addressed the

inconsistencies found within the vulnerability data using various machine learning mod-

els [28–35]. AI-based solutions for cybersecurity are gaining popularity in recent years [45],

but it is still relatively new. In a recent survey [88], authors discuss the current state of AI

in cybersecurity, and conclude that AI will continue to grow not only for businesses but also

for personal use. Authors in [89] highlighted potential AI-based solutions in cybersecurity

such as user authentication, network situation awareness, dangerous behavior monitoring,

and abnormal traffic identification. These applications can easily identify potential adver-

sarial activity within the organizational infrastructure. Similarly, authors in [42] discuss

various AI applications, algorithms, and libraries that can be used for implementing such

solutions.

The AI discipline is divided into two categories: rule-based techniques and machine

learning techniques, which allow computers to learn from vast amounts of data. Adversaries

learn how to take advantage of AI-based learning methodologies such as deep learning,

reinforcement learning, and support vector machines to weaponize them by automating

the attack process. Authors in [41] explore various studies on AI-based cyber-attacks and

classify several aspects of the malicious use of AI. The report [90] surveys the changing

threat landscape and warns about potential AI techniques that can be harmful. The

authors propose different ways to better forecast, prevent, and mitigate these threats. In

another study [91], the authors compare different AI approaches in cybersecurity, their used

methods, results, and advantages if any. The study concludes that AI-based approaches
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need continuous updates, human interaction, and training. Furthermore, the authors in [89]

also discuss the shortcomings of AI-based approaches such as interference of confusing

data, maliciously modified model, lack of transparency in the AI decision-making process,

etc., and propose a Human-in-the-loop method that combines AI with human wisdom to

overcome the limitations.

A study conducted by Microsoft indicated that most of the attacks in 2018 lasted less

than an hour [92]. It is quite difficult to prevent such attacks with traditional incident

response. AI in such cases can be a very robust and resilient approach [93] to quickly

prevent and recover from the attack state. On the other hand, by including a small number

of adversarial examples in the datasets, AI-based learning models can be easily fooled from

predicting desired outcomes [94–97]. Access to the datasets and the trained models must

be carefully assigned as well. Therefore, it is critical to have an AI-powered risk assessment

framework that is capable of highlighting anomalies in real-time to reduce the damage and

eventually prevent cyber attacks. We plan to address the research questions Q1 and Q2

under objective C as discussed in Chapter 1, Section 1.3.

2.5 Summary

Cyber infrastructures in the present era exhibit significant diversity and uncertainty, pos-

ing challenges to modern defense mechanisms that are incapable of providing absolute

security. Cyber defenders constantly face formidable adversaries who are proficient in con-

ducting AI-based cyber-attacks utilizing cutting-edge technology. This chapter has high-

lighted several shortcomings in the current state-of-the-art approaches, including the lack

of continuous risk assessment conducted only on demand, the exclusion of security controls

and administrative policies from cyber risk assessment, separate treatment of vulnerabil-

ity assessments despite their intrinsic connection to overall cyber risks, the labor-intensive

and time-consuming nature of CTI information retrieval for threat intelligence, and the

focus of existing AI-based cybersecurity solutions primarily on addressing inconsistencies
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in vulnerability databases.

In light of these limitations, we propose a three-dimensional security framework called

CyVIA, which integrates cyber risk evaluation of network nodes, security controls, and

administrative policies, vulnerability assessments encompassing hardware and software as-

pects of the cyber infrastructure, CTI for contextual analytics, and AI-based anticipation

of future risks. By combining these dimensions, CyVIA aims to provide a comprehensive

and holistic approach to cybersecurity, addressing the interconnected nature of various risk

factors in cyber infrastructures and empowering cyber defenders with enhanced situational

awareness, advanced analytics, and prediction capabilities to proactively mitigate emerging

cyber threats.

In the next Chapter, we present our base risk assessment model which is used for risk

quantification.
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Chapter 3

Quantitative Risk Modeling and

Analysis

Advancements in the Information Technology (IT) industry have enabled the expansion of

the traditional organizational boundaries, integrating various new-generation devices into

existing networks, such as IoT. The evolving IoT innovation has provided amplified connec-

tivity for various business aspects, and helped reap more value for businesses. However, IoT

devices increase the complexity of the operating environment, and securing such a diverse

network becomes quite challenging. Furthermore, a highly interconnected environment

provides opportunities for adversarial entities to gain command and control of the targeted

network. Moreover, evolving network configurations, changing landscape of vulnerabili-

ties, and inter-dependencies between cyber assets forfeits the traditional risk assessment

techniques to protect the digital assets.

This Chapter addresses the research questions Q1-Q3 under the objective A, as discussed

in Chapter 1, Section 1.3. We present our proposed model [98] which provides a cyber

defender with the understanding of potential risks associated with the digital assets and

enables an opportunity to reduce the impact of cyber-attacks. We start by defining the

various components of the model. At first, we describe the organizational assets, followed

by the defensive mechanisms in place, followed by the assumptions made by the model. To

evaluate our model, we consider a diverse network shown in Fig. 3.1 where the proposed

model provides full situational awareness of the risk.
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Figure 3.1: Industrial CPS environment.

3.1 Defining Organizational Assets

In the first stage, we identify organizational assets. Let Ki represent the organizational

assets where Ki={K1, K2, K3, . . . , Kn}. These assets are classified into seven major cate-

gories as described below:

1) Computers: Mainframes, Servers, Desktops, Laptops, Tablets, mobile devices, other

computing devices. 2) Network Devices: Firewall, Routers, Switches, Wi-Fi access

points, other network equipment. 3) Security Devices: Security Systems, CCTV, Locks

(typical locks, Biometric, Face detection), other devices. 4) Data Storage: Disk Storage

Systems, Tape Storage Systems, Optical Storage Systems, Portable Data Storage, other

storage devices. 5) Software: Any licensed and open-source software in use by the com-

pany, Software Inventory. 6) Corporate: Website, Social Media, Business Logo, other

branding assets. 7) Others: Peripherals (Display Monitors, Scanners, Printers, Projec-
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tors, UPS, TV assets, etc), other devices.

Each of the above-mentioned categories is assigned a default criticality value based on

priority, type, and the associated criticality as defined by the business. Let CKi
represent

the criticality value of how critical the asset Ki is on the network.

In the case of a cyberattack, a critical element to understand and evaluate is the risk

propagation, where not only the targeted nodes suffer from a direct impact, but also the

nodes that directly or indirectly depend on the targeted nodes. To address this concern, let

DKi
represent the dependency value, describing how many nodes are dependent on asset

Ki.

3.2 Defining Defensive Mechanisms

To protect digital assets, cyber defenders apply various cutting-edge controls that lessen the

associated risk factors. We identify and list the available controls in three major categories:

1. Technical Controls: T = {T1, T2, . . . , T8}.

T1: Strong Authentication, T2: Antivirus/Internet Security, Security patches, fixes,

updates, T3: Disabling insecure and unneeded services, T4: Intrusion Detection Sys-

tems, Intrusion Prevention Systems, T5: Data and System Backups, File Integrity

Monitoring, etc. T6: Firewalls, T7: Secure Protocols, T8: Encryption.

2. Physical Controls: P = {P1, P2, . . . , P6}

P1: Video Surveillance, P2: Locks and Bio-metric, Face detection access controls,

P3: Motion Detection Systems, P4, Environmental Controls (Temperature, Humidity,

Fire, etc.), P5: Security Guards, dogs, P6: Man-traps, Fences.

3. Administrative Controls: A = {A1, A2, . . . , A4}

A1: Comprehensive security policy, A2: Periodic Security awareness training, A3:

Data classification (Encryption, Backup, etc.), A4: NDA signing (newly hired staff).
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The aforementioned controls integrate multiple layers of defense, however, do not guar-

antee 100% protection. Each control may not necessarily apply to every asset, e.g. a

CCTV camera may only be required for a server computer. Adversarial entities can exploit

loopholes in the known security controls, thus increasing overall risk. To address these

concerns, we apply various controls and policies together as follows:

1. Since the control application varies from asset to asset, we introduceM = {M1,M2, . . . ,Mn}

representing the must have controls, mandatory security controls for a particu-

lar asset. Let G = {G1, G2, . . . , Gn} represent good to have controls, recom-

mended controls that provide additional protection to particular assets. Let O =

{O1, O2, . . . , On} represent optional controls, that are optional but not mandatory.

2. Knowing what type of security controls are implemented, it is easier to exploit known

flaws. Hence, increasing risk, and decreasing the expected level of protection from the

placed controls. To address this concern, we consider exposed (E) and not exposed

(NE) situations for the security controls (M,G,O). LetMCK represent the maximum

control expected by the implemented security controls on assets.

3. The risk from humans (adversarial entities) can be divided into two major categories,

a malicious insider, and an external adversary. An internal employee with some

level of information can intentionally or unintentionally harm the CPS. The external

adversaries on the other hand, always try to gain unauthorized access. In either case,

the risk from humans should be considered. We classify these categories and represent

the total risk, XKi
, posed by humans on the asset Ki.

3.3 Assumptions

We have considered the following assumptions in the proposed model:

1. The model provides security standing based on the provided assets and the applied

controls. If an in general security requirement is missing from the CPS, it is not
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considered in the model e.g. if there is no backup system is not in place, the model

assesses security based on the available controls.

2. The model assumes each asset is connected to the network with some level of depen-

dency and applied controls. The standalone peripherals are not considered in this

model.

3. In some cases such as calculating final values for M,G,O, the model places the value

0 instead of ∞ to avoid errors.

4. We have considered all network devices, security-related equipment, and corporate

assets as highly critical assets.

In the following section, we estimate the overall security risk using the proposed model.

3.4 Risk Model for CPS Environment

Once we have C,D,M,G,O defined, the model can calculate total protection or total

control provided by the applied security controls on a particular asset.

TCKi
= (

Map
Ki

Mav
Ki

×WM) + (
Gap

Ki

Gav
Ki

×WG) + (
Oap

Ki

Oav
Ki

×WO) (3.1)

where TCKi
represents the weighted total control for the applied controls on the asset

Ki, M
ap
Ki

are the applied must have controls out of the available must have controls (Mav
Ki
)

for the asset Ki. WM , WG, WO represent the weights assigned to each category. The TCKi

value provides the level of protection applied to the assets. Hence, we can calculate the

final criticality FC, or the actual risk for Ki.

FCKi
= 1− TCKi

(3.2)

If two assets, Ki and Kj, are similar with same levels of protection and associated risks,

they can be differentiated with the dependency factor, DKi
and DKj

, represents the number
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of dependent nodes for asset Ki and Kj. We calculate the associated impact I as:

IKi
= FCKi

×DKi
(3.3)

To get further insights and situational awareness of asset-wise risk, the model calculates

the minimum and maximum risks as follows:

IKi,min = (1−MCK)×DKi
(3.4)

where, IKi,min is calculated assuming that all possible controls are applied to secure the

asset Ki. IKi,max, on the other hand, is the maximum risk that the asset Ki can be exposed

to, considering none of the controls are applied, IKi,max = DKi
.

Once we derive the associated risks for individual assets, we can calculate the overall

infrastructural risk for the CPS. To do this, we first normalize the calculated impact values

as follows:

NRKi
=

IKi
− IKi,min

IKi,max − IKi,min

(3.5)

And then, we calculate the final or overall risk, FR as:

FR =

∑n
i=1[NRKi

×DKi
]∑n

i=1DKi

(3.6)

Risk propagation from one asset Ki to another Kj is a critical element, the overall risk

does not include the propagated risk values. We calculate the propagated risk as follows:

PRKi
=

FC
(S)
Ki

× FC
(C)
Ki∑n

i=1 FC
(C)
Ki

(3.7)

where PR represents the propagated risk for the clients or dependent nodes, FC
(S)
Ki

refers

the FC value of the serving node Ki, and FC
(C)
Ki

refers the FC value of the dependent node

Kj. To evaluate the model, we consider a sophisticated industrial CPS as shown in Fig.

3.1 under the following four scenarios.
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3.4.1 Not Exposed (NE) CPS Environment

This scenario assumes that the adversary does not have any information about security

controls. The probability of attack success is low in this case, meaning the adversarial risk

XKi
is low, and the expected level of protection obtained from the security controls (MCK)

is high.

3.4.2 Exposed CPS Environment

In this case, we consider an attacker with some level of information about the employed

security controls. A successful attack is more likely in this case, meaning the adversarial

risk XKi
is high, and the expected level of protection (MCK) provided by the security

controls is low.

3.4.3 Improved NE CPS Environment

This scenario refers to the case where a cyber defender has already evaluated the overall

score from the NE and E scenarios and based on the knowledge gained, improved the

infrastructure. This case provides an opportunity for the defender to reduce the overall

risk to a minimum.

3.4.4 Risk Propagation in the CPS Environment

The adversarial entities can gain access to any node and move around the network from

one node to another. This case assumes that an adversary with some level of information

has gained access to the company router and firewall, and making her way to the end nodes

using a top-down approach.
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3.5 Evaluation Metrics

To identify, quantify, and mitigate risk considering the node/service heterogeneity in cyber

infrastructures, and to reduce risk over time, we define the following metrics:

1. Risk Estimation Metric: The goal of this metric is to identify the potential suscepti-

bilities within the given cyber infrastructure, and provide instructions on how to minimize

them. This metric identifies possible paths an adversarial entity might choose to compro-

mise organizational security.

2. Risk Preparedness Metric: The aim of the this metric is to focus on individual

assets and highlight whether they are fully-patched and up-to-date.

3. Risk Adaptability Metric: Reduce the amount of risk over time, as compared with

the initial state. For this metric, we evaluate the framework under the following three

scenarios:

a. Not Exposed (NE) Environment: This scenario assumes that the adversary

does not have any information about the implemented security controls.

b. Exposed (E) Environment: In this case, we consider an attacker with some level

of information about the employed security controls, and a successful attack is more likely

in this case.

c. Improved NE (IMP-NE) Environment: This scenario refers to the case where

a cyber defender has already evaluated the overall risk score from the NE and E scenarios,

and provides an opportunity for the defender to reduce the overall risk to a minimum. The

risk is reduced based on the knowledge gained, and by applying the provided recommended

security policies.

3.6 Results

To evaluate the proposed model, we start defining the required parameters used by the

model. Once we have defined all assets, the model evaluates the security based on how
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Table 3.1: Control weights.

Controls NE-Weights E-Weights

M 0.50 0.42

G 0.20 0.16

O 0.10 0.06

MCK 0.80 0.64

critical the asset CKi
is, the number of dependent nodes DKi

, and what level of protection

M,G,O is applied on the assets. CKi
ranges from 0 to 1, CKi

= 0.7 − 1 means the asset

Ki is highly critical, CKi
= 0.4 − 0.69 means medium, CKi

= 0.1 − 0.39 means low, and

CKi
= 0− 0.09 means very low or not critical at all. As an example, mainframes and other

server computers are marked as highly critical since they have dependent nodes, hence

CKi
= 0.7. On the other hand, a desktop: CKi

= 0.3, a laptop owned by a manager having

important business details: CKi
= 0.5. Similarly, other categories can be assigned values.

The dependency element differentiates two assets Ki, Kj with similar specifications, and

applied controls from one another. DKi
= 50, if 50 nodes are depending on the asset Ki,

and DKi
= 1, in case of no dependents or 1 dependent node.

We assign weighted values for M,G,, and O under NE, and E situations, representing

the expected level of protection, as shown in Table 3.1. The maximum protection MCK

for the NE scenario is 0.8, meaning, if all recommended controls are applied, the system is

80% secure. Whereas in the case of E, the maximum protection reduces to 64%, i.e. a 20%

drop. The remainder is the risk from humans as shown in Table 3.2. Please note that each

control value and adversarial risk value can be adjusted over time and these are the initial

starting point values.

Total control, TCKi
ranges from 0 to MCK , representing the protection level provided

by the applied controls. TCKi
= 0 means the applied controls are providing no security,

whereas TCKi
= 0.8 means 80% security from adversarial acts. IKi

, IKi,min, IKi,max repre-
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Table 3.2: Risk from humans.

Controls Internal External Adversaries XKi

Employees Novice Intermediate Expert

Not Exposed 0.03 0.02 0.05 0.10 0.20

Exposed 0.05 0.04 0.09 0.18 0.36

sent the actual, minimum, and maximum risks posed to the organizational assets where

IKi,min ≤ IKi
≤ IKi,max. The model computes normalized risk NRKi

using min-max nor-

malization, to calculate the infrastructural risk (FRK) of the CPS. NRKi
is a positive

decimal number and FRK ranges between 0 to 1. To evaluate the scenarios described in

the previous section, we apply the proposed model as follows.

3.6.1 Not Exposed CPS Environment

This scenario assumes that the adversary has no information about the network topology

or applied controls. Hence, the applied security controls are providing the desired level

of protection. The calculated infrastructural risk (FR) in this case is 37.72%. As seen

in Fig. 3.2, the highest risk IKi
= 43.89 is posed to the asset IoT Server 1, followed by

IKj
= 43.88, posed to the asset Router01. It can also be observed from the graph that

there is an opportunity to improve the risk for both assets since IKi,min = 16 for IoT Server

1, and IKj ,min = 13 for Router01.

3.6.2 Exposed CPS Environment

When the adversary has potential information about the network, the probability of a

successful attack increases, thus reducing the expected level of protection from the security

controls. Fig. 3.3 demonstrates that the risk values for all assets and the overall risk

(FR = 40.32) increase when the controls are exposed, and at the same time, there is an

increase in asset-wise risk. IKi
= 51.11 for IoT Server 1, and IKj

= 48.10 for Router01.
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3.6.3 Improved NE CPS Environment

Based on the analysis from NE and E scenarios, the defender can apply the recommended

set of controls to tighten the CPS security. If applied, the overall risk drops to 11.80%,

and as seen in Fig. 3.4, the asset-related risk also drops, IKi
= 27.89 for IoT Server 1, and

IKj
= 18.20 for Router1. It can also be observed from the graph that the risk levels for

most of the assets are close to the minimum. If we compare the aforementioned scenarios,

we see that the impact level and final risk reduces over time if the controls are tuned as

shown in Fig. 3.5.

Figure 3.2: Not Exposed CPS: IKi
, IKi,min, IKi,max

Figure 3.3: Exposed CPS: IKi
, IKi,min, IKi,max
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Figure 3.4: Improved Not Exposed CPS: IKi
, IKi,min, IKi,max

Figure 3.5: Overall security posture

Figure 3.6: Risk propagation

3.6.4 Risk Propagation in the CPS Environment

Inter-dependency among digital assets introduces new kinds of risk and often induces firms

to invest inefficiently in IT security. Our model is capable of demonstrating the risk prop-

agation from parent nodes to child nodes and visa-versa. Fig. 3.6 shows a portion of the

network with propagated risk values. The propagated risk values for this particular case
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represent the risk of child node exploitation if the parent node is exploited.

3.7 Summary

CPS environments today are increasingly convoluted and highly competitive with a lot of

uncertainties in terms of cybersecurity. It is imperative and quite challenging for a cyber

defender to have full cyber situational awareness. We present a generic risk assessment

model to address research questions Q1-Q3 under the objective A. The presented model

provides an understanding of the current security posture of the given CPS, and the rec-

ommended set of controls to reduce the risk from adversarial attacks. We test and evaluate

the proposed model for a blending IoT and traditional network, and show how the risk is

reduced over time utilizing recommended controls. This work is published at the 29th In-

ternational Conference on Computer Communications and Networks (ICCCN 2020). The

current discussion of cyber risk assessment has excluded vulnerability assessment. There-

fore, in the subsequent chapter, we will introduce our foundational vulnerability assessment

framework, CyVIA.
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Chapter 4

Cyber-threat and Vulnerability

Information Analyzer (CyVIA)

Cyber infrastructures today are an amalgam of various technologies that create a wide

spectrum of adversarial threats for a cyber defender to defend against. In such a scenario,

a dynamic risk assessment framework, capable of assessing the protection offered by the

employed security controls, and able to recognize the vulnerable loopholes within the broad

range of installed products, is of the highest need. To address the research questions Q1

and Q1a under objective B of Chapter 1, Section 1.3, the following two main research

questions were identified: 1) How can dynamic system components, such as applications,

processes, memory utilization, and port usage, be tracked to effectively assess the security

posture of cyber infrastructures, taking into account node/service heterogeneity? 2) How

can information from external vulnerability sources be integrated to estimate security risks

in real-time?

We present and discuss our proposed framework CyVIA 1.0 [99] as seen in Fig. 4.1 in

the following sections of this Chapter.

4.1 CyVIA System Architecture

In this chapter, we introduce the architecture of CyVIA, which encompasses the identifi-

cation of security vulnerabilities, classification of risk types, and provision of product-wise

and overall risk assessment for the given cyber infrastructure. We will discuss the various

phases of the CyVIA architecture in the following sections.
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Figure 4.1: CyVIA Architecture (1.0)

4.1.1 Phase 1: Obtaining Vulnerability Data

NVD provides public access to 1) Vulnerabilities - CVE, 2) Products - CPE (Common Plat-

form Enumerations), and 3) Checklists - NCP (National Checklist Program) data. CVE

data is bundled in a JSON file for each year starting from 2002. MITRE, on the other hand,

provides 1) CVE, 2) Common Weakness Enumeration (CWE), and 3) Common Attack Pat-

tern Enumeration and Classification (CAPEC) data. As of May 2021, the NVD database

contains 163,159, and the MITRE database contains 154,045 publicly known cybersecurity

vulnerabilities. In our case, we initially focus on building a comprehensive knowledge-base

that contains detailed information for each vulnerability. To do this, the framework initially

obtains CVE information from NIST’s NVD and CWE lists from MITRE. Irrespective of

the data format provided by these two sources, CyVIA incorporates a generalized fetching

procedure to access, read, and extract relevant information from all disparate sources. This

information is further combined based on the relationships found among the data elements

in Phase 2.

41



4.1.2 Phase 2: Preparing Knowledge-Base

From the datasets obtained in Phase 1, CyVIA extracts the following from the NVD data:

CVE ID, Description, Lang, CWE ID, Severity, CVSS V2, CVSS V3, Access Vector, User

Interaction, Publish Date, Modification Date, URLs, and Tags. The extracted data is then

combined with CWE data, based on the found CWE ID relationships. For each CWE,

we match and extract the CWE ID, Description, Platform, Consequences, Mitigation, and

Affected Resources. Once the CVE and CWE data are combined, the keywords for each

CVE entry are generated. These keywords can be of any attribute, such as Operating

Systems, Software Names and Versions, and Port Numbers associated with the CVE entry.

We use spaCy’s rule-based matcher engine and regular expression for keyword extraction.

Furthermore, for each CWE, parent, and children relationships are also mined from the

MITRE website for relational analysis. The outcome of this phase is a comprehensive

knowledge-base that is used in Phase 4 for finding vulnerabilities within the target network

and for future machine learning developments. A knowledge-base entry for each CVE holds

all of the above-mentioned attributes.

4.1.3 Phase 3: Fetching Network Data

The objective of this phase is to collect network node information. CyVIA is capable of

discovering active network nodes through a remote server and detailed information of these

nodes is captured by running a local agent on the discovered nodes. The objective of this

phase is to collect network node information. This phase captures hostname, IP address,

gateway, installed OS, and applications to generate node profiles using this information.

These profiles are used in Phase 4 for vulnerability analysis. CyVIA can capture host

information from any node (physical or virtual) as long as there is network connectivity,

and each profile is ≈ 0.15MB.
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4.1.4 Phase 4: Generating Analysis

This phase starts evaluating the network nodes based on the installed products (operat-

ing systems and installed applications). Upon receiving the product list for each node,

CyVIA returns a list of vulnerabilities that may exist within the given products. This

process is repeated for each product in the product list; keywords are matched with the

knowledge-base and MITRE’s CVE database for increased accuracy in the results. After

retrieving a list of possible CVEs, we match the remaining features and relationships from

the knowledge-base. As seen in Fig.4.1, the CWE database is also referenced for collecting

the missing information and classification purposes. The generated vulnerability list for

the target network is further classified based on severity and weakness types in this phase.

CyVIA is capable of providing multiple analyses of the found vulnerabilities as discussed

in Section 4.3. CyVIA’s goal is not only to provide researchers, developers, system admin-

istrators, and cyber defenders the capability of interfacing external VDBs and evaluating

network configurations for vulnerabilities but also to raise awareness of the inconsistencies

within these VDBs.

4.2 Challenges, Limitations, and Advantages of CyVIA

Gathering vulnerability data is not straightforward because different VDBs provide different

formats of data. Obtaining, processing, and integrating such data requires customized

modules. In this section, we discuss the inconsistencies and challenges with obtaining and

processing data from VDBs. We also discuss assumptions, limitations, and integration of

the CyVIA framework.

4.2.1 Inconsistencies within the NVD and MITRE Data

Data in NVD and CVE databases is entered by humans and is stored in natural language

plaintexts making it challenging for any automation tool to infer from the provided de-
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scriptions rather a human expert is required to make a decision.

4.2.2 Assumptions, Limitations, and Integration of CyVIA

a) Assumptions: We have considered the following assumptions for CyVIA: 1) we assume

that various CVE features, such as CVSS scores, CWE IDs, Severity values, etc., stored

in the NVD are correctly assigned. 2) Because NVD is fed by MITRE data, and CWE

is managed by MITRE, we take the final CWE features from MITRE. 3) The final list of

possible vulnerabilities is matched with MITRE’s CVE search engine.

b) Limitations: CyVIA at this point is limited to: 1) NVD and MITRE VDBs integration,

however, JSON/CSV data can be imported from other VDBs. 2) Providing only the

reported vulnerabilities within the operating systems and installed applications. 3) CVSS

v2 for severity and score calculations since CVSS v3 scores are not available for all CVEs.

c) Integration Overview: In our previous work [98], we proposed a generic risk assess-

ment model that assesses and quantifies the current security posture of any given cyber

infrastructure based on the applied security controls. Security controls, however, are not

capable of providing 100% protection; we need to consider the vulnerabilities that exist

within the system configurations. CyVIA is an attempt to not only revamp our risk as-

sessment framework, but also help other researchers, developers, system administrators,

and cyber defenders to perform vulnerability analysis and assessment. CyVIA requires a

product list as the input and returns the possible list of vulnerabilities along with other

analyses as the output. This output is then fed to the risk assessment model to provide an

enhanced security posture of the given network.

4.2.3 Advantages of using CyVIA

To conduct an effective cyber risk and vulnerability assessment, a cyber defender can either

1) use an open-sourced or a proprietary tool to gather vulnerability information for the

network nodes, or 2) manually collect node configurations from the network and related
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vulnerability information from the VDBs to derive further analysis. With option 1, the

cyber defender is required to translate the tool-generated results into an acceptable form

that can be plugged into the risk assessment framework being used. Option 2, on the other

hand, is very laborious because network and vulnerability information is captured manually,

and with constantly changing network configurations, repeating the entire process over and

over again becomes burdensome.

CyVIA provides continuous risk monitoring by automating the entire process from data

gathering to analyses generation. The entire process is repeated to capture the changing

network configurations irrespective of time and space constraints. Depending on the risk

assessment framework being used, a cyber defender can prioritize any of the produced

results. CyVIA is capable of 1) finding vulnerabilities for each product, 2) classifying the

found vulnerabilities based on weakness type, severity, and access vector, 3) spotlighting

products based on the mean severity and CVSS scores, 4) pointing out the high priority

vulnerabilities associated with the environment that the defender should be targeting, and

5) generating relational analysis between vulnerabilities, products, and weakness types.

The aforementioned analyses for a real computing infrastructure are extensively discussed

in Section 4.3.

Figure 4.2: Target Cyber Infrastructure
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4.3 Results

Acquiring contextual information to perform cyber risk assessment is a major challenge;

CyVIA1 is capable of generating this information, making the process much easier for

cyber defenders. CyVIA knowledge-base contains CVE information from the year 1999 to

the current year. To evaluate CyVIA, we used Oracle VM VirtualBox to mimic a virtual

industrial network with a variety of hosts, applications, and services. Fig. 4.2 illustrates the

target network, composed of heterogeneous components where each node contains a default

set of installed applications. CyVIA is open source, screenshots and code are available on

the repository.

4.3.1 Vulnerability Severity Groups

NVD provides three severity rankings of vulnerabilities for CVSS v2.0 (Low=0-3.9, Med=4-

6.9, High=7-10) and five for CVSS v3.0 (None=0, Low=0.1-3.9, Med=4-6.9, High=7-8.9,

Critical=9-10). CyVIA highlights the severity of vulnerabilities based on CVSS v2.0. As

seen in Fig. 4.3, 42.35% of the vulnerabilities within the target infrastructure have High,

43.61% have Medium, and 14.03% have the severity level of Low out of 3,327 total CVEs

found.

Figure 4.3: Severity and Access Vectors of found vulnerabilities

1https://github.com/trucyber/Risk-Assessment-Framework
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4.3.2 Vulnerability Access Vectors

How vulnerable a network infrastructure is becoming more evident when a cyber defender

is clear on how the discovered vulnerabilities can be exploited. For example, whether

a vulnerability can be exploited with local or remote access. To avoid such infiltration,

CyVIA is capable of imparting access vector information of the found vulnerabilities. As

seen in Fig. 4.3, any adversarial entity can exploit 70.24% of the found vulnerabilities by

gaining network access, 27.56% by gaining particular node access, and the remaining 2.19%

by gaining adjacent network access.

4.3.3 Most and Least Vulnerable Products

Table 4.1 itemizes the master product list with each product’s identification number, num-

ber of vulnerabilities, and weakness types found for each product. Among these products,

Microsoft Windows 8.1 is the most vulnerable product with 691 vulnerabilities, and Ubuntu

Core 16, FortiGate 2.8, and MongoDB 3.6 are the least vulnerable products with 2 vulner-

abilities each. Fig. 5.8 illustrates the top 10 vulnerable products within this list.

Figure 4.4: Top 10 vulnerable products
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Table 4.1: Product list with number of CVEs and CWEs present

# Product CVEs CWEs

1 Acrobat Reader 10.0 29 7

2 Alpine Linux 3.10 16 11

3 Apache Tomcat 8.5 213 41

4 Aware Security 22 12

5 Canon imageRUNNER 1643i 3 1

6 Cisco NX-OS 5.2 16 6

7 Epson PowerLite 26 15

8 FortiGate 2.8 2 2

9 HP LaserJet 8000dn 37 12

10 Kaspersky Security 10.1.1 42 16

11 Microsoft Office 2017 76 6

12 Microsoft System Center build 5.0.8412.1309 93 27

13 Microsoft Windows 7 Professional 6.1.7601 12 5

14 Microsoft Windows 8.1 Pro 691 39

15 MongoDB 3.6 3 2

16 Ubuntu Core 16 2 2

17 Windows Server 2008 build 6002 8 5

18 WinRAR 5.91 47 7

19 Wordpress 5.3 5 4

20 Zoneminder 1.30 6 4

4.3.4 Product severity observations

CyVIA attempts to identify the most vulnerable products within the network in many

ways; one of them is to rate each product based on the mean severity score value of the

observed vulnerabilities under each product. Table 4.2 lists the top 10 products based on
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mean severity score. We can see that Fortigate 2.8 has the highest score value of 8.75 out

of 10.0, and Canon imageRUNNER 1643i has the least mean score of 5.97. It is interesting

to note that Windows 8.1 has the highest number of reported vulnerabilities (691) and is

9th on this list.

Table 4.2: Top 10 Products with high scores

Product Mean High

FortiGate 2.8 8.75 10.00

Acrobat Reader 10.0 8.53 9.30

Microsoft Windows 7 Professional 6.1.7601 7.92 9.30

Microsoft Office 2017 7.37 9.30

Windows Server 2008 build 6002 7.28 10.00

Cisco NX-OS 5.2 6.49 9.00

HP LaserJet 8000dn 6.28 10.00

Microsoft System Center build 5.0.8412.1309 6.28 10.00

Microsoft Windows 8.1 Pro 6.3.9600 6.21 10.00

Canon imageRUNNER 1643i 5.97 7.50

Table 4.3: Product-to-CVE and CVE-to-Product grouping

Key Values

Wordpress 5.3 CVE-2019-20043,CVE-2019-20042,CVE-2019-16780..

FortiGate 2.8 CVE-2005-3058,CVE-2005-3057.

· · · · · ·

CVE-2017-8682 Office 2017, Windows 7 Pro, Windows 8.1 Pro.

CVE-2010-3227 Windows 7, 8.1, System Center, Server 2008

· · · · · ·
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Figure 4.5: CVE to Product Relationships (Target Infrastructure)

4.3.5 Product, CVE, and CWE mapping

The ability to map relationships between products, vulnerabilities and weakness types

in a particular context makes CyVIA more dynamic and robust. Table 4.3 shows a few

examples of Product-to-CVE, and CVE-to-Product mapping (Fig. 4.5) where repeating

vulnerabilities among products, and common products among weakness types are also

mapped.

4.3.6 Top 10 Weakness Categories

Table 4.4 consists of a salient summary of the top 10 weakness categories existing within the

target infrastructure. As we can see, CWE-119 (Buffer Overflow) is on the top of the list

containing 19.7%, followed by CWE-200 (Information Disclosure) containing 18.1% of the

found vulnerabilities. Among the top 10, only CWE-20 has a parent CWE i.e. CWE-707,

all other CWEs do not have any parents. Table 4.4 also lists the affected products under

each category, and we can see that CWE-119 is present among 70% of the products.
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Table 4.4: Summary of Top 10 CWEs present in the targeted cyber infrastructure

CWE ID Names Affected Products %

CWE-119 Buffer Overflow 1,2,3,4,6,7,9,10,11,12,13,14,17,18 19.7

CWE-200 Unauthorized Access 2,3,4,7,9,10,11,12,14 18.1

NVD-Other Other 1,2,3,4,5,7,9,10,12,13,14,18 16.0

CWE-264 Permissions,Privileges & Access Controls 1,3,4,7,8,9,10,12,14,15,17,18 14.6

CWE-20 Improper Input Validation 1,2,3,4,6,9,10,11,12,13,14,18 11.2

NVD-noinfo Insufficient Information 1,3,4,6,7,8,9,10,11,14,18 9.7

CWE-79 Cross-site Scripting 1,3,7,9,11,12,14,17,19,20 3.4

CWE-284 Improper Access Control 3,4,10,12,14 3.0

CWE-399 Resource Management Errors 2,3,4,6,10,14 2.6

CWE-22 Path Traversal 3,6,9,12,14,18,19 1.7

4.4 Summary

Traditional networks have evolved into more sophisticated infrastructures increasing the

attack surface for adversaries. Defending against such events necessitates the identification

of potential attack paths. Vulnerability assessment can help uncover areas that require

immediate attention. To addresses the research questions Q1 and Q1a under the objective

B, we present CyVIA framework in this Chapter, which effectively incorporates vulnera-

bility information from major VDBs and prepares a comprehensive knowledge-base that

is used further to provide continuous risk assessment of any cyber infrastructure. We

discuss challenges in obtaining and processing this information and further evaluate the

proposed framework on a real-world industrial network to find the most crucial vulnerabili-

ties, computing products, and their relationships. This work is published at the 2021 IEEE

International Mediterranean Conference on Communications and Networking (MeditCom).

In the next chapter, we showcase the integration of the base risk and vulnerability

assessment frameworks with additional enhancements, aiming to provide a comprehensive

cyber situational awareness to cyber defenders. We will present the modifications and
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improvements made to the CyVIA framework to further enhance its capabilities in assisting

cyber defenders in effectively managing cyber risks.
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Chapter 5

Towards Building Cyber Threat

Intelligence (CyVIA 2.0)

The current chapter presents the CyVIA 2.0 architecture [100], which builds upon the base

vulnerability assessment model (CyVIA 1.0) introduced in the previous chapter. Unlike the

previous model, which followed a step-by-step process, CyVIA 2.0 provides a continuous

real-time evaluation of the target network by dynamically integrating different components

that interact with each other to create an effective cyber threat intelligence system. CyVIA

2.0 comprises four main modules. The first module is a vulnerability database wrapper

module that acquires the latest vulnerability information from external sources in a timely

manner. The second module is a knowledge-base generation module that keeps the CyVIA

knowledge-base current. The third module is an environmental data collection module that

continuously tracks infrastructural changes. Finally, the fourth module is a threat modeling

and risk analysis module that prepares various analytics for cyber defenders based on the

identified anomalies.

To address the research question Q2 under the objective B, as discussed in Chapter

1, Section 1.3, which is ”How can we evaluate cyber risk considering adversarial capabili-

ties, vulnerabilities, network dependencies, administrative policies, and provide mitigation

techniques to produce cyber threat intelligence?”, we present CyVIA 2.0. CyVIA 2.0 inputs

data from three sources: 1) multiple VDBs, 2) network nodes (configurations, services,

running processes, open ports, and so on), and 3) the security policies keeping the network

nodes secure on the network such as the applied security controls and other administrative

policies. CyVIA 2.0 produces two types of output: 1) dynamic informed analysis of chang-
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ing network configurations and vulnerabilities, and 2) comprehensive analysis of network

infrastructure based on the applied security controls and discovered vulnerabilities. In the

following sections of this Chapter, we first go over each individual component and then

describe different phases from the CyVIA 2.0 architecture as seen in Figure. 5.1.

Figure 5.1: CyVIA Architecture (2.0)

5.1 Vulnerability Database (VDB) Wrapper

CyVIA is capable of collecting vulnerability data from multiple sources and multiple for-

mats. At present, we collect data from NVD and MITRE, however, CyVIA is capable

of integrating data from other sources. As of October 2021, the NVD database contains
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172,427 publicly known vulnerability reports. These reports are bundled together in yearly

JSON compressed files starting from the year 2001 to date. MITRE on the other hand pro-

vides vulnerability groups by weakness types and other attributes such as weakness type

description, applicable platforms, modes of introduction, and more in a CSV file format.

During this phase, CyVIA collects the multi-formatted datasets from NVD and MITRE

and prepares data for extraction during the next phase.

5.2 Knowledge-Base Generation

This phase is responsible for generating a knowledge-base from the collected datasets. This

knowledge-base is used by all other components of CyVIA. During this phase, each report

item is analyzed and categorized, vulnerability features are extracted, and keywords for each

vulnerability are generated. Various information pieces are combined into a comprehensive

knowledge-base based on the found relationships in the data points, irrespective of the

different data formats. This phase also crawls additional related information from the

MITRE website such as parent and child relationships among weakness types. Once the

dataset is prepared, the environmental data is collected during the next phase.

5.3 Environmental Data Collection

In this phase, the computing environment or digital assets information is collected. This

process has two sub-components (schedulers), a server component that runs on any of the

administrator servers, and a client component that runs on all clients. The client and server

scheduler communicate and exchange information with each other. The components and

sub-components of this phase are discussed in detail as follows:
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5.3.1 Schedulers

Providing up-to-date analysis strictly depends on the following factors: 1) how updated

the obtained vulnerability information is, and, 2) how updated the network node profiles

are. To ensure the up-to-date analysis, CyVIA integrates a scheduler module that has two

sub-components:

(i) Client Task Scheduler: For command and control, adversaries employ a variety

of tactics and protocols after a successful attack to maintain persistence within the

target environment. In such cases, most of the related processes execute in the back-

ground without user awareness. CyVIA monitors running processes in real-time to

alert administrators of any newly detected processes on any of the network nodes.

The recorded information for each process includes but is not limited to process id,

executing file path, process owner, number of threads, CPU, memory used by the

process, etc. Similarly, processes using high memory and CPU are also highlighted

during this process for the administrators to take necessary actions if required. Fur-

thermore, any newly installed application, open port, or a vulnerability associated

with any of the installed applications is also reported. A client-side scheduler is re-

sponsible to keep track of processes, applications, open ports, and vulnerabilities to

ensure updated client/node profiles and informed administrator.

(ii) Server Task Scheduler: The server-side scheduler captures the changes in infor-

mation between the server and clients, validates the information, and generates no-

tifications for the administrator about the newly discovered nodes on the network,

processes, applications, ports, and vulnerabilities on the network nodes. The server-

side scheduler is also responsible to keep the knowledge-base up to date with the

latest vulnerability information.
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5.3.2 Node Profiling

Any cyber threat intelligence system must collect environmental data specific to the com-

puting environment in order to generate contextual analysis. CyVIA can not only capture

changing network configurations on the go, but it can also notify administrators of the

changes so that they can take appropriate actions where needed. With the help of a re-

mote agent, CyVIA initially captures the active nodes on the network and their associated

information. And, with a local agent running on the detected nodes, this information is

refined even further. This process captures and generates node profiles and the IT admin-

istrators can fine-tune the profiles as needed. Based on the acquired node information,

a node profile contains information such as hostname, IP address, gateway, installed OS,

installed apps, open ports, and running processes.

5.4 Subject Matter Expert Input

The CyVIA framework provides flexibility to the subject matter experts or administrators

to modify various elements and override the default security setup recommended for each

type of network node, as and when required. For example, assigning security controls and

adversarial risks to nodes on the network, changing the control and adversary weights,

overriding the final risk values to get more realistic scores. Once the node profiles are

generated, the administrator can define the following information:

(i) Asset Type: whether the node is a computer (server, workstation, etc.), a network

device (firewall, router, etc.), etc.

(ii) Control Policy: states the defensive mechanisms or controls such as technical, phys-

ical, or administrative, that are applied on the current node.

(iii) Adversarial Policy: defines which types of adversarial risks are applicable on this

particular node.

57



(iv) Services Provided: lists the number of services offered by the current node to other

nodes on the network.

(v) Services Received: if the current node is receiving any services from other nodes

on the network, it must be recorded in the node profile.

In the next Section, we discuss controls and policies in detail.

5.5 Control and Adversary Mapping

To protect digital assets and mitigate associated risk factors, cyber defenders deploy several

cutting-edge security controls. It is critical to consider these controls while performing cyber

risk analysis. CyVIA keeps a record of detailed control information such as control type,

assigned weight for each control, a recommended set of controls for different types of network

devices, and the administrator-defined control set for a particular type of digital asset.

Similarly, different types of adversaries (internal and external) can be defined and assigned

weights based on their assumed capabilities. These information pieces are maintained under

the control master, and the various attributes of the control master are as follows:

5.5.1 Control and Adversary Definition

Control definition document contains the master list of available security controls that

can be used to secure digital assets. At present, we classify these controls into three

main types. 1) Technical Controls (T = {T1, T2, . . . , T8}), where T1=Strong Authenti-

cation, T2=Antivirus/Patches/Updates, . . . , T8=Encryption. 2) Physical Controls (P =

{P1, P2, . . . , P6}), where P1=Video Surveillance, P2=Locks, . . . , P6=Man-traps, and 3)

Administrative Controls (A = {A1, A2, A3, A4}), where A1=Security Policy, A2=Security

Training, A3=Data classification, A4=NDA Signing [98]. This document is used to specify

the control set for each node on the network, representing administrator efforts for securing

network nodes or digital assets. And the purpose of the adversary definition document is
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to define the types of adversaries that the organizational assets are exposed to. At the mo-

ment we have four types of adversarial actors: internal employees, and external adversaries

with novice, intermediate, and expert expertise. Both of these documents can be expanded

as per the organizational needs.

5.5.2 Control and Adversary Weights

Each of the defined controls is assigned a weight value and since the control application

varies from asset to asset, we further introduce control application categories M (must

have), G (good to have), O (optional) for different types of digital assets. Similarly, the

level of protection provided by these controls will vary if the applied controls are exposed to

adversarial entities. We assign two different types of weights, 1) NE (not exposed): when

the controls are not exposed to the adversarial entities, and 2) E (exposed): when the

adversaries are aware of what controls are applied to protect organizational assets. These

weights are used to calculate the level of protection that can be expected by the applied

controls.

Similarly, the threat posed by humans or adversarial entities is determined by the

threat actor’s level of access and skill set and it is critical to categorize individuals based

on their competence and access location. An inside employee with a given level of access,

for example, may pose a different risk than an external experienced attacker. Similar to

controls, we categorize adversaries and assign weights based on their skill-set and location.

5.5.3 Master and User-Defined Policies

Master policy document contains the ideal or recommended control configurations for dif-

ferent types of devices on the network. The controls are categorized further into three

more categories M, G, and O as explained earlier. Network devices are categorized into

seven different types: 1) Servers: server computers providing services to other nodes on the

network, 2) Workstations: client computers receiving services from servers, 3) Portables:
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portable devices such as laptops, tablets, etc., 4) Network: networking equipment such

as routers, switches, access points, etc., 5) Network Security: firewall, IPS/IDS, etc.), 6)

Storage: USB, Optical Disk, SAN, NAS, etc., 7) IoT: any device connecting to the network

not classified in above categories.

For each type of device, the master policy holds a recommended M, G, O control that

determines how secure the node is in terms of control security. For example, a server device

must have the controls T1-T3, whereas T4 is good to have: ”Server”: [”T1:M”, ”T2:M”,

”T3:M”, ”T4:G”, ...]. Each node profile specifies whether these recommended controls are

applied or not. For example when T1-T3 are applied and T4 not applied: ”ControlPolicy”:

[”T1:1”, ”T2:1”, ”T3:1”, ”T4:0”, ...]. Similar to control mapping, adversarial threats are

also mapped within node profiles for each node. If a particular control or threat is applied

or applicable to a node, it will be represented by the value 1, otherwise by 0 stating that

the control or threat is not applied or applicable. For example, a CCTV control and an

external adversarial threat may not be applicable for a standalone scanner.

Ideally, each device under the same device category should have the same controls

applied as per the defined control policy, however, it can change as per the network admin-

istrator’s approval. CyVIA allows the administrators to have custom user-defined policies

as per their needs. Another use case for this scenario is the third-party devices with lim-

ited access rights and policy options such as a DVR for CCTV recording. Administrators

can further secure these devices by employing custom physical (locks) or administrative

controls (policies).

5.6 Threat Modeling and Risk Analysis

This phase is mainly responsible for generating contextual analyses for the computing

environment being analyzed.
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5.6.1 Interdependency Between Nodes - Service Mapping

Dependencies between network nodes present a different set of challenges for a cyber de-

fender. Because risk scores are usually centered on network/infrastructure, we add the

dependency factor for nodes, which represents the number of service dependents for a

node [98]. The higher the number of dependents, the more important the node is in the

network. CyVIA is capable of generating the network map of the given infrastructure as

well as service dependencies. The recorded information under each node’s profiles is used

to map the services that node Ki delivers to node Kj on the network. CyVIA’s dependency

map illustrates the service dependencies between network nodes and aids the administrator

in identifying crucial network nodes. We keep track of services provided (service:port) and

services received (IP:port) by every node on the network.

5.6.2 Severity of Nodes

How critical a node on the network is, can be determined by what risk the network node

is introducing to the infrastructure. In our case, we consider the following factors while

calculating risk scores:

(i) Control-Based Risk: This risk informs the administrator about what amount of

protection should be expected from the applied security controls in light of adversarial

threats.

(ii) CVSS-Based or Vulnerability-Based Risk: How vulnerable each node on the

network and the overall infrastructure is seeing the discovered vulnerabilities.

By aggregating both scores, we can label the most critical nodes on the network that

require urgent attention from the administrator to improve the general welfare of the net-

work. Furthermore, the critical nodes can also be identified by analyzing the number of

open ports vs actual dependents.

61



5.6.3 Potential Consequences and Mitigation

Once the vulnerabilities within the specific infrastructure have been identified, CyVIA can

educate the administrator about the potential consequences of the discovered vulnerabili-

ties as well as mitigation strategies that may be utilized to prevent such exploitation. For

example, vulnerabilities under the category CWE-5, i.e. ”J2EE Misconfiguration: Data

Transmission Without Encryption” target the ”Integrity” metric and are capable of mod-

ifying the application data. Using SSL or encryption for all access-controlled sites is a

mitigation strategy that can be utilized to avoid such exploitation.

5.7 Assumptions, Limitations, and Integration Overview

Assumptions

We have considered the following assumptions for CyVIA 2.0: 1) we assume that various

CVE features, such as CVSS scores, CWE IDs, Severity values, etc., stored in the NVD

are correctly assigned. 2) Because NVD is fed by MITRE data, and CWE is managed

by MITRE, we take the final CWE features from MITRE. 3) The final list of possible

vulnerabilities is matched with MITRE’s CVE search engine. 4) We use a raspberry pi as a

device on the perception layer that represents IoT devices and communicates with different

sensors for data collection. 5) Due to limited resources, we are unable to deploy CyVIA 2.0

on a live large network, however, we have conducted several trials of CyVIA 2.0 on various

network clusters containing different versions of Microsoft Windows and Linux, and we are

confident that it can be deployed on any large network.

Limitations

CyVIA at this point is limited to: 1) Local agent that can capture information from nodes

running Windows 7 onward, having power-shell script execution enabled. And for Linux, we

have tested agents on Ubuntu, Kali, Debian, and Fedora. 2) Services offered by nodes are
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captured through the remote scan, however, the nodes utilizing these services are identified

by the administrator.

Integration Overview

A cyber defender present within the target network is capable of interacting with all com-

ponents of CyVIA whereas limited interaction with different components is available from

outside the network using the API.

5.8 Results

We evaluate CyVIA on a large VM setup having different clusters of nodes, representing

different parts of the network. Nodes are mapped and evaluated during this process. Table

5.1 lists the subset cluster being evaluated in this Section, its nodes, their IP addresses, and

the installed OS. All nodes have a default set of applications installed and a few custom

applications such as MySQL, SQL Server, etc. to create dependencies between nodes.

The node cluster includes nodes from each layer as seen in Figure 5.2. We selected three

state-of-the-art vulnerability scanning tools, Nessus Essentials by Tenable, InsightVM by

Rapid7, and Greenbone Security Manager (GSM) by Greenbone, and scanned the network

using these tools. We also scanned the network using CyVIA.

Figure 5.2: Layers

In the following subsections, we initially discuss the findings by CyVIA and then for
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Table 5.1: Network Node List

Node IP OS

Win7 50.50.50.4 Windows 7 ENT

Win81 50.50.50.5 Windows 81 ENT

Win10 50.50.50.6 Windows 10 ENT

Windows11 50.50.50.7 Windows 11 Pro

Server2012 50.50.50.8 Server 2012 R2

Server2016 50.50.50.9 Server 2016 Datacenter

Centos 50.50.50.23 Centos 8.3.1

Debian 50.50.50.24 Debian 10

Fedora 50.50.50.25 Fedora 33

OpenSUSE 50.50.50.26 OpenSUSE 15.2 1

Raspbian 50.50.50.27 Raspbian

Ubuntu16 50.50.50.28 Ubuntu 16 LTS

Ubuntu18 50.50.50.29 Ubuntu 18 LTS

Ubuntu20 50.50.50.30 Ubuntu 20 LTS

each tool followed by a comparison between the four. Please note that we only provided the

node IPs and OS credentials to each tool for scanning and kept everything else as default.

Each tool was installed on a fresh virtual machine with no other application installed or

running, and assigned 8GB of RAM and 2 threads of Intel i7 processor.

5.8.1 Analysis by CyVIA

CyVIA is capable of generating contextual information based on the network nodes, applied

security controls and policies on these nodes, and the found vulnerabilities within the

installed OS and applications on these nodes. Therefore, the execution process is slightly

different as compared with other tools. In the following subsections, we discuss the major
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components, their execution, and responsibilities.

a) Node Profiling

CyVIA is capable of detecting network nodes using the scheduler module. Once a node is

detected, CyVIA tries to obtain node information remotely using a profiling agent. Based

on the information captured in this process, further analyses are generated, therefore, it

is critical to verify and update each node profile to have the most accurate results. The

scheduler module has two sub-components, a client-side scheduler, and a server-side sched-

uler, responsible for evaluating the changes in node profiles. These schedulers work closely

with the profiling agents. A server-side profiling agent captures node profiles remotely, and

a client-side profiling agent runs on each client.

(i) Server Side Scheduler: CyVIA keeps track of changes by closely monitoring the

recorded node profiles and any new observed changes on the network. For exam-

ple, any newly discovered node(s), process(es), application(s), or vulnerabilities are

highlighted in this process. The server-side scheduler relies more on the recorded

information and the remote profiling agent. The following output sample shows the

server-side scheduler execution where a network id is required to start monitoring the

specified network. The recorded information is displayed for each node and in case

of any change, it is highlighted for consideration. The server-side scheduler schedules

tasks to run after every few minutes to keep track of changes.

Please provide network id: 50.50.50.0

Server scheduler started at 21:21:19

21:21:19 Fetching existing data...

Win10: [Processes: 55 , Users: 3 , Apps: 5 , Open Ports: 19 , Vulner-

abilities: 227]

... more ...

Ubuntu20: [Processes: 187 , Users: 12 , Apps: 9 , Open Ports: 2 , Vul-
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nerabilities: 430]

** Starting network scanner at 21:22:19

Found 10 alive hosts. Newly discovered node(s) 2

** New host(s): [’50.50.50.90’, ’50.50.50.99’]

21:26:20 Looking for changes in node processes, applications, and ports...

** 4 New process(es) found **

Win10: [’SystemSettingsBroker.exe’, ’sppsvc.exe’, ’SppExtComObj.Exe’, ’Ap-

plicationFrameHost.exe’]

** 1 New application(s) found **

Win10: [’Free Cam 8’]

No new open ports found.

No new vulnerabilities found.

... more ...

We can see that 2 new nodes on the network are found, and 4 new processes with 1

new application on the Win10 node are detected and prompted in the above sample.

(ii) Remote Profiling Agent: CyVIA initially detects network nodes remotely and

tries to obtain individual node information using a remote profiling agent as shown

previously in the output sample. During this process, not necessarily all nodes are

discovered depending on the security settings on each node. The undiscovered node(s)

information is further captured with the help of the local profiling agent discussed

next. This process took ≈ 10 minutes in our case of 14 nodes network. The informa-

tion captured is stored and the sample output is as follows:

Please provide router IP / Network ID: 50.50.50.1

Scanning network please wait...

Found host: 50.50.50.1

Found host: 50.50.50.5
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... more ...

Total alive hosts: 9

Scanning hosts, please wait...

Collecting information for the IP 50.50.50.1

Host: 50.50.50.1, State: up

OS Vendor: Linux, OS: Linux, OS Ver: 2.6.X, OS Type: general purpose, Ac-

curacy percent: 100.

Running protocol(s) : tcp

port : 22 state : open

port : 80 state : open

port : 443 state : open

... more ...

Figure 5.3: CyVIA Network Map

Figure 5.4: CyVIA Dependency Map

(iii) Client Side Scheduler: Client Scheduler is responsible for monitoring any new

process, application, or vulnerability on the client-side. The discovered items are
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reported to the server scheduler for further action. The client-side scheduler also

schedules tasks to run after every few minutes to keep track of changes. The sample

output is shown below.

Client scheduler started at 20:21:03

** Starting process scanner at 20:22:03

HostName: Win10 HostIP: 192.168.0.199

Running Processes: 55 Previously recorded: 55

Finding new processes if any...

## New application ApplicationFrameHost.exe found (not recorded previously)

with 55 processes:

."ApplicationFrameHost.exe": [

... "pid": 3796,

... "exe": "C:/Windows/System32/ApplicationFrameHost.exe",

... "username": "WIN10/IEUser",

... "num threads": 1,

... "cpu percent": 0.0,

... "memory percent": 0.5453594831106481,

... "cpu times": [

...... 0.125,

...... 0.21875,

...... 0.0,

...... 0.0

... ]

. ]

... more ...

** New PID 2100 under MsMpEng.exe

** New PID 4996 under NisSrv.exe
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** New PID 1444 under OneDrive.exe

Found 1 new application(s) and 3 new process(es) among the 55 currently run-

ning.

Recording newly discovered process... Done.

(iv) Local Profiling Agent: With the help of the local administrator, a local agent can

be deployed and executed on each node on the network that captures the remaining

pieces of information required to complete the node profiles. This process takes ≈ 1

minute on each node and ≈ 14 minutes for the entire network. The administrator can

verify the captured information and fine-tune node profiles as discussed in Sections

5.3.2 and 5.4.

b) Interdependency Between Nodes - Service Mapping

Complete node profiles allow CyVIA to generate network and dependency diagrams as seen

in Figure. 7.3 and Figure. 7.4. This allows the administrator to understand the network

hierarchy and service load on each node. We can see that node 50.50.50.1 and 50.50.50.9

has a higher number of service dependants as compared with other nodes on the network.

This process takes a few seconds to generate the analysis.

c) The severity of Nodes

Nodes can be flagged critical in several ways, as discussed above, a node with the highest

number of dependents is also critical for the network. Two major risk categories used by

CyVIA to flag critical nodes are as follows:

(i) Control-Based Risk: During this process, CyVIA at first ensures that the control

documents exist and respective weights are assigned to each of the categories. After

this, each node is analyzed in terms of control security based on the control and ad-

versarial policy applied to each node. The following output sample shows an analysis

of three different cases during this process.
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Table 5.2: CyVIA Node and Infrastructure-based Control Risk
IP Node M Av M Ap G Av G Ap O Av O Ap Deps. NR CR

50.50.50.1 Router1 12 12 2 2 2 2 13 0.00 0.00

50.50.50.9 Win2016 12 12 3 3 2 2 12 0.00 0.00

50.50.50.8 Win2012 12 5 3 2 2 1 6 0.51 0.11

50.50.50.6 Win10 7 3 2 2 7 3 3 0.43 0.10

50.50.50.27 Raspbian 7 0 2 0 7 0 1 1.00 0.22

50.50.50.5 Win8 7 4 2 0 7 6 1 0.54 0.12

50.50.50.24 Debian10 7 2 2 2 7 4 1 0.51 0.11

50.50.50.4 Win7 7 4 2 1 7 5 1 0.44 0.10

50.50.50.29 Ubuntu18 7 6 2 0 7 5 1 0.37 0.08

50.50.50.25 Fedora33 7 7 2 0 7 4 1 0.29 0.06

50.50.50.23 Centos 7 6 2 1 7 7 1 0.21 0.04

50.50.50.30 Ubuntu20 7 5 2 2 7 6 1 0.20 0.04

50.50.50.7 Win11 7 7 2 2 7 7 1 0.00 0.00

50.50.50.28 Ubuntu16 7 7 2 2 7 7 1 0.00 0.00

50.50.50.26 openSUSE 7 7 2 2 7 7 1 0.00 0.00

Host: Win11, IP: 50.50.50.7

Must have controls: 7 applied, out of 7

Good to have controls: 2 applied, out of 2

Optional controls: 7 applied, out of 7

All recommended controls applied

Host: Win10, IP: 50.50.50.6

Must have controls: 3 applied, out of 7

Good to have controls: 2 applied, out of 2

Optional controls: 3 applied, out of 7

Recommended controls not applied: [’T2:M -> T2:0’, ’T6:M -> T6:0’, ’A2:M

-> A2:0’, ’A4:M -> A4:0’]

Matched controls: [’T1:M’, ’T3:G’, ’T4:O’, ’T5:O’, ’T7:G’, ’T8:O’, ’P1:O’,

’P2:O’, ’P3:O’, ’P4:O’, ’P5:N’, ’P6:N’, ’A1:M’, ’A3:M’]

Host: Raspbian, IP: 50.50.50.27

Must have controls: 0 applied, out of 7
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Good to have controls: 0 applied, out of 2

Optional controls: 0 applied, out of 7

Recommended controls not applied: [’T1:M -> T1:0’, ’T2:M -> T2:0’, ’T3:G

-> T3:0’, ’T6:M -> T6:0’, ’T7:G -> T7:0’, ’A1:M -> A1:0’, ’A2:M -> A2:0’,

’A3:M -> A3:0’, ’A4:M -> A4:0’] Matched controls: [’T4:O’, ’T5:O’, ’T8:O’,

’P1:O’, ’P2:O’, ’P3:O’, ’P4:O’, ’P5:N’, ’P6:N’]

... more nodes ...

Table 5.3: CyVIA Infrastructure-based Risk Summary

IP Node O.P. Apps. High Med. Low Total CR VR TR

50.50.50.27 Raspbian 2 1,824 4,070 6,326 909 11,305 0.22 0.30 0.26

50.50.50.8 Win2012 39 43 4,780 2,957 888 8,625 0.11 0.23 0.17

50.50.50.9 Win2016 17 42 6,347 3,657 588 10,592 0.00 0.28 0.14

50.50.50.24 Debian10 1 1,618 965 2,043 423 3,431 0.11 0.09 0.10

50.50.50.5 Win8 15 25 572 570 253 1,395 0.12 0.04 0.08

50.50.50.6 Win10 19 30 329 679 92 1,100 0.10 0.03 0.06

50.50.50.4 Win7 10 23 113 56 6 175 0.10 0.00 0.05

50.50.50.29 Ubuntu18 4 16 106 182 28 316 0.08 0.01 0.04

50.50.50.25 Fedora33 2 1,740 3 9 4 16 0.06 0.00 0.03

50.50.50.30 Ubuntu20 2 12 146 239 47 432 0.04 0.01 0.02

50.50.50.23 Centos 2 1,403 6 3 0 9 0.05 0.00 0.02

50.50.50.7 Win11 17 14 2 7 9 18 0.00 0.00 0.00

50.50.50.28 Ubuntu16 2 15 86 162 21 269 0.00 0.01 0.00

50.50.50.1 Router1 1 1 8 10 9 27 0.00 0.00 0.00

50.50.50.26 openSUSE 5 2,320 25 23 3 51 0.00 0.00 0.00

In the above example, workstation 50.50.50.7 has all controls applied, workstation

50.50.50.6 is missing 4 must have controls and 4 optional controls, and workstation
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50.50.50.27 has no controls applied. Must have controls are highlighted whereas the

optional controls are ignored because they are optional. Table 5.2 lists the net-

work nodes, applied controls, number of dependents, associated node-based, and

infrastructure-based control (CR). We can see that node 50.50.50.27 (Raspbian) has

no security control applied (M Ap, G Ap, O Ap) and it is at a high risk of 100%

(NR), followed by workstation 50.50.50.5 (Win8) at 54%. We can also see that nodes

50.50.50.1 and 50.50.50.9 have the highest number of dependents (Deps.). Please note

that nodes with risk 0 do not mean they are 100% secure. This process also takes a

few seconds to execute.

(ii) Vulnerability-Based Risk: CyVIA flags nodes based on the number of vulnera-

bilities found in each. There may be a case where on one hand a node has a higher

number of reported vulnerabilities most medium or low severities. And on the other

hand, a node with a high number of high severity vulnerabilities. CyVIA is not only

capable of highlighting both cases, but also the applications with the highest numbers

of reported vulnerabilities and their classifications. Table 5.3 provides a summary of

node-based vulnerabilities (Total), the number of applications (Apps.), open ports

(O.P.), control-risk (CR), vulnerability-risk (VR), and the aggregated risk (TR). We

can see that node 50.50.50.27 (Raspbian) has the highest number of vulnerabilities

(30%), highest control risk (22%), and the highest risk portion within the infras-

tructure (26%). This process takes ≈ 1 minute, and depending on the number of

applications installed on a node it can take up to 4 minutes. For our network, it took

≈ 20 minutes to complete the analysis.

d) Additional Analysis

CyVIA produces various analyses that play a significant role in securing the cyber infras-

tructure. Table 7.5 provides information about the top 10 most vulnerable products with

the highest number of vulnerabilities and their associated weakness types found by CyVIA.
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Table 5.4: CyVIA Infrastructure-based Top 10 Most Vulnerable Products

S# Product CVEs CWEs

1 Microsoft MPI ... 6,377 97

2 jackd 5+nmu1 3,070 87

3 chromium 90.0.4430... 1,468 59

4 Windows 8.1 Enterprise 1,107 62

5 Windows Server 2012 R2 949 42

6 ssh 1:7.9p1-10 748 73

7 SQL Server 2017 640 37

8 zip 3.0-11+b1 584 54

9 SQL Server 2017 516 14

10 SQL Server 2017 516 14

Table 5.5 on the other hand provides information on which product has the highest ob-

served mean, max, and mode scores. Although Microsoft MPI has the highest number of

reported vulnerabilities (6,377), however, simple-scan has the highest vulnerability scores,

meaning it is more vulnerable as compared with Microsoft MPI. Furthermore, Table 5.6

spotlights the top 10 weakness types, their percentage and count. For example, 12.20%

vulnerabilities fall under SQL injection type and 11.15% are related to buffer overflow.

Figure 5.5 provides information on the open ports found on each node versus the actual

number of dependents. For example, node Win2012 has 39 ports open whereas the actual

number of dependents is only 6. This raises a red flag for the administrator. Figure 5.6

illustrates an overview of control and vulnerability risk. Node Raspbian has the highest

control and vulnerability risk as compared with all other nodes, whereas nodes Win11,

Router1, and OpenSUSE15 have very low risks. Figure 5.7 provides the percentage of

vulnerability severities and access vector. Among the found vulnerabilities, 46.5% are high

severity and 83.5% can be exploited through network access. Table 5.7 provides further

statistics related to the found vulnerability severities. We can observe a low standard

73



Table 5.5: CyVIA Infrastructure-based Top 10 Mean, Max, and Mode Scores

Product Mean Max Mode

simple-scan 3.30.1.1-1+b1 10.0 6.40 10.0

gpicview 0.2.5-2+b1 10.0 6.39 10.0

tcl8.6 8.6.9+dfsg-2 10.0 10.00 10.0

lp-solve 5.5.0.15-4+b1 10.0 6.40 10.0

SolarWinds Collector 10.0 10.00 10.0

mscompress 0.4-3+b1 10.0 6.40 10.0

eog 3.28.4-2+b1 10.0 6.38 10.0

enchant 1.6.0-11.1+b1 10.0 6.42 10.0

user-setup 1.81 10.0 7.03 10.0

whiptail 0.52.20-8 10.0 10.00 10.0

deviation for the high severity vulnerabilities meaning most high severity vulnerabilities are

closer to the mean value i.e. 8.29, which can also be noticed by the percentile values. Figure

5.8 highlights the top 10 CVEs found among the current network nodes. Similarly, CyVIA

is capable of highlighting common CVEs across different products or the vulnerabilities that

are present in multiple products. This is very helpful for generating relational analysis.

CVE-2010-1444: [’vlc 3.0...’, ’zip 3.0..’]

CVE-2018-6559: [’Ubuntu16...’, ’Ubuntu18...’, ’Ubuntu20...’]

CVE-2015-0095: [’Microsoft MPI...’, ’Windows 8.1...’, ’Server2012...’]

CVE-2017-9383: [’curl 7.47...’, ’curl 7.64...’, ’wget 1.20...’, ’curl 7.58...’,

’curl 7.68...’]

Furthermore, CyVIA provides detailed information about each network node. For ex-

ample, CVE-2019-12068 is the most common vulnerability among the 11,305 found vul-

nerabilities on the high-risk node (Raspbian). This vulnerability is basically a software
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Table 5.6: CyVIA Infrastructure-based Top 10 Weakness Types

Description % Count

Other 14.73 5,563

SQL Injection 12.20 4,607

Buffer Overflow 11.15 4,211

Insufficient Information 8.97 3,388

Improper Input Validation 6.17 2,330

Cross-site Scripting 5.55 2,095

Unauthorized Access 5.45 2,057

Access Controls 4.70 1,774

Resource Management Errors 3.18 1,200

Code Injection 3.11 1,176

Table 5.7: CyVIA Infrastructure-Based Vulnerability Severity Analysis

Sv. Count Mean Std. Min 50% 75% Max

H 17558 8.29 1.0 7.1 7.6 9.3 10.0

M 16923 5.30 1.0 4.0 5.0 6.5 6.9

L 3281 2.58 0.7 1.0 2.1 3.5 3.8

bug (an infinite loop) that can lead to a successful denial-of-service attack. 36% of these

vulnerabilities are high severity, 53.5% can be exploited via the network, and the majority

of vulnerabilities belong to the class ”Other,” followed by ”Cross-site Scripting”. On the

given network cluster, there are 37,761 vulnerabilities found in total and for 156 vulner-

abilities, no information is found within the CyVIA dataset. These are newly discovered

vulnerabilities for which relational information within the CyVIA dataset was not present

at the time of the scan. The server-side scheduler is responsible to update vulnerability

information and is currently set to update once a week.
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Figure 5.5: CyVIA Infrastructure-based Open Ports vs Dependents

Figure 5.6: CyVIA Infrastructure-based Control and Vulnerability Risks

e) Potential Consequences and Mitigation

After identifying the found weaknesses in the infrastructure, CyVIA is capable of educating

the cyber defender about the common consequences caused by the found weaknesses and

at the same time how to mitigate them. The sample output below provides the information

about CWE-200 i.e. unauthorized access.

CWE-200 - Exposure of Sensitive Information to an Unauthorized Actor...

CWE-200 - Common Consequences:

. Confidentiality:

.. IMPACT:
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Figure 5.7: CyVIA Infrastructure-based Severity and Vulnerability Access Vector

Figure 5.8: CyVIA Infrastructure-based Top 10 CVEs

.. - Read Application Data

CWE-200 - Potential Mitigations:

. Architecture and Design:

.. DESCRIPTION:

.. - Compartmentalize the system to have safe areas where trust boundaries can

be ... more ...

.. STRATEGY:

.. - Separation of Privilege.
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5.8.2 Analysis by other Tools

The trial version of Nessus Essentials allows scanning of up to 16 nodes on the network.

Nessus results showed asset classification based on vulnerability severity as seen in Table

5.8. On the other hand, Nessus also provides remediation information for the found vul-

nerabilities. As per the results, node 50.50.50.8 i.e. a Windows Server 2012 R2 has the

highest number of found vulnerabilities followed by 50.50.50.26 (OpenSuse 15.2.1). Time

taken by Nessus to scan the network was ≈ 33 minutes.

Table 5.8: Nessus Results

Node Critical High Med Low T.

Server2012 25 238 83 8 354

OpenSUSE 29 106 63 5 203

Debian10 36 85 18 1 140

Server2016 16 51 23 0 90

Fedora33 5 49 22 1 77

Ubuntu16 7 13 6 0 26

Win81 0 2 8 1 11

Ubuntu18 3 5 3 0 11

Centos831 1 5 3 1 10

Raspbian 1 6 1 0 8

Win7 1 1 1 0 3

Win10 0 0 2 0 2

Win11 0 0 2 0 2

Ubuntu20 0 1 1 0 2

InsightVM by Rapid7 allows the creation of sites and asset assignments to each site

making asset management much easier. InsightVM keeps track of asset risk over time,

providing a classification of assets by OS (Windows, Linux, etc.), exploitability (by adver-
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sary skill e.g. novice, intermediate, expert, etc.), vulnerabilities, exploits, malware, and risk

scores. InsightVM also keeps track of software packages and services. The results generated

are shown in Table 5.9. It was observed that node 50.50.50.9 (Server2016) has the highest

number of vulnerabilities, however, node 50.50.50.8 (Server2012) has the highest risk score

value compared with node 50.50.50.9. Time taken by InsightVM to scan the network was

≈ 10 minutes.

Table 5.9: InsightVM Results

Node Exploits Malw. Vulns. Risk

Server2016 134 0 1,946 670,047

Server2012 342 10 1,798 700,461

OpenSUSE 11 0 751 159,590

Debian10 9 0 595 162,486

Win7 16 0 567 170,516

Win10 4 0 142 30,080

Raspbian 0 0 63 11,682

Ubuntu16 0 0 61 17,308

Centos831 1 0 56 11,411

Win81 3 0 37 16,718

Ubuntu18 0 0 17 8,508

Win11 0 0 4 845

Ubuntu20 0 0 4 1,495

Fedora33 0 0 3 742

Open Vulnerability Assessment System (OpenVAS) has become a part of Greenbone

Vulnerability Manager (GVM) which is still available to the community. GSM, on the

other hand, is the professional edition and is only available under multiple licensing options

similar to InsightVM and Nessus. GSM classifies the nodes by severity of nodes and OS

severity based on the found vulnerabilities. GSM also generates network topology based
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Table 5.10: GSM Results

Node Sev. Score H. M. L. T.

OpenSUSE High 9.3 39 110 10 159

Debian10 High 10 48 80 7 135

Fedora33 High 7.2 9 13 5 27

Win10 High 7.7 2 14 0 16

Win81 High 7.8 3 7 1 11

Server2012 High 10 1 9 1 11

Win7 High 7.8 3 4 1 8

Raspbian High 7.5 1 3 2 6

Ubuntu16 Med. 4.9 0 2 2 4

Ubuntu18 High 10 1 2 1 4

Win11 Med. 5 0 1 1 2

Server2016 Med. 5 0 1 1 2

Centos831 Med. 4.3 0 1 1 2

Ubuntu 20 Low 2.6 0 0 2 2

on the found network nodes and keeps track of open ports and installed packages. Results

generated by GSM are shown in Table 5.10. We can see that node 50.50.50.26 (OpenSUSE

15.2 1) has the highest number of vulnerabilities found, followed by 50.50.50.24 (Debian

10). Time taken by GSM to scan the network was ≈ 48 minutes.

5.8.3 Comparison of CyVIA with Other Tools

Each tool has some strengths that make the tool better than the other, for example, Green-

bone tools are open-sourced and still available to the community whereas Tenable and

Rapid7 products are not. Tenable provides customize-able reports options whereas Green-

bone products do not offer such rich reporting options. Rapid7 on the other hand provides

a very informative interface and customize-able reports as well. Among the three tools,
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Greenbone is very stable and ran without any issues, whereas Rapid7 took the minimum

time for scanning the network and generating analysis. One main difference between these

tools and CyVIA is that all three generate on-demand analysis whereas CyVIA provides

dynamic risk assessment and keeps the administrator informed at all times for any changes

in node configurations or risk. Table 5.11 lists the vulnerability counts by all four tools,

however, CyVIA provides further details of contextual cyber risk assessment that is very

useful for the administrator.

Table 5.11: Tool Comparison in Terms of Detected Vulnerabilities

Node CyVIA O.VAS Nessus Nexpose

Win7 175 8 3 567

Win81 1,395 11 11 37

Win10 1,100 16 2 142

Windows11 18 2 2 4

Server2012 8,625 11 354 1,798

Server2016 10,592 2 90 1,946

Centos831 9 2 10 56

Debian10 3,431 135 140 595

Fedora33 16 27 77 3

OpenSUSE 51 159 203 751

Raspbian 11,305 6 8 63

Ubuntu16 269 4 26 61

Ubuntu18 316 4 11 17

Ubuntu20 432 2 2 4

The number of observed vulnerabilities in CyVIA is higher compared to other tools due

to CyVIA’s comprehensive consideration of vulnerabilities present in both the operating

system (OS) and each user-installed application. Table 5.12 presents the specific numbers

of reported vulnerabilities for individual products installed on the Win81 node. It is evident
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that CyVIA reported 1395 Common Vulnerabilities and Exposures (CVEs) for this node,

whereas other tools reported significantly lower numbers: 11, 11, and 37 vulnerabilities, as

indicated in Table 5.11. However, Table 5.12 reports a total of 2672 vulnerabilities for the

Win81 node [101]. This disparity arises because a single vulnerability may exist in multiple

products, and CyVIA takes this into account by reporting only unique vulnerabilities for

each node. MITRE’s CVE search list can be accessed at: https://cve.mitre.org/cve/

search_cve_list.html.

Additionally, CyVIA goes beyond other tools by providing more in-depth insights into

infrastructure-based risk and node-based risk, highlighting critical areas across the entire

system. Conversely, other tools primarily focus on specific aspects of individual nodes,

offering a narrower perspective.

5.9 Summary

Heterogeneity in cyberspace has introduced a wide spectrum of weaknesses and uncertain-

ties for cyber defenders to defend against. In such a scenario, keeping the organizational

infrastructure safe is a major challenge. To address the research question Q2 under the

objective B, we present a threat intelligence system CyVIA, that provides contextual cyber

situational awareness to a cyber defender. CyVIA considers various key elements that play

a significant role in evaluating organizational cybersecurity. We evaluate CyVIA on a net-

work cluster and compare the results with the state-of-the-art. Our results indicate that

CyVIA provides an extensive amount of analyses indicating infrastructure-based loopholes

as compared with other tools. This work is published at the EAI Endorsed Transactions

on Security and Safety 8.30 (2022).

The upcoming chapter of this dissertation will showcase our efforts on developing an

AI-based prediction engine. This prediction engine is aimed at enhancing the analysis

process by efficiently predicting potential attack types based on identified vulnerabilities

and loopholes within the cyber infrastructure.
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Table 5.12: Reported Vulnerabilities in Products by MITRE

Product Reported CVEs

Windows 8.1 Enterprise Evaluation Build 9600 1184

Python 3.7.7 Core Interpreter (64bit) 3.7.7150.0 3

Python 3.7.7 Test Suite (64bit) 3.7.7150.0 143

Python 3.7.7 pip Bootstrap (64bit) 3.7.7150.0 7

Python 3.7.7 Executables (64bit) 3.7.7150.0 2

Python 3.7.7 Utility Scripts (64bit) 3.7.7150.0 25

Python 3.7.7 Tcl/Tk Support (64bit) 3.7.7150.0 27

Python 3.7.7 Development Libraries 3.7.7150.0 27

Microsoft Visual C++ 2013 x86 12.0.21005 9

Python Launcher 3.7.7008.0 834

TunnelBear 4.2.10.0 1

SolarWinds Agent 2020.2.2593.5 120.2.2593.5 5

Adobe Acrobat Reader DC 21.005.20048 340

Microsoft Visual C++ 2008 9.0.30729.6161 5

Java(TM) SE Development Kit 16.0.1 16.0.1.0 15

Microsoft Visual C++ 2015 x86 14.0.24215 9

PuTTY release 0.75 (64bit) 0.75.0.0 2

GlobalProtect 5.2.4 1

Microsoft Silverlight 5.1.50918.0 33

Total CVEs 2672
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Chapter 6

Dynamic Vulnerability Classification

Cyber-threat landscape and adversarial capabilities have strengthened significantly due to

the digital transformation and increased computational capacity of individuals. To stay

ahead in the game, a cyber defender must have full situational awareness of any existing

infrastructural vulnerabilities. Leveraging vulnerability reports from NVD, MITRE, Twit-

ter, etc., is an uphill task as one must find the existing vulnerabilities first, find vulnerability

reports for the same, and then prepare a mitigation plan by going through each report in-

dividually. Moreover, human attention is needed to understand the context and decide

whether the risk is acceptable or actionable. In this Chapter, we present the architecture

and implementation of the AI-based prediction engine for our CyVIA framework to classify

vulnerability reports based on inferred attack types to to address research questions Q1

under the objective C. This AI-engine speeds up the vulnerability analysis process for cyber

defenders by providing the applicable attack types on the evaluated infrastructure. We test

various unsupervised and supervised machine learning models to classify vulnerability re-

ports. Furthermore, we compare the results, tune the best-observed models, and propose a

final fully trained model with the highest accuracy for classifying new vulnerability reports.

6.1 AI-Based Prediction Engine

This Section describes the detailed approach to infer vulnerability reports in order to de-

termine the various types of attacks the cyber infrastructure is exposed to. We discuss

the vulnerability dataset, implementation and evaluation strategies, and the different ML

models we train to find the best model to identify the trends and patterns for vulnerability
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data. Fig. 7.1 presents the overall AI-based prediction engine (AI-engine) architecture and

the different phases. We utilize CyVIA’s automatically curated vulnerability dataset from

multiple online sources. This work primarily focuses on the AI-engine, which has two sub-

modules, classification, and inferencing, as seen in Fig. 7.1. We introduce the classification

component here, which has three different stages, 1) Analysis: responsible for finding hid-

den groups of data within the vulnerability reports, 2) Labeling: responsible for preparing

the ground truth dataset, and 3) Classification: classifying vulnerability documents. We

discuss each in the following subsections.

Figure 6.1: CyVIA AI-based Prediction Engine Architecture v1

6.1.1 Dataset Overview

The VDB Wrapper module of CyVIA is responsible for curating vulnerability data from

external vulnerability databases. This data is then organized in the CyVIA knowledge-

base based on the relationships found between data elements such as vulnerability ID

and weakness types. It includes vulnerability reports from the year 2001 to the present.

This data is obtained, processed, and updated regularly by our continuous risk assessment
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framework CyVIA [99]. The dataset currently contains 201,416 vulnerability documents

with 20 different features. The vulnerability reports are available under each document’s

‘description‘ feature. Our main goal is to extract attack information (kind of attack) from

each report description and classify new vulnerability reports according to the attack class

inferred by each description. This data, however, is not labeled; we experiment with various

ways to find distinct groups within the dataset. We also intend to manually label random

documents from the discovered groups and train multiple ML algorithms to find the best

classifier. Our strategy for dealing with this issue is as follows:

6.1.2 Implementation Strategy

In this Section, we discuss and present the step-by-step process that we have followed to

implement the AI-based prediction engine.

Data Analysis

In the first step, we analyze data to find the hidden groups of vulnerabilities. The input

of this stage is unlabelled vulnerability documents collected by CyVIA from the data col-

lection stage. We use K-Means clustering to identify vulnerability clusters and the Elbow

method [102] to find the optimal number of clusters. On the other hand, we also imple-

ment the Latent Dirichlet Allocation (LDA) [103] model to see the different topics within

the vulnerability documents. And to find the best number of topics, we use GridSearch

with LDA. This stage results different clusters and Topics representing different groups

in the vulnerability dataset. We analyze both results and take random samples from the

best-observed method to start labeling the vulnerability documents.

Labeling

In this stage, we select random samples from each cluster or topics group and label the kind

of attack as observed within the vulnerability descriptions. There can be several types of
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attacks, including buffer overflow, code injection, cross-site scripting, and so on. Our list

contains 36 different types of attacks collected from MITRE and other sources. We take

two different approaches for labeling: first, we ask a set of experts to label the randomly

selected subset of vulnerability documents based on the results from the previous stage and

then feed the same documents to a set of zero-shot learning models. Zero-shot learning is

developed for scenarios where the ML algorithms have seen few or no examples. This type

of classification is known as also known as classification on the fly. We implement zero-

shot learning algorithms BERT, Flair, and Transformer models (Bart-large-mnli, Cross-

Encoder, Bart-large-nli) [104,105]. Both the experts and zero-shot algorithms are provided

with the same set of attack type labels for labeling. We then combine the labeled data from

experts and zero-shot models and take the max count of assigned labels for each document.

After carefully observing the final labels, we feed the labeled data to different classification

algorithms in the next stage.

Classification

Once the labels are ready, we start processing the data for training. We use different

classification algorithms, such as K-Nearest Neighbors, Decision Trees, Support Vector

Machines, etc., to find the best classifier with the highest accuracy. These algrithms are

non-parametric models, that do not rely on specific parameter settings, and hence, produce

more accurate results. We also use pre-trained and learned word embedding models for

classifying our labeled dataset to see if we can achieve better results. The outcome of this

stage is the best resulting algorithm which is then tuned further to improve the performance

and results. We plan to classify the remaining and newly received vulnerability documents

with the best-observed ML model.
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6.2 Evaluation Strategy

Because we have a multi-stage implementation strategy, we compare each model’s perfor-

mance and results with other models implemented at the same stage. We use hyperparam-

eter tuning to improve the model’s performance and accuracy, producing the best results

before proceeding to the next step.

6.3 Baseline and Evaluation Metrics

As we have more than one ML algorithms in play, we plan to use the first-level classification

as our baseline. Over time, we tune our models to improve their performance and results.

We plan to evaluate the performance of the trained models based on various metrics such

as accuracies, F1 scores, precision, and recall. This entire process is repeated periodically

when CyVIA’s VDB Wrapper module curates new vulnerability data from external sources.

In the next section, we discuss the performance of each algorithm in detail.

6.4 Results

We ran our Python code on a 16 Core Intel(R) Xeon(R) 2.10GHz CPU with 32GB RAM.

The datasets, labels, notebooks, and trained models are available for the research com-

munity with other information pieces on our Git repository1. This section discusses our

evaluation strategy for each stage, as shown in Fig. 7.1.

6.4.1 Vulnerability Data Analysis

To segment the unlabeled vulnerability dataset, we used two approaches: K-Means cluster-

ing and LDA topic modeling. Finding the optimal number of clusters took ≈ 15 minutes

and returned k = 16 as the most promising number of groups residing within the dataset

1https://github.com/trucyber/Risk-Assessment-Framework
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we provided. GridSearch, on the other hand, took ≈ 5 hours to complete and returned

n components = 10 as the best number of topics. After analyzing the clusters and top-

ics by random sampling, we noticed multiple subgroups of data present inside each topic

group. In contrast, the K-Means returned comparatively cleaner and well-organized indi-

vidual groups of data. Additionally, K-Means ran much faster in terms of time than LDA;

therefore, we decide to proceed further with K-Means results.

Table 6.1: Labeling Summary of Domain Experts

Experts Found Attack Types

Expert 1 13

Expert 2 14

Expert 3 16

Figure 6.2: Top 10 Experts Labels

6.4.2 Labeling

We took 100 random samples from each cluster and generated a new dataset containing

1,400 random documents for labeling, removing vulnerability documents containing re-

89



jected, and disputed entries [106]. Although the K-Means provide 16 different clusters, we

engineer 36 different classes to represent the types of attacks upon analyzing data. How-

ever, these types are limited to the 172,288 vulnerability documents within the collected

vulnerability dataset. We provide these 1,400 random documents with 36 attack labels to

a set of cybersecurity researchers to label them based on the observed attack type found

in each vulnerability description. Table 6.1 summarizes the time taken and the number of

attacks found by each expert. Fig. 6.2, on the other hand, highlights the top 10 attack

types as labeled by the experts. It is apparent that the experts are on the same page for

most types of attacks.

Table 6.2: Labeling Summary of Zero-Shot Models

Models Labeling Time Found Attack Types

BERT 20 min 25

Flair 1 hour 15

Bart-large-mnli 3 hours 25

Cross-Encoder 21 min 32

Bart-large-nli 2 hours 25

Furthermore, we used five zero-shot classification algorithms to label the same data.

Table 6.2 shows that BERT took the minimum time to label the provided data and returned

25 attack types. On the other hand, Cross-Encoder took around a similar time but returned

the widest range of attack types compared to all other algorithms. Zero-shot algorithms

took 20 minutes to 3 hours to label the 1,400 documents. Fig. 6.3 illustrates the count of

correctly classified top 10 attack types as labeled by the zero-shot models. This is useful in

illustrating which zero-shot models accurately predicted the labels. Figure 6.4 illustrates

the count of predicted attack types by the zero-shot models and the expert predictions

for each type of predicted attack. Table 6.3 presents a detailed analysis of these zero-shot

labels, revealing that BERT has the highest number of incorrect label predictions, while

CE has the lowest compared to the final expert labels. Additionally, Figure 6.5 provides
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Figure 6.3: Top 10 Zero-shot Labels

Table 6.3: Misclassification Rate of Zero-shot Models

BERT Flair BL CE BLTC

# of Misclassified Labels 1340 1206 610 515 610

Percentage 95.71 86.14 43.57 36.79 43.57

valuable insights into the found attack types by both the experts and zero-shot models. It

is evident from the figure that the final labels encompass the majority of observed votes.

As discussed next, we feed this labeled ground truth to different classification algorithms

to find a potential model best suited for our situation.

6.4.3 Multi-class Classification of the Vulnerability Data

The aim of this study was to compare the performance of various classification algorithms

in the multi-class classification of vulnerability data and to determine how to optimize their

accuracy. The preprocessing stage involved using the TF-IDF Vectorizer with stop words
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Figure 6.4: Top 10 Correctly Classified Labels

removal, resulting in 5891 features from 1400 labeled vulnerability documents. An 80/20

training/test split was used to evaluate the following classification algorithms:

a) Support Vector Machine (SVM)

SVM is suitable for datasets with small number of features and a large number of samples.

We ran SVM with default parameters and the model returned 80% accuracy in ≈ 1.9

seconds.
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Figure 6.5: Found Attack Types

b) Linear Support Vector Machine (LinearSVM)

LinearSVM took comparatively less time than SVC (0.4 seconds), and returned higher

accuracy (85%). This is mainly because we have high-dimensional text data where the

number of features is larger than the number of samples. This data is linearly separable

LinearSVM can handle this situation more efficiently and can be trained faster than the

SVM.

c) KNeighbors

We ran K-Nearest Neighbors algorithm with k ranging from 1 to 12. It took ≈ 1.38

seconds to find the best k, i.e., 9, with an accuracy of 78%. Similar to SVM, KNeighbors’s

performance can also be impacted by the high dimensionality and sparsity of the text data.

d) Random Forest

This algorithm may not be the best choice for text classification but it has the ability to

handle high-dimensional feature spaces and can handle noisy and missing data. With the
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default parameters, this model returned the accuracy of 85% in ≈ 0.9 seconds, which is as

good as LinearSVM.

e) Naive Bayes

We implemented Multinomial, Gaussian, and Bernoulli Naive Bayes models. These models

are commonly used for text classification tasks and have shown to perform well in various

scenarios. Among the three, Bernoulli returned the highest classification accuracy of 81%

in ≈ 0.06 seconds.

f) Decision Tree

With a depth ranging from 1 to 14, Decision Tree took ≈ 2.4 seconds and returned 82%

accuracy on depth 14. As this algorithm is prone to overfitting in case of high-dimensional

data, but in our case, it ran as good as Naive Bayes Bernoulli.

g) Artificial Neural Network (ANN)

To configure an ANN on our dataset, we set up a Multilayer Perceptron with default

parameters and observed 82% accuracy in ≈ 29.17 seconds. ANNs are considered good for

text classification, however, their performance can be affected by the size of the dataset.

The labeled dataset in our case included 1600 examples, which is relatively on the lower

side.

h) Dense Network

Dense Neural Networks (DNN) are considered very good for text classification as they can

learn complex relationships between features and classes in the data and can handle high-

dimensional input spaces. However, similar to ANN, the size of the dataset is one main

reason for performance issues in case of a DNN. A network with two hidden layers, batch

size 16, and 10 epochs produced the best results (83%) among the other configurations we

have tried.
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i) Deep Neural Network

Although these models are suitable for classifying image data, we wanted to test how well

they perform for text classification. The results were not significantly different than ANN.

We configured VGG1 - VGG5 with variating batch sizes from 16 - 256 at ten epochs each.

VGG1 with batch size 32 returned the highest accuracy of 82%.

j) Word Embedding

We trained a word embedding model with our dataset and compared it against a pre-trained

model (glove [106]). The pre-trained model outperformed the other model by providing 5%

higher accuracy because it is trained on a large Wikipedia corpus.

6.4.4 Improvements and Model Tuning

We use the initial results discussed above as our baseline. Before tuning the best-observed

model, we take one step back to TF-IDF vectorizer to re-engineer the number of features to

reduce the noise in the data, keeping as much variation as needed to keep the originality of

the dataset. We removed multiple spaces, single characters, special characters, and terms

appearing in less than three documents and obtained term contexts using lemmatization.

This process reduced the number of features from 5891 to 1210 features, allowing the models

to run faster than before. Furthermore, we tune the following algorithms to improve the

results.

a) LinearSVM with Principal Component Analysis (PCA)

Dimensionality reduction is often used at the preprocessing stage; in our case, we apply

PCA on LinearSVM to outperform other algorithms. Using PCA, we reduced the number

of inputs from 1210 to 50 on LinearSVM. With Principal Component Analysis (PCA)

applied on top of LinearSVM, n components=300, the algorithm improved the accuracy

from 85% to 89%. To evaluate the model, we observe the f1-score, which considers both
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false positives and false negatives. We can observe in Fig. 6.6 that the model works very

well for all the classes except 8, 11, 14, and 16, as there was not enough data available for

these. The weighted average of f1 demonstrates the efficiency of our model.

Figure 6.6: Classification Report of LinearSVM with PCA

b) Dense Network with PCA

As PCA improved the results for LinearSVM, we designed a dense network with PCA

with two hidden layers (500,500), batch size=16. This improved the results of the Dense

Network from 83% to 85%.

c) Word Embedding

Word Embedding is widely used for text analysis; we trained our own Word Embedding

model using the vulnerability data and compared the results with a pre-trained model

glove. The pre-trained model ran slower but produced better results as compared to the

newly trained model.

96



6.4.5 Overall Results

Among the ML algorithms we have trained and evaluated on the vulnerability dataset, we

found Linear SVM performing better than other algorithms in classification accuracy and

performance. This is also because our data is highly dimensional, and SVM works better

with mapping high-dimensional feature space to categorize data points. We observed that

reducing the number of features has improved the results even further for most algorithms.

This shows that most of the text features in the vulnerability data are optional to clas-

sify attacks from the vulnerability documents. Furthermore, we got even better results

by applying PCA’s dimensionality reduction technique. As an example, if we consider the

following vulnerability description:

CVE-2018-21215: Certain NETGEAR devices are affected by a buffer overflow by an

unauthenticated attacker. This affects D3600 before 1.0.0.67, D6000 before 1.0.0.67, D6100

before 1.0.0.56, EX2700 before 1.0.1.28, R7500v2 before 1.0.3.24, R9000 before 1.0.2.52,

WN2000RPTv3 before 1.0.1.20, WN3000RPv3 before 1.0.2.50, and WN3100RPv2 before

1.0.0.56.

One can identify the type of attack highlighted in CVE-2018-21215 is a buffer overflow.

The first part of the vulnerability description highlights the vulnerability type, followed by

impact and vendor information, which is not essential to extract the attack information at

this point in our case. Similarly, the following two examples highlight code injection and

cross-site scripting.

CVE-2020-7623: jscover through 1.0.0 is vulnerable to Command Injection. It allows exe-

cution of arbitrary command via the source argument.

CVE-2012-2644: Cross-site scripting (XSS) vulnerability in the MT4i plugin 3.1 beta 4 and

earlier for Movable Type allows remote attackers to inject arbitrary web script or HTML

97



via unspecified vectors, a different vulnerability than CVE-2012-2642.

Table 6.4: Final Experimental Results

Algorithm Accuracy Execution Time

Support Vector Machine 0.8047 1.9834 secs

Linear SVM 0.8542 0.4531 secs

K-Nearest Neighbors 0.7828 0.0045 secs

Random Forest 0.8516 0.7722 secs

Bernouli Naive Bayes 0.8081 0.0630 secs

Decision Tree 0.8187 0.2226 secs

Multilayer Perceptron 0.8203 26.9247 secs

Linear SVM with PCA 0.8928 8.1363 secs

Dense Network 0.8338 1 sec / epoch (10 Total)

Dense Network with PCA 0.8469 1 sec / epoch (10 Total)

Deep Neural Network (VGG1) 0.8222 1 sec / epoch / batch

Word Embedding Learned 0.7525 2 sec / epoch (20 Total)

Word Embedding Pre-Trained 0.8015 12 sec / epoch (20 Total)

Table 6.4 lists the algorithms, their accuracies, and the execution time. We can see

that the Linear SVM with PCA has outperformed all other algorithms; Fig. 6.6 shows the

confusion matrix and classification report. We can see that four classes (8, 11, 14, 16) have

zero precision and recall because all four classes have very few examples in the training

and test data (4, 1, 3, 0, and 2, 1, 1, 1, respectively). Although we have taken an equal

number of random examples from each cluster, the final labels produced by experts and

ML models included some classes with very few examples as seen in Table 6.5. To overcome

this, we removed the classes with few examples and re-ran the experiment. However, this

did improve the performance or accuracy of the ML algorithms. On the other hand, we

were hopeful that the Word Embedding model would outperform other models, but the
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results show the classifier accuracy on the lower side as compared to other algorithms

(Table 6.4). Between the Learned and Pre-Trained Word Embedding models, Pre-Trained

produced better results with the trainable parameter set to True. Another observation

is that keeping smaller batch sizes in deep neural network models (batch size = 16-32)

produced the best results.

The outcome of the AI-engine is to determine the attack type from any vulnerability

description. The average vulnerability description is 283 characters; however, the descrip-

tions can be longer than this, and the max length we have noticed is 3819 characters long

among the labeled data. This output is fed back to the CyVIA framework providing the

types of attacks the infrastructure is prone to, and the mitigation plan is generated from

the CyVIA’s Threat Modeling and Risk Analysis module. A few examples of vulnerability

descriptions and related classification are as follows:

CVE-2021-20349: IBM Tivoli Workload Scheduler 9.4 and 9.5 is vulnerable to a stack-

based buffer overflow, caused by improper bounds checking. A local attacker could overflow

a buffer and gain lower level privileges. IBM X-Force ID: 194599. −→ Attack type: Buffer

Overflow.

CVE-2021-35504: Afian FileRun 2021.03.26 allows Remote Code Execution (by adminis-

trators) via the Check Path value for the ffmpeg binary. −→ Attack type: Code Injection.

CVE-2021-1230: A vulnerability with the Border Gateway Protocol (BGP) for Cisco Nexus

9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow

an unauthenticated, remote attacker to cause a routing process to crash, which could lead to

a denial of service (DoS) condition. This vulnerability is due to an issue with the installation

of routes upon receipt of a BGP update. An attacker could exploit this vulnerability by

sending a crafted BGP update to an affected device. A successful exploit could allow the

attacker to cause the routing process to crash, which could cause the device to reload. This
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vulnerability applies to both Internal BGP (IBGP) and External BGP (EBGP). Note: The

Cisco implementation of BGP accepts incoming BGP traffic from explicitly configured peers

only. To exploit this vulnerability, an attacker would need to send a specific BGP update

message over an established TCP connection that appears to come from a trusted BGP

peer. −→ Attack type: Denial of Service.

6.5 Summary

Staying abreast of the latest trends in cybersecurity poses a significant challenge for cyber

defenders. In response, we present a cyber situational awareness framework designed to

keep defenders and administrators informed about relevant threats. This work addresses

the research questions Q1 under the objective C, which is ”Identify and classify the risks

associated with the cyber infrastructure into multiple uniform groups by leveraging the un-

structured and unlabeled threat data”. We provide a comprehensive architecture and step-

by-step process flow of the AI engine for our threat-centric real-time analytics framework,

CyVIA. The objective of the AI engine is to accelerate the analysis and decision-making

process for defenders, allowing them to quickly identify the type of attacks to which an

infrastructure may be vulnerable and suggest immediate mitigation plans. This work has

been published in the proceedings of IEEE SYSCON 2023 conference.

Thus far, we have focused on identifying the risks associated with cyber infrastructure.

However, it is equally important to provide mitigation techniques to cyber defenders to

effectively manage and reduce these risks. In the next chapter, we will present the AI-

based inferencing engine, which is designed to propose mitigation strategies for the risks

identified through the CyVIA framework. This engine will leverage the power of AI to

provide defenders with valuable insights and recommendations for effective risk mitigation

strategies.
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Table 6.5: Final labels grouped by count

Attack Type Count

code injection 288

cross-site scripting 156

denial of service 155

sensitive data exposure 154

directory traversal 121

unauthorized access 111

man-in-the-middle 105

privilege escalation 95

buffer overflow 77

unknown attack 69

memory based attack 39

server-side request forgery 8

credentials 6

command and control 4

disabling security tools 4

brute force attack 2

web session cookie 2

host redirection 1

network sniffing 1

system misconfiguration 1
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Chapter 7

Scalable Cyber Risk Assessment and

Mitigation Framework

The increasing dependence on digital technology and the internet has made cybersecurity

a critical issue for organizations, with cyber-attacks becoming more frequent and sophisti-

cated. In this context, cyber risk evaluation and mitigation have become essential compo-

nents of modern cyber infrastructures to ensure the security and resilience of digital assets

and services in the face of ever-evolving cyber threats. To address the research question

Q2 under objective C, which is: ”Design a mitigation recommendation subsystem to assist

in resolving anomaly alerts in real-time.”, in this Chapter we emphasize the significance

of the Cyber-threats and Vulnerability Information Analysis to proactively understand the

cyber risks and abnormalities in real-time and provide appropriate mitigation strategies.

Our work incorporates an inferencing layer to our AI-engine focusing on cyber risk as-

sessment and mitigation. This inferencing layer prioritizes significant risks and presents a

mitigation plan to address them. We discuss the key steps and processes implemented as

part of the cyber risk and mitigation (CRAM) framework including use of machine learning

algorithms for risk assessment and mitigation. Furthermore, we evaluate and compare the

effectiveness of the mitigation plan using strategies provided by the MITRE Corporation,

a trusted source in cybersecurity. Overall, this Chapter highlights the importance of incor-

porating a real-time risk assessment and mitigation system in organizations’ cybersecurity

infrastructure. Our framework provides a practical and efficient solution to identify and

address potential cyber threats, minimizing the risk of data breaches and financial loss.
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7.1 AI-Based Inferencing Engine

Figure 7.1: CyVIA AI-based Inferencing Engine

This section of the dissertation provides a formal overview of the core components and

objectives of the CyVIA inferencing engine, its integrated components, along with their

interaction within the overall framework of the CyVIA. CyVIA collects and stores vulner-

ability data from online vulnerability databases and the computing environment into the

CyVIA knowledgebase, which is then used by the threat modeling and risk analysis module

to produce risk analytics based on the identified relationships between vulnerabilities.

The AI-based prediction engine plays a critical role in the CyVIA system, with two

primary objectives: 1) to accelerate the vulnerability analysis process for cyber defenders

by providing applicable attack types for the evaluated infrastructure, and 2) to prioritize

risks based on their significance and provide a comprehensive mitigation plan to address

them. Fig. 7.1 outlines the system architecture for the CyVIA AI-based inferencing engine,

with each component discussed in detail in the following sections.
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7.1.1 Vulnerability Classifier (VC)

In order to facilitate human judgment of risk, CyVIA employs a vulnerability classifier

that has been trained on a dataset of vulnerability data spanning two decades. Given the

size and dimensionality of the vulnerability data, a Linear Support Vector Machine (Linear

SVC) model has been trained and tuned for classification purposes. To further enhance

computational efficiency, Principal Component Analysis (PCA) has been applied to the

Linear SVC model to reduce noise and features in the dataset. This approach focuses the

classifier on the most important features, leading to better accuracy and efficiency. The

trained classifier is capable of predicting attack types associated with text-based vulnera-

bility descriptions, thereby streamlining the analysis process. The CyVIA API utilizes the

vulnerability classifier to generate a list of applicable attack types for a given computing

infrastructure, providing a comprehensive assessment of associated risks.

7.1.2 Context-Aware Summary Generator

A key component of CyVIA that significantly contributes to its capacity to offer precise and

practical guidance to cyber defenders concerning identified risks is the ability to extract

specific feedback and actions from a diverse range of mitigation strategies present in its

knowledgebase. This component plays a pivotal role in enabling efficient and timely risk

mitigation and management. Through the extraction of targeted feedback and actions,

CyVIA can provide cyber defenders with guidance that is aligned with the specific context

of the identified risk. This level of specificity enhances the effectiveness of the guidance

provided, as it enables cyber defenders to address the risk in a manner that is tailored to

the organization’s unique security needs and priorities. Moreover, the ability to extract

targeted feedback and actions allows for streamlined decision-making and more efficient

allocation of resources, as cyber defenders can focus their efforts on the most critical risks.

The summary generator’s methodology involves the utilization of an abstractive text sum-

marization approach employing a pre-trained natural language processing (NLP) pipeline,
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specifically SpaCy. The approach involves the extraction of the most salient sentences from

the given text based on their respective rankings.

7.1.3 CyVIA Knowledgebase

The CyVIA knowledgebase is a NoSQL database that is organized in a document-oriented

manner. Its primary purpose is to serve as a repository for security controls, policies,

procedures, reported vulnerabilities, network nodes, and other relevant data. Information

in the knowledgebase is stored based on identified relationships between vulnerabilities,

weakness types, network nodes, operating systems, applications, and other relevant factors.

The goal of the knowledgebase is to make information available to cyber defenders in the

most useful form possible, allowing them to quickly identify threats and understand how

to mitigate them effectively. Additional information about the CyVIA knowledgebase,

including its architecture, functionality, and other components as illustrated in Figure 7.1,

can be found in [107].

7.1.4 CyVIA API

The CyVIA API is a fundamental component of the CyVIA AI-based prediction engine,

serving as the core of the system’s risk analytics and mitigation capabilities. The API

is developed using the Flask REST API framework and is primarily responsible for man-

aging communication and interaction between all internal and external components in a

timely and sequential manner. When a request for analysis is made for a specific net-

work or node, the CyVIA API initiates the necessary functions to collect and process

the relevant information from all other components. During this process, the API in-

teracts with external sources, including the MITRE repository and API, to gather the

pertinent data [108]. The API provides a JSON-formatted response that contains details

about the requested host/node or the entire infrastructure, such as the severity of dis-

covered vulnerabilities, top 10 vulnerabilities and weakness types, identified attack types,
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and affected products. In addition, the mitigation plan includes information related to

targets, potential impacts, and preventive measures. Moreover, the API has additional

embedded functionality, including the ability to check the status of the knowledge base

(http://server ip: port/CyVIA), find vulnerabilities for a specific operating system or ap-

plication (http://server ip: port/CVEs/Win7), provide analysis for a given network node

(http://server ip: port/CyVIA analysis/node name), offer information on a given CVE

(http://server ip: port/Describe CVE/CVE-ID), and infer attack type from the vulnera-

bility text description.

7.1.5 MITRE API and CVE Repository

The external components referenced, including MITRE’s Common Vulnerabilities and Ex-

posures (CVE) system, MITRE’s API for the CVE system, and MITRE’s Common Attack

Pattern Enumeration and Classification (CAPEC) system, are all maintained by MITRE.

The CyVIA API interacts with these external components as needed to obtain relevant

information [84,108,109].

In the next section, we provide an evaluation of how risk analytics generated by CyVIA

can facilitate the comprehension and expedient mitigation of risk for any cyber infrastruc-

ture by cyber defenders.

7.2 Results

This section presents the analytical summary generated by CyVIA’s inferencing engine and

its potential to provide valuable insights to cyber defenders. Through the comparison of

the summarized information provided by CyVIA, we demonstrate the advantages of using

CyVIA’s analytical summary. Specifically, we provide examples of how the information

provided by CyVIA can enhance a cyber defender’s understanding of the evaluated cy-

ber infrastructure. We first compare the text descriptions, attack types, and mitigation

techniques provided by MITRE and CyVIA in the following subsection. Later, we provide
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additional insights that CyVIA provides to increase cyber situational awareness for the

defenders. By examining these aspects, we can highlight the strengths and limitations of

each source of information and provide insights into the effectiveness of their respective

approaches.

7.2.1 Comparing MITRE Data with CyVIA’s Summarized In-

formation

We present Table 7.1 as a means to facilitate the comparison between two sources of

information related to various CVEs found within the evaluated cyber infrastructure. Table

7.1 displays a subset of information, including vulnerability descriptions that have been

shortened by approximately 20-30%, while keeping the most useful features of the text

in place. This has been achieved by reducing the length of the texts, as is evident from

the lengths of the vulnerability descriptions. In addition, CyVIA attack types, which are

derived from a collection of 36 most commonly used types of cyber attacks gathered from

MITRE, NVD, and other sources, are also compared to MITRE attack types in Table

7.1. We have observed that CyVIA attack types use more commonly used terminologies

by a zero to intermediate level of cyber defenders. Moreover, we have utilized a context-

aware summary generator to extract the most relevant actions from the available prevention

techniques using CyVIA’s inferencing engine. In this regard, we have been able to reduce

the length of the text by approximately 55-80%.

7.2.2 CyVIA Vulnerability Classifier (VC)

To provide a classification example, let us consider the following vulnerability description

of CVE-2022-31177:

Description: Flask-AppBuilder is an application development framework built on

top of Flask python framework. In versions prior to 4.1.3 an authenticated Admin
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Table 7.1: Comparisons
CVE MITRE De-

scription

CyVIA Descrip-

tion

MITRE Attack-

Type

CyVIA At-

tack Type

MITRE Preven-

tion

CyVIA Preven-

tion

CVE-2022-

29216

TensorFlow is

an open source

platform for ma-

chine... (length:

638)

TensorFlow open

source platform

machine learn-

ing... (Length:

450)

CWE-94 Improper

Control of Gen-

eration of Code

(’Code Injection’)

Code Injection Run your code in

a jail or similar...

(Length: 538)

Run your code...

(Length: 133)

CVE-2016-

7914

The assoc array

insert into ter-

minal node func-

tion... (Length:

412)

The assoc ar-

ray insert into

terminal node...

(Length: 300)

CWE-125 Out-of-

bounds Read

Sensitive Data

Exposure

Assume all input

is malicious...

(Length: 1409)

When performing

input validation...

(Length: 380)

CVE-2013-

1229

TMSSNMP Ser-

vice in TelePres-

ence... (Length:

216)

TMSSNMP Ser-

vice TelePres-

ence Manager...

(Length: 180)

CWE-20 Improper

Input Validation

Denial of Ser-

vice

For any security

checks... (Length:

914)

Understand all

the potential ...

(Length: 412)

CVE-2022-

21668

pipenv is a

Python develop-

ment... (Length:

1143)

pipenv Python

development

workflow tool...

(Length: 892)

CWE-20 Improper

Input Validation

Code Injection Inputs should be

decoded and...

(Length: 661)

Avoid double-

decoding and...

(Length: 159)

CVE-2019-

9854

LibreOffice has a

feature where...

(Length: 902)

LibreOffice feature

documents...

(Length: 706)

CWE-22 Improper

Limitation of

a Pathname to

a Restricted

Directory (’Path

Traversal’)

Directory

Traversal

Ensure that error

messages only...

(Length: 1031)

In the context of

path traversal...

(Length: 328)

user could query other users by their salted and hashed passwords strings. These

filters could be made by using partial hashed password strings. The response would

not include the hashed passwords, but an attacker could infer partial password

hashes and their respective users. This issue has been fixed in version 4.1.3.

Users are advised to upgrade. There are no known workarounds for this issue.

MITRE Attack Type: CWE-916 - Use of Password Hash With Insufficient Computational

Effort.

CyVIA Attack Type: Sensitive Data Exposure.

Based on our analysis, it can be inferred that MITRE and CyVIA utilize distinct ter-

minologies for identifying attack types. Specifically, our analysis indicates that MITRE

relies on more technical terminologies compared to CyVIA, which tends to use more com-

monly understood terms. The findings are presented in Table 7.2. The results underscore

the significance of employing appropriate vocabularies that are more effective in aiding an
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average cyber defender’s case.

Table 7.2: MITRE and CyVIA Vulnerability Attack Types
CVE MITRE AT CyVIA AT

CVE-2022-

23594

Out-of-bounds Read Unauthorized

Access

CVE-2021-

29614

Out-of-bounds Write Code Injection

CVE-2022-

32151

Improper Certificate Valida-

tion

Man-in-the-middle

CVE-2022-

27237

Improper Neutralization of Input

During Web Page Generation

(’Cross-site Scripting’)

Cross-site Script-

ing

CVE-2016-

7914

Out-of-bounds Read Sensitive Data

Exposure

CVE-2014-

9090

Improper Neutralization of

Special Elements used in an SQL

Command (’SQL Injection’)

Denial of Service

CVE-2003-

0819

Improper Restriction of

Operations within the Bounds

of a Memory Buffer

Buffer Overflow

CVE-2019-

20916

Improper Limitation of a

Pathname to a Restricted

Directory (’Path Traversal’)

Directory Traver-

sal

CVE-2019-

9850

Improper Input Validation Code Injection

CVE-2022-

24761

Inconsistent Interpretation of

HTTP Requests (’HTTP Request

/Response Smuggling’)

Server-side Request

Forgery

7.2.3 CyVIA Context-Aware Summary Generator

To illustrate, let us consider the following example of a mitigation strategy:

Full Text: Assume all input is malicious. Use an accept known good input validation

strategy, i.e., use a list of acceptable inputs that strictly conform to specifications.

Reject any input that does not strictly conform to specifications, or transform

it into something that does. When performing input validation, consider all potentially

relevant properties, including length, type of input, the full range of acceptable

values, missing or extra inputs, syntax, consistency across related fields, and
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conformance to business rules. As an example of business rule logic, boat may

be syntactically valid because it only contains alphanumeric characters, but it

is not valid if the input is only expected to contain colors such as red or blue.

Do not rely exclusively on looking for malicious or malformed inputs. This is

likely to miss at least one undesirable input, especially if the code’s environment

changes. This can give attackers enough room to bypass the intended validation.

However, denylists can be useful for detecting potential attacks or determining

which inputs are so malformed that they should be rejected outright. (Length:

1124)

Summary: When performing input validation, consider all potentially relevant

properties, including length, type of input, the full range of acceptable values,

missing or extra inputs, syntax, consistency across related fields, and conformance

to business rules. Use an accept known good input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. (Length:

384)

Upon investigating, we see the effectiveness of the CyVIA summary generator in extract-

ing key actions that can be performed to mitigate risk. Our analysis shows that the CyVIA

summary generator significantly reduces the amount of text and accurately identifies and

can extract the key actions to mitigate risk.

7.2.4 Mitigation Strategies

Table 7.3 displays a list of anticipated attacks that are expected to affect the entire in-

frastructure. The list is prioritized from high to low priority, and it requires immediate

attention. Here, we present the mitigation plan for the highest-priority risk, which is Code

Injection:

1. Terminate the client session after each request.
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2. Use only SSL communication.

3. Turn all pages to non-cacheable.

4. Use a web server that employs a strict HTTP parsing procedure, such as Apache

[REF-433].

5. Run your code in a jail or similar sandbox environment that enforces strict boundaries

between the process and the operating system.

6. With Struts, write all data from form beans with the bean’s filter attribute set to

true.

7. Refactor your program so that you do not have to dynamically generate code.

8. Be especially careful to validate all input when invoking code that crosses language

boundaries, such as from an interpreted language to native code.

9. For any data that will be output to another web page, especially any data that was

received from external inputs, use the appropriate encoding on all non-alphanumeric

characters.

10. Use an input validation framework such as Struts or the OWASP ESAPI Validation

API. Note that using a framework does not automatically address all input validation

problems; be mindful of weaknesses that could arise from misusing the framework

itself (CWE-1173).

11. ...more...

Through the implementation of the proposed mitigation plan for code injection, devel-

opers can incorporate the recommended techniques to improve the quality of their code and

prevent any potential exploitation. Furthermore, tailored mitigation plans are available for

each type of attack, providing cyber defenders with targeted strategies to mitigate the risk

of security breaches.
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7.2.5 Overall Risk Analytics

Table 7.4 depicts an evaluation of the cyber infrastructure consisting of 15 nodes equipped

with commonly used operating systems and applications, outlining the infrastructure-wide

risks. The analysis identifies Raspbian node as the most vulnerable, with the highest

number of detected vulnerabilities. These vulnerabilities are categorized into 215 MITRE-

defined attack types and 18 CyVIA-defined attack types. Table 7.3 presents a prioritized

list of attacks against the entire network, ranked from most to least vulnerable, along with

a corresponding mitigation plan for each type of attack.

Additionally, these attack types can be analyzed in detail, allowing cyber defenders

to focus on individual vulnerabilities. For each vulnerability, relevant information such

as affected products, versions, prevention stages, and strategies are available, enabling

defenders to take appropriate measures as part of the process.

CVE: CVE-2022-29216

MITRE Attack Type: CWE-94 * Improper Control of Generation of Code

(’Code Injection’)

CyVIA Attack Type: Code Injection

Affected Product: tensorflow

Affected Product Version(s): <2.6.4, >=2.7.0rc0, <2.7.2, >=2.8.0rc0, <2.8.1,

>=2.9.0rc0, < 2.9.0

Target(T): Access Control, Non-Repudiation, Integrity.

Prevent(P) at Stage: Architecture and Design, Implementation, Operation,

Testing.

P Strategy(PS): Environment Hardening, Input Validation, Compilation

or Build Hardening.
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7.3 SWOT Analysis of the Proposed Framework

Figure 7.2: CyVIA Architecture

Figure 7.3: CyVIA Network Dependencies Map

This section aims to conduct a SWOT analysis of our proposed framework, CyVIA.

Specifically, we aim to evaluate the strengths, weaknesses, opportunities, and threats of

CyVIA as a whole, instead of solely focusing on its AI engine. The subsequent subsections

will elaborate on each of these aspects. Fig. 7.2 is presented here to provide an overview of

the overall architecture of CyVIA, which is crucial for contextualizing the SWOT analysis

and identifying areas where improvements may be required.
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Figure 7.4: CyVIA Node Service Dependencies Map

7.3.1 Strengths

A standard risk assessment framework typically involves the use of one or more tools or

frameworks to gather data, after which cyber defenders evaluate the results to determine

the severity of the risk and whether it is actionable or acceptable. However, with CyVIA,

the entire process, from data gathering to analysis generation, is fully automated. CyVIA

provides continuous risk monitoring and threat-centric analytics that capture changing

network configurations, regardless of time or space constraints. CyVIA offers the following

key advantages:

(a) Identify network and service dependencies within cyber infrastructures (Fig. 7.3 and

Fig. 7.4).

(b) Evaluate individual nodes and the infrastructure as a whole for risk, taking into

account implemented security controls and the risk from internal and external adver-

saries.

(c) Identify vulnerabilities within the operating systems and running applications of

network nodes, and provide information on associated consequences and mitigation

strategies.

(d) Classify the vulnerabilities based on type of weakness, severity, and access vectors.

(e) Infrastructure-based top 10 most vulnerable products (Table 7.5).
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(f) Highlight products based on mean severity, vulnerability scores, and number of vul-

nerabilities.

(g) Identify high-priority vulnerabilities and weakness types that defenders should prior-

itize for remediation.

(h) Generate relational analyses between the found vulnerabilities, products, and weak-

ness types. Fig. 7.5 illustrates the relationships between product and weakness types

identified in the evaluated infrastructure.

(i) Monitor for anomalous user activities based on recent adversarial trends.

Figure 7.5: Weakness Types to Products Relationships
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7.3.2 Weaknesses

We aim to identify and discuss the weaknesses of our proposed system by exploring its

underlying assumptions and limitations.

Assumptions

In the development of CyVIA, we have made the following assumptions:

(a) We assume that the CVE features, such as CVSS scores, CWE IDs, Severity values,

etc., stored in the National Vulnerability Database (NVD) are accurately assigned.

(b) As the NVD is populated with data from MITRE, and the Common Weakness Enu-

meration (CWE) is managed by MITRE, we rely on MITRE for the final CWE

features.

(c) We match the final list of possible vulnerabilities with MITRE’s CVE search engine.

(d) We use a Raspberry Pi device as a representative of IoT devices that communicate

with different sensors for data collection.

(e) Due to resource limitations, we were unable to deploy CyVIA on a live large network.

However, we have conducted multiple trials of CyVIA on various network clusters

containing different versions of Microsoft Windows and Linux. We are confident that

it can be deployed on any large network.

Limitations

At this stage, CyVIA has the following limitations:

(a) The local agent can capture information from nodes runningWindows 7 onwards, with

PowerShell script execution enabled. For Linux, we have tested agents on Ubuntu,

Kali, Debian, and Fedora.
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(b) The services offered by nodes are captured through remote scanning, but the admin-

istrator must identify the nodes that are utilizing these services.

We acknowledge these limitations and aim to address them in the future research.

7.3.3 Opportunities

At this time, we have the API, and how someone can take advantage and expand on this.

the outcome can feed to a new directions or research problem. dont use in the future...

In our future work, we aim to develop a website that facilitates global interaction

between cyber defenders and CyVIA. This website will serve as a platform for coordinated

vulnerability disclosure processes and for obtaining information related to specific threats.

We believe that this will enable a more comprehensive and collaborative approach to threat

and vulnerability management. Furthermore, we intend to focus on enhancing the following

two key components and an optional upgrade of the CyVIA framework to make it more

robust:

Abnormal User Behaviour

CyVIA maintains data for running processes for each user and identifies any abnormal user

behavior. This data includes CPU, memory, and disk usage for each process. Upon linking

this real-time data with a trained machine learning model, we can highlight users running

unfamiliar processes with 1) unusual names, 2) high resource usage, and 3) connections to

suspicious outside domains or remote servers. These anomalous processes can be flagged

for further investigation or terminated to prevent potential harm. The use of machine

learning algorithms will allows CyVIA to adapt to new threats and improve its detection

capabilities over time.
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Enriching Threat Database

The utilization of online forums, social media, conferences and events, chat groups and

instant messaging, etc., are common platforms for threat and vulnerability discussion, in

addition to vulnerability databases. By augmenting the capability of CyVIA AI-engine’s

context-aware summary generator, it can collect and collate information from these sources

to provide comprehensive contextual information about the risks and how they can be

addressed. This process may also entail validating the authenticity of the sources and the

data captured to ensure the accuracy and reliability of the insights provided by CyVIA.

Optional Upgrade

CyVIA’s prototype is developed using Python, a programming language that is typically

regarded as slower than other languages due to its interpreted nature. To improve perfor-

mance, it is suggested that CyVIA be translated into C or C++, which are widely known

as very fast programming languages, or Java, a programming language recognized for its

high performance capabilities. By doing so, the overall speed of CyVIA can be significantly

enhanced.

7.3.4 Threats

CyVIA can be exploited in a number of ways:

(a) It utilizes an open-source, NoSQL document-oriented database, namely Apache CouchDB.

By gaining access to the database, the stored information can be manipulated, leading

to a change in the analytical results.

(b) The communication between client agents and server agent is not encrypted, which

means that this communication can be altered with misleading information.

(c) There is no authentication process for any new nodes on the network. Any new

node having access to a client agent can add false information to the database, thus
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generating a change in the overall risk for the entire network.

(d) The current version of CyVIA API can be secured by using a combination of authen-

tication, authorization, encryption, rate limiting, input validation, and other security

best practices to ensure the safety and privacy of data being transmitted through the

API.

A combination of strong authentication and encryption mechanisms can make CyVIA

more resilient against these threats.

7.4 Summary

Risk mitigation in cyber infrastructures is imperative due to the escalating frequency and

complexity of cyberattacks, which can have severe consequences for organizations, including

damage to reputation, operations, finances, and even human lives. To assist in this effort,

we present an AI-based prediction engine to identify and infer detected risks within a given

cyber infrastructure. This work satisfies the research question Q2 under objective C. The

engine’s primary responsibility is to provide cyber defenders with information on the risks’

severity and mitigation strategies. Additionally, with the aid of the CyVIA API, defenders

can engage with the engine to obtain additional insights on the risks. Going forward, we

aim to make the API publicly accessible to enable individuals to interact with and learn

more about the latest trends in cybersecurity. We also plan to utilize this framework as

a coordinated vulnerability disclosure process through a website that will allow external

cyber defenders to interact with CyVIA. This work is submitted to a conference and is

under review.
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Table 7.3: Predicted Attack Types

Attacks Count

1 Code Injection 34,511

2 Sensitive Data Exposure 15,000

3 Directory Traversal 12,882

4 Cross-site Scripting 12,362

5 Unauthorized Access 10,835

6 Buffer Overflow 8,943

7 Denial of Service 8,103

8 Memory Based Attack 5,567

9 Privilege Escalation 4,129

10 Man-in-the-middle 1,708

11 Unknown Attack 1,145

12 Server-side Request Forgery 418

13 Credentials 300

14 Web Session Cookie 41

15 Command and Control 32

16 Host Redirection 29

17 Disabling Security Tools 22

18 Brute Force Attack 6
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Table 7.4:
Node-wise Vulnerabilities, Affected Products, MITRE and CyVIA At-
tack Types

Node CVEs APs MITRE CyVIA

Raspbian 133,298 7,266 215 18

Debian10 48,037 3,978 211 18

Win2016 12,211 663 113 13

Win2012 10,102 663 115 14

Win8 4,360 306 105 14

CentOS 2,967 239 63 13

Win10 2,609 293 98 13

Ubuntu16 2,244 122 93 12

Win7 1,731 162 90 12

Fedora33 1,482 170 44 12

Win11 1,030 151 89 12

Ubuntu20 490 64 64 12

Ubuntu18 259 41 61 12

openSUSE15 103 7 18 10

Router1 27 6 10 6
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Table 7.5: CyVIA Infrastructure-based Top 10 Most Vulnerable Products

S# Product CVEs CWEs

1 Microsoft MPI ... 6,377 97

2 jackd 5+nmu1 3,070 87

3 chromium 90.0.4430... 1,468 59

4 Windows 8.1 Enterprise 1,107 62

5 Windows Server 2012 R2 949 42

6 ssh 1:7.9p1-10 748 73

7 SQL Server 2017 640 37

8 zip 3.0-11+b1 584 54

9 SQL Server 2017 516 14

10 SQL Server 2017 516 14
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

With the increasing heterogeneity in numbers and types of devices in modern cyber in-

frastructures, cyber defenders face numerous known and unknown challenges. To assist

cyber defenders in keeping up with such scenarios, we present a three-dimensional se-

curity framework called Cyber-threats and Vulnerability Information Analyzer (CyVIA).

CyVIA provides continuous risk evaluation of cyber infrastructures, incorporating an em-

bedded quantitative risk assessment model that considers asset-wise and overall risks, as

well as risk propagation among dependent nodes. Additionally, CyVIA integrates ma-

jor Vulnerability Databases (VDBs) for comprehensive cyber-threat analysis, utilizing a

multi-formatted knowledge-base generated from vulnerability reports to identify critical

vulnerabilities within a target cyber infrastructure. CyVIA also features an AI-based pre-

diction engine that concludes found vulnerabilities into applicable attack types and suggests

mitigation strategies. My future research plan includes adding security and encryption to

the CyVIA framework, evaluating CyVIA on a live network to understand user patterns,

and conducting extensive research in other areas as discussed in the following section.

8.2 Future Research Plan

In the future, I want to perform an extensive study on the following topics to make CyVIA

more robust and adaptable.
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8.2.1 AI-powered Anomaly Detection

CyVIA has the capability to capture running processes and monitor memory utilization of

each running process in real-time. As part of my research plan, I intend to deploy CyVIA

on a live network to capture live user activities and gain insights into various user behaviors

during normal and peak hours. By analyzing the captured data, we can label malicious

user processes and leverage it to train an AI-powered Anomaly Detection model that can

flag potentially malicious processes in real-time. This will enable cyber defenders to quickly

identify and isolate potentially infected or compromised nodes on the network, enhancing

the overall cybersecurity posture of the system.

8.2.2 Addressing the Inconsistencies within Vulnerability Databases

As discussed in Chapter 4, several studies have emphasized the need to address inconsisten-

cies within vulnerability data available on various online vulnerability databases. CyVIA’s

AI-based prediction engine is trained to predict attack types based on the given vulnerabil-

ity descriptions. In Chapter 7, Table 7.2, we compare CyVIA’s predicted attack types with

the attack types defined by MITRE. This model can be further refined to label the missing

vulnerability types in MITRE data that are originally classified as NVD-CWE-noinfo and

NVD-CWE-other. Table 8.1 highlights the inconsistencies within the NVD data that can

be addressed, and the corrected dataset can be made available for others to use via the

CyVIA API.

8.2.3 Collaborative Cyber Threat Intelligence

The original idea of including CTI (Cyber Threat Intelligence) and CyVIA API as part

of the CyVIA framework was to spread awareness not only among local cyber defenders

but also on a global scale, where cyber defenders from different regions can interact, gain

information, discuss, and collaborate on cybersecurity issues to keep the CyVIA knowledge

base updated with the most recent trends. This may also include a coordinated vulnerabil-
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Table 8.1: NVD Inconsistencies

Description CVE Count Replacement

CWE ID classified as NVD-CWE-noinfo 16,534 -

CWE ID classified as NVD-CWE-Other 27,178 -

Missing Severity value 9,215 N/A

Missing CVSS Score V2 9,215 -1

Missing CVSS Score V3 82,591 -1

Missing Vulnerability Access Vector 9,215 N/A

Missing User Interaction Required 10,242 N/A

Missing Language information 9,172 N/A

Total CVE records 158,450 -

ity disclosure process, where organizations can contribute to the knowledge base through

a reporting facility that allows them to reach out to specific hardware/software vendors to

address the identified threats.

These future directions and contributions are expected to facilitate the widespread

adoption of the CyVIA framework, enabling cyber defenders to make informed decisions

based on the derived analysis and promptly mitigate identified threats. CyVIA framework

aims to enhance cyber situational awareness, promote collaboration among cyber defenders,

and enable effective risk mitigation strategies. These efforts are anticipated to improve the

overall cybersecurity posture of cyber infrastructures and empower defenders in addressing

emerging cyber threats efficiently.
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Chapter 9

Publications Resulted from this

Dissertation

1) Malik, Adeel A., and Deepak K. Tosh. ”Quantitative risk modeling and analysis for

large-scale cyber-physical systems.” 2020 29th International Conference on Computer Com-

munications and Networks (ICCCN). IEEE, 2020.

2) Malik, Adeel A., and Deepak K. Tosh. ”Robust Cyber-threat and Vulnerability Infor-

mation Analyzer for Dynamic Risk Assessment.” 2021 IEEE International Mediterranean

Conference on Communications and Networking (MeditCom). IEEE, 2021.

3) Malik, Adeel A., and Deepak K. Tosh. ”Dynamic Risk Assessment and Analysis Frame-

work for Large-Scale Cyber-Physical Systems.” EAI Endorsed Transactions on Security

and Safety 8.30 (2022).

4) Malik, Adeel A., and Deepak K. Tosh. ”Dynamic Vulnerability Classification for En-

hanced Cyber Situational Awareness.” (SYSCON). IEEE, 2023.

5) Malik, Adeel A., and Deepak K. Tosh. ”Towards Developing a Scalable Cyber Risk

Assessment and Mitigation Framework.”, Under submission.
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Appendix A

CyVIA User Guide

The standard risk assessment framework usually requires the use of tools or frameworks to

collect data, followed by manual evaluation by cyber defenders to assess risk severity and

determine if action needs to be taken. In contrast, CyVIA introduces a fully automated

process that covers the entire risk assessment workflow, from data gathering to analysis

generation. It enables continuous risk monitoring and provides threat-centric analytics

that can adapt to changing network configurations without being restricted by time or

space limitations. The key advantages of CyVIA include:

• Identify network and service dependencies within cyber infrastructures.

• Evaluate individual nodes and the infrastructure as a whole for risk, taking into

account implemented security controls and the risk from internal and external adver-

saries.

• Identify vulnerabilities within the operating systems and running applications of

network nodes, and provide information on associated consequences and mitigation

strategies.

• Classify the vulnerabilities based on the type of weakness, severity, and access vectors.

• Infrastructure-based top 10 most vulnerable products.

• Highlight products based on mean severity, vulnerability scores, and the number of

vulnerabilities.
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• Identify high-priority vulnerabilities and weakness types that defenders should prior-

itize for remediation.

• Generate relational analyses between the found vulnerabilities, products, and weak-

ness types.

• Monitor for anomalous user activities based on recent adversarial trends.

Setup Instructions

You will need the following on your server machine:

• Graphviz 2.38 (should be available in the path environment variables)

• Flask 1.1.2 (for CyVIA API)

• Python 3

• CouchDB 3.1.1

• Jupyter Notebook

Requirements file

aniso8601==8.0.0

certifi==2022.9.24

charset-normalizer==2.1.1

click==7.1.2

colorama==0.4.6

CouchDB==1.2

CouchDB2==1.13.0

Flask==1.1.2

Flask-RESTful==0.3.8

Flask-SQLAlchemy==2.4.3

idna==3.4
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itsdangerous==1.1.0

Jinja2==2.11.2

joblib==1.2.0

lxml==4.9.1

MarkupSafe==1.1.1

numpy==1.23.4

pandas==1.5.1

pynput==1.7.6

python-dateutil==2.8.2

pytz==2020.1

requests==2.28.1

scipy==1.9.3

six==1.15.0

SQLAlchemy==1.3.18

tqdm==4.64.1

urllib3==1.26.12

Werkzeug==1.0.1

Jupyter Notebooks

• 1 CWE Master Data CouchDB.ipynb : Create Master Data for CWE referencing

from MITRE.

• 2 Fetch MITRE CWE CSV Feeds.ipynb : Collect the latest CWE feeds fromMITRE.

• 3 Fetch NVD JSON Feeds.ipynb : Collect vulnerability data from NVD.

• 4 Prepare Dataset.ipynb : Compile collected files and prepare CyVIA knowledgebase

based on the found relationships between the data.

• 5 Network Scanner.ipynb : Scans network for nodes and open ports.
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• 6 Dependency Mapper.ipynb : Maps service and network dependencies between the

found network nodes.

• 7 Control Mapper.ipynb : Evaluates network nodes for applied security controls.

• 8 Process Monitor.ipynb : Monitors running processes on network nodes.

• 9 Scheduler.ipynb : Responsible for scheduling jobs to keep a check on updates and

network activity.

• Node Analysis.ipynb : Evaluates each network node and prepares the detailed report

for each node.

Other Python files

• cyvia api.py : API file

• agent linux v2.py : CyVIA agent for Linux nodes to collect node information and

pass it to server agent.

• agent windows v2.py : CyVIA agent for Windows nodes.

• client scheduler v2.py : CyVIA scheduler to keep the agent timely running and com-

municating with the server.

• server scheduler v2 : Server side scheduler to interact with client scheduler and keep

the server up to date.

• config.py : Server configuration.

• functions.py : Functions library for CyVIA.

• get-pip.py : If pip is not installed on your machine, you can use this file.

• process scanner v2.py : Process scanner for network nodes, works with the client

scheduler file.
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• Spinner.py : On Python notebooks, if it takes a long time, the spinner spins to let

the user know there is a process working in the background.

Script files

• install linux req.sh : Installs required libraries on Linux network nodes for the agent

to work.

• install windows req.bat : Installs required libraries on a Windows network node.

• linux client info.sh : Fetches Linux network node information for the Linux agent.

• win client info.psl : Fetches Windows network node information for the Windows

agent. You may need to turn on the power shell execution on Windows nodes; see

Turn on scripts on windows.txt.

Network setup

We tested CyVIA on a simulated network environment. We have used VMWare and Vir-

tualBox. All network nodes should be reachable for the framework to generate analysis.

The general process flow is as follows:

• Deploy the agents on network nodes, and ensure all nodes have Python and required

libraries installed. Run the schedulers on nodes, and the scan process will start.

• On the server side, you may also run the server-side scheduler. Once the client and

server-side schedulers communicate, the network node profiles will be created in the

CyVIA knowledgebase.

• After this, the individual Jupyter Notebooks can be run on a need basis to see network

analysis.

For further references and detailed information see CyVIA repository or go to the url:

https://github.com/trucyber/Risk-Assessment-Framework/blob/master/README.md.
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