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Abstract 

This thesis explores the use of Artificial Intelligence, specifically semantics, ontologies, and 

reasoner techniques, to improve field geology mapping. The thesis focuses on two use cases: 1) 

identifying a geologic formation based on observed characteristics; and 2) predicting the 

geologic formation that might be expected next based upon known stratigraphic sequence. The 

results show that the ontology was able to correctly identify the geologic formation for the 

majority of rock descriptions, with higher search results for descriptions that provided more 

detail. Similarly, the units expected next were correctly given and if incorrect, would provide a 

flag to the field geologist to further investigate the sequence break. However, subjective 

descriptions and searches can impact the results, and incorrect property assertions can generate 

undesirable results and require validation and verification of data. Overall, the study 

demonstrates the potential for using sematic knowledge bases for field studies to improve 

geologic field observations and measurements. 
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Introduction  

A key component of geoscience research and education is field work, which is typically 

accomplished by recording data into geospatial mapping platforms and archiving observations into 

digital or written notebooks and plotted on maps. These approaches generally do not take 

advantage of the technical strengths that cyberinfrastructure (CI) systems have to offer, which 

provide opportunities to digitally render and preserve the fullest intent and proficiency of a field 

geologist. Hey and Trefethen (2005) describe CI as a collective system of computer hardware, 

software, networks, data, semantics, models, and human collaborators, often based on cutting edge 

technology. Tim Berners-Lee’s initial conception of the World Wide Web (WWW) envisioned an 

online environment for the scientific community to process and analyze information that goes 

beyond the capabilities of human processing alone (Berners-Lee et al., 2001). A WWW that 

combines human knowledge with machine reasoning about information, termed the “semantic 

web,” has been the subject of decades of research and is beginning to come to fruition as a 

component of emerging intelligent systems (IS), along with new machine learning techniques. 

Continual advancements in CI presents opportunities for improvement within the earth 

science community including analyzing big data sets, developing novel workflows, and creating 

tools that analyze the information collected (Pennington et al., 2020; Plale et al., 2013). The 

education section of the American Geophysical Union (AGU) recently concluded that the 

changing landscape of information technology (e.g., big data, tools, models, collaborators) affects 

the kinds and quantities of resources that are available for problem solving. Both students and 

domain experts must learn to navigate this rapidly changing space by successfully identifying and 

harnessing resources that can be brought to bear (Brown et al., 2008; Christensen & Knezek, 2019). 

Hey & Trefethen (2005) state, “In order to exploit and explore” the sheer amount of information 
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present, a degree of automation is required and can be provided by the semantic web elements 

within cyberinfrastructure that process data and metadata. Semantic web formats these data types 

into an environment appropriate for computer-to-computer derived logic (machine reasoning) 

while still being comprehensible to humans.  

These new and emerging technologies are well-suited for traditional geological field 

mapping. Geologic field mapping is a fundamental principle of data gathering and verification; 

first-hand field data is considered the most thorough and authoritative method of collecting 

geologic observations and measurements (Swetanisha, 2022). Geological field mapping exercises 

can and should be enabled and enhanced by a variety of emerging technologies (Neumann et al., 

2006; Mookerjee et al., 2014, Scianna et al., 2012; Sinha et al., 2010). The acceptance of newer 

technologies among geoscientists continues to grow, while not replacing analog data but instead 

being integrated in parallel with traditional non-digital methodologies of using pen and paper 

maps, sketches, journaling, and even abstract hand gestures to understand complex 3D structures 

and motion (Lundmark, 2020).  

Early introduction of students to field mapping is gaining popularity with professors, as a 

study by Elkins (2007) demonstrated higher geoscience cognitive improvement and increased 

geologic interest for students that participated in field research over those that completed 

analogous studies in a classroom setting. Recording and understanding in-situ data is considered a 

critical part of the geologic field training (Compton, 1985). New methods for collecting and 

analyzing data powered by machine learning techniques provide semi-automatic, novel methods 

of data management workflows and enhances discovery in the field. The National Science 

Foundation’s EarthCube program supports community driven research on new approaches to 

enable cyberinfrastructure geared towards geospatially referenced field and microstructural 
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observations; integrate basic analyses; visualize interpreted structural histories; integrate 

geophysical data (geodetic, seismological); semi-automate digitizing; and provide digital 

laboratory and field notebooks (Smith et al., 2016).  

One way to aid traditional field data collection is using semantic-based technologies. 

Semantic-based technologies are a mechanism for representing knowledge (e.g., internal mental 

models of a topic) in machine-readable form that enables machine reasoning and inferencing of 

information that is not explicitly entered into a database by a human user (Fonseca et al., 2002; Gil 

et al., 2016). Both humans and machines need some sort of context, or semantics, to impart 

meaning on a piece of data (Mitchell, 2019). For example, the word “age” could refer to a person’s 

or object’s age, the process of aging, or an historical era. The meaning of the word is inferred from 

the context, or semantics, of its usage. Semantic web knowledge bases aim to improve search 

results by representing concepts derived from keywords used to tag data (vocabulary) and the 

context (semantics) of their usage through the development and use of “ontologies” that describe 

concepts and relationships in machine-readable formats, specifically in the Web Ontology 

Language or OWL (Parsia, 2012). This differs from standard data models in that ontologies enable 

machine reasoning and inferencing driven by observations that are recorded to the knowledge base. 

Noy (2001) describes ontologies as a formalized description of a vocabulary (concepts) within a 

specific domain. An ontology is a model of the concepts and relationships that are relevant in a 

particular context. Like any model, choices are made by the developers about how to simplify and 

organize the phenomena being rendered, what concepts should be represented in the model and 

how they are related. Different contexts and varying levels of expertise of the ontology developers 

invariably result in distinct descriptions of terminology, relationships, and structure (i.e., mental 

models and workflow). Intelligent systems can bridge the gap between disparate ontologies 
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constructed in an “open-world” framework via the re-use of established lexicons, and repositories 

of community-driven ontologies that strengthen machine learning and reasoning (Gil, et. al, 2016). 

Semantically annotated data (instances) together with their ontologies are referred to as a semantic 

web knowledge base. Ontologies enable machine reasoning that goes beyond standard searches of 

simple string-matching (syntactic) methods (Kasenchak, 2019). The goal of machine inferencing 

is to connect and integrate data that may be from disparate data sources and/or be logically 

organized in different ways into a single cohesive environment for use by intelligent systems.  

The National Science Foundation’s EarthCube program has established a foundational, 

multi-level support system for effective representation and analysis of earth data within an 

intelligent, knowledge rich platform (Gil et al., 2018). EarthCube’s Macrostrat offers a general 

data model to test geologic hypotheses regarding rock preservation and cycling along with biologic 

drivers based off microstratigraphy mapping research from Peters (2018). Macrostrat uses a 

relational database and Structured Query Language (SQL) driven quantitative analysis to provide 

big data scale synthesis of relatively low-resolution regional geologic column field data to high-

resolution local primary field rock unit observations and measurements that assist with a more 

complete high-level descriptions of the Earth’s upper crust (Peters et al., 2018). EarthCube’s 

StraboSpot covers structural geology applications within a cyberinfrastructure environment 

relating field data and laboratory analysis using a graph database and NOSQL (not only SQL) 

analysis instead of a SQL based relational database based on model data as records in rows and 

tables with logical links between them (Walker et al., 2019). Both EarthCube platforms provide 

elements of data management, but they do not incorporate machine reasoning and inferencing as 

envisioned by semantic and ontology approaches. 
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This thesis focuses on the application of formal semantics and ontological techniques to field 

geology. The overarching question of interest is: How can these techniques support training 

geoscientists in the field? I approach this by analyzing two use cases:  

1) Identifying a geologic formation in the field based on observed characteristics of the rock 

outcrops; and 

2) Predicting the appearance of a formation in the field given the observed geologic formation 

and the known stratigraphic sequence in the area. 
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Background 

GEOLOGIC FIELD MAPPING 

Geologic field mapping offers a unique opportunity for geologists to directly interact 

with, observe, measure, and interpret the environment or phenomena in its natural state 

(Priestnall et al., 2007). Basic geospatial cognitive abilities involve gathering and understanding 

information of 3D structures paired with possible dynamic geologic processes occurring over 

long periods of time (Saini-Eidukat, et. al, 2002).  

Key principles of field geology traditionally include basic procedures undertaken at 

outcrops, which involve proper identification and measurements of geologic structures and rocks 

found. Other key principles involve the proper use of equipment for sampling and recording 

observations, including the use of a compass and maps (geologic maps and topographic maps), 

along with aerial photographs or remote sensing imagery, if available. Since field geology 

requires interpretation of land, it is common to have illustrations of a specific feature to convey 

information that does not have to be duplicated in the final report of the area, and/or to visually 

assist the report with information that may not be apparent to the reader. Further aids come from 

stratigraphic sections that define the sequences of rock, geologic structure, and relative position 

that dictate ages and possible events which occurred to deposit, deform, or alter the conditions on 

the ground (Compton, 1985). The knowledge base introduction as a field tool would be best 

served for a couple of audiences. One, geoscience students who are already familiar with the 

foundational practices of geologic field mapping and are using the knowledge base as a scientific 

logical aid developing the ontology for data capture and discovery with the purpose of building a 

story of the geology while still in the field. As Compton (1985) states, it is critical to “recognize 

key features the first-time around” as the mapper may only have a single opportunity to visit the 
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site. Another target audience would be field studies that involve “experts” in the field verifying 

past or co-existing data in the field. Compton states that collecting, recording, and interpreting 

geological information, both user-created and officially recognized information recorded such as 

proper names, symbols, and colors should be accurate and use standards set forth by 

organizations such as the United States Geological Survey (USGS) Domestic Names Committee 

of the U.S. Board on Geographic Names. Ontologies extends standardization conventions 

provided by a series of possible organizations and concepts, such as the International 

Organization for Standardization (ISO, 2021), World Wide Web Consortium (W3C, 2023, Open 

Geospatial Consortium (OGC, 2021), Spatial Data Infrastructures (Janssen et al., 2012), National 

Information Standards Organization (NISO, 2021), and the American National Standards 

Institute (ANSI, 2021). The intent of this thesis study is to introduce supplementary semantic 

tools into the field mapping workflow and assess their application in this context. Capabilities of 

identifying rocks and mineral, structure and processes should be established as a foundational 

cogitative learning process. Semantic web knowledge bases should act to foster organization, 

sharing, and building understanding in real-time while in the field, even if the stratigraphic 

column and units that belong to it are being discovered and named. The queries can be applied 

generically to any site if the competency questions and ontology structure are addressed first. 

 

SEMANTIC WEB KNOWLEDGE BASES 

Encapsulating information into Semantic Web Knowledge Bases (SWKB) depend on 

integrating three perspectives: 1) ontology engineer; 2) domain expert; and 3) end user (Kalbasi 

2014). The end user defines the problem and context and articulates the specific questions the 

ontology is intended to address. The domain expert has a mental model of the concepts and 
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relationships that are relevant to that problem. The ontology engineer develops the technology 

that captures the concepts and relationships using a tagged structure of terminology, 

relationships, and constraints in ways that can address the problem of interest. Information about 

where the data came from is kept within the provenance data provided within Protégé or can be 

imported as well via a provenance ontology such as PROV-N (Lebo et al., 2013).  

The Protégé Ontology Editor (Musen, 2015) uses “Class”, “Object/Data Properties”, 

“Instances” and “Annotations” features. All data encoded into the SWKB must be designated as 

one of these. The foundational structure consists of classes and subclasses that represent relevant 

concepts in a hierarchical vocabulary. These are linked through properties that describe the 

relationship between (sub)classes. Instances are specific cases of a (sub)class that do not require 

further subclassing. Annotations are applied to classes, properties, and instances to capture 

detailed information about each element, along with annotations about the ontology itself, such 

as version tracking and general comments. 
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Figure 1: Example of ontology structure and inferences using Protégé version 5.5.0. 
A role-chain driven inference is shown in yellow is based on what one might expect next as a 
property assertion: “isAbove” and “expectBelow”, are determined by which unit being observed 
“Del_Rio” Formation.  

 
Programs such as Protégé provide a user-friendly front-end application for ontology 

development and management. Once developed, the ontology must be tested to validate that it is 

able to support the end user in the way envisioned. This process requires the development of 

ontology “competency questions” that articulate what inferences are needed and enable testing 

against data sets where the expected results are known. Inferences are derived by the reasoner to 

generate implicit information that is not explicitly entered into the ontology by the user, using a 

set of defined rules and logical axioms. Geologic knowledge and field data are organized into 

data classes, subclasses, and relationships or may be sourced from pre-existing ontologies. 
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Competency questions can be answered by simple searches of keywords and/or more 

complicated queries using a Description Logic Query. The DL Query tab in Protégé provides 

more advanced and/or alternative methods for searching and included input from the reasoner in 

the summary of supported results for a competency question specific to formal knowledge 

representation. Protégé offers the ability to represent description logics with a user-friendly 

syntax – Manchester syntax (Smith et al., 2021). Using Manchester Syntax, Description Logics 

classes can be defined and with the use of a reasoner, instances, subclasses, superclasses and 

other information can be retrieved using the DL Query tab.  These DL classes can answer 

competency questions. These requires a syntactically correct formatted statements based upon 

familiarly with the basics of ontological concepts, roles, individuals, and axioms. Protégé 

facilitates construction of the statements since they are more sophisticated than simple text 

searches. For example, Protégé can list properties for a geologic formation is listed as both 

explicitly entered and inferences implicitly derived by the reasoner (Figure 1). Implicit data is 

shown in yellow, includes an example of enabling a role-chain within the object property 

“expectAbove” using the “SuperProperty Of (Chain)” shown in Figure 2.  
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Figure 2: Using a role-chain for inferences on what geologically might be expected next in 
Protégé version 5.5.0.  

 
Ontologies are developed to support a specific problem and tend to be partially reused along with 

more broadly scoped ontologies (upper-level ontologies) that have been established using 

standardized lexicons from expert domains. Reuse of broadly scoped ontologies by multiple 

problem-specific ontologies provides a means of integrating data across problem contexts. This 

means that SWKB developers must not only generate tailored ontologies that represent the 

mental models of a domain expert for a limited problem, but also consolidate existing ontologies 

that were developed for their own specific research questions and scope.  

In the context of geological field mapping, ontologies can supplement a field notebook 

and/or provide another field mapping partner as a digital extension to aid with data capture, 

sharing, and geologic hypothesis development. The functionality of the ontology is based on 

what information will be held and what questions are to be answered. Commonly collected 

observations in geological field mapping are shown in Table 1, along with existing ontologies 
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that include those concepts. The main functions that must be covered by a geologic field 

mapping ontology include: 1) Provenance information; 2) Meta-data; 3) Time and date; 4) 

Weather; 5) Location and position; along with 6) Domain specific records (geologic data). The 

first five of these are common to all field science problems. The sixth, domain specific records, 

must be developed for the specific problem of interest.  

 

Table 1. Generalized information covered by both geologic field notebook and field ontologies.  
Category  Examples Ontology Coverage Source(s) IRIs 
Provenance Entity information: author name(s), 

membership, role; Activity: project title, 
purpose; Time & Date: start, end; Indentifier: 
version, revision; Bundle: single, collection, 
(provenance of provenance data); Alternate 
information: specialization, confidence 
   

PROV-N: The Provenance Notation,  
http://purl.dataone.org/provone/2015/01/15/ont
ology# 

Metadata Domain relevant: annotations, descriptions, 
comments, labels, and/or identifiers 

Protégé ontology annotation property 
hierarchy 
 

Imported  
field data 

Local weather and earthquake data  NOAA Weather Ontology, USGS QuakeML 
https://api.weather.gov/ontology, 
https://quake.ethz.ch/quakeml/QuakeML2.0 
 

Location & 
Position 

Geospatial features: spatial relationships (i.e., 
next-to), toponyms (place names), coordinate 
reference systems, grids, metadata, services 

W3C Geospatial Ontologies, 
https://www.w3.org/2005/Incubator/geo/XGR-
geo-ont-20071023/ 
 

Geologic 
Observations & 
Measurements 

Expert domains: stratagraphy, geologic 
timescale, paleobiology, geochemistry, 
earthquakes, hydrology, unit data 

NASA SWEET Ontology, CGI  
http://sweetontology.net/sweetAll, 
https://cgi.vocabs.ga.gov.au/vocab/ 
 

 

For example, a common geologic field observation is a fault that cuts exposed rock units. 

When recording the description of a fault, basic information such as the name of the fault (if 

known), location, relationship to geologic units, and other possible measurements are required 

such as movement sense. The SWKB developer’s use of variables within the ontology may have 

to take into consideration domain information such as relationships to outcrops, geologic time 

periods, and specific geologic processes. It may be necessary to specify technical information 
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such as data types (e.g., a String, Float, Integer) and units. It will also ideally include metadata 

about the record. Provenance, such as who recorded the information, relationships to institutions, 

language (e.g., English), and when the information was recorded may have its own metadata, yet 

metadata covers more than just provenance. Complexity arises as there are many correct methods 

for achieving this. One method might be to solely rely upon a simplified user-made variable 

names for each required entry to encompass the properties of the fault; another, more desirable 

method, would be to use an existing set of variable names already in use by a trusted institution. 

Table 2 provides a comparison of the approach used by two different ontologies to describe a 

geologic fault. The Semantic Web for Earth and Environmental Terminology Ontology 

(SWEET), is the “de facto” broad-scope ontology for Earth and Environmental Sciences (EES) 

developed by NASA. It features incorporated unified fault entry description (DiGiuseppe et al., 

2014). Conversely, the Commission for the Application and Management of Geoscience 

Information (CGI, 2006) group describes a fault observation as a fault type, movement type, and 

movement sense. In the case of the fault example, both sources may be needed and there may 

also be the necessity to extend or modify the source files to best fit the needs of the custom 

ontology. Building the ontology can cause decision-based issues within the workflow, as there 

might be several ways to present the data.  

The Commission for the Application and Management of Geoscience Information (CGI) 

definition requires three files to cover the wide array of fault types and movements (Table 2). For 

this instance, the CGI ontology is more exhaustive than the SWEET ontology, yet the SWEET 

ontology covers a broader list of terminology for field sciences in general. Both may be used in 

conjunction, separately, or expanded upon with custom entries and represent an upper level of 

ontological information regarding geologic faults. Upper-level ontologies (i.e., domain-
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independent ontologies) describing general concepts are proving useful within the biomedical, 

biological, and environmental science fields. Hybrid ontologies present a mix of 

foundational/core concepts and domain-specific knowledge bases. 

 

Table 2. Comparison of two methods for describing a geologic fault.  
Geologic feature type Author IRI* 

Phenomena Geologic Fault ESIP SWEET 

Ontology 

http://cor.esipfed.org/ont?iri=http://sweetontology.net/phenGeolFault 

Fault Type CGI 

Geoscience 

Terminology 

http://cor.esipfed.org/ont?iri=http://resource.geosciml.org/classifiersc

heme/cgi/2016.01/faulttype 

Fault Movement Type CGI 

Geoscience 

Terminology 

http://cor.esipfed.org/ont?iri=http://resource.geosciml.org/classifiersc

heme/cgi/2016.01/faultmovementtype 

Fault Movement Sense CGI 

Geoscience 

Terminology 

http://cor.esipfed.org/ont?iri=http://resource.geosciml.org/classifiersc

heme/cgi/2016.01/faultmovementsense 

  * Examples were obtained from the Community Ontology Repository (COR) (http://cor.esipfed.org/ont/#/). 

Accessed on April 2022. 

 

Geologic relevant ontologies are available, such as the Environment Ontology (ENVO) 

that contains descriptions for environmental studies involving realms within ecosystems, 

processes, and scientific data qualities (Whetzel et al. 2016). Another resource is the Extensible 

Observation Ontology (OBOE), which captures semantics focused on scientific observations and 

measurements (Madin et al., 2007). The Semantic Sensor Network Ontology (SSN) describes 

sensors, actuators, observations for various scientific devices (Krötzsch et al., 2012). The Friend 
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of a Friend Vocabulary (FOAF, n.d.) ontology provides relationships for personal and working 

associations. The Ontology of Units of Measure (Golodoniuc, 2018) list standardizations for unit 

measurements used in scientific research. Regardless of the source(s) used, an exploration into 

the nature of the file is required to grasp the logical conventions used, each of which may result 

in a complicated effort by the user in terms of time, expertise, format, and analysis. Recent 

research by Zhan et al. (2021) reused select upper-level ontologies and described their interaction 

with proposed, lower-level ontologies supporting interpretation of historical geologic events 

inferred from field observations. This research aims at a similar approach of hybrid ontologies, 

selectively incorporating upper-level ontologies to facilitate use within geologic study sites. 

In addition to observational concepts, an ontology supporting field geology needs to capture 

interpretative concepts.  

Compton (1984) generalizes foundational information for a typical field notebook for any 

selected field site as containing data that is both evidence-driven and interpretative. This would 

also be true for an ontology intended to support geologic field mapping. Lisle & Barnes (1983) 

state that “… Fact must always be clearly distinguishable from inference.” This key value is also 

displayed within Protégé, as the use of the HermiT reasoner (Glimm, 2014) clearly delineates 

machine-derived inferences with a yellow highlighted record bound by a dashed border since it is 

from a logical perspective. Searches may be performed strictly upon the explicit ontological data 

or may include the inferenced data, based on user’s needs. If any of the inferences have been 

verified as fact, they can then be incorporated back into the ontology. Protégé provides this 

functionally via a simple button click per inference case.    
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Methods 

 
OVERVIEW OF METHODS 

 
This investigation used a case-based approach of a specific geology field site, Mt. Cristo 

Rey, in Doña Ana County, New Mexico. In collaboration with a field geology expert, two major 

competency questions were formulated that are fundamental to understanding a new field site 

that could be addressed by the system:  

1. What geologic formation am I observing?  

2. What geologic formation might I expect next?  

Existing information relevant to the Mt. Cristo Rey study site was used to guide generation of a 

conceptual model of data utilized in the field for a variety of purposes. The conceptual model 

was implemented into a machine-readable ontology with encoded data. The ontology contains 

provenance information, typical field notes and map data, imported weather and earthquake data, 

and finally, expert domain data sourced from published journal articles describing geologic 

formations and stratigraphy for the area. The collaborating expert field geologist provided 

sample rock descriptions along with the correct identification of the geologic formation from 

which the sample was taken. Queries were constructed based on the rock descriptions to test the 

accuracy of the results generated by the system relevant to the competency questions. 

 

FIELD SITE 

Mt. Cristo Rey is also known as “Cerro de Los Muleros” or “Cerro de Cristo Rey.” It is 

an Eocene andesite laccolith peak located within the southern Rio Grande rift valley just west of 

El Paso, TX (Lucas et al., 2010). This unit intruded a sequence of Cretaceous sedimentary rocks, 
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resulting in moderate to severe folding and faulting of these older sedimentary units. The oldest 

exposed sedimentary units are late Albian marine and non-marine sedimentary rocks that were 

deposited during a period of transgressive and regressive events. These are overlain by late 

Cretaceous rocks formed during development of the Chihuahua trough and opening the Gulf of 

Mexico (Hook, 2008; Lucas, 2010; Lovejoy, 1976). The fossil assemblage found within the 

shallow marine deposits provides a means to confidently identify different rock types and units 

suitable for geologic formation identification within the lithostratigraphy and sedimentary 

petrography.  

 
KNOWLEDGE BASE DEVELOPMENT 

 
A scope for the knowledge base was established based upon the two competency 

questions. In this case, the system was intended to assist with identification of a geologic 

formation from a description of its rocks and to use the stratigraphic column to provide end users 

with what formation should be expected next based upon what formation is being observed. The 

knowledge base developer should note the challenges associated with an increase in sensor data, 

user data, and modeling complexity, can represent an increase in biases, error, and uncertainty 

surrounding decision making. (Klein, 2015). 

 
DATA SOURCES 

Domain specific data for Mt. Cristo Rey was extracted from three peer-reviewed journal 

articles (Lovejoy, 1976; Belle, 1987; Lucas et al., 2010) using the online AI tool, ChatGPT 

(Adiwardana et al., 2020). These articles provide information of geologic formations in the area, 

the stratigraphic column, and depositional environments. ChatGPT generated brief summaries of 

relevant information of the given sections of the article, then was asked to create a master 
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summary based on all three article summaries. The last step was for ChatGPT to reduce the 

master summary into a keyword list. From this list of keywords, property assertions were made 

for each geologic formation in Protégé. This approach generated a non-biased domain expert 

dataset for competency testing purposes, without infringing upon intellectual property rights of 

the authors. All three sources are cited within the knowledge base. For example, for the major 

geologic features and properties of the geologic unit “Mancos” formation, ChatGPT was given 

the prompt to generate note the major geologic features from a selected text (i.e., the first text 

excerpt for each cited manuscript), then it was asked to add the geologic features found on each 

text and to combine all the features into a master list. The summarized results were in paragraph 

form, often with sections of directly quoted text without the citation to the author. ChatGPT was 

then prompted to generate a keyword list of the summary and the resulting list was comprised of 

single word features such as “shale” and “bivalves” or was shorten associations such as 

“Boquillas” as another name for the “Mancos” formation.  

 High-level weather, earthquake, and geological structure/processes data were sourced 

from existing ontologies. CGI and the SWEET ontologies provided geoscience terminology and 

semantic descriptions for the Earth Realm. NOAA’s ontology was used for weather data and the 

USGS’s QuakeML provided seismic data. 

 

KNOWLEDGE BASE STRUCTURING 

The class hierarchy was constructed using four major classes: 1) Field Data information 

meant to store in-situ field mapping information, such as recorded weather, earthquake, and local 

map observations and measurements; 2) Geologic information regarding geologic features such 

as time scale, stratigraphy, lithology, and depositional environments; 3) Imported ontological 
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data; and 4) Personal information about the authors/data collectors for purposes of maintaining 

provenance tracking. Subclasses within the major classes were subsumed into classes that 

created a hierarchy for stratigraphy, observations and measurements, and general geologic 

features. Instances, such as specific geologic formation names, were created within the class 

structure. The instances were linked to specific data relationships to further define concepts, for 

example associating formations to geologic structures and processes.  

Using the “Add to ontology” function within the query box, a class within the main 

“Queries” can encode as “Class” features, “Object/Data Properties”, “Instances” and 

“Annotations” were identified within the domain journal articles. Processing a section of domain 

expert data such as descriptions by Lucas et al. (2010) involves manually encoding of geologic 

concepts as ontology structure within the knowledge base. For example, a section of text that 

describes sandstone intervals each 0.4 m thick that contains Texigryhaea and displays ripple 

lamination exist in the upper part of the formation; would contain, as a concept, the class 

structures for formation stratigraphy, data property assertions for the thickness in meters, and 

individual/instances for “Texigryhaea” since the fossil name was not found in the imported 

ontologies, and “sandstone” which does exist within the CGI ontology is linked, and object 

property assertions for what ripple lamination “represents” (geologically).  Annotation properties 

might be added to also note the general location within the unit these features are in (i.e., upper 

part). This process was derived uniquely by the ontology developer’s interpretation of what was 

important and how to explicitly enter it into the ontology. Pre-existing ontologies imported into 

Protégé have their own structure. These were modified and manually linked to custom terms or 

preferred terms within the KB as needed.  
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Publishing of ontologies/knowledge bases requires the developer to follow copyright 

rules of expert domain data and take into consideration specific permission of use (e.g., licenses) 

based upon data sources used. The structure of ontology can be reused, and logical connections 

provided by property/data assertions by removing individual instances, which would then be 

populated by new knowledge base engineers for the specific data relating to the user’s needs. 

This permits use of the ontology without including published content for a specific field site that 

might infringe upon intellectual property. Figure 3 shows custom instances linked to domain 

expert keywords for expanding instances to existing data included with in the imported ontology. 

For example, a siltstone-sandstone instance was created by adding a direct instance into the 

imported dataset and mapping the two individual instances as the “Same Individuals as” 

description for siltstone and sandstone, which were available from the imported dataset. Similar 

annotations can be made for instances as well as for property assertions. For example, Mesilla 

Valley (Member B) has an olive shale unit that can be expressed as an object property assertion 

annotation, allowing a more specific annotation.  
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Figure 3: Example of integrating CGI class structure to custom entries.  
Domain expert data from CGI (skos:lithology) containing annotations for a geologic feature are 
linked to custom entries of a geologic observation and measurements within the field data class. 
 

Using the “Add to ontology” to specify explicit instance associations to other subclasses, 

for example linking to imported ontologies, enables the properties of the class, object, and data 

structures therein. Since there are imported source tags that are labeled differently than how the 

custom term (which is the preferred term), they are both linked to each other in the Annotation 

properties under the same range and domain and are sub-classes to the main preferred class 

name. The keyword: “source” is easier to read and use than the imported Dublin Core Terms 

“dcterms:source”; and “hasSource” is also added as a sub-class for easier typed queries (personal 

preference). However, use of the already included metadata standards for describing various 

aspects of a resource promotes interoperability and consistency across different systems. Each 

formation was manually assigned an integer number rank to represent its position within the 

stratigraphic column. This enabled the search results for “what unit might you expect next” 
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based on which unit is currently being observed. Additional links can expand upon other aspects 

of a formation, for example, the Mesilla Valley object property link to the “shale” class feature 

within the geosciml (CGI) imported ontology asserts links to annotations with pre-defined 

descriptions, definitions, and links to other concepts within CGI; in where “shale” is then 

automatically related to the CGI hierarchy of the class “mudstone” and its properties. Constraints 

and role chains are added to further define and allow for more complexity within the reasoner’s 

capabilities.  

 

AUTOMATED REASONING BY THE KNOWLEDGE BASE 

Logical considerations (in-terms of the Reasoner) are important when creating secondary 

relations within the ontology to make use of, such as role-chains and/or constraints are made 

during the data collection and integration process. Data relationships assign numerical values to 

objects and constraints force those numbers within a specific range given, for example strike and 

dip values are constrained to be integer values and fall within 0 – 360. Role chains provide a 

method of stacking logical relationships for an instance, chaining together the spatial 

relationships of the orders in stratigraphy for the reasoner to answer what unit might be expected 

next based on what unit is being observed.  

The functional, inverse functional, transitive, symmetric, asymmetric, reflexive, and 

irreflexive characteristics determine inferences made by the reasoner. These characteristics help 

define relationships between instances within classes (and sub-classes) which require manual 

validation against the domain expert data if expert data verification is possible.   

Logical checks within the ontology must be made by the user for nearly each item to 

verify that important information (or even possibly important information) is represented in the 
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ontology explicitly (via properties given or simply entered as an annotation) or implicitly via the 

reasoner. Logical connections made by the reasoner from improper characteristics selected upon 

creation dramatically increased the processing time for the reasoner and were corrected to 

maintain functionality as an "in-field” mapping tool. Reasoner (HermiT) Performance at 5,190 

Axioms: 12 seconds (~12.34 secs) for the final ontology representation (see Table 3). 

 

Table 3. Reasoner (HermiT) Performance: Axiom Count, Time, and Ontology development. 
Axiom count Time* Description 

5394 Axioms ~ 12.94 seconds 1 - 3 formations  

5457 Axioms  

5546 Axioms  

5555 Axioms 

5568 Axioms 

5190 Axioms  

~ 83.91 seconds 

~ 252.8 seconds 

~ 135 seconds 

~ 8.92 seconds 

~ 12.3 seconds 

4 formations descriptions, property assertion error.  

5 formations descriptions, property assertion errors.  

6 formations descriptions, property assertion errors.  

7 formations descriptions, property assertion errors fixed.  

8 - 10 formations, Final ontology representation. 

  * HermiT Reasoner running on a 2012 Apple MacBook Pro, 2.5 Ghz Dual-core i5, 16 GB 1600 Mhz DDR3 RAM 

running macOS Catalina Version 10.15.17.  

 

ONTOLOGY VERIFICATION AND USAGE 

Protégé provides multiple levels of data verification both for syntax and logical errors. 

Access to the front-end graphical interface aids with no direct code development, and running 

the reasoner requires the ontology to be logically consistent within the relationships computed. 

Once the reasoner has initialized, verification of data is made by overviewing inferences and 

completing the competency questions backed by the domain expert data. Key terms and metadata 

from all the data sources (journal articles, field notes, existing ontologies, and reasoner logic) 

were reviewed using Noy’s (2001) methodology to assess the structure, relationships, and 
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constraints appropriate for a lower-level ontology. Additional modification of the domain expert 

data is also incorporated into the ontology development to capture expected query results from 

the competency questions. For example, domain expert data strictly refers to the “shale” class 

feature within the Mesilla Valley geologic unit as “gray” within the object color property 

annotation, then search results will not trigger when using the non-domain expert statements that 

the color is “grey”; the required solution is to add a “sameAs” property links between the two 

colors (an example of a Functional property). Another example is linking the Anapra Sandstone 

formation (mentioned by one domain expert source) to the newer naming convention for the 

formation: the Mojado Formation. Mojado “hasThickness” is a reflexive property, as every 

formation has a thickness, and the thickness is set by the domain expert measurement or 

measurements recorded in the field. These properties assist the reasoner with proper and 

consistent inferences and answering DL queries. 
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Analysis 

For this research, DL queries were used to validate the ontology content via the 

competency questions were and results were recorded separately in a spreadsheet. The searches 

include annotations within the logical axioms. The number of search hits of keywords from rock 

descriptions were tallied for each geologic formation found by the system. Since simple search 

results were given in real-time in response to typing, results were immediately assessed for 

accuracy and potential sources of error were considered.  

 

Figure 4: DL query example that can generate a class structure based on a query. 
Using the “Add to ontology” function within the query box, a class within the main “Queries” 
can encode as a “Formation_Thickness” sub-class where reasoner generated instances that meet 
the query requirements are automatically updated without having to write or know Dl Query 
syntax.  

 

Figure 4 shows an example of a DL query statement that is encoded back into the 

ontology as the class "Formation Thickness” with reasoner-inferred instances, this makes for 

more efficient queries and requires less knowledge of the syntax requirements of DL query 
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statements. To assess the first competency question, “What geologic formation am I observing”, 

the field geology expert generated eleven rock descriptions for nine different rock units at the 

field site (Figure 5). These were illustrative of the kinds of descriptions we might expect to 

receive from students in a field geology class or someone who has a limited experience at a 

particular field site and/or may have limited access to the field site and will be collectively 

referred to as “end user descriptions” throughout the remainder of this thesis. The field expert 

provided the correct identification of the geologic formation being described. The descriptions 

were used to generate the key search terms queried by the system. The system returned a list of 

geologic formations that matched one or more of the search terms, with a count of the number of 

terms matched for each formation. The geologic formation with the highest number of matches 

was identified as the system result. This result was compared with the formation identified by the 

field geology expert and flagged as correct or incorrect. Correct and incorrect results were 

counted and calculated as a percentage of total results. Incorrect results were analyzed to identify 

issues encountered and possible solutions. To evaluate the second competency question of 

“Which geologic formation should I expect next?”, correct results from the first question were 

further analyzed for three selected cases. This was done with a mix of in-field verification and 

remote verification using the expert geologic map data of the study area (Figure 5).  

The ontological use of the “expectNext” property relationship within the “ImObserving” 

property provided two possible inferred units – one stratigraphically above the current unit and 

one below. The actual next contact with another rock unit was visible by color change on the 

ground, which was then identified using the ontology. If that identification matched one of the 

two possible suggestions, a “correct” unit was selected and verified again with the expert map 

data. If the identified unit did not match either of the two possible inferred units, it would 
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represent a “red flag” for the end user that there must be a disconformity (or a non-conformity) 

that must be identified and mapped. An incorrect result for the first competency question 

necessarily resulted in incorrect results for the second competency question.  

 

 

Figure 5: Geologic map provided by the field geology expert.  
Lines in purple indicate where validation transects were taken (labelled Q1 & Q2), the midline is 
the unit being observed. Q3 provides an example where a fault has changed which unit might be 
expected next.   
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Results & Discussion  

The ontology was able to correctly identify the correct geologic formation for 10 of the 

11 end user rock descriptions. The last description (number 11) was a single word “shale” and 

since each unit contained shale, the count total resulted in all units being identified. Descriptions 

that provided more detail provided higher search results. The two DL Queries, which involved a 

more complex query statement were merged into the overall search results. A DL Query alone 

identified multiple geologic formations as the result, which alone would not be helpful in unit 

identification. However, when combined with the search results from the basic query, the DL 

Query did improve overall tallied results for the correct unit being identified. Results for all 

eleven rock descriptions are given in Table 4.  

 

Table 4. Knowledge base tallies for combined keyword and DL Query searches for eleven end 
user rock descriptions within nine described rock formations.  

The formation with the highest number of hits from the system was a correct answer if it 
matched the formation identified by the expert. MOJ=Mojado; DR=Del Rio; MES=Mesilla; 
MUL=Mulero; DN=Del Norte; BUD=Buda; FIN=Finlay; SM=Smeltertown. 
EXPERT ID MOJ DR MAN MES MUL DN BUD FIN SM 

Mojado 13 6 2 8 3 4 1 0 2 

Del Rio 10 12 6 6 8 10 9 11 5 

Finlay 1 2 1 1 3 2 3 4 1 

Buda 5 7 3 5 6 7 8 7 4 

Del Rio 10 11 4 9 9 8 9 7 5 

Mojado 6 3 2 3 3 3 2 2 2 

Mesilla 9 6 4 11 6 7 4 3 6 

Del Norte 5 6 3 5 5 7 5 3 4 
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Muleros 4 3 3 4 5 4 2 2 3 

Smeltertown 6 6 3 6 6 6 4 2 7 

Mancos 1 1 1 1 1 1 1 1 1 

 

EXAMPLES 

 
The first rock description was: “Light brown to orange medium-grained, well-sorted, 

well-rounded sandstone. Bed thicknesses range from 25 cm to 1.5 m and contain ripple 

laminations and trough cross-beds.” Fifteen keywords were extracted from the description and 

used to search the knowledge base, including, for example, “light brown,” “orange,” “medium-

grained,” “well-sorted,” “well-rounded,” “sandstone,” “ripple laminations,” and “cross-beds.” 

This search resulted in the correct domain expert answer: Mojado Formation with the highest 

tallied result (twelve). A DL Query was used to specify the bed thickness range, resulting in an 

additional three returns, including one for Mojado, raising its total to thirteen. The next highest 

tally was Mesilla Valley formation at 8 hits.  

Searches involved subjective descriptions that involved alternative searches. Descriptions 

of rock color gave positive hits and negative (or not found) hits for “Orange.” Color descriptions 

could potentially be described very differently from person to person resulting in varying success 

within search hits. Searches for hyphenated words, “well-sorted” did not find any matches, 

however a check on “well sorted” does correctly provide Mojado Formation as a correct hit. The 

same issue occurred with “medium-grained,” requiring user-based logical checks that the system 

would otherwise miss. Another search issue arose for “well-sorted.” A search for “well” and 

separately, “sorted”, resulted in direct hits for incorrect formations that involved the inverse 

“poorly sorted”, which logically could support the statement that non-listed formations that were 
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not labeled as “poorly sorted” could be inferred as “well sorted” or simple as not 

recorded/unknown. These searches were based off eliminations of units when the search for 

“sorted”, gave units that were poorly sorted, hence could not be the correct unit. This did give 

false positives for some of the other units along with the supported answer; however, these were 

not enough to impact the highest count totaled at the end. Ultimately, these were recorded as 

positive hits for the Mojado Formation, and the formation was still supported as the highest 

tallied return even with these inferences removed completely from the tally. Furthermore, 

removal of any alternate searches still correctly tallies Mojado as the highest search result.  

DL Query also generated unexpected results. These results may not always give the correct result 

or provide a single supported result. Validating results require logical checks as well, as data 

may be correctly verified by the program may differ from correctly verified data from a scientific 

perspective. The description “25 cm to 1.5m” was units converted to meters. A search for bed 

range from 0 meters thick to a maximum of 2m resulted in no results; however, if the description 

had stated a maximum of 3.5m, the search results would have found the correct answer 

(Mojado), this represents a limitation within the dataset and not of the ontology or query 

mechanics.  

A second example is the rock description: “Alternating sequence of light greenish yellow 

shale and greyish white nodular limestone beds. Limestone beds form ledges, are discontinuous, 

and range from 10-50 cm in thickness. Shale intervals contain isolated limestone nodules that 

coalesce up-section into more continuous beds. Limestone beds contain Exogyra fossils”. The 

domain expert answer is the Del Rio Formation. The knowledge base correctly identified the Del 

Rio formation. The keyword search alone did yield the correct result with eleven hits. The DL 

Query on bed thickness range also correctly identified Del Rio raising its tally of hits to twelve 
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but also identified three other formations: Del Norte and Buda, and Finlay. Finlay had the next 

highest tally of hits (eleven). Although the close counts between the correct rock unit (twelve) 

and closest rival (eleven) make it likely that the knowledge base could identify the wrong rock 

unit in other cases, the second competency question lends support to the Del Rio being correct in 

this example. 

The second competency question, “what unit might I expect next?” was tested along three 

transects (Figure 7). Transects Q1 and Q2 represent locations with normal stratigraphic 

relationships that should be correctly identified by the knowledge base. Transect Q3 represents a 

location where a fault has disrupted the normal stratigraphic column such that an unexpected 

rock unit occurs. The knowledge base would be expected to correctly identify two possible rock 

units that could be encountered next, the one above and the one below the current rock unit. 

When the next rock unit is encountered in the field and it is identified using competency question 

1, the mismatch between the expected and actual rock unit encountered would be a flag. The 

knowledge base performed correctly at all three transects. 

An example is the Del Rio formation along Q2 (Figure 1). The Del Rio is 

stratigraphically bounded by the Buda Formation above and the Mojado Formation below. The 

Inference from: the SuperProperty of (role-chain), “imObserving (Del Rio) isBelow 

SubPropertyOf: expectAbove” correctly returns the Buda formation above and expects the 

Mojado formation next if going down stratigraphy. Observations in the field were made 

perpendicular to the strike of the unit being observed (Del Rio). This direction (southeast) 

enhances the likelihood of coming across a different geologic unit. Ground truth data confirmed 

that the unit being observed was Del Rio and walking to the contact to the southeast the 

knowledge base correctly identified that the next unit was the Mojado formation. 
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As mentioned above, the results for competency question Q2 can support the results from 

competency question Q1. In the second rock description above where the system selected Del 

Rio, but Finlay was a close second, traversing to the next rock unit as in Q2 and identifying that 

unit as Buda using the knowledge base would confirm that the correct rock unit was Del Rio. 

Finlay would not be present unless there were an unconformity present that would force the end 

user to explain the break in stratigraphy, which was not present at the field site locality (and thus 

not an issue for this example). 

 
SECONDARY COMPETENCY QUESTIONS 

The primary two competency questions were supplemented by testing several secondary 

competency questions related to the primary two. Since the knowledge base is consistently 

represented, the system can offer flexibility to ask more specific questions. The end user rock 

descriptions contained data that could be used to infer the following individual questions: 

1. Which unit(s) contain fossils? 

2. Which units have [some geologic feature]? 

3. Which units have some thickness range? 

4. Which age/period does the current unit belong to? 

5. Are there any recorded field observations/measurements for a specific unit? 

6. What features (such as color) belong to a unit? 

7. What are a unit/observation’s locality data? (e.g., Lat/Long/Elevation) 

8. Who has mapped/recorded information about a certain unit? 

9. What geologic processes relates to the geologic structural being observed?  
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Results from the structure and processes competency questions (1 through 8) were 

straight forward. The knowledge base contains explicit information linking a formation to a 

geologic feature. The process question (9) is derived by the reasoner by linking instances of 

geologic features with object property assertions with instances for the geologic processes. The 

process of deriving the answer to the question through the reasoner is preferred; it reduces work 

for setting multiple instances of a geologic process or a feature to a geologic unit by 

automatically creating those relationships with the reasoner. The processing time required for the 

reasoner to compute all the relationships was negligible, taking only a few seconds, which falls 

within the acceptable time frame for field work expectations. Links that extend beyond the 

expert domain data can be helpful during searches and/or queries. Object relationships such as, 

“sameAs” can bridge terminologies across domains or levels of expertise. For example, 

“volcanic rocks” is a layman term for “Igneous rocks.” Having these linked in the knowledge 

base reduces the need to search for both terms and improves search results by providing both 

results. Linking structure to process means that when an instance of a geologic formation 

contains a structure the process will automatically be included, reducing the time required to 

explicitly enter these relationships. 

 

CHALLENGES AND LESSONS LEARNED 

While it is not necessary to have different people or groups to produce an ontology it is 

difficult for a single person to fulfill the roles of learning and maintain each of these tasks, 

however, it can still be done. It is preferable to have one person responsible for ontology 

creation, another for domain expert data, and someone else for the knowledge base development. 
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Integrating knowledge bases into geologic field mapping introduces possible steep learning 

curve. Familiarity of ontologies and reasoners, integration of data, and maintenance would be 

requirements to that workflow. Data capture and discovery results would also be incorporated 

into and from existing systems in use, such as mapping programs like QGIS and hand-written 

notes. Commitment to adopting XML (W3C, 2008), RDF (W3C, 2014), and OWL for common 

use as a digital library for cataloging field study sites would be beneficial for future use by 

subsequent users. Assimilation of these technological applications provides encoding for AI 

integration and the data consistency assist with interdisciplinary scientific studies. Short classes 

focused on knowledge base integration in field mapping, along with introduction into sematic 

web technologies, insight into semantic online repositories and integration into existing programs 

would also be beneficial with commitment of use with academic domains.  

Validating possible logical decisions that are derived by the reasoner is important when 

establishing various aspects of class structure, instances, data or object properties. The 

interpretation of what is important and how to explicitly enter concepts into the ontology is a 

uniquely subjective process influenced by the developer's biases will determine the scope and 

impact of the knowledge base. Mesilla Valley Formation, for example, has six explicit relations 

entered for the instance (4 object relations, and 2 data relations). The rest were entered into other 

instances, which gave 28 inferred properties via the reasoner. Each formation and member were 

checked manually to ensure correct inferences were given. These logical checks go beyond the 

technical perspective to include possible logical errors within the scientific perspective.  

False inferences were found due to incorrectly selecting an object property’s 

characteristics which relate instances within the class structure. This issue caused extra time 

wasted when running the reasoner, as hundreds of relationships were made incorrectly. 
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Adding extra information pertaining to rock unit/formation such as depositional environment and 

sedimentology can be challenging since there is more than one way to do this. Creating sub-

classes for each type of information means that relational links to the proper formation are 

necessary, as information must be linked to the proper rock unit. Breaking down information can 

be both done via comment sections with the annotation section and/or listed individually as 

object/data properties. Since there are key terms for each of the sections (depositional and 

sedimentology), this presents more complications, as the user must decide whether to create new 

custom entries or search for and import existing ontologies that cover the required topics. 

Challenges involve creating instances which have varying degrees of specificity, such as linking 

outer-shelf environment that are only “rarely” impacted by storms. Here, an instance for “rarely 

impact” by storms, means that the link can be described as: 1) “Rarely affected by storms” as an 

instance; 2) with an annotation as “rarely impacted”, or as 3) an object property of 

“rarelyImpactedBy” linking the feature to the formation. Considerations for query issues include 

formation thickness where unit thickness values may vary by observation by the data sources and 

exposed local geologic station where measured. Queries results based on inferences from the 

reasoner represent conditions where simple searches could not yield the same results. Saving the 

results and the query within the class hierarchy and as an instance would improve efficiency. 

 

FUTURE RESEARCH DIRECTION 

The thesis knowledge base offers several opportunities for future research. For instance, 

importing each geologic formation as a graph from the main ontology model would provide for 

efficient queries and flexibility for ontology reuse with other field site knowledge bases as a 

formation-specific ontology import. Another option is to integrate tasked based knowledge bases 
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for inferences into possible solutions for when unexpected rock units are found by relating to 

specific geological processes. This can be achieved by expanding upon the secondary 

competency questions of how a geologic structure is related to some specific geologic process, 

which can be based on property assertions such as “depositionalEnvironment”, “impactedBy”, 

and “represents”. Where a formation was “impacted” by some geologic process that “represents” 

some depositional environment that created the geologic structure being observed. These 

properties might be to link local geologic formations to other surrounding units to determine 

regional scale movements. Ultimately, the process for creating alternative versions for other field 

sites would still begin with Noy’s method for determining the competency questions to be 

answered. 
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Conclusions 

This thesis investigated the use of semantic web techniques to support geoscience end users 

in the field. The thesis examines the potential of these techniques to generate inferences that can 

support in-situ geologic driven hypothesis development, a critical period where geologic 

observations and measurements can be uniquely verified while still within the study site. 

To accomplish this goal, two competency questions were defined for ontology 

development: 1) identification of a geologic formation in the field based on descriptive 

characteristics of the rock units; and 2) given the observed geologic formation, and the known 

stratigraphic sequence, what formation should the end user expect next. A small sample section of 

a study site within Mt. Cristo Rey, New Mexico provided proof of concept for generation of a 

conceptual model of machine-readable field data utilized for a variety of common geologic driven 

questions. The thesis outlines the development of a knowledge base and the verification and 

validation of data sources to answer competency questions. The model implemented can be scaled 

up to handle larger field sites and/or integration of multiple field mapping data sources. Overall, 

the thesis aimed to analyze the potential for implementing knowledge-based techniques for 

supporting geoscience end users in the field that are not yet part of the common tools for field 

mapping. Results suggest that once developed a knowledge base can provide accurate support for 

end users in the field. However, development requires a major investment of time and a steep 

learning curve for both developers and end users. Providing a focused and constructive investment 

in teaching elements of cyberinfrastructure for use within geologic mapping could play a crucial 

role in achieving research goals commonly found within field studies. This investment would not 

only contribute to cutting-edge advancements in the field, but also would provide valuable skills 

for professionals working in geologic exploration and research. 
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