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Abstract

Amidst the exponential surge in big data, managing high-dimensional datasets across di-

verse fields and industries has emerged as a significant challenge. Conventional statistical

methods struggle to handle their complexity, making analysis intricate. In response, we’ve

formulated a robust estimator tailored to counter outliers and heavy-tailed errors. Our

approach integrates the SCAD penalty into the Density Power Divergence method, effec-

tively reducing insignificant coefficients to zero. This enhances analysis precision and result

reliability. We benchmark our robust and penalized model against existing techniques like

Huber, Tukey, LASSO, LAD, and LAD-LASSO. Employing both simulated and UCI ma-

chine learning repository datasets, we assess method performance using RMPE, Sensitivity,

Specificity, and Mean Dimension reduction. In simulations, BIC(DPD) and EBIC(DPD)

consistently yielded the lowest RMPE values for outlier proportions (0%, 5%, 10%) and

signal-to-noise ratios (0.5, 1, 5), with sample size increasing from 100 to 500. Cp(DPD)

exhibited strong sensitivity. Our model, Cp(DPD), surpassed LASSO and LAD-LASSO in

achieving dimension reduction within high-dimensional data. While constrained by com-

putational complexity, our model’s predictor inclusion was limited. Future research should

expand this aspect, validating established methods against our innovation, the Robust

Penalized Density Power Divergence Regression with SCAD penalty.

Keywords: Penalized regression, high-dimensional data, outliers, density power diver-

gence, SCAD.
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Chapter 1

Introduction

The rapid growth of big data presents a significant challenge in analyzing high-dimensional

datasets across various scientific domains and industries. These datasets often have more

variables than observations, leading to issues like multicollinearity, overfitting, and limited

interpretability. High-dimensional data analysis has become prominent in diverse fields

such as genomics, finance, and machine learning. However, traditional statistical methods

often face difficulties in handling the complexity and noise inherent in such datasets. Hence,

innovative and efficient approaches are needed to tackle these challenges effectively. The

current usage of statistical theory and methods may involve massive datasets, which may

contain vast amounts of observations for each of a limited number of experimental units

(Johnstone & Titterington 2009). We define a multivariate linear model as a straight-

forward yet valuable approach for high-dimensional data analysis. This model is given

as

Yi = β0 +

p−1∑
i=1

βkXik + εi, (1.1)

for i = 1, 2, . . . , n, and β0 as the unknown intercept. Parameter vector, βk’s are intuitively

clear that, they can reasonably be estimated well based on n observations if β is sparse in

some sense.

High-dimensional data analysis is a challenging task because many traditional statis-

tical methods are not suitable for such datasets. For example, methods that rely on low-

dimensional linear models or assumptions of normality may not be appropriate for high-

dimensional data. Therefore, new methods and techniques have been developed specifically

for high-dimensional data analysis, including machine learning algorithms, regularization
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methods, and dimensionality reduction techniques.

The prediction ability of high-dimensional data analysis faces numerous challenges,

among which is the curse of dimensionality, first coined by Richard E. Bellman. According

to Venkat (2018), it refers to the explosive growth of spatial dimensions and its conse-

quences, such as the exponential increase in computational effort, inefficient use of space,

and poor visualization capabilities. These challenges can significantly impede the accurate

prediction of certain quantities since the predictive power of the model reduces exponen-

tially with each added variable. Consequently, even a slight increase in dimensionality can

necessitate a considerable expansion in the volume of data to maintain comparable levels

of task performance.

High-dimensional data analysis presents several challenges, including the requirement

for complex algorithms that can handle large datasets. However, these algorithms can

be computationally intensive, leading to difficulties in analyzing data in a timely manner.

Moreover, high-dimensional data analysis is susceptible to overfitting, where the model fits

noise rather than underlying signals, leading to poor predictive performance and inaccurate

results. Outliers are also common in large datasets, and traditional statistical methods may

not be robust enough to handle them, leading to inaccuracies in results.

Handling outliers is a crucial element of predictive analysis, particularly in the realm of

high-dimensional data analysis. To tackle the challenges posed by high-dimensional data,

such as the curse of dimensionality, overfitting, and outliers, robust methods are neces-

sary. These methods are designed to provide reliable and accurate results despite these

challenges. Among the robust methods suitable for high-dimensional data analysis are

L1-regularization for variable selection and the Huber loss function, which is a robust al-

ternative to the mean squared error loss function used in traditional regression. In scenarios

with outliers, the Tukey M-estimator, a robust regression method, is frequently employed.

It is less sensitive to outliers and can produce more accurate results than traditional re-

gression methods. In this research, the Tukey M-estimator will be utilized as the robust

method for high-dimensional data analysis in the presence of these challenges.
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Nahar & Purwani (2017) explores the application of robust M-estimator regression in

handling data outliers. The authors explain that data outliers can significantly affect

the accuracy of regression analysis and lead to incorrect conclusions. Therefore, robust

regression methods are needed to provide accurate results despite the presence of outliers.

They then described the M-estimator regression method and how it can be used to identify

and handle outliers. They also provided a case study on a real dataset to demonstrate

the effectiveness of the method in handling outliers. Overall, the paper highlights the

importance of robust regression methods, specifically the M-estimator, in handling outliers

in regression analysis.

The paper by Elsaied & Fried (2016) emphasized the use of Tukey’s M-estimator for

the estimation of Poisson parameter, especially for small means. It highlights the prob-

lems associated with the Maximum Likelihood Estimator (MLE) for Poisson parameter

estimation, which can be biased and have high variance. The authors demonstrated the

superiority of Tukey’s M-estimator over MLE in terms of robustness to outliers and better

performance for small sample sizes. The findings indicate that Tukey’s M-estimator is a

dependable alternative to MLE for estimating the Poisson parameter, particularly in cases

with small means and outliers.

The importance of robust methods in statistical inference is widely recognized, par-

ticularly in high-dimensional settings where data often exhibit irregularities such as data

contamination or heavy-tailed errors. Traditional statistical methods that assume a Gaus-

sian or normal distribution may not be suitable in such scenarios, as they can lead to biased

results and unreliable inferences. In contrast, robust methods are specifically designed to

handle these challenges and provide more reliable statistical inference even in the presence

of outliers or non-normal data. These methods aim to minimize the impact of extreme ob-

servations or deviations from the assumed distribution, enabling more robust and accurate

estimation of model parameters (Luo 2020).

This research aims to develop robust statistical methodologies specialized for high-

dimensional data analysis and outliers, achieved by integrating density power divergence
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and the SCAD penalty concepts into a regression framework. The primary objective is to

overcome the constraints of traditional methods, offering a more precise, interpretable, and

resilient solution for high-dimensional datasets. The presence of outliers and the curse of

dimensionality present challenges, resulting in biased and inefficient estimates, especially

in real-world datasets with numerous variables. Consequently, the goal is to construct a

regression model capable of effectively handling high-dimensional data and outliers, en-

couraging sparse representations while preserving predictive accuracy.

The primary focus is on exploring a robust penalized regression framework that lever-

ages density power divergence to capture complex relationships and non-linear associations

among variables, enhancing modeling flexibility. Robust methods are incorporated to mit-

igate the impact of outliers and heavy-tailed errors, ensuring more reliable conclusions and

inferences, even in the presence of data irregularities. This approach enhances the reliability

of statistical analysis, making it particularly valuable in high-dimensional settings.

The SCAD penalty promotes sparsity by encouraging certain model coefficients to be

exactly zero, facilitating variable selection and enhancing model interpretability. This com-

bination of techniques offers precise and robust estimates, even in the presence of outliers

and influential data points. By addressing challenges related to high-dimensional datasets,

this study aims to improve the accuracy and reliability of statistical analyses across diverse

fields, ultimately advancing the understanding of complex phenomena through data-driven

approaches (Fan & Li 2001, Zou 2006).
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Chapter 2

Literature Review

This section gives a brief description of different existing methods of high-dimensional data

analysis, their advantages and disadvantages.

2.1 Ordinary Least Squares (OLS)

The ordinary least squares (OLS) method is frequently utilized for estimating the parame-

ters of various functional relationships. It minimizes the sum of squared differences between

the observed dependent variable and the linear function of the independent variable. OLS

encompasses both simple and multiple linear regression, aiming to find the best-fitting line

or hyperplane for the data.

2.1.1 Linear Model

Suppose we have a dataset with n observations, where each observation i includes a scalar

response yi and a column vector xi with p parameters (regressors). The linear regression

model can be expressed as:

Yi = β0 +

p−1∑
i=1

βkXik + εi, (2.1)

for i = 1, 2, . . . , n and where the dependent variable is represented Y , Xi’s are the indepen-

dent variables, with β0 being the intercept term. The βk’s are the slope coefficients, and εi

is the error term and εi ∼ N (0, σ2) and p is the number of β’s in the model.
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The model above can also be represented in matrix notation as follows:

Y = Xβ + ε, (2.2)

whereY and ε are n×1 vectors of the response variables and the errors of the n observations,

and X is an n × p matrix of regressors, often referred to as the design matrix with ε ∼

N (0, σ2I).

When holding all other independent variables constant, a change in the beta coefficient

corresponding to an independent variable results in an increase or decrease in the response

variable. In other words, for every unit change in the beta coefficient of the independent

variable, there is a corresponding change in the dependent variable. In general, the multiple

linear regression model is widely utilized in various fields, such as economics, finance, engi-

neering, and social sciences. In economics, multiple linear regression is frequently utilized

to establish connections between various economic variables. For instance, a regression

model may be utilized to evaluate the association between income, education, and health

outcomes. Similarly, in finance, multiple linear regression is widely employed to model the

relationships between financial variables. For example, a regression model may be used to

analyze the correlation between stock prices, interest rates, and other financial indicators.

Multiple linear regression is widely used in health sciences to study connections between

health variables, like diet, exercise, and disease risk. In conclusion, multiple linear regres-

sion is a versatile technique with diverse applications. It enables modeling relationships

between variables and predicting their impacts on each other.

In multiple linear regression, coefficients are determined using the least squares method

to minimize the sum of squared differences between observed and predicted response vari-

able values. The residuals vector indicates the discrepancies between the actual and esti-

mated values and this is given by
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ε = Y −Xβ,

with the residuals sum of squares being represented as:

ε
′
ε = (Y −Xβ)

′
(Y −Xβ),

ε
′
ε = Y

′
Y − 2β

′
X

′
Y + β

′
X

′
Xβ.

Take the partial derivative by differentiating with respect to β

∂ε
′
ε

∂β
= −2X

′
Y + 2X

′
Xβ.

Now, by setting the partial derivative to zero and solving for β, we obtain:

β̂ = (X
′
X)−1X

′
Y. (2.3)

The fitted values, Ŷ can be represented in a vector form as:

Ŷ = Xβ̂ = X(XTX)−1XTY. (2.4)

When the Gauss-Markov assumptions, also known as the OLS assumptions or assumptions

of the Classical Linear Regression Model (CLRM), are satisfied, the OLS estimator is

reliable and provides consistent results. The key requirements that must be fulfilled include:

• Linearity: In multiple linear regression, the association between the dependent vari-

able and the independent variables should be constant and linear across different

values of the independent variable.

• Independence: The observations in the dataset should be independent of each other.

This means that the value of the dependent variable for one observation should not

be influenced by the value of the dependent variable for any other observation.
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• Homoscedasticity: In multiple linear regression, the errors (ε’s) should exhibit con-

stant variance across all independent variable values. This ensures that the errors are

evenly distributed throughout the range of the independent variables.

• Normality: The errors should be normally distributed with a mean of zero. This

means that the distribution of errors should be symmetrical around zero.

OLS (Ordinary Least Squares) for linear regression offers several advantages:

• Simplicity and Flexibility: Estimating linear regression coefficients using OLS is an

uncomplicated and user-friendly technique. On the other hand, multiple linear re-

gression is a versatile and flexible statistical approach capable of addressing various

research inquiries and data formats.

• Interpretability: The coefficients in an OLS model have clear and easily interpretable

meanings, representing the change in the response variable per unit change in the

corresponding predictor variable.

• Efficiency and Applicability: If the OLS assumptions are fulfilled, this method is

highly efficient and yields dependable and unbiased estimates. Moreover, it can be

readily employed in diverse fields requiring linear regression modeling to examine

variable relationships and forecast future outcomes based on observed data.

Despite its advantages, ordinary least squares (OLS) for linear regression also has some

limitations:

• Limited applicability: It is only applicable to linear models and does not work well

with nonlinear relationships.

• Sensitive to outliers: OLS is sensitive to outliers, which can significantly influence the

estimates of the regression coefficients.
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• Assumption-dependent: OLS relies on the assumption that the errors follow a normal

distribution with constant variance. If these assumptions are not met, the accuracy

and reliability of the regression results may be affected.

• Multicollinearity: When there is multicollinearity (high correlation) among the pre-

dictor variables, the OLS estimates may be unstable and difficult to interpret.

2.2 Least Absolute Shrinkage and Selection Operator

Lasso, also known as L1 regularization, was introduced by Tibshirani (1996) as a method for

variable selection and regularization of coefficients to prevent overfitting in high-dimensional

data. The Lasso regularization method has gained popularity in high-dimensional estima-

tion problems due to its statistical accuracy in prediction and variable selection, along

with its computational feasibility (Bühlmann & Van De Geer 2011). This approach in-

volves augmenting the traditional regression loss function by introducing a penalty term

that encourages less important features to shrink towards zero, effectively excluding them

from the final model. The degree of shrinkage is determined by a tuning parameter called

lambda (λ), which can be optimized through cross-validation. Lasso is especially advanta-

geous when working with datasets containing numerous predictors, while only a handful of

these predictors are expected to be significant for the outcome variable.

The lasso model adds an L1 regularization penalty term to the ordinary least squares

(OLS) regression that minimizes:

n∑
i=1

(
Yi −

p∑
j=1

Xijβj

)2

+ λ

p∑
j=1

|βj|, (2.5)

where y is the response variable, β0 is the intercept, Xi(i = 1, . . . , p) are the predictor

variables, βi are their corresponding coefficients, p is the number of predictors, and ε is the

error term. The λ is the shrinkage or penalty parameter which determines the degree of

regularization applied to the model and
∑p

j=1 |βj| is the sum of the absolute values of the
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regression coefficients.

L1 regularization has several advantages in high-dimensional data analysis. Lasso’s

variable selection is designed to shrink the coefficients of the less important variables to

zero, effectively excluding them from the model. This feature of Lasso makes it useful for

variable selection in high-dimensional data where there are many predictors, and only a

few are expected to be important for the outcome variable (Tibshirani 1996).

In addition, Lasso’s computational feasibility has made it popular for solving high-

dimensional estimation problems. Lasso adds a linear penalty term to the traditional

regression loss function, making the optimization problem solvable using coordinate de-

scent, which is a computationally efficient algorithm. Lasso mitigates overfitting without

needing a separate validation dataset by performing variable selection and coefficient regu-

larization. This results in an increased statistical accuracy in prediction (Ranstam & Cook

2018, Bühlmann & Van De Geer 2011). Lasso is known to be robust to outliers in the

data, which can be beneficial in real-world applications. Overall, Lasso’s advantages make

it a popular tool for high-dimensional data analysis in various fields, including machine

learning, genetics, and economics.

Although the Lasso method for linear regression offers advantages in terms of variable se-

lection and regularization, it does have some drawbacks. Specifically, Lasso-based methods

excel at selecting important predictors and applying regularization to enhance model per-

formance. However, they may not consistently yield stable subset selection, especially when

dealing with highly correlated predictors. In certain situations, this instability can lead to

inconsistent results, thereby limiting the reliability and robustness of the Lasso-based ap-

proach (Signorino & Kirchner 2018, Zou 2006). Additionally, the LASSO estimator has

limitations such as the maximum number of variables it can select when p>n and a lack of

grouping property, resulting in selecting only one variable from highly correlated predictors.

Furthermore, LASSO’s prediction performance is often inferior to other regression models

like ridge regression in scenarios where there are more observations than predictors and

high correlations among predictors (Emmert-Streib & Dehmer 2019).
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Lasso regression is potent but not a universal solution for overfitting and optimism bias.

External validation remains necessary. Lasso sacrifices precision in parameter estimation

to enhance overall prediction accuracy. This might limit the interpretability of regression

coefficients as independent risk factors, as the emphasis is on combined prediction rather

than precise estimation (Ranstam & Cook 2018).

2.3 Least Absolute Deviation (LAD)

The Least Squares method is effective for estimating linear model parameters when residuals

are normally distributed without large outliers. However, when residuals are non-normally

distributed and contain significant outliers, estimates are affected in many applications

across science and engineering. To mitigate the influence of outliers, robust regression

methods have been developed. The LAD method, also known as the L1-norm, is a statistical

optimization approach that employs a statistical optimality criterion. It aims to minimize

the sum of absolute deviations, residuals, or errors. By minimizing the sum of absolute

errors, this estimator achieves greater efficiency than the OLS method. That is;

min
β̂

|yi − ŷi| .

The primary objective of this method is to reduce the L1 norm of these absolute values.

Unlike other methods that require a tuning mechanism, the LAD approach is considered the

most straightforward method for robust regression. This is mainly because of its inherent

robustness, as it does not rely on squared values like the Least Squares method, and thus,

it is often preferred (Dasgupta & Mishra 2004, Li & Arce 2004).

The LAD regression technique, characterized by errors following a Laplacian distribu-

tion, lacks a readily available closed-form solution. Consequently, the approach necessitates

the use of numerical and iterative algorithms to address the computational aspects (Li &

Arce 2004). In accordance with Taylor’s account in 1974, KF Gauss and PS Laplace can be
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credited with developing and employing the method for solving an over-determined system

of linear algebraic equations. They proposed and utilized the approach of Least Squares,

and also practiced the method of Least Absolutes, which endeavors to minimize the sum

of the absolute values of the residuals in the equations (Dasgupta & Mishra 2004).

Unlike the Least Squares (LS) method, the LAD method is less affected by outliers

and provides robust estimates(Chen et al. 2008). Within the framework of the Minkowski

norm, the mathematical expressions for the Least Absolute (L1) and Least Squares (L1)

methods are as follows:

Min(S) = min
a

(
n∑

i=1

∣∣∣∣∣yi −
k∑

j=1

ajXij

∣∣∣∣∣
p) 1

p

, (2.6)

for p = 2 and p = 1 respectively. Some advantages of the Least Absolute Deviation (LAD)

method include its robustness compared to the least squares method and its ability to

handle outliers effectively. LAD exhibits robustness by being resistant to the presence of

outliers in the data. It demonstrates a strong resistance to the influence of outliers or

any other forms of data contamination within the dataset. This robustness makes LAD a

widely used technique in various fields.

In heavy-tailed distributions where outliers are more common, the Least Absolute De-

viation (LAD) method demonstrates higher efficiency compared to the Least Squares (LS)

method. LAD achieves this increased relative efficiency by assigning lower weights to out-

liers, resulting in more accurate estimation. This characteristic allows LAD to provide

improved performance and reliability when dealing with datasets that exhibit heavy-tailed

distributions and a higher incidence of outliers. In order to achieve more efficient param-

eter estimation in robust regression, Thanoon (2015) illustrated that the LAD (L1-norm)

method, in conjunction with the Iteratively Reweighted Least Squares (IRWLS) approach,

exhibits improved efficiency when estimating model parameters across different error dis-

tribution scenarios. This advantage becomes particularly noticeable when comparing it to

the performance of the LS method assuming a normal distribution, regardless of the sample
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sizes.

Chen et al. (2008) highlight two main drawbacks of the Least Absolute Deviation (LAD)

method when compared to the Least Squares (LS) method. Firstly, LAD lacks a conve-

nient inference procedure, making statistical inference and drawing meaningful conclusions

from estimated parameters more challenging. Secondly, the LAD method does not possess

a valid analysis-of-variance approach, limiting its applicability in analyzing variance com-

ponents within a model (Chen et al. 2008). These limitations restrict the usability and

interpretability of LAD in certain statistical analyses.

The LAD method offers robustness to outliers, but it comes with some drawbacks. It is

computationally more complex than the OLS method due to its iterative nature, requiring

more time and resources. Moreover, LAD may produce multiple solutions for specific

datasets, complicating the determination of the most appropriate one and posing challenges

in result interpretation. Nevertheless, LAD remains a valuable tool in scenarios where

outlier resistance is crucial, and careful consideration should be given to its computational

demands and potential for multiple solutions.

2.4 LAD-LASSO

LAD-Lasso, or Least Absolute Deviations-Lasso, is a powerful statistical method that

merges the principles of least absolute deviations (LAD) with Lasso regularization. This

technique finds its primary application in feature selection and regression analysis. The

lasso, introduced by Tibshirani (1996), is known as the ”least absolute shrinkage and se-

lection operator” and stands as a robust approach that excels in both variable selection

and regression parameter estimation. Notably, the lasso has gained substantial recognition

for its ability to effectively identify essential explanatory variables while ensuring accurate

estimation of regression parameters.

LAD-Lasso offers the advantage of performing parameter estimation and variable selec-

tion simultaneously, setting it apart from LAD regression. Additionally, in comparison to
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the traditional Lasso method, LAD-Lasso demonstrates robustness in handling heavy-tailed

errors or outliers in the response variable. The core concept behind LAD-Lasso involves

the integration of the conventional LAD criterion with a lasso-type penalty, resulting in

the development of the LAD-Lasso method (Wang et al. 2007). Now, suppose we have a

multivariate linear regression model defined as;

yi = x⊤i β + εi, (2.7)

for i = 1, . . . , n and where xi = (xi1, . . . , xip)
⊤ is the p-dimensional regression covariates,

β = (β1, . . . , βp)
⊤ are independent associated regression coefficients and εi are independent

and identically distributed (iid) random errors with mean 0 and variance σ2. The pa-

rameters of the model can be estimated by minimizing the Ordinary Least Squares (OLS)

criterion,
∑n

i=1(yi − x
′
iβ)

2. Moreover, in order to shrink unnecessary coefficients towards

zero, Tibshirani (1996) introduced the lasso criterion, which can be expressed as follows:

LASSO =
n∑

i=1

(yi − x
′

iβ)
2 + nλ

p∑
j=1

|βj|,

where λ > 0 is the tuning parameter and due to the uniform application of tuning param-

eters for all regression coefficients in the lasso method, there is a potential for the resulting

estimators to display notable bias. Hence, the modified lasso criterion by Fan & Li (2001)

is given as:

LASSO∗ =
n∑

i=1

(yi − x
′

iβ)
2 + n

p∑
j=1

λj|βj|.

Wang et al. (2007) acknowledged the well-known fact that the OLS criterion utilized in

the aforementioned equation is highly susceptible to the influence of outliers. To attain a

more resilient lasso-type estimator, they proposed a modification to the lasso* objective
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function, leading to the formulation of the LAD-lasso criterion as follows:

LADlasso = Q(β) =
n∑

i=1

|yi − x
′

iβ|+ n

p∑
j=1

λj|βj|. (2.8)

The LADlasso criterion effectively combines the LAD criterion and the lasso penalty, re-

sulting in an estimator that is robust against outliers and promotes sparsity in the repre-

sentation (Wang et al. 2007).

LAD-Lasso offers several unique advantages. In high-dimensional datasets with outliers,

LAD-Lasso tends to outperform Lasso by producing solutions with smaller standard errors.

Its robustness against outliers enables LAD-Lasso to provide more accurate and precise

estimations, resulting in reduced standard errors and increased reliability of the obtained

results (Rahardiantoro & Kurnia 2015).

LAD-Lasso provides the unique capability of simultaneous variable selection and regres-

sion parameter estimation. By identifying the most important variables and estimating

their coefficients, it constructs a concise and interpretable model. Moreover, users have

the flexibility to choose the tuning parameter, allowing for a trade-off between model com-

plexity and predictive performance based on individual needs and prior knowledge. This

flexibility enhances the applicability and adaptability of LAD-Lasso in various data analysis

scenarios.

Some drawbacks of LAD-LASSO are:

• Computational complexity: LAD-Lasso can be computationally intensive, especially

for large-scale or high-dimensional datasets. The non-differentiable penalty function

and the need to solve an optimization problem for each value of the tuning parameter

can increase the computational burden.

• Lack of variable selection consistency:The LAD-Lasso method differs from Lasso in

that it may not consistently select the correct relevant variables as the sample size

increases. It has the potential to include irrelevant variables or exclude important
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ones, which can lead to model misspecification.

• Another drawback of LAD-Lasso is its sensitivity to the selection of the tuning param-

eter (λ). Choosing the appropriate value for λ can be challenging, and an improper

choice may result in biased coefficient estimates or suboptimal variable selection.

Careful consideration is essential when determining the optimal λ value to ensure the

accuracy and reliability of the LAD-Lasso model.

2.5 Huber Loss Function

Numerous challenges in the fields of learning, optimization, and statistics necessitate ro-

bustness, which implies that a model trained or optimized should be less influenced by

outliers than by inliers, that is, the regular data (Gokcesu & Gokcesu 2021). Furthermore,

the authors recommended that rather than employing outlier detection methods, it is cru-

cial to develop loss functions that possess inherent robustness to outliers. The Huber loss

is a loss function employed in robust regression within statistics, which is comparatively

less responsive to outliers in data compared to the popular mean squared error (MSE) loss

function. It is also occasionally utilized in a modified form for classification purposes and

combines the advantages of both MSE and mean absolute error (MAE) by behaving like

MSE for small errors and like MAE for large errors. Due to its strong convexity and ability

to facilitate fast learning, the square loss is highly effective. On the other hand, the abso-

lute loss is capable of withstanding arbitrary outliers, as their impact on the estimation is

determined by their position in the data, rather than their actual values. Combining the

benefits of these two loss functions is crucial in the development of algorithms that can

exhibit robustness against outliers, while also achieving rapid convergence with minimal

loss (Gokcesu & Gokcesu 2021).
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Therefore, the Huber (1964) loss function is defined as

Lδ(a) =


1
2
a2 for |a| ≤ δ,

δ(|a| − 1
2
δ), otherwise .

For small values of a, the function behaves quadratically, but for large values, it behaves

linearly. The two sections of the function have the same values and slopes at two points

where |a| = δ. Typically, the variable a represents residuals, which are the differences

between observed and predicted values (a = y − f(x)). So the former can be expanded to

Lδ(a) =


1
2
(y − f(x))2 for |y − f(x)| ≤ δ,

δ(|y − f(x)| − 1
2
δ), otherwise .

Therefore, in order to develop a loss function that is both robust and converges quickly, it

is necessary to merge the characteristics of the absolute and quadratic losses. The simplest

method involves using a piecewise function to blend the quadratic and absolute losses in a

manner that maximizes their effectiveness (Gokcesu & Gokcesu 2021).

One advantage of the Huber loss function is its wide application across various fields,

including machine learning, control systems, and computer vision. It offers a significant

benefit over the Mean Squared Error (MSE) by demonstrating reduced sensitivity to out-

liers. This characteristic is particularly valuable in real-world scenarios where data may

contain unexpected or noisy values. By mitigating the influence of outliers, the Huber loss

function can improve model accuracy and stability, resulting in more reliable and robust

predictions.

The Huber loss function strikes a balance between the advantages of mean squared error

(MSE) and mean absolute error (MAE). It is quadratic for small errors and linear for large

errors, providing a trade-off between the two. As a result, it is less sensitive to outliers than

MSE while still being differentiable everywhere like MSE. Huber loss is continuous and dif-

ferentiable, which makes it amenable to optimization using gradient-based methods. This is
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particularly significant in machine learning, where gradient-based optimization algorithms

are frequently employed to minimize the loss function by adjusting the model parameters

(Gokcesu & Gokcesu 2021). Due to its benefits, Huber loss is commonly used in regression

problems, particularly in real-world scenarios where the data may have outliers or other

sources of noise.

Despite its advantages, Huber loss has a major disadvantage that is associated with

complexity. The loss function has a hyperparameter, δ, which determines the point at

which the function changes from being quadratic to linear. Tuning the value of delta(δ)

to suit the specific problem at hand can be a challenging and time-consuming process that

requires expert knowledge. However, in general, the drawbacks of Huber loss are minor

compared to its benefits. Nevertheless, when selecting a loss function, it is essential to

consider the specific needs of the problem at hand and the characteristics of the data and

model being used.

2.6 Tukey M-estimator

In 1964, Huber introduced the M-estimation method, which has since become a widely

adopted and popular approach for robust regression. It is an extension of maximum likeli-

hood estimation and is specifically designed to handle outliers in location models effectively.

Huber’s M-estimation method has gained significant popularity and is widely used in ro-

bust regression due to its ability to provide robust and reliable parameter estimates in the

presence of outliers. It offers comparable efficiency to ordinary least squares (OLS) while

using a different objective function. Instead of minimizing the sum of squared errors, the

M-estimation method minimizes a residual function, which contributes to its robustness

against outliers. In linear regression, the M-estimate objective function is given as:

β̂M = argmin
β

n∑
i=1

ρ(yi −Xi
⊤β).
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Filzmoser & Nordhausen (2021) highlight the importance of maintaining desired equiv-

ariance properties, such as robustness unaffected by rescaling the response variable. To

achieve this, scaling the residuals becomes necessary. This leads to the development of

the regression M-estimator, which incorporates scaled residuals to ensure robustness. The

M-estimator is a widely used technique in robust regression, known for its effectiveness in

estimating parameters that are influenced by outliers. In general, M-estimation involves

minimizing an objective function to obtain robust regression estimates (Nahar & Purwani

2017). By utilizing scaled residuals, the robustness of the estimator remains consistent even

when the response variable is rescaled.

John Tukey introduced the Tukey’s M-estimator in 1960 as a robust regression tech-

nique. Like the Huber loss function, the Tukey M-estimator is specifically designed to be

less sensitive to outliers compared to traditional regression methods. Its robustness allows

it to generate more dependable parameter estimates, even when dealing with outliers, mak-

ing it an invaluable tool for robust data analysis. To obtain a scale-invariant version of the

Tukey M-estimator in regression, a common approach is to divide the residuals by a robust

measure of scale. The regression Tukey M-estimator with scale adjustment is achieved by

using the median absolute deviation (MAD) as the scale estimator. This approach aims to

minimize the impact of outliers and influential data points in linear regression. The objec-

tive function for the regression Tukey M-estimator with scale adjustment can be defined as

follows:

β̂M = argmin
β

n∑
i=1

ρ

(
yi −Xi

⊤β

s

)
, (2.9)

where s is the scale of robust estimation. The S estimator that is often used is

s =
median|ei −median(ei)|

0.6745
.

• The inclusion of the constant 0.6745 in the calculation of S makes it an approximately

unbiased estimate of σ under the conditions of a large sample size and a normal

distribution.
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• yi’s are the observed values of the response variable.

• Xi
⊤ is the vector of predictors for the ith observation.

• β is the vector of regression coefficients to be estimated and ρ measures the agreement

between an observation, yi and any possible value of the parameter of interest.

To minimize Equation (2.9), first take partial derivatives with respect to β and set them

equal to zero. Then,

n∑
i=1

Xiψ

(
yi −Xi

⊤β

s

)
= 0,

where ψ = ρ
′
is the influence function. From Equation (2.9), the matrix notation can be

written as follows:

Therefore, the matrix notation based on the equation above can be written as follows:

X⊤WXβ = X⊤WY, (2.10)

where W is n × n diagonal matrix of weights (that is, the weight function). X is the

independent variable matrix size (n× (p+1)) and Y is the dependent variable matrix size

(n× n). Therefore, the robust regression Tukey M-estimator for β is:

β̂M = (X⊤WX)−1(X⊤WY ). (2.11)

The influence function ψ(·) quantifies the impact of individual data points on the esti-

mation procedure, helping identify influential observations that can skew results or lead

to biased estimates. It is a valuable tool for assessing robustness, detecting outliers, and

understanding the behavior of estimators in the presence of influential data.

There are commonly used influence functions for M-estimators. For the Tukey M-
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estimator, the influence function is given as;

ψ(z) =

z(1− (z/k)2)2 if |z| ≤ k,

0 if |z| > k.

The tuning constant k plays a crucial role in balancing the robustness and efficiency of

the estimators. Opting for a larger k enhances efficiency but compromises robustness to

outliers. In the case of the Tukey function, k values typically range from 3 to 5 to strike

an optimal balance between efficiency and robustness (Elsaied & Fried 2016).

The Tukey M-estimator for linear regression offers numerous advantages:

• Robustness to outliers: Tukey M-estimators exhibit resilience against the impact

of outliers, which can have a significant effect on conventional estimators like least

squares. When confronted with substantial outliers, Elsaied & Fried (2016) suggested

employing the Tukey function because of its redescending nature. This distinctive

feature enables the Tukey M-estimator to effectively reduce the influence of extreme

observations, resulting in improved robustness and dependability when dealing with

data containing outliers.

• Flexibility in error distribution: Tukey M-estimators are advantageous in linear re-

gression as they can handle non-normal error distributions, such as heavy-tailed or

skewed distributions, which may deviate from the assumption of normality. This

flexibility enhances their robustness and enables accurate capture of the underlying

relationship between variables.

• Robustness customization: Tukey M-estimators provide researchers with the ability

to customize the robustness level by manipulating a tuning constant. This allows

them to adjust the estimator’s robustness according to the unique attributes of their

data, enabling them to strike an ideal trade-off between robustness and efficiency that

aligns with their preferences and requirements.
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Despite its advantages, the Tukey M-estimator for linear regression also presents some

limitations and challenges. Some of these challenges are:

• Inconsistency: The Tukey M-estimator for linear regression may lack consistency in

the presence of outliers or errors, leading to biased results. It is important to consider

alternative robust estimation methods to obtain reliable estimates in such scenarios.

• Sensitivity to the choice of tuning constant: The effectiveness of Tukey M-estimators

heavily relies on the choice of the tuning constant. Improper selection can lead

to biased estimates and reduced efficiency. Finding the optimal tuning constant is

challenging and often requires trial-and-error or data-driven techniques.

• Computational complexity: Tukey M-estimators can be computationally demanding,

especially for large datasets or complex models. The iterative nature of the estima-

tion procedure, where the tuning constant is updated in each iteration, can lead to

increased computational time and resource requirements.
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Chapter 3

Methodology

This chapter presents the methodology employed in this study, focusing on the Density

Power Divergence (DPD), the SCAD (Smoothly Clipped Absolute Deviation) penalty, and

the robust penalized regression model.

3.1 Density Power Divergence (DPD)

The density power divergence (DPD) measure, introduced by Basu et al. (1998), incorpo-

rates a tuning parameter α ≥ 0 in minimum density power divergence estimation. This

estimation framework is widely used in robust statistics due to its flexibility in handling

outliers and heavy-tailed distributions. The key step in this approach involves numerically

minimizing the power divergence, which leads to the desired estimates. Riani et al. (2020)

demonstrated that by choosing a suitable value of α and minimizing the power divergence,

robust and reliable estimates can be obtained, even when dealing with challenging data

characteristics.

Therefore, the divergence measure between the model density fθ with parameter θ ϵ Θ

and the true or data density g is defined as

dα(fθ, g) =


∫
z

{
f 1+α
θ (z)− (1 + 1

α
)fα

θ (z)g(z) +
1
α
g1+α(z)

}
dz, for α > 0,∫

z
g(z) log

(
g(z)
fθ(z)

)
dz, for α = 0.

When α = 0, the DPD becomes the Kullback-Leibler divergence as a limiting case when

α → 0+. The minimum density power divergence estimator (MDPDE) is obtained by

23



minimizing the density power divergence (DPD) measure with respect to the parameter θ

over its parametric space Θ. The tuning parameter plays a crucial role in the MDPDE as it

controls the balance between efficiency and robustness for the power divergence estimator.

By choosing an appropriate value of α, one can adjust the trade-off between these two

characteristics, allowing for more tailored and robust estimation (Ghosh & Basu 2016,

Riani et al. 2020). In general, it can be shown that as the tuning parameter α increases,

the robustness of the Minimum Density Power Divergence estimator increases while its

efficiency decreases (Basu et al. 1998).

Considering a linear regression model from Equation (2.7), we let θ = (β⊤, σ2)⊤ be

the parameter with the probability density function (pdf) of yi, denoted by fθ(yi|xi) or fi

follows a normal distribution which is given by

fi ≡ fθ(yi|xi) =
1√
2πσ

exp

(
− 1

2σ2
(Yi −X⊤

i β)
2

)
, (3.1)

where fi is then the estimate of the vector of the parameters according to the Maximum

Likelihood (ML) criterion is

β̂ML = argmin
β

[
1

(2πσ2)(n/2)

(∑n
i=1(Yi −X⊤

i β)
2

2σ2

)]
. (3.2)

This is equivalent to the solution given by ordinary least squares method. In Durio &

Isaia (2011), we let X1, . . . ,Xn be a random sample of size n ≥ 2 from X, the Minimum

Density Power Divergence Estimator for θ0 corresponding to the vector θ̂α by minimizing

the divergence dα(fθ, g). In Riani et al. (2020), since the third term of the divergence is

independent of θ, the power divergence estimator of θ can be found by minimizing

∫
f 1+α
θ (z)dz −

(
1 +

1

α

)
1

n

n∑
i=1

fα
θ (yi). (3.3)

According to Durio & Isaia (2011), when α = 0 the MDPDE reduces to the Maximum

Likelihood estimator while for α = 1, the divergence d1(fθ, g) yields the L2 metric and the
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estimator minimizes the L2 distance between the densities. If we assume that the random

variables Y |x are distributed as a N (x⊤
i β, σ), then with reference to Equation (3.3), the

estimate of the vector θα = [β0, . . . , βp, σ], is given by

θ̂α = argmin
β, σ

[
1

σα
√
(2π)α(1 + α)

− α + 1

α

1

n

n∑
i=1

fα
i (Yi|X⊤

i β, σ)

]
. (3.4)

Hence, from the above equation, the penalized MDPDE (β̃, σ̃) using iterative algorithm

gives

β̃md = (X⊤ŴαX)−1(X⊤ŴαY ), (3.5)

and

σ̃2 =
1

trace(Ŵα)

[
1

n
(Y −X⊤β̂)⊤Ŵα(Y −X⊤β̂) +

α

(2πσ̂2)α/2(1 + α)3/2

]
, (3.6)

where Ŵα is defined as a diagonal matrix with fα
1 , f

α
2 , . . . , f

α
n as diagonal elements and

Y = (Y1, . . . , Yn)
⊤.

3.2 Robust Penalized Regression Method

Robust regression techniques have gained interest due to the limitations of classical meth-

ods in variable selection. The development of penalized robust regression approaches

has been driven by the advancements in collecting and analyzing high-dimensional data.

These methods combine robustness with variable selection, addressing the challenges of

high-dimensional data. Penalized robust regression effectively handles outliers and non-

normality while identifying relevant predictors by incorporating penalty terms in the ob-

jective function. The SCAD penalty, among others, strikes a balance between sparsity

promotion and robustness, resulting in more accurate estimation and inference (Luo 2020).

In high-dimensional settings, the sensitivity of the quadratic loss function to heavy-

tailed errors or outliers presents a challenge for linear regression models. To mitigate
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this challenge, a robust penalized selection and estimation procedure can be utilized. This

procedure replaces the conventional sum of squares loss function with a robust loss function

that is more resilient to outliers or heavy-tailed errors. According to Luo (2020), the

corresponding robust estimator β̂ takes the following form

β̂ = argmin
β

(L(β;Zn
1 ) + ρλ(β)) , (3.7)

where L(β;Zn
1 ) is the empirical loss function, Zn

1 = (Z1, Z2, . . . , Zn) denote a collection

of n samples and Zi = (xi, yi) for i = 1, . . . , n. It is important to note that a penalized

robust procedure is defined by its loss function L(β;Zn
1 ) and the penalty function. The loss

function is designed to handle outliers and heavy-tailed errors, while the penalty function

promotes sparsity in the parameter vector β.

Therefore, by referring to the equation above, the robust estimator β̂ for the penalized

regression model can be expressed as follows:

β̂ = argmin
β

(dα(fi, g) + ρλ(β)) , (3.8)

where

• dα(fi, g) is the density power divergence measure between the observed data g and

the model density function fi.

• λ is the tuning parameter that controls the strength of the penalty term

• ρλ(·) is the SCAD penalty function applied to the regression coefficients β.

• ρλ(β) =
∑p

j=1 ρλ(|βj|)

The penalized DPD regression aims to achieve unbiased and selective coefficient esti-

mates. It achieves this by minimizing the DPD measure while incorporating the SCAD

penalty. This combination encourages sparsity in the parameter estimate, allowing for vari-
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able selection in high-dimensional settings. By promoting sparsity and addressing outliers,

this approach enhances the accuracy and robustness of the estimation process.

3.3 Smoothly Clipped Absolute Deviation (SCAD)

In high-dimensional statistical modeling, the process of variable selection is crucial. How-

ever, traditional methods like LASSO often suffer from bias in this process. To overcome

this limitation, the smoothly clipped absolute deviation (SCAD) estimator was introduced.

The SCAD estimator addresses bias while promoting sparsity in the selected variables

through a continuous penalty. By striking a balance between bias reduction and sparsity,

the SCAD estimator provides a robust and effective approach to variable selection in high-

dimensional settings. The SCAD estimator, originally proposed by Fan & Li (2001), offers

desirable properties such as continuity, sparsity (encouraging coefficient shrinkage towards

zero), and unbiasedness.

In the article of Fan & Li (2001), it is discussed that the Lq penalty function and the

hard thresholding penalty function do not meet the mathematical conditions required for

achieving unbiasedness, sparsity, and continuity simultaneously. This finding highlights

the limitations of these penalty functions and the challenges involved in incorporating all

desired properties into a single penalty function. For this reason, Fan (1997) and Fan &

Li (2001) proposed a non-concave penalty function referred to as the smoothly clipped

absolute deviation (SCAD) which is given by

pSCAD
λ (βj) =


λ|βj| if |βj| ≤ λ;

−
(

|βj |2−2aλ|βj |+λ2

2(a−1)

)
if λ < |βj| ≤ aλ;

(a+1)λ2

2
if |βj| > aλ,

where a > 2 is a fixed parameter. The function exhibits continuity and possesses a first

derivative for certain values of a > 2 and β > 0. Specifically, the first derivative of the
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function which is given by

p
′

λ(β) = λ

{
I(β ≤ λ+

(aλ− β

(a− 1)λ
+ I(β > λ)

}
, (3.9)

enhances the properties of the L1 penalty and the hard thresholding penalty function. This

equation represents a quadratic spline function with knots at λ and aλ. By introducing

these knots, the penalty function avoids excessive penalization for large values of λ, while

also ensuring the solution remains continuous. This improvement in the penalty function

helps achieve desirable properties in variable selection and estimation (Fan & Li 2001, Fan

1997).

Now, analogous to the SCAD estimator when using the square-error loss function, we

derive β̂SCAD, the penalized MDPDE of β using the SCAD penalty function. Now, suppose

β̂j is the unpenalized MDPDE of the j-th component of β, then, the penalized MDPDE

can be written as

β̂j,SCAD = F SCAD
λ,α (β̂j). (3.10)

Fan (1997) demonstrated that the SCAD penalty can yield sparse solutions and approxi-

mately unbiased coefficient estimates for large coefficients. Therefore, the solution to the

SCAD penalty in the equation above can be given as

F SCAD
λ,α (β̂j) =


sign(β̂j)(|β̂j| − λ)+ if |β̂j| < 2λ;

{(a− 1)β̂j − sign(β̂j)aλ}/(a− 2) if 2λ < |β̂j| ≤ aλ;

β̂j if |β̂j| > aλ,

(3.11)

where λ, α and a are tuning parameters. Here, our λ parameter is selected using information

criteria (AIC, BIC, etc.) and the DPD parameter α is selected based on another information

criterion, called H-score.
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During it implementation in the Bayesian analysis, Fan & Li (2001) assumed that, for

given a and λ, the prior distribution for βj is a normal distribution with zero mean and

variance aλ were the Bayes was computed through numerical intergration. They further

suggested that, for the universal thresholding, λ =
√

2 log(d) (Donoho & Johnstone 1994).

Fan & Li (2001) recommended choosing a = 3.7 based on Bayesian statistical considerations

and simulation studies. They argued that this value provides good performance for various

variable selection problems. Furthermore, they noted that data-driven methods for selecting

the value of a do not significantly improve the performance of variable selection in practice.

Robust regression is a valuable tool for analyzing data with outliers, as it aims to

produce stable results even in the presence of these outliers. Unlike traditional approaches,

robust estimation methods are specifically designed to mitigate the influence of outliers

during the estimation process, resulting in more reliable and resilient analyses. These

methods ensure that outliers do not disproportionately impact the results, leading to more

accurate and robust statistical inferences (Almetwally & Almongy 2018).

3.4 Model Selection Criteria

Model selection is crucial in high-dimensional settings like regression to prevent biases and

errors. Reliable criteria identify relevant variables and improve parameter estimation and

prediction. By employing robust model selection, researchers ensure unbiased results and

enhance statistical analyses’ validity.

3.4.1 Akaike Information Criterion (AIC)

The Akaike information criterion (AIC) is a widely used statistical measure for model

evaluation and selection. It strikes a balance between the goodness of fit of a model

and its complexity, addressing the trade-off between overfitting and underfitting. AIC

quantifies the relative amount of information lost by each model and favors models with

lower information loss.
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By comparing the information loss of different models, AIC allows researchers to as-

sess the quality of each model’s approximation to the true underlying process. Therefore,

suppose that we have a statistical model of some data. Let k be the number of estimated

parameters in the model and L̂ be the maximized value of the likelihood function for the

model. The general AIC formula is given by

AIC = 2k − 2 ln(L̂).

Therefore, our modified AIC formula under the DPD setting is

AIC(λn) = n log(nσ̂2) + 2df. (3.12)

The preferred model is chosen based on the minimum AIC value, which penalizes models

with more parameters, discouraging overfitting. By selecting the model with the lowest

AIC, researchers can choose a model that achieves a good fit without being overly complex

(Akaike 1973, 1974).

3.4.2 Bayesian Information Criterion (BIC)

The Bayesian information criterion (BIC) is a highly renowned and extensively employed

tool for statistical model selection. Its widespread usage is attributed to its computa-

tional ease and its effectiveness in various modeling frameworks, even in cases where prior

distributions are not readily available (Neath & Cavanaugh 2012).

The BIC introduces a penalty for model complexity, preventing overfitting by favor-

ing simpler models. It strikes a balance between complexity and accuracy, aiding model

selection by identifying the most appropriate model. Widely used in statistics, the BIC’s

Bayesian principles offer a principled approach for selecting models in diverse fields.

Mathematically, the Bayesian information criterion (BIC) is derived as an asymptotic

result under certain assumptions. Specifically, it is based on the assumption that the data
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distribution follows the exponential family. The BIC formula incorporates this assumption

and provides an approximation of the model’s information loss in relation to the true

underlying data distribution. Therefore, the most widely used BIC formula is given as

BIC = k ln(n)− 2 ln(L̂).

In our method, the BIC formula to be used is expressed as

BIC(λn) = n log(nσ̂2) + df. (3.13)

The BIC is a useful model selection tool, favoring models with lower values, indicating

better fit or fewer variables. It penalizes additional parameters more strongly than AIC,

helping researchers balance model fit and complexity for appropriate selection.

3.4.3 Mallows’s Cp

Mallows’s Cp, named after Colin Lingwood Mallows, is a statistical measure used to eval-

uate the goodness of fit of a regression model estimated using ordinary least squares. It is

particularly useful in the context of model selection, where the objective is to identify the

best model that includes a subset of available predictor variables for predicting an outcome.

The Cp value provides an indication of the precision of the model, with a smaller value

suggesting a more precise fit to the data. Interestingly, Mallows’s Cp has been found to be

equivalent to the Akaike information criterion (AIC) in the special case of Gaussian linear

regression (Mallows 1973, Gilmour 1996, Boisbunon et al. 2013).

In an article published by Hocking (1976), the technique involves comparing a full

model, which includes all the parameters, with a smaller model that includes only a subset

of the parameters. It assesses the amount of error that remains unexplained by the smaller

model. This is done by estimating the standardized total mean square of estimation for
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the partial model using the following formula :

Cp =
SSEp

S2
−N + 2(P + 1),

where;

• SSEp =
∑N

i=1(Yi − Ypi)
2 is the error sum of squares for the model with P predictor

variables,

• Ypi is the predicted value of the ith observation of Y from the P regressors,

• S2 = the residual mean square for the model (estimated by MSE)

• N is the sample size

Therefore, the Cp formula used in our model selection is given as

Cp(λn) =
nσ̂2

σ̂2
u

− n+ 2df. (3.14)

Mallows’s Cp addresses the issue of overfitting, in which model selection statistics such

as the residual sum of squares always get smaller as more variables are added to a model.

Different interpretations have been proposed for the Mallows’s Cp statistic, but the consen-

sus is that smaller values indicate better model fit. A smaller Cp value suggests a smaller

amount of unexplained error in the model.

3.4.4 Extended Bayesian Information Criterion (EBIC)

In the context of high-dimensional data analysis, the Extended Bayesian Information Cri-

terion (EBIC) is a statistical criterion for model selection. The penalty of selecting models

with a lot of variables is incorporated into this version of the Bayesian Information Criterion

(BIC).

The BIC, for example, tends to prefer models with lots of variables in high-dimensional

settings, which is one of the limits of other criteria. The EBIC is intended to overcome
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these issues. To encourage sparsity and the selection of models with fewer variables, the

EBIC penalizes model complexity more severely.

The EBIC is defined as:

EBIC(λ) = −2 ln(L) + n ln(σ̂2) + 2s(λ, n),

where L represents the maximum likelihood estimation of the model, σ̂2 is the estimate of

the error variance, n is the sample size, and s(λ, n) is a penalty term that depends on the

tuning parameter λ and the sample size n.

The penalty term s(λ, n) is calculated as:

s(λ, n) = λ

(
p− 1

2
ln(n)

)
,

where p is the number of variables in the model and λ is a positive tuning parameter that

controls the amount of penalization.

Therefore, the EBIC formula in our method is given as

EBIC(λn) = n log(nσ̂2) + (log n+ log p)df. (3.15)

The EBIC is a useful criterion for model selection in high-dimensional data analysis, as it

promotes sparsity and parsimony while accounting for model fit.

For instance, Chen & Chen (2008) in their article established that the EBIC are ex-

tremely useful for variable selection in problems with a moderate sample size but with a

huge number of covariates, especially in genome-wide association studies, which are now

an active area in genetics research.

Where σ̂ is the estimate of σ obtained from the sub-model and σ̂u is an unbiased and

robust estimator of σ from the full model. The df is the degrees of freedom of the sub-model,

that is, the dimension of non-zero β coefficients obtained from the group SCAD estimator.

Therefore, for each case, we select an optimum λn that minimizes each information criterion.
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Chapter 4

Simulation and Real Data Analysis

The penalized density power divergence (DPD) regression model is a promising approach

in statistical analysis, offering robustness and flexibility. This study aims to evaluate the

performance of the penalized DPD model through a comprehensive simulation study. The

simulation results provide valuable insights into the potential applications of the penalized

DPD regression in practical data analysis settings.

4.1 Simulation Results

We conducted a comprehensive simulation experiment to assess and validate the perfor-

mance of various models using metrics such as Root Mean Prediction Error (RMPE),

mean of Sensitivity, and Specificity. To assess the performance of the robust penalized

DPD model, a synthetic data was generated to mimic real-world scenarios with varying

distributions, noise levels, and data irregularities. The simulations were conducted using

a penalized regression model with different numbers of predictors, including cases with

zero coefficients. The simulations were replicated 100 times to ensure robustness and were

performed for sample sizes of 100 and 500.

This approach allowed us to evaluate the effectiveness of our model under different data

sizes and signal to noise ratio (SNR) values. By analyzing the simulation results, we gained

valuable insights into the performance and reliability of the method in high-dimensional

settings.
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The data is generated from a linear regression model

Yi = β0 +

p∑
i=1

βkXik + ϵi

In assessing the robustness of our model, we introduced different levels of contamination

in the data by adding outliers. The contamination proportions were set to 0%, 5%, and 10%

for samples of size 100 and 500. The total number of predictors, excluding the intercept,

was chosen as 15 and 25, with 7 and 20 predictors having zero coefficients (p0).

In the process of evaluating the performance of the robust model under various data

sizes, we selected different signal-to-noise ratio (SNR) values: 0.5, 1, and 5 for samples of

size 100 and 500, respectively. Each simulation was replicated 100 times to ensure reliable

results. The models were evaluated based on their Root Mean Prediction Error (RMPE),

as well as the sensitivity and specificity metrics.

By considering these factors, we were able to gain insights into the effectiveness and

robustness of the penalized DPD regression model in different scenarios, providing a com-

prehensive evaluation of its performance in high-dimensional settings.

4.1.1 RMPE, Sensitivity and Specificity of Simulated data

In this section, we conducted an analysis of the Root Mean Prediction Error (RMPE) for

various estimators. The focus of our investigation was on sample sizes of 100 and 500, with

varying numbers of predictors (15 and 25, excluding the intercept) and predictors with

zero coefficients (7 and 20). To understand the impact of outliers, we considered different

proportions (0%, 5%, and 10%) and signal-to-noise ratios (0.5, 1, and 5).

Our objective was to examine how the RMPE of the models changed as the proportion

of outliers was manipulated. By altering this proportion, we aimed to gain insights into the

models’ performance under different outlier scenarios. Additionally, we evaluated the aver-

age sensitivity and specificity of the simulated data, providing a comprehensive assessment

of the models’ predictive capabilities across multiple categories.
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The Table 4.1 gives the results for RMPE, the mean of sensitivity and specificity based

on the following settings: n = 100, p = 15, p0 = 7, ϵ = 0, and SNR = 0.5. The RMPE values

for most estimators are generally low, indicating good predictive performance. However,

among the estimators, LASSO estimator stands out with a lower RMPE of 1.1437 and

the highest sensitivity value of 0.9563 indicating a remarkable accuracy of 95.63% in

correctly identifying positive instances. On the other hand, LADlasso obtained the highest

specificity value of 0.9900, demonstrating a strong ability to accurately identify negative

instances at a rate of 99%. Overall, LASSO demonstrated superior predictive performance

and effectively captured positive cases, while LADlasso exhibited robustness in detecting

negative cases.

Table 4.1: Results for n = 100, SNR = 0.5, ϵ = 0, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.1678 - -
Huber 1.1766 - -
Tukey 1.1786 - -
LAD 1.2373 - -

LASSO 1.1437 0.9563 0.4014
LADlasso 1.4893 0.1125 0.9900
AIC(DPD) 1.1795 0.8850 0.6514
BIC(DPD) 1.2299 0.7538 0.8071
EBIC(DPD) 1.3641 0.3838 0.9500
Cp(DPD) 1.1782 0.8875 0.6443

In Table 4.2, with an introduction of a 5% contamination, the Tukey estimator per-

forms better in terms of the RMPE with a value of 1.1779. The table again presents

the sensitivity and specificity values for the other models where Cp(DPD) achieved the

highest sensitivity value of 0.7738, indicating a remarkable accuracy of 77.38% in cor-

rectly identifying positive instances. On the other hand, LADlasso obtained the highest

specificity value of 0.9886, demonstrating a strong ability to accurately identify negative

instances at a rate of 98.86%.
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Table 4.2: Results for n = 100, SNR = 0.5, ϵ = 0.05, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.8102 - -
Huber 1.2711 - -
Tukey 1.1779 - -
LAD 1.2964 - -

LASSO 1.5695 0.5700 0.6314
LADlasso 1.4697 0.1400 0.9886
AIC(DPD) 1.4485 0.7550 0.6886
BIC(DPD) 1.4324 0.5925 0.8514
EBIC(DPD) 1.4665 0.3238 0.9400
Cp(DPD) 1.4393 0.7738 0.6686

Table 4.3: Results for n = 100, SNR = 0.5, ϵ = 0.1, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 2.5979 - -
Huber 1.4856 - -
Tukey 1.2202 - -
LAD 1.3878 - -

LASSO 2.0429 0.4050 0.7757
LADlasso 1.4924 0.1475 0.9871
AIC(DPD) 2.0058 0.4538 0.7929
BIC(DPD) 1.8032 0.3113 0.8957
EBIC(DPD) 1.7771 0.2600 0.9386
Cp(DPD) 1.9969 0.4988 0.7643

Comparing the simulation results in Table 4.3 to those in Tables 4.1 and 4.2, we observe

that the RMPE of the estimators increases as the percentage of outliers rises, leading to

a significant decrease in sensitivity values. Among the estimators, the Tukey estimator

achieved the lowest RMPE of 1.2202, while the Cp(DPD) estimator demonstrated a

higher sensitivity value of 0.4988. Additionally, concerning specificity, LADlasso obtained

the highest value of 0.9871, indicating exceptional accuracy in its predictions
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Table 4.4: Results for n = 100, SNR = 1, ϵ = 0, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.1814 - -
Huber 1.1902 - -
Tukey 1.1922 - -
LAD 1.3213 - -

LASSO 1.1531 0.9963 0.3500
LADlasso 1.9843 0.1238 0.9971
AIC(DPD) 1.1655 0.9825 0.6986
BIC(DPD) 1.1778 0.9588 0.8343
EBIC(DPD) 1.2379 0.8913 0.8929
Cp(DPD) 1.1634 0.9838 0.7000

Table 4.5: Results for n = 100, SNR = 1, ϵ = 0.05, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 2.4773 - -
Huber 1.2970 - -
Tukey 1.1923 - -
LAD 1.3861 - -

LASSO 2.0866 0.6413 0.6057
LADlasso 1.9206 0.1488 0.9986
AIC(DPD) 1.2810 0.9650 0.7557
BIC(DPD) 1.2881 0.9400 0.8571
EBIC(DPD) 1.3208 0.8913 0.8943
Cp(DPD) 1.2805 0.9663 0.7486
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Table 4.6: Results for n = 100, SNR = 1, ϵ = 0.1, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 4.0343 - -
Huber 1.5242 - -
Tukey 1.2258 - -
LAD 1.4906 - -

LASSO 3.0783 0.4313 0.7471
LADlasso 1.9343 0.1700 0.9943
AIC(DPD) 2.1809 0.6763 0.8171
BIC(DPD) 2.0666 0.6000 0.9029
EBIC(DPD) 2.0738 0.5600 0.9229
Cp(DPD) 2.3841 0.7663 0.7143

In Tables 4.4 to 4.6, the estimators generally exhibit low RMPE values. However, the

LASSO estimator outperforms others with a value of 1.1531 and a higher sensitivity of

0.9963 when the data is uncontaminated. In the presence of 5% and 10% data contam-

ination, the Tukey estimator stands out with low RMPE values of 1.1923 and 1.2258,

respectively.

Regarding sensitivity and specificity values, the Cp(DPD) estimator achieves the high-

est sensitivity values of 0.9663 and 0.7663 in Tables 4.5 and 4.6, respectively, showcasing

its remarkable accuracy in identifying positive instances. On the other hand, LADlasso

consistently obtains higher specificity values, demonstrating its strong ability to accurately

identify negative instances at rates of 99.71%, 99.86%, and 99.43% across all tables.
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Table 4.7: Results for n = 100, SNR = 5, ϵ = 0, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.2926 - -
Huber 1.3013 - -
Tukey 1.3036 - -
LAD 1.6938 - -

LASSO 1.2557 1.0000 0.3429
LADlasso 5.4415 0.1950 1.0000
AIC(DPD) 1.2501 1.0000 0.8114
BIC(DPD) 1.2212 1.0000 0.9586
EBIC(DPD) 1.2118 1.0000 0.9871
Cp(DPD) 1.2501 1.0000 0.8029

Table 4.8: Results for n = 100, SNR = 5, ϵ = 0.05, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 7.7919 - -
Huber 1.4603 - -
Tukey 1.3116 - -
LAD 1.9059 - -

LASSO 6.1379 0.6888 0.5671
LADlasso 5.4112 0.1788 1.0000
AIC(DPD) 1.2842 1.0000 0.8129
BIC(DPD) 1.2577 1.0000 0.9457
EBIC(DPD) 1.2374 1.0000 0.9929
Cp(DPD) 1.2856 1.0000 0.8000
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Table 4.9: Results for n = 100, SNR = 5, ϵ = 0.1, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 15.4891 - -
Huber 1.7410 - -
Tukey 1.3422 - -
LAD 2.0611 - -

LASSO 2.0612 0.4588 0.7357
LADlasso 5.2521 0.2125 0.9986
AIC(DPD) 3.5122 0.8788 0.7729
BIC(DPD) 3.1631 0.8613 0.9600
EBIC(DPD) 3.0245 0.8450 0.9843
Cp(DPD) 4.1276 0.9075 0.7286

Tables 4.7 to 4.8 revealed that the robust estimator, EBIC(DPD), outperformed other

methods in terms of RMPE, achieving values of 1.2118 and 1.2374, respectively. All DPD-

based robust estimators and the LASSO estimator achieved 100% accuracy in sensitivity,

while the LADlasso showed 100% accuracy in specificity. In Table 4.9, Cp(DPD)

exhibited the highest success rate of 0.9075 in identifying positive cases, with Tukey

having the lowest RMPE.

In this simulation study, we again evaluate the Root Mean Prediction Error (RMPE),

the mean sensitivity, and the mean specificity for various parameter settings. The param-

eters used are as follows: sample size (n) = 500, total predictors p = 25 (excluding the

intercept), predictors with zero coefficients p0 = 20, different proportions of outliers (ϵ), and

signal-to-noise ratios (SNR). By analyzing these simulations, we aim to gain insights into

the performance of different models under varied conditions, providing a comprehensive

understanding of their predictive capabilities.
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Table 4.10: Results for n = 500, SNR = 0.5, ϵ = 0, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.0029 - -
Huber 1.0063 - -
Tukey 1.0064 - -
LAD 1.0826 - -

LASSO 0.9657 1.0000 0.6625
LADlasso 1.0036 0.8840 0.9970
AIC(DPD) 0.9757 1.0000 0.8020
BIC(DPD) 0.9645 1.0000 0.9595
EBIC(DPD) 0.9653 1.0000 0.9700
Cp(DPD) 0.9757 1.0000 0.8020

Table 4.11: Results for n = 500, SNR = 0.5, ϵ = 0.05, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.1874 - -
Huber 1.0162 - -
Tukey 1.0080 - -
LAD 1.0957 - -

LASSO 1.1002 0.9860 0.6765
LADlasso 1.0419 0.8120 0.9880
AIC(DPD) 1.0188 0.9960 0.8195
BIC(DPD) 0.9983 0.9960 0.9520
EBIC(DPD) 0.9986 0.9940 0.9690
Cp(DPD) 1.0218 0.9960 0.8015
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Table 4.12: Results for n = 500, SNR = 0.5, ϵ = 0.1, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.5680 - -
Huber 1.0546 - -
Tukey 1.0118 - -
LAD 1.1301 - -

LASSO 1.4238 0.9560 0.6760
LADlasso 1.0970 0.746 0.9840
AIC(DPD) 1.1730 0.9380 0.8830
BIC(DPD) 1.1747 0.8780 0.9350
EBIC(DPD) 1.1841 0.8380 0.9545
Cp(DPD) 1.1733 0.9480 0.8380

In Tables 4.10 to 4.12, we present the results based on a new sample size. Our robust

estimator with DPD (BIC(DPD)) demonstrated superior performance in terms of RMPE,

achieving values of 0.9645 and 0.9983, respectively. As for sensitivity, AIC(DPD),

BIC(DPD), and Cp(DPD) all exhibited the same high value of 0.9960, representing

99.60% accuracy in identifying positive cases. On the other hand, the LADlasso estimator

maintained its superiority in accurately identifying negative cases. These findings shed light

on the robustness and reliability of the various estimators under different conditions.

Table 4.13: Results for n = 500, SNR = 1, ϵ = 0, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.0063 - -
Huber 1.0098 - -
Tukey 1.0099 - -
LAD 1.1623 - -

LASSO 0.9689 1.0000 0.6665
LADlasso 1.0148 0.9760 0.9985
AIC(DPD) 0.9777 1.0000 0.8165
BIC(DPD) 0.9635 1.0000 0.9870
EBIC(DPD) 0.9643 1.0000 0.9920
Cp(DPD) 0.9776 1.0000 0.8175
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Table 4.14: Results for n = 500, SNR = 1, ϵ = 0.05, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.3775 - -
Huber 1.0148 - -
Tukey 1.0113 - -
LAD 1.1791 - -

LASSO 1.2382 0.9940 0.6790
LADlasso 1.0891 0.9300 0.9930
AIC(DPD) 1.0189 1.0000 0.7540
BIC(DPD) 0.9865 1.0000 0.9870
EBIC(DPD) 0.9855 1.0000 0.9935
Cp(DPD) 1.0199 1.0000 0.7475

Table 4.15: Results for n = 500, SNR = 1, ϵ = 0.1, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 2.1449 - -
Huber 1.0480 - -
Tukey 1.0153 - -
LAD 1.2181 - -

LASSO 1.8983 0.9640 0.6790
LADlasso 1.1996 0.8380 0.9825
AIC(DPD) 1.0674 0.9980 0.7435
BIC(DPD) 1.0331 0.9980 0.9805
EBIC(DPD) 1.0373 0.9900 0.9915
Cp(DPD) 1.0679 0.9980 0.7365

In Tables 4.13 to 4.14, we observed that the BIC(DPD) and EBIC(DPD) estimators

achieved lower RMPE values of 0.9635 and 0.9855, respectively, compared to other esti-

mators when the data was both uncontaminated and contaminated at 5%. Furthermore, all

DPD estimators demonstrated perfect sensitivity values, scoring 100%. Notably, in Tables

4.14 and 4.15, EBIC(DPD) outperformed LADlasso in terms of specificity, achieving

rates of 99.35% and 99.15%, respectively. These results highlight the superior perfor-
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mance and robustness of the BIC(DPD) and EBIC(DPD) estimators under different

data conditions.

Table 4.16: Results for n = 500, SNR = 5, ϵ = 0, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.0345 - -
Huber 1.0382 - -
Tukey 1.0382 - -
LAD 1.8439 - -

LASSO 0.9956 1.0000 0.6645
LADlasso 1.2049 1.0000 1.0000
AIC(DPD) 1.0056 1.0000 0.8175
BIC(DPD) 0.9900 1.0000 0.9960
EBIC(DPD) 0.9897 1.0000 0.9995
Cp(DPD) 1.0056 1.0000 0.8175

Table 4.17: Results for n = 500, SNR = 5, ϵ = 0.05, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 2.8938 - -
Huber 1.0230 - -
Tukey 1.0393 - -
LAD 1.9024 - -

LASSO 2.3577 1.0000 0.6855
LADlasso 1.5305 1.0000 0.9915
AIC(DPD) 1.0203 1.0000 0.7765
BIC(DPD) 0.9968 1.0000 0.9935
EBIC(DPD) 0.9961 1.0000 0.9995
Cp(DPD) 1.0202 1.0000 0.7790
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Table 4.18: Results for n = 500, SNR = 5, ϵ = 0.1, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 6.7639 - -
Huber 1.0339 - -
Tukey 1.0446 - -
LAD 1.9843 - -

LASSO 5.6969 0.9780 0.6755
LADlasso 1.9802 0.9840 0.9670
AIC(DPD) 1.0383 1.0000 0.7840
BIC(DPD) 1.0145 1.0000 0.9980
EBIC(DPD) 1.0141 1.0000 1.0000
Cp(DPD) 1.0376 1.0000 0.7875

The EBIC(DPD) estimator consistently outperformed other estimators, achieving

lower RMPE values (0.9897, 0.9961, and 1.0141) under uncontaminated and contami-

nated data scenarios at 5% and 10% levels. It demonstrated perfect sensitivity (100%) and

superior specificity (99.95% and 100%) compared to LADlasso in Tables 4.16 to 4.18.

These findings highlight the robustness and superior performance of the EBIC(DPD)

estimator across various data conditions.

Table 4.19: Results for n = 100, SNR = 0.5, ϵ = 0, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.1678 - -
Huber 1.1766 - -
Tukey 1.1786 - -
LAD 1.2373 - -

LASSO 1.1437 0.9563 0.4014
LADlasso 1.4893 0.1125 0.9900
AIC(DPD) 1.1795 0.8850 0.6514
BIC(DPD) 1.2299 0.7538 0.8071
EBIC(DPD) 1.3641 0.3838 0.9500
Cp(DPD) 1.1782 0.8875 0.6443
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Table 4.20: Results for n = 100, SNR = 1, ϵ = 0, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.1814 - -
Huber 1.1902 - -
Tukey 1.1922 - -
LAD 1.3213 - -

LASSO 1.1531 0.9963 0.3500
LADlasso 1.9843 0.1238 0.9971
AIC(DPD) 1.1655 0.9825 0.6986
BIC(DPD) 1.1778 0.9588 0.8343
EBIC(DPD) 1.2379 0.8913 0.8929
Cp(DPD) 1.1634 0.9838 0.7000

Table 4.21: Results for n = 100, SNR = 5, ϵ = 0, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.2926 - -
Huber 1.3013 - -
Tukey 1.3036 - -
LAD 1.6938 - -

LASSO 1.2557 1.0000 0.3429
LADlasso 5.4415 0.1950 1.0000
AIC(DPD) 1.2501 1.0000 0.8114
BIC(DPD) 1.2212 1.0000 0.9586
EBIC(DPD) 1.2118 1.0000 0.9871
Cp(DPD) 1.2501 1.0000 0.8029

The Tables 4.19 to 4.21 above gives the results for different SNR values when data is

uncontaminated with p = 15 and p0 = 7. EBIC(DPD) performed better in terms of

RMPE (1.2118) with SNR = 5 with all the DPD methods perfectly predicting positive

cases.
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Table 4.22: Results for n = 100, SNR = 0.5, ϵ = 0.05, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 1.8102 - -
Huber 1.2711 - -
Tukey 1.1779 - -
LAD 1.2964 - -

LASSO 1.5695 0.5700 0.6314
LADlasso 1.4697 0.1400 0.9886
AIC(DPD) 1.4485 0.7550 0.6886
BIC(DPD) 1.4324 0.5925 0.8514
EBIC(DPD) 1.4665 0.3238 0.9400
Cp(DPD) 1.4393 0.7738 0.6686

Table 4.23: Results for n = 100, SNR = 1, ϵ = 0.05, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 2.4773 - -
Huber 1.2970 - -
Tukey 1.1923 - -
LAD 1.3861 - -

LASSO 2.0866 0.6413 0.6057
LADlasso 1.9206 0.1488 0.9986
AIC(DPD) 1.2810 0.9650 0.7557
BIC(DPD) 1.2881 0.9400 0.8571
EBIC(DPD) 1.3208 0.8913 0.8943
Cp(DPD) 1.2805 0.9663 0.7486
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Table 4.24: Results for n = 100, SNR = 5, ϵ = 0.05, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 7.7919 - -
Huber 1.4603 - -
Tukey 1.3116 - -
LAD 1.9059 - -

LASSO 6.1379 0.6888 0.5671
LADlasso 5.4112 0.1788 1.0000
AIC(DPD) 1.2842 1.0000 0.8129
BIC(DPD) 1.2577 1.0000 0.9457
EBIC(DPD) 1.2374 1.0000 0.9929
Cp(DPD) 1.2856 1.0000 0.8000

The EBIC(DPD) estimator again had a lower RMPE value of 1.2374 in Table 4.24

and Cp(DPD) consistently predicting higher values of sensitivity in in all the three

scenarios of the SNR.

Table 4.25: Results for n = 100, SNR = 0.5, ϵ = 0.1, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 2.5979 - -
Huber 1.4856 - -
Tukey 1.2202 - -
LAD 1.3878 - -

LASSO 2.0429 0.4050 0.7757
LADlasso 1.4924 0.1475 0.9871
AIC(DPD) 2.0058 0.4538 0.7929
BIC(DPD) 1.8032 0.3113 0.8957
EBIC(DPD) 1.7771 0.2600 0.9386
Cp(DPD) 1.9969 0.4988 0.7643

49



Table 4.26: Results for n = 100, SNR = 1, ϵ = 0.1, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 4.0343 - -
Huber 1.5242 - -
Tukey 1.2258 - -
LAD 1.4906 - -

LASSO 3.0783 0.4313 0.7471
LADlasso 1.9343 0.1700 0.9943
AIC(DPD) 2.1809 0.6763 0.8171
BIC(DPD) 2.0666 0.6000 0.9029
EBIC(DPD) 2.0738 0.5600 0.9229
Cp(DPD) 2.3841 0.7663 0.7143

Table 4.27: Results for n = 100, SNR = 5, ϵ = 0.1, p = 15, p0 = 7

Estimators RMPE Sensitivity Specificity
OLS 15.4891 - -
Huber 1.7410 - -
Tukey 1.3422 - -
LAD 2.0611 - -

LASSO 2.0612 0.4588 0.7357
LADlasso 5.2521 0.2125 0.9986
AIC(DPD) 3.5122 0.8788 0.7729
BIC(DPD) 3.1631 0.8613 0.9600
EBIC(DPD) 3.0245 0.8450 0.9843
Cp(DPD) 4.1276 0.9075 0.7286
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Table 4.28: Results for n = 500, SNR = 0.5, ϵ = 0, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.0029 - -
Huber 1.0063 - -
Tukey 1.0064 - -
LAD 1.0826 - -

LASSO 0.9657 1.0000 0.6625
LADlasso 1.0036 0.8840 0.9970
AIC(DPD) 0.9757 1.0000 0.8020
BIC(DPD) 0.9645 1.0000 0.9595
EBIC(DPD) 0.9653 1.0000 0.9700
Cp(DPD) 0.9757 1.0000 0.8020

Table 4.29: Results for n = 500, SNR = 1, ϵ = 0, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.0063 - -
Huber 1.0098 - -
Tukey 1.0099 - -
LAD 1.1623 - -

LASSO 0.9689 1.0000 0.6665
LADlasso 1.0148 0.9760 0.9985
AIC(DPD) 0.9777 1.0000 0.8165
BIC(DPD) 0.9635 1.0000 0.9870
EBIC(DPD) 0.9643 1.0000 0.9920
Cp(DPD) 0.9776 1.0000 0.8175
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Table 4.30: Results for n = 500, SNR = 5, ϵ = 0, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.0345 - -
Huber 1.0382 - -
Tukey 1.0382 - -
LAD 1.8439 - -

LASSO 0.9956 1.0000 0.6645
LADlasso 1.2049 1.0000 1.0000
AIC(DPD) 1.0056 1.0000 0.8175
BIC(DPD) 0.9900 1.0000 0.9960
EBIC(DPD) 0.9897 1.0000 0.9995
Cp(DPD) 1.0056 1.0000 0.8175

Table 4.31: Results for n = 500, SNR = 0.5, ϵ = 0.05, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.1874 - -
Huber 1.0162 - -
Tukey 1.0080 - -
LAD 1.0957 - -

LASSO 1.1002 0.9860 0.6765
LADlasso 1.0419 0.8120 0.9880
AIC(DPD) 1.0188 0.9960 0.8195
BIC(DPD) 0.9983 0.9960 0.9520
EBIC(DPD) 0.9986 0.9940 0.9690
Cp(DPD) 1.0218 0.9960 0.8015
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Table 4.32: Results for n = 500, SNR = 1, ϵ = 0.05, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.3775 - -
Huber 1.0148 - -
Tukey 1.0113 - -
LAD 1.1791 - -

LASSO 1.2382 0.9940 0.6790
LADlasso 1.0891 0.9300 0.9930
AIC(DPD) 1.0189 1.0000 0.7540
BIC(DPD) 0.9865 1.0000 0.9870
EBIC(DPD) 0.9855 1.0000 0.9935
Cp(DPD) 1.0199 1.0000 0.7475

Table 4.33: Results for n = 500, SNR = 5, ϵ = 0.05, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 2.8938 - -
Huber 1.0230 - -
Tukey 1.0393 - -
LAD 1.9024 - -

LASSO 2.3577 1.0000 0.6855
LADlasso 1.5305 1.0000 0.9915
AIC(DPD) 1.0203 1.0000 0.7765
BIC(DPD) 0.9968 1.0000 0.9935
EBIC(DPD) 0.9961 1.0000 0.9995
Cp(DPD) 1.0202 1.0000 0.7790
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Table 4.34: Results for n = 500, SNR = 0.5, ϵ = 0.1, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 1.5680 - -
Huber 1.0546 - -
Tukey 1.0118 - -
LAD 1.1301 - -

LASSO 1.4238 0.9560 0.6760
LADlasso 1.0970 0.746 0.9840
AIC(DPD) 1.1730 0.9380 0.8830
BIC(DPD) 1.1747 0.8780 0.9350
EBIC(DPD) 1.1841 0.8380 0.9545
Cp(DPD) 1.1733 0.9480 0.8380

Table 4.35: Results for n = 500, SNR = 1, ϵ = 0.1, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 2.1449 - -
Huber 1.0480 - -
Tukey 1.0153 - -
LAD 1.2181 - -

LASSO 1.8983 0.9640 0.6790
LADlasso 1.1996 0.8380 0.9825
AIC(DPD) 1.0674 0.9980 0.7435
BIC(DPD) 1.0331 0.9980 0.9805
EBIC(DPD) 1.0373 0.9900 0.9915
Cp(DPD) 1.0679 0.9980 0.7365
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Table 4.36: Results for n = 500, SNR = 5, ϵ = 0.1, p = 25, p0 = 20

Estimators RMPE Sensitivity Specificity
OLS 6.7639 - -
Huber 1.0339 - -
Tukey 1.0446 - -
LAD 1.9843 - -

LASSO 5.6969 0.9780 0.6755
LADlasso 1.9802 0.9840 0.9670
AIC(DPD) 1.0383 1.0000 0.7840
BIC(DPD) 1.0145 1.0000 0.9980
EBIC(DPD) 1.0141 1.0000 1.0000
Cp(DPD) 1.0376 1.0000 0.7875

Tables 4.28 to 4.33 show that with n = 500, both BIC(DPD) and EBIC(DPD)

outperformed other estimators, predicting lower values of RMPE. Also, all DPD methods

demonstrated higher sensitivity rates in identifying positive cases. Table 4.36 highlights

that EBIC(DPD) is the only estimator with a lower RMPE of 1.0141 and achieves 100%

sensitivity and specificity rates.

4.2 Real Data Analysis

Data Source and Description

A dataset on Bias correction of numerical prediction model temperature forecast is obtained

from UCI which has 7752 observations across 25 variables, with two different response

variables. The study involves two distinct output variables: the next-day maximum air

temperature and the next-day minimum air temperature. Among the predictor variables

are parameters such as the maximum air temperature between 0 and 21 hours on the present

day, the minimum air temperature between 0 and 21 hours on the present day, date, weather

station number, latitude, longitude, slope, elevation, daily incoming solar radiation, and

more. All variables, with the exception of the date, are continuous in nature.
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4.2.1 Application of Real Data on Models

We employed a robust penalized DPD regression model with an SCAD penalty on the bias

correction dataset. Our analysis focused on utilizing the next-day maximum air tempera-

ture as the primary response variable. This modeling process was conducted on a subset

of the data, specifically 513 randomly selected observations from a total of 7752. In our

analysis, we excluded variables such as weather station number, date, and the next-day

minimum air temperature.

The methodology encompasses two key steps: initially estimating regression coefficients

through the DPD method and subsequently incorporating them into the SCAD penalty

structure. This integration results in the derivation of a robust SCAD penalty. The resul-

tant model proficiently shrinks coefficients associated with irrelevant parameters to zero,

effectively achieving dimension reduction.

The construction of the model transpires on a training dataset, with subsequent valida-

tion carried out on a separate testing dataset, benchmarked by the Root Mean Prediction

Error (RMPE). To evaluate the model’s performance, a comparative analysis is conducted

against other robust estimators such as Tukey, Huber, LAD, and LAD-LASSO.

Furthermore, on the validation of the real-world data, we compute the mean of the

dimension reduction across our DPD methods and alternative techniques (LASSO and

LAD-LASSO). This computation serves as a yardstick to determine the model’s efficacy in

driving irrelevant coefficients to zero, thereby ascertaining its superiority.

4.2.2 RMPE and Mean Dimension Reduction of the Models

The Root Mean Prediction Error (RMPE) serves as a crucial tool in research for evaluating

the accuracy and efficacy of various predictive models. To gauge the effectiveness of our

approach, we compare its RMPE against that of robust models like Tukey, Huber, LAD,

and LAD-LASSO. Additionally, as our focus lies in dimension reduction, we ascertain the

merit of our method by juxtaposing it with LASSO and LAD-LASSO. Upon analysis,
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our robust DPD methods (AIC(DPD), BIC(DPD), and EBIC(DPD)) consistently

yield small RMPE values. While the other robust estimators, Huber and Tukey exhibit

slightly smaller values than our method, the distinctions between these models are relatively

subtle. In the context of dimension reduction, Cp(DPD) estimator showcases superior

performance compared to its counterparts, showcasing adept variable selection capabilities.

To encapsulate the outcomes, the summarized table outlines the results of RMPE and the

mean dimensions after reduction.

Table 4.37: RMPE and Mean Dimension Reduction of Models

Estimators RMPE Mean Dimension Reduction
OLS 1.3755 -
Huber 1.3426 -
Tukey 1.3311 -
LAD 2.9956 -

LASSO 1.3847 14.2857
LADlasso 1.6406 71.4286
AIC(DPD) 1.4122 19.0476
BIC(DPD) 1.4122 19.0476
EBIC(DPD) 1.4122 19.0476
Cp(DPD) 5.1922 97.6191
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Chapter 5

Conclusion

In this research endeavor, we have introduced the Robust Density Power Divergence Re-

gression with SCAD penalty as a proficient approach for both dimension reduction and

resilience against outliers. Our investigation encompassed a series of simulation studies

designed to juxtapose our method against existing alternatives, utilizing three distinct

metrics: Root Mean Prediction Error (RMPE), sensitivity, and specificity.

Throughout the diverse range of simulations carried out, our BIC(DPD) and EBIC(DPD)

techniques consistently demonstrated the lowest RMPE values across scenarios encompass-

ing outlier proportions of 0%, 5%, and 10%. These findings held steady across varying

signal-to-noise ratio values of 0.5, 1, and 5, particularly as the sample size expanded to

500. Regarding sensitivity metrics, the Cp(DPD) approach consistently showcased strong

performance, consistently achieving higher rates of accurate identification.

Subsequently, we utilized data from the UCI dataset to assess the performance of our

methodology. During this evaluation, we conducted a comparative analysis by measuring

the Root Mean Prediction Error (RMPE) values of our robust model estimators against

other robust techniques, including Huber, Tukey, LAD, and LAD-LASSO. This comparison

showcased the robustness of our DPD estimator with SCAD penalty, demonstrating its

efficacy in handling outlier impact.
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