
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2023-08-01

Increasing the efficiency and accuracy of collective intelligence Increasing the efficiency and accuracy of collective intelligence

methods for image classification methods for image classification

Md Mahmudulla Hassan
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hassan, Md Mahmudulla, "Increasing the efficiency and accuracy of collective intelligence methods for
image classification" (2023). Open Access Theses & Dissertations. 3913.
https://scholarworks.utep.edu/open_etd/3913

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3913?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3913&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

INCREASING THE EFFICIENCY AND ACCURACY OF COLLECTIVE

INTELLIGENCE METHODS FOR IMAGE CLASSIFICATION

MD MAHMUDULLA HASSAN

Doctoral Program in Computer Science

APPROVED:

Olac Fuentes, Ph.D., Chair

Martine Ceberio, Ph.D.

Adolfo R. Escobedo, Ph.D.

Stephen L. Crites, Ph.D.

Dean of the Graduate School

to my son

Arish Hassan

INCREASING THE EFFICIENCY AND ACCURACY OF COLLECTIVE

INTELLIGENCE METHODS FOR IMAGE CLASSIFICATION

by

MD MAHMUDULLA HASSAN

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

THE UNIVERSITY OF TEXAS AT EL PASO

August 2023

Acknowledgements

The completion of this research would not have been possible without the invaluable

contributions and support of numerous individuals whose dedication and guidance played a

crucial role in shaping this work.

At the forefront, I owe my deepest gratitude to my advisor, Dr. Olac Fuentes. It is an

often used cliché, but in this case, it is no overstatement to say that without the consistent

guidance, tutelage, support, unparalleled knowledge, and encouragement of my advisor, this

thesis would never have existed. I consider myself exceptionally fortunate to have had the

opportunity to learn from him. I am truly grateful for the mentorship that has shaped my

academic journey and personal growth.

I extend my heartfelt appreciation to Dr. Adolfo Escobedo for being invaluable to

my Ph.D. committee. I am deeply grateful for his expertise and guidance throughout

my research journey. His vast knowledge in the field has provided crucial insights and

perspectives, enriching the quality of my work.

Dr. Martine Ceberio has been an exceptional member of my Ph.D. committee, and I

am immensely appreciative of her invaluable contributions to my research. Her profound

understanding of the subject matter and her rigorous approach to academic inquiry have

been truly inspiring.

I also extend my heartfelt appreciation to Dr. Suman Sirimulla, whose unwavering

support at the beginning of my Ph.D. journey provided me with the encouragement and

freedom to explore ideas, propelling me forward in this significant research endeavor.

I am also grateful to my colleagues from the Vision and Learning Lab, who have

contributed directly or indirectly to my learning process, fostering an environment of

collaboration and camaraderie.

iv

Beyond academia, the love and support of my family have been my pillars of strength. I

express my heartfelt gratitude to my mother, Asma Begum, my brother, Md Jubaer, and my

sister, Farhana Nasrin, for their unending support and encouragement during this journey.

I want to express my deepest and most heartfelt gratitude to my wife, Sharmin Akter,

for her love and constant support throughout this journey. Her presence has been a pillar

of strength during the long nights and early mornings, and her unwavering belief in me has

been a source of motivation.

To my son, Arish, I am immensely grateful for the joy and inspiration he has brought

into my life. His presence has made me stronger and better every day, reminding me of the

importance of this endeavor and giving me the determination to persevere.

Additionally, I want to thank The University of Texas at El Paso Computer Science

Department professors and staff for all their hard work and dedication, providing me with

the means to complete my degree and prepare for a career as a computer scientist.

To all those mentioned and the countless others who have contributed to my academic

and personal growth, I offer my sincerest thanks. Your support has been the cornerstone of

this dissertation, and I am deeply grateful for the impact you have had on my life.

v

Abstract

Collective intelligence has emerged as a powerful methodology for annotating and classifying

challenging data that pose difficulties for automated classifiers. It works by leveraging the

concept of “wisdom of the crowds” which approximates a ground truth after aggregating

experts’ feedback and filtering out noise. However, challenges arise when certain applications,

such as medical image classification, security threat detection, and financial fraud detection,

demand accurate and reliable data annotation. The unreliability of experts due to incon-

sistent expertise and competencies, coupled with the associated cost and time-consuming

judgment extraction, presents additional challenges.

Input aggregation is the process of consolidating and combining multiple individual

judgments, feedback, or annotations obtained from a diverse group of experts to arrive at a

single representative decision or prediction. In this dissertation, we introduce diverse deep

learning techniques to enhance the accuracy of input aggregation methods and optimize

task assignments among experts. We demonstrate that incorporating the outputs of an

automated classifier as additional features improves traditional input aggregation methods.

We also show that the accuracy of these methods can be further improved by adding

meaningful image features learned by self-supervised models. The additional features reduce

the requirements of collecting a large number of inputs from human labelers. We also

investigate how task assignments can be optimized for groups of experts that possess varying

degrees of expertise and diverse competency areas. We show that experts’ competencies

and samples’ complexity can be modeled simultaneously and that optimization algorithms

can leverage deep learning models to perform an optimal selection of experts. To train

and evaluate the deep learning models, we propose a novel algorithm for generating a

large dataset of synthetic X-ray images. The dataset works as a test bed for conducting

comprehensive testing and validation of our proposed methodologies.

vi

Table of Contents

Page

Acknowledgements . iv

Abstract . vi

Table of Contents . vii

List of Tables . x

List of Figures . xi

Chapter

1 Introduction . 1

1.1 Challenges . 2

1.2 Scope of the Thesis . 4

1.3 Thesis Contributions . 4

1.4 Outline . 6

2 Related Works . 7

3 Improving Input Aggregation Methods Using Automated Classifiers 13

3.1 Crowdsourcing-based ML classification . 15

3.1.1 Features for Crowdsourcing-based ML Methods 16

3.1.2 Experiment Design . 19

3.1.3 Description of Activities . 19

3.2 Enhancement of Crowdsourcing-based ML Methods with an Automated

Classifier . 26

3.3 Discussion . 31

3.4 Conclusions . 31

4 Improving input aggregation Methods Using Self-Supervised Features 33

4.1 Introduction . 33

4.2 SimCLR Model . 35

vii

4.2.1 Encoder . 35

4.2.2 Projection Head . 36

4.2.3 Contrastive Loss Function . 37

4.3 Proposed Approach . 38

4.3.1 SimCLR-based Feature Extraction 38

4.3.2 Integration with Input-Aggregation Methods 39

4.3.3 Workflow Overview . 39

4.4 Dataset . 40

4.5 Experimental Setup . 40

4.5.1 Self-supervised Training . 40

4.5.2 Feature Extraction . 42

4.5.3 Training Shallow Machine Learning Models 43

4.6 Results . 43

4.6.1 Self-Supervised Training . 43

4.6.2 Performance of the ML Models . 44

4.7 Conclusions . 50

5 Optimization of Task–Assignment . 52

5.1 Introduction . 52

5.2 Hungarian Algorithm . 54

5.3 Proposed Framework for Optimized Task Assignment 55

5.4 Task Description . 57

5.4.1 Datasets . 57

5.5 Experiments . 63

5.5.1 Agent Training . 63

5.5.2 Predictor training . 65

5.5.3 Task optimization . 65

5.6 Results . 66

5.7 Discussion . 68

viii

5.8 Conclusions . 69

6 Conclusions and Future Work . 71

References . 74

7 Curriculum Vitae . 86

ix

List of Tables

3.1 Experiment Sets C and D sample images 20

3.2 Summary of experiment image parameters 26

3.3 Modified version of the ResNet-50 architecture diagram 27

3.4 Performance analysis of Crowdsourcing-based ML methods with Expanded

inputs from ResNet-50 . 30

4.1 Sample images from the dataset . 41

4.2 Hyperparameters . 42

4.3 Performance analysis of the k-Nearest Neighbor model with and without

self-supervised features . 45

4.4 Performance analysis of the Logistic Regression model with and without

self-supervised features . 46

4.5 Performance analysis of the Random Forest model with and without self-

supervised features . 47

4.6 Performance analysis of the Support Vector Machine with and without self-

supervised features . 49

5.1 Probability Matrix . 55

5.2 Material constants Mc for each RGB channel 61

5.3 Agent network architectures and corresponding datasets used for training . 63

5.4 Training parameters for agent models . 64

5.5 Agents’ performance (in accuracy) on all the datasets 66

5.6 Agents’ performance when the tasks are randomly assigned vs. when they

are network assigned . 67

x

List of Figures

3.1 Object/shape templates from the MPEG-7 Core Experiment CE-Shape-1

Test Set . 21

3.2 Image classification task UI for balanced dataset - the image contains bat

(lower right) . 23

3.3 Image classification task UI for imbalanced dataset - the image contains bat

(center left) . 24

3.4 Validation accuracy vs. Training set size 28

4.1 SimCLR framework. Two separate data augmentation operators are sampled

from the same family of augmentations (t ∼ T and t ∼ T) and applied to

each data example to obtain two correlated views. A base encoder network

f(·) and a projection head g(·) are trained to maximize agreement using a

contrastive loss. [1] . 36

4.2 SimCLR-based feature extraction and training input aggregation methods

on the combined feature set . 38

4.3 t-SNE plot of self-supervised features learned by the SimCLR model 44

5.1 3D objects . 58

5.2 A 3D object in mesh and voxel format . 59

5.3 Placing voxels in the 3D space . 59

5.4 X-ray images of individual objects from different views 61

5.5 Synthetic X-ray images from all the datasets 62

5.6 Baseline architecture . 63

5.7 Experimental setup . 64

xi

Chapter 1

Introduction

Collective intelligence refers to the shared knowledge, insights, and problem-solving capa-

bilities that emerge from the collaboration and contributions of a group of individuals. It

has emerged as a useful technique for obtaining experts’ feedback and labeling unknown

samples, leveraging the collective intelligence of a group of individuals to accomplish tasks or

solve problems [2]. Its accuracy often surpasses automated methods, proving more effective,

particularly in tasks that require domain knowledge of the subject matter. While recent

advancements in deep neural networks have demonstrated significant improvements over

conventional computer vision techniques in various domains, it is important to acknowledge

that Deep Learning remains an evolving field [3]. Progress in this realm predominantly

revolves around collecting large datasets, model training, and subsequent predictions. How-

ever, the effectiveness of these models largely depends on supervised learning, which requires

a significant amount of labeled data. As a result, utilizing these models can often be costly

and impractical for many real-world applications [4].

While the use of collective intelligence facilitates accurate labeling, extracting expert

judgment poses challenges in terms of cost and time, particularly when dealing with a

large number of tasks. Moreover, certain applications necessitate experts with profound

subject-specific knowledge, such as medical image classification, galaxy classification, or

identifying threats in X-ray images. In such instances, a small group of experts can be

employed to procure the required labels through input aggregation. Input aggregation

refers to the process of combining multiple individual judgments, feedback, or annotations

obtained from a diverse group of human participants to arrive at a single representative

decision or prediction. The goal of input aggregation is to leverage the collective intelligence

1

of the group of experts and obtain a more accurate and reliable result than what could

be achieved by any individual participant alone. However, challenges arise when the

performance of these experts exhibits significant variations due to inconsistent expertise and

competencies. Consequently, the need arises for efficient methods that improve feedback

quality and allocation of the available resources, ensuring that the quality of feedback

remains uncompromised while preventing the overburdening of specific experts within the

group. The following section discusses the challenges related to aggregating experts’ feedback

and optimizing expert selection in collective intelligence systems.

1.1 Challenges

Input Aggregation

Research in the past has demonstrated that by aggregating collective judgments through

appropriate methods, results often surpass the performance achieved by individuals. This

notion has found successful application in various areas, including image classification [5]

and semantic segmentation [6].

However, input aggregation faces several challenges despite the potential advantages.

One major limitation is the reliance on the wisdom of the crowd assumption, which assumes

that the aggregated feedback will lead to an accurate ground truth prediction. While this is

generally true for simple and straightforward tasks, the performance of input aggregation

tends to degrade when dealing with complex tasks requiring specialized domain knowledge.

In such cases, some experts may lack enough domain knowledge, leading to less reliable

feedback.

Another challenge lies in the purely heuristic nature of collective intelligence-based

techniques, such as Majority Voting (MV) [7], Max-Margin Majority Voting [8], Domain-

Weighted Majority Voting [9], and Proxy Voting [10]. These methods typically rely on

a single form of feedback from the crowd, which may not always be comprehensive or

representative of the true ground truth. This reliance on a singular type of input can lead

2

to limitations in the accuracy and reliability of the aggregation process.

Furthermore, the effectiveness of crowdsourcing-based methods is significantly influenced

by the size and diversity of the crowd. While large crowds can lead to more reliable

aggregated judgments, smaller crowds may not produce sufficiently accurate results. This

presents a challenge in determining the appropriate crowd size for a given task and optimizing

the aggregation process accordingly.

Extracting meaningful features becomes a crucial aspect of input aggregation because

it seeks to address the limitations imposed by the inherent noise and variance present in

crowdsourced data. By refining and improving the extracted labels, the input aggregation

methods can attain higher accuracy and robustness in their predictions. It is crucial to

have precise and informative features when working with complex samples and specialized

domain tasks to ensure accurate predictions.

Given these challenges, it becomes evident that there is a need for novel algorithms and

methodologies to improve input aggregation, address the limitations of crowdsourcing-based

techniques, and increase the overall reliability and accuracy of the process compared to the

existing methods. By overcoming these challenges, input aggregation can become a more

robust and effective tool for obtaining valuable insights and predictions from crowdsourced

data.

Optimization of Expert Selection

The competencies of experts generally vary and exhibit inconsistencies due to differences in

their domain knowledge, experience, and work environments. Particularly when dealing with

complex samples, divergent opinions among experts can emerge, emphasizing the importance

of obtaining accurate and reliable expert judgments for real-world applications. For instance,

in medical image analysis, the precise evaluation of a sample that may indicate the presence

of a cancerous tumor necessitates the involvement of expert professionals. Meanwhile, less

experienced professionals may effectively handle simpler samples, contributing to reduced

labeling costs.

3

To ensure efficient utilization of available expertise, it is important to simultaneously

model both the experts’ competencies and the samples’ complexity. This modeling process

applies to a set of labeling tasks assigned to a small group of experts. By doing so, the

optimization of expert selection aims to enhance task assignment [11] and avoid sub-optimal

allocation of valuable resources. A well-designed expert selection process can lead to

improved accuracy and efficiency in real-world applications that rely on expert opinions for

decision-making and analysis.

1.2 Scope of the Thesis

In this thesis, we aim to advance the understanding and implementation of the methods

associated with collective intelligence, contributing to improving feedback collection mecha-

nisms. Through an in-depth analysis of input aggregation, we seek to develop robust and

scalable approaches that use experts’ feedback and accommodate diverse groups of experts

and input types. Additionally, by exploring optimized expert selection, we strive to address

the inconsistencies arising from differences in expertise, experience, and work environment

among experts. Our objective is to develop algorithms that improve the accuracy and relia-

bility of collective intelligence methods, particularly in scenarios where accurate assessments

are critical, such as in medical image analysis, security thread detection, and financial fraud

detection.

1.3 Thesis Contributions

This thesis makes the following contributions:

• Improvement of Input Aggregation Methods: We demonstrate the potential for

enhancing the performance of input aggregation methods by leveraging an automated

image classifier. This approach aims to improve the process of aggregating feedback

from crowdsourced annotations, leading to more accurate and reliable predictions.

4

• Enhancement of the Feature Set: To further improve the performance of input

aggregation methods, we propose a Deep Learning-based technique that extracts

additional features and includes those into the process. These enriched features

can significantly enhance the quality and informativeness of the features collected

through different input elicitation methods, enabling more effective training of input

aggregation algorithms.

• Development of a Task-Assignment Algorithm: We propose a novel task-

assignment algorithm to address resource and expert allocation. This algorithm seeks

to optimize the assignment of labeling tasks among a group of experts, ensuring that

each task is assigned to the most suitable expert, thus maximizing the overall accuracy

of the labeling process.

• Generation of a Large Synthetic X-ray Dataset: A large image dataset is

required for effectively training and testing deep learning algorithms for this research.

So, as an additional contribution, we propose a novel algorithm to generate a large

synthetic dataset consisting of X-ray images. This extensive dataset forms the

cornerstone for training and evaluating our proposed algorithms, facilitating rigorous

testing and validation of our methodologies.

The methodologies developed in this thesis are specifically applied and tailored for

inspection tasks, with a primary focus on X-ray image analysis. However, it is important

to note that our research’s fundamental principles and techniques have the potential for

broader applications in more general scenarios. The insights gained from addressing the

challenges in inspection-related tasks can serve as a foundation for adapting and extending

these collective intelligence-based methods to a wide range of domains where accurate and

reliable data annotation is important. As a result, the findings presented in this thesis offer

valuable contributions not only to inspection tasks but also to the wider field of collective

intelligence and its applications in diverse fields of study.

5

1.4 Outline

The organization of the document is as follows. Chapter 2 provides relevant background

information along with related works in input aggregation methods and task assignment

optimization. It lays the foundation for understanding the context and significance of

the subsequent chapters. Chapter 3, describes the improved aggregation method using

automated classifiers. Chapter 4 introduces our methodology for generating additional

features through a Deep Learning algorithm. Chapter 5 presents the process of creating

a synthetic dataset of X-ray images and proposes a task-assignment algorithm. Finally,

Chapter 6 provides a comprehensive summary of the research findings, discussions of their

significance, and implications. Moreover, we outline potential avenues for future research

and development in the field of input aggregation and related areas.

6

Chapter 2

Related Works

Input Aggregation Methods

In recent years, crowdsourcing has found widespread application in a variety of image

labeling/classification tasks, spanning from simple visual identification tasks to those

demanding domain expertise. Numerous studies have capitalized on crowdsourcing to

annotate large-scale datasets involving subjective analysis, such as conceptualized images

[12], scene-centric images [13], and publicly available general-purpose images [14, 15].

Additionally, crowdsourcing techniques have been successfully tailored to address complex

visual labeling/classification contexts requiring specialized domain knowledge, such as

identifying fish and plants [16, 17], endangered species through camera trap images [18],

locations of targets [19], land covers [20], and sidewalk accessibility [21].

Low cost and rapid processing capabilities have made crowdsourcing useful for classi-

fying CT images in medical applications. Noteworthy tasks in this domain have included

identifying malaria-infected red blood cells [22], detecting clinical features of glaucomatous

optic neuropathy [23], categorizing dermatological features [24], labeling protein expression

[25], and various other medical image analysis tasks [26, 27].

Addressing the technical challenges associated with maximizing the benefits of crowd-

sourcing is important despite its effectiveness in handling high work volumes. A major

obstacle is figuring out how to combine different sources of information that may contradict

each other in order to create a precise representation. This requires implementing reliable

methods for evaluating and estimating judgments. The quality of predictions heavily relies

on the method used to consolidate crowdsourced inputs [28]. Consequently, numerous

7

works have focused on developing algorithms to tackle this task, drawing inspiration from

computational social choice, a field dedicated to the rigorous analysis and design of data

aggregation mechanisms [29]. One such method is Majority Voting (MV) [7], which is

popular for its simplicity. Ipeirotis et al. [30] proposed the Expectation-Maximization

(EM) method that presents a framework for managing quality on Amazon Mechanical

Turk that includes techniques such as cost-sensitive classification and massive redundancy.

Karger et al. [31] consider a general model of crowdsourcing tasks and pose the problem of

minimizing the total price (i.e., number of task assignments) that must be paid to achieve

a target overall reliability. The study shows that the proposed algorithm significantly

outperforms majority voting and is asymptotically optimal through comparison to an oracle

that knows the reliability of every worker. GLAD (Generative model of Labels, Abilities,

and Difficulties) is proposed by Whitehill, J. et al. [32], presenting a probabilistic model to

infer labels from images that outperform MV. Quoc et al. [33] shows the EM [30] method

is more accurate than the existing methods, while MV [7] is best in terms of computation

time.

However, one promising direction that hasn’t been explored yet involves data-driven

approaches that improve the performance of input aggregation methods. Deep neural

networks have achieved breakthrough performances [34, 35, 36] in image classification and

object detection tasks over the past few years. In combination with the expert’s feedback,

these algorithms can improve the performance of the aggregation methods significantly.

Self-Supervised Features

Besides relying on experts’ feedback, the input aggregation methods can also make use

of additional features of the samples to perform better. The performance of the machine

learning-based input aggregation methods heavily relies on the quality and informativeness

of the input features. In scenarios where the available features lack discriminative power

or fail to capture relevant information, the accuracy of the aggregation process may be

significantly affected. Therefore, there is a need for techniques that can enhance the quality

8

of the feature sets and improve the overall performance of input-aggregation methods.

Deep learning models have demonstrated remarkable success in various domains, primar-

ily due to their ability to learn rich and hierarchical representations from raw data. However,

the widespread adoption of deep learning approaches is often hindered by the requirement

of large-scale labeled datasets for training [37]. To address this challenge, self-supervised

learning [38] has emerged as a promising alternative. Self-supervised learning tasks involve

training models to predict certain aspects of the input data without explicit supervision.

Deep learning models can effectively learn useful representations from unlabeled data by

formulating tasks such as image colorization, image inpainting, or image rotation prediction.

One popular framework for self-supervised learning is the Simple Framework for Con-

trastive Learning of Representations (SimCLR) introduced by Chen et al. [1]. SimCLR

maximizes the agreement between differently augmented views of the same image and learns

representations that capture the underlying structure of the data. By leveraging large-scale

unlabeled datasets, SimCLR has shown significant improvements in representation learning

compared to traditional supervised learning approaches.

In addition to SimCLR, various other self-supervised learning methods have been

proposed in the literature. For example, the Momentum Contrast (MoCo) framework

introduced by He et al. [39] utilizes a queue of negative samples and a momentum update

mechanism to enhance the learned representations. Another approach, the Bootstrap Your

Own Latent (BYOL) method proposed by Grill et al. [40], leverages two copies of the same

neural network and a target network to learn representations without negative pairs.

These self-supervised learning methods aim to capture meaningful and generalizable

features from unlabeled data, enabling deep learning models to extract high-level representa-

tions that can be beneficial for downstream tasks. By leveraging the intrinsic structure and

patterns within the data, self-supervised learning provides a way to learn useful features

without the need for extensive labeled data.

The learned representations in self-supervised learning have been shown to transfer well

to various domains. In computer vision tasks, self-supervised features have been successfully

9

employed for image classification [1], object detection [41], and semantic segmentation

[42]. Similarly, in natural language processing, self-supervised methods such as BERT [43]

have demonstrated improved performance in tasks like text classification, named entity

recognition, and sentiment analysis.

While input-aggregation methods and self-supervised learning have individually garnered

significant attention, their combination remains relatively unexplored. The potential synergy

between these two research areas offers promising avenues for improving the performance

and robustness of deep learning models. By incorporating self-supervised features learned

through a SimCLR model into existing input-aggregation methods, it is possible to bridge

the gap between unsupervised representation learning and input feature aggregation. This

integration has the potential to enhance the discriminative power of the aggregated features,

enabling more accurate and reliable predictions.

Optimized Task Assignment

Optimized task assignment has been an active research area for many years, and a wide range

of approaches have been proposed to solve this problem. Traditional optimization techniques

[44, 45] involve formulating the problem as a mathematical model with constraints and

an objective function and then using optimization algorithms to find the optimal solution.

For example, the Hungarian algorithm [46] is a well-known algorithm for solving the task

assignment problem, which uses a cost matrix to assign tasks to agents to minimize the

total cost.

Researchers have explored machine learning techniques to solve task assignment problems.

For example, reinforcement learning has been used to find optimized task assignments in

various settings, such as job scheduling and vehicle routing [47]. In reinforcement learning,

an agent learns to make decisions by interacting with its environment and receiving feedback

through rewards or penalties. The agent’s goal is to maximize its long-term reward, often

defined as a function of its task assignments. In more complex scenarios, such as multi-agent

systems and decentralized decision-making [48], reinforcement learning has been used to

10

learn task assignment policies directly from data without relying on handcrafted optimization

algorithms [49].

In addition to machine learning techniques, researchers have explored evolutionary algo-

rithms, swarm intelligence, and other optimization techniques to solve the task assignment

problem. For example, genetic algorithms have been used to find optimized task assignments

in resource allocation and supply chain management [50]. Li et al., [51], proposed an im-

proved genetic algorithm for multi-agent task allocation with time window constraints. The

authors established a mathematical model for task allocation and analyzed the constraint

problem of the time window, using the penalty function method to handle the constraint

condition. Additionally, they incorporate the improved Large Neighborhood Search (LNS)

into the local search to increase population diversity and demonstrate the effectiveness of

the proposed algorithm through simulations.

Researchers have also investigated other methods for solving the task assignment problem.

For example, some studies have focused on using optimization techniques specific to particular

tasks or agents. For instance, in a transportation context, the task assignment problem may

involve assigning delivery tasks to a fleet of vehicles. Researchers have proposed optimization

models that consider factors such as vehicle capacity, travel time, and customer preferences

[52]. Similarly, in a manufacturing context, the task assignment problem, in ant colony

optimization, artificial ants search for an optimized path between a source and a destination,

considering factors such as machine capabilities, production rates, and production schedules

[53].

Another approach to solving the task assignment problem is to use swarm intelligence

algorithms inspired by the collective behavior of social insects such as ants, bees, and

termites. In swarm intelligence algorithms, a population of agents collaborates to find an

optimized solution to a problem. For example, in ant colony optimization, artificial ants

search for an optimized path between a source and a destination by leaving and following

pheromone trails [54]. In particle swarm optimization, a population of particles move

through a problem space and adjust their positions based on their own experience and that

11

of their neighbors [55]. Swarm intelligence algorithms have been used to solve optimization

problems, including task assignment, scheduling, and routing [56].

However, one potential area that remains relatively unexplored involves a data-driven

approach to assess the complexity of samples and correlate it with experts’ performance.

Deep learning algorithms excel at learning intricate relationships between inputs and outputs

of any objective function, making them suitable for modeling the association between image

complexity and experts’ capabilities. By leveraging these algorithms to determine the

success probability of expert-sample pairs, we can obtain valuable insights into the probable

performance of a group of experts. Once the cost matrix is established, an optimization

algorithm, such as the Hungarian Algorithm, can be applied to achieve an optimized task

assignment. This integration of data-driven techniques and optimization methods holds

significant potential for improving task assignments and optimizing resource allocation in

various domains.

12

Chapter 3

Improving Input Aggregation

Methods Using Automated Classifiers

In recent years, computer vision approaches based on machine learning (ML) and, in

particular, those based on deep convolutional neural networks have demonstrated signifi-

cant performance improvements over conventional approaches for image classification and

annotation [34, 57, 58]. However, these algorithms generally require a large, diverse set

of annotated data to generate accurate classifications. Large amounts of annotated data

are not always available, especially for tasks where producing high-quality meta-data is

expensive, such as image-based medical diagnosis [59] and pattern recognition in geospatial

remote sensing data [37, 60]. In addition, ML algorithms are often sensitive to perturbations

in the data for complex visual tasks, such as object detection in cluttered backgrounds and

detection of adversarial examples [61, 62], due to the high dimensionality and variability of

the feature space of the images.

Crowdsourcing has received significant attention in various domain-specific applications

as a complementary approach to image classification. Its growth has been accompanied by

the emergence of online crowdsourcing platforms (e.g., Amazon Mechanical Turk, Prolific),

which are widely employed to recruit and compensate human participants for annotating and

classifying data that are difficult for machine-only approaches. In general, crowdsourcing

works by leveraging the concept of the “wisdom of the crowd” [63], with which the judgments

or predictions of multiple participants are aggregated to sift out the noise, and to approximate

a ground truth better [64]. Numerous studies over the last decade have established that,

under the right circumstances and with the proper aggregation methods, the collective

13

judgment of multiple non-experts is more accurate than those of almost any individual,

including well-informed experts. This concept of using groups to make collective decisions

has been successfully applied to many visual tasks ranging from simple classification and

annotation [5] to complex real-world applications, including assessment of damages caused

by natural disasters [65], and segmentation of biomedical images for diagnostic purposes [6].

However, high amounts of richly annotated data are inaccessible in various situations,

and/or obtaining them is prohibitively costly. Yet, when fewer data are available, ML

methods provide a natural mechanism for incorporating multiple crowdsourced inputs in

different forms since they are designed for classification based on input features. Previous

works have used a single form of input (i.e., mostly binary classification labels provided by

participants) as a feature for ML algorithms on visual classification tasks. However, the vast

majority have not considered obtaining additional inputs from any data-driven algorithm

to improve the classification performance. This work investigates how the performance of

crowdsourcing-based image classification tasks can be improved using an automated image

classifier and a variety of user-provided inputs.

To pursue these objectives, we design several experiments that elicit a diversity of inputs

on each classification task: binary classification (1 = positive or 0 = negative); target

object’s location; level of confidence in the binary response (on a scale from 0-100%); guess

of what the majority of participants’ binary classification is on the same task; and level of

the perceived difficulty (on a scale from 0 to 1) of the binary classification task (on a discrete

scale). We use the elicited inputs as features for ML algorithms to harness the benefits of both

collective human intelligence and machine intelligence. The results indicate that integrating

diverse forms of input elicitation, including self-reported confidence values, can improve

the accuracy of crowdsourced computation. Then we design and implement an automated

image classification method based on the ResNet-50 neural network architecture [66] by

training it on multiple datasets ranging from 10,000 to 90,000 image samples. The outputs

of this automated classifier are used as additional features within the crowdsourcing-based

ML algorithms. These additional results demonstrate that this hybrid image classification

14

approach can provide more accurate predictions, especially for larger datasets.

3.1 Crowdsourcing-based ML classification

This section introduces input elicitations and describes how they can be utilized within a

crowdsourcing-based ML classifier. The elicitation methods (Section 3.1.1) were introduced

by Yasmin et al. [67, 68], our collaborators from Arizona State University. They also

designed the activities and conducted the experiments on human participants, which are

described in this section.

Consider the image label aggregation problem where a set of images I will be labeled

by a set of participants P . Without loss of generality, assume each image and participant

has a unique identifier, that is, I = {i1, i2, ..., in} and P = {p1, p2, ..., pm}, where n and

m represent the total number of images and participants, respectively. For each image

ik ∈ I, the objective is to infer the binary label yk ∈ {0, 1}, where yk = 1 if the specified

target object is present in the image (i.e., positive image) and yk = 0 (i.e., negative image)

otherwise. Since each worker may label only a subset of the images in these experiments,

let P (ik) ⊆ P be the set of participants who complete the labeling task of image ik ∈ I. In

contrast to most crowdsourced labeling tasks, where only a single label estimate is elicited

per classification task, each participant is asked to provide multiple inputs from the following

five options in the featured experiments.

1. The first input is their binary response ljk ∈ {0, 1} (i.e., classification label) indicating

the presence/absence of the target object in image ik.

2. The second input is a coordinate-pair (uj
k, v

j
k) indicating the target object’s location

(elicited only when ljk = 1).

3. The third input is a numeric value cjk ∈ [0, 100] indicating the degree of confidence in

the binary response ljk.

15

4. The fourth input is another binary choice gjk ∈ {0, 1} indicating what pj estimates the

binary response assigned by the majority of participants to ik is; this input is referred

to in this study as the Guess of Majority Elicitation (GME).

5. The fifth input is a discrete rating dkj ∈ {1, 2, 3, 4}, whose values are mapped from

four linguistic responses—1:“not at all difficult”, 2: “somewhat difficult”, 3: “very

difficult”, and 4:“extremely difficult”—indicating, in increasing order, the perceived

difficulty of task ik.

The remainder of this section describes how shallow machine learning models are built

using different features to generate predictions before integrating the models with the deep

learning–based automated classifier.

3.1.1 Features for Crowdsourcing-based ML Methods

Seven features were extracted from the five input elicitations discussed at the beginning

of this section for use with the ML classifiers. These features are described in the ensuing

paragraphs.

• Binary Choice Elicitation (BCE): For each image ik ∈ I, the Binary Choice

Elicitation values are divided into two sets: one containing the participants with

response ljk = 1 and the other containing participants with response ljk = 0. The

number of participants in each set can be used as an input feature within an ML

classifier. However, since the number of participants can vary from image to image in

practical settings, it is more prudent to use the relative size of the sets. Note that

these relative sizes are complements of each other; that is, the fraction of participants

who chose ljk = 1 as their binary choice label can be determined by subtracting from

1.0 the fraction of participants who chose ljk = 0. Therefore, to remove redundancy

and co-linearity within the features, only one of these values is used as an input and

16

is given as:

x1
k =

∑
pj∈P (ik)

1(ljk = 1)

|P (ik)|

where x1
k is the fraction of participants who answer that the target object is present

in image ik.

• Spatial Elicitation (SE): A clustering-based approach is implemented to identify

participants whose location coordinates (uj
k, v

j
k)—elicited only when they specify

that the target object is present—are close to each other. For each image ik ∈ I,

participants with binary choice label ljk = 1 are divided into multiple clusters using the

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm

[69]. The reason for choosing this algorithm is twofold. First, DBSCAN can identify

groups of points that are close to each other but form arbitrary shapes; since the

target images have varying shapes and sizes, this is what one would expect to see

in a single image if all collected data points were overlaid onto it. Second, this

clustering algorithm can easily mark as outliers/noise the points in low-density areas,

i.e., coordinate points that have a significant distance from each other. After clustering,

the fraction of participants belonging to the largest cluster is used as an input feature

within the ML classifiers. For image ik, this input feature can be expressed as:

xSE
k =

max
r∈Rk

nr∑
pj∈P (ik)

1(ljk = 1)
,

where nr is the number of participants in cluster r and Rk is the set of clusters

identified by DBSCAN for image ik.

• Confidence Elicitation (CE): Although previous works have explored using confi-

dence scores to improve the annotation quality of crowdsourced data [70], very few

have incorporated this input within a machine learning model. The confidence values

are divided into two sets based on the ljk, and the corresponding averages are used as

17

additional features for the ML classifier. For image ik ∈ I, these two input features

can be expressed as

xconf, 1
k =

∑
pj∈P (ik)

cj∗k 1(ljk = 1)∑
pj∈P (ik)

1(ljk = 1)
; and

xconf, 0
k =

∑
pj∈P (ik)

cj∗k 1(ljk = 0)∑
pj∈P (ik)

1(ljk = 0)
.

The confidence values are rescaled linearly between 0 and 100 before incorporating

them within the features.

• Guess of Majority Elicitation (GME): Similar to BCE, GME is converted into a

single feature based on the number of participants whose gjk response value is 1 and is

written as

xGME, 1
k =

∑
pj∈P (ik)

1(gjk = 1)

|P (ik)|
.

• Perceived Difficulty Elicitation (PDE): Previous research has shown that a

task’s perceived difficulty level can be used to some extent to improve the quality of

annotation. In most cases, the difficulty level is set based on inputs from experts,

that is, participants with specialized knowledge for the task at hand [71], or it is

estimated from the classification labels collected from participants [31]. Unlike these

works, the featured experiments gather the perceived difficulty of each task directly

from each participant to evaluate the reliability of this information and its potential

use within ML classifiers. For each image ik ∈ I, the difficulty elicitation values djk

are divided into two sets: one for the participants with response ljk = 1, and the other

for the remaining participants with response ljk = 0. The mean values from each set

are then used as additional features for the ML classifier; these two input features can

be expressed as

18

xPDE, 1
k =

∑
pj∈P (ik)

djk1(l
j
k = 1)∑

pj∈P (ik)

1(ljk = 1)
; and

xPDE, 0
k =

∑
pj∈P (ik)

djk1(l
j
k = 0)∑

pj∈P (ik)

1(ljk = 0)
.

3.1.2 Experiment Design

Before introducing the components of the experiment design, we describe the MPEG-7 Core

Experiment CE-Shape-1 Test Set [72], which is the source data from which the featured

crowdsourcing activities are constructed. The dataset comprises black-and-white images

of diverse shapes and objects, including animals, geometric shapes, common household

objects, etc. The dataset consists of 1, 200 objects/shapes (referred to here as templates)

divided into 60 object/shape classes, each containing 20 members. Figure 3.1 provides

representative templates from 12 of these classes.

Images across all experiments were generated with a 1, 080×1, 080 pixel beige background

(RGB values (245, 245, 220)). The rotation of all object templates follows the uniform

distribution U(0, 360). The remaining parameters are specific to each experiment. In

experiment sets C and D, we use images from four difficulty levels, “very difficult”, “difficult”,

“average”, and “easy”, with densities of 90, 100, 115, and 150, respectively. See Table 3.1.

3.1.3 Description of Activities

For the crowdsourcing activities, we designed two studies, each of which elicits multiple

forms of input from participants to complete a number of image classification tasks. A user

interface was designed and implemented to perform the two studies, which differ based on

the subsets of input elicitations tested and the class balance ratios of the image datasets

(more details are provided later in this subsection). The interfaces were developed in HTML

19

Table 3.1: Experiment Sets C and D sample images

Sets C and D Examples Positive Negative

Very Difficult
Density: 90
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)
Transparency: U(150, 200)

Difficult
Density: 100
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)
Transparency: U(150, 200)

Average
Density: 115
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)
Transparency: U(150, 200)

Easy
Density: 150
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)

20

Figure 3.1: Object/shape templates from the MPEG-7 Core Experiment CE-Shape-1 Test
Set

and JavaScript and then deployed using Amazon Mechanical Turk (MTurk). Participants

were first briefed about the nature of the study and shown a short walk-through video

explaining the interface. Afterward, participants proceeded to the image classification tasks

shown in a randomized order. After completing an experiment, participants were disallowed

to participate in further experiments to ensure we had unique responses.

Figures 3.2 and 3.3 provide examples of the user interfaces, both of which instituted a

60-second time limit to view each image before it was hidden; participants were prompted

to provide their inputs during or after the viewing time to proceed.

If the participant completed the inputs before the time limit, they were allowed to

proceed to the next image; on the other hand, if the time limit was reached, the image

was hidden from view, but participants could take as much time as they needed to finish

21

providing their inputs. Participants were not allowed to proceed to the next image until

they provided input. The time limit was imposed to ensure the scalable implementation of

a high number of tasks. In particular, the goal is to develop activities that capture enough

quality input from participants while mitigating potential cognitive fatigue. In preliminary

experiments, we found that participants rarely exceeded 45 seconds. In the featured studies

(described in the next two paragraphs), the full 60 seconds were utilized in only 7% of the

tasks, with an average time of around 27 seconds. The number of image classification tasks

given to the participants varied by experiment, ranging from 16 to 40 images (see Table 3.2

for details). Based on findings of prior studies with shared characteristics, we deemed this

number of tasks reasonable and not cognitively burdensome to participants. For instance,

[73] performed a visual identification crowdsourcing study where participants were assigned

up to 80 tasks, each of which took a median time of 29.4 seconds to complete. The authors

found that accuracy decreased negligibly for this workload (i.e., twice as large as in the

featured studies).

In the first study, seven experiments were completed and grouped into two sets: Experi-

ment Set A (four experiments) and Experiment Set B (three experiments). Each experiment

used a balanced set of images, with half containing the target template (i.e., positive images);

target objects were chosen to avoid confusion with other template classes. See Table 3.2 for

image generation parameters. The parameter ranges selected for Experiment Set A was

designed to keep the difficulty of the classification tasks relatively moderate. On the other

hand, a more complex set of parameters was selected for Experiment Set B to expand the

range of difficulty. These differences are reflected in the individual performance achieved in

these two experiment sets, measured by the respective average number of correct classifi-

cations obtained by participants. For Experiment Set A, individual performance averages

ranged between 59% and 77% for each of the four experiments, whereas for Experiment Set

B, they were between 54% and 82% for each of the three experiments.

In the second study, six experiments were conducted. These experiments were also

grouped into Experiment Set C (three experiments) and Experiment Set D (three experi-

22

Figure 3.2: Image classification task UI for balanced dataset - the image contains bat (lower
right)

ments). Each consisted of image sets with an imbalanced positive- to negative-images ratio.

Experiment Set C had a 20-80 balance, meaning that 20% of the images were positive, and

80% were negative; Experiment Set D had a 10-90 balance. The results of Experiment

Sets A and B revealed that scale and density are the only factors that had a statistically

significant impact on individual performance. Based on this insight, we constructed a simple

linear regression model with these two parameters as the predictors and proportion of correct

participants as the responses; the model is very significant (p < 0.001), and its adjusted

23

Figure 3.3: Image classification task UI for imbalanced dataset - the image contains bat
(center left)

24

R-squared value is 0.65. The model generated image sets with an approximated difficulty

level by modifying the scale and density parameters accordingly. It should be noted that the

true difficulty of each image varies based on the random generation process. The model was

implemented to design experiments consisting of classification tasks of reasonable difficulty,

neither trivial nor impossible to complete. Images of four difficulty levels were generated for

Experiment Sets C and D. At each difficulty level, the density was varied while keeping

the other parameters consistent across images. This resulted in similar images but with

different amounts of “clutter”. The four difficulties generated were categorized as “very

difficult”, “difficult”, “average”, and “easy”. Experiment Sets C and D use an even split of

each difficulty (i.e., 25% of generated images from each level). Experiment Sets C and D

can be construed as “more difficult” than Experiment Sets A and B due to the imbalanced

nature of the set. However, the individual performance achieved in these two experiment

sets, measured by the average percentage of participants with the correct classification, says

otherwise. For the three respective experiments, individual average accuracy values ranged

between 65% and 73% for Set C and between 58% and 72% for Set D.

Figures 3.2 and 3.3 show the user interface presented to participants in the first and

second studies, respectively. For each classification task (i.e., image) in the first study,

participants were asked to provide a binary response indicating whether or not a target

object was present. If they responded in affirmation, they were prompted to locate the

target object by clicking on it. Then, participants were asked to rate their confidence in

their binary response on a scale from 0-100%. Finally, participants were asked to guess

the binary response of the majority of participants. The second study asked participants

similar questions as the first study. For each classification task, participants were also asked

to provide a binary response indicating whether or not a target object was present and

their confidence level in this response. If they responded in affirmation, however, they were

prompted to locate the target object by drawing a bounding box around it; the centroid

of the bounding box was used as the (x, y)-coordinates gathered from this elicitation. In

replacement to the last question of the first study, participants were asked to rate the

25

Table 3.2: Summary of experiment image parameters

Exp. Images Density Scale Color Transparency Target

Set
A

#1

16
{100, 120,
140, 160} {T (0.2± 0.12), .., T (0.65± 0.12)} Discrete: {4} U(100, 200)

Bat
#2 Butterfly
#3 Apple
#4 Stingray

Set
B

#5
24

{80} {T (0.2± 0.05), T (0.3± 0.05)} Discrete: {1,...,6}
U(140, 170)

Bat
#6 {80,100,120} {T (0.2± 0.05), .., T (0.4± 0.05)}

U(10, 255) for R,G,& B
Turtle

#7 {100, 150} {T (0.2± 0.05), T (0.3± 0.05)} Various-7

Set
C

#8

40
{90, 100,
115, 150} {T (0.25, 0.35, 0.40)} Discrete: {4} U(150, 200) Bat

#9
#10

Set
D

#11
#12
#13

difficulty of the specific image classified based on a discrete scale. The rating choices

provided were “not difficult at all”, “somewhat difficult”, “very difficult”, and “extremely

difficult”. These labels were mapped to 1, 2, 3, and 4 for use in the aggregation algorithms.

3.2 Enhancement of Crowdsourcing-based ML Meth-

ods with an Automated Classifier

In order to assess the difficulty of the image classification problem presented to participants

and to evaluate the potential of hybrid human-ML approaches, we developed a deep learning

image classification approach that leverages large training datasets. Deep convolutional

neural networks naturally extract low-level image features and then progressively learn

higher-level features to generate probability distributions toward target classes, providing

an end-to-end data pipeline for the required task. Our classifier is based on ResNet-50,

a popular variant of ResNet architecture [66], which has shown excellent performance on

multiple image classification tasks. It has been extensively used by the computer vision

research community and adopted as a baseline architecture in many studies over the last

few years [74].

He et al. [66] trained the ResNet-50 architecture on the ImageNet [75] dataset, which

26

Table 3.3: Modified version of the ResNet-50 architecture diagram

Layer Name Output Size Layers

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 maxpool, stride 2 1×1, 64
3×3, 64
1×1, 256

×3

conv3 x 28×28

 1×1, 128
3×3, 128
1×1, 512

×4

conv4 x 14×14

 1×1, 256
3×3, 256
1×1, 1024

×6

conv5 x 7×7

 1×1, 512
3×3, 512
1×1, 2048

×3

fc1 1024×1 dropout, 2048-d fc, relu

fc2 256×1 dropout, 1024-d fc, relu

fc3 128×1 dropout, 256-d fc, relu

fc4 1×1 dropout, 128-d fc

consists of 1.28 million images and 1,000 different classes. We modified the fully connected

layers of the standard architecture to make it compatible with the binary classification task

(See Table 3.3).

To assess the classifier’s performance as a function of the training set size, we generated a

balanced dataset of 100,000 samples, with 10,000 samples set aside as the validation set and

the rest used as the training set. The images are representative of an even mixture of the

difficulty classes used to generate Experiment Sets C and D. We trained and evaluated the

performance of the network using training set sizes ranging from 10,000 samples to 90,000

samples, increasing the training set size by 10,000 every iteration, totaling nine different

training sessions. Each training session started from the previous session’s best-performing

checkpoint of the network and continued for 35 epochs. We used the Adam optimizer [76]

with default parameters (learning rate = 10−3, β1 = 0.99, β2 = 0.999) and He’s method [77]

27

Figure 3.4: Validation accuracy vs. Training set size

to initialize the weights.

Figure 3.4 shows accuracy as a function of the training set size for the automated

ResNet-50 classifier. The largest training set size of 90,000 samples leads to more than 95%

accuracy on the balanced validation set (consisting of 5,000 positive and 5,000 negative

samples). However, when trained on the smallest training set of 10,000 samples, the model

performs only slightly better than random guessing (see Figure 3.4). The plot confirms that

deep learning models almost always benefit from large datasets, given that the network has

enough parameters to capture the learnable features.

We emphasize that this work does not aim to advance the state-of-the-art results for

automated image classification. Instead, the automated classification method focuses on

exploring the benefits and limitations of a hybrid method introduced herein that integrates

the outputs of a well-known deep neural network into the crowdsourcing-based classification

methods. In particular, the proposed method uses the output of the automated classifier as

an additional feature of the featured ML methods. Table 3.4 summarizes the results for the

28

small imbalanced test sets used in Experiment Sets C and D as the training set grows larger.

Due to the imbalanced nature of these test sets, this table and the rest of the analysis

focus on F1-score, false-negative rate (FNR), and area under the ROC curve (AUC). Before

proceeding, it is worthwhile to mention two additional points regarding the values presented

in the table. First, the input elicitation RC represents the probability value of positive

classification obtained from the automated classifier when used as a feature. For example,

BCE-RC indicates that both the binary elicitation inputs and the probability scores from

the ResNet-50 were used as features for the ML classifiers. Second, the Combined Set C&D

is created by merging the data from Experiment Sets C and D, thereby effectively doubling

the size of the training set relative to the individual experiment sets.

Table 3.4 highlights those cases in which the performance of the hybrid method according

to a given metric is better than both the completely automated approach (ResNet-50) and

the results achieved by the crowdsourcing-based ML methods according to the best input

combination. As expected, when the ResNet-50 performance is poor, using its output as

a feature hurts the overall results. Conversely, when the ResNet-50 performance is near

perfect, it is difficult to improve upon its performance by adding information obtained from

the crowd. However, apart from those extremes, exploiting the output of the ResNet-50 is

beneficial in most cases, mainly regarding F1-score and AUC.

The proposed hybrid method, which uses the results from the automated classifier as

an additional input feature for the crowdsourcing-based ML methods, exhibited a robust

performance. They attained maximum F1-scores of 0.98, 0.96 0.97 and minimum FNRs of

0.04, 0.08, 0.06 for Experiment Set C, D, and Combined Set C&D, respectively, all of which

represent significant improvements over what crowdsourcing-based methods achieved on

a standalone basis. While these top results were associated with the automated classifier

training set of 90,000 samples, impressive results were obtained using smaller datasets for

Combined Set C&D, compared to Experiment Set C and D separately. As an example,

incorporating the output of the automated classifier trained on 50,000 samples with the

crowdsourcing-based methods for Combined Set C&D improved the F1-score significantly

29

Table 3.4: Performance analysis of Crowdsourcing-based ML methods with Expanded inputs
from ResNet-50

Input Size of ResNet50 KNN LR RF SVM-Linear

Elicitations Dataset F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC

Experiment Set C

BCE-CE-SE-PDE∗ – – – – 0.81 0.29 0.92 0.81 0.29 0.86 0.81 0.29 0.90 0.81 0.29 0.86

RC

10k

0.36 0.21 0.67 – – – – – – – – – – – –

BCE-RC – – – 0.73 0.38 0.85 0.82 0.25 0.93 0.70 0.38 0.89 0.75 0.38 0.92

BCE-CE-RC – – – 0.70 0.42 0.89 0.77 0.25 0.88 0.74 0.33 0.86 0.80 0.33 0.91

RC

30k

0.71 0.29 0.92 – – – – – – – – – – – –

BCE-RC – – – 0.77 0.38 0.83 0.75 0.25 0.92 0.78 0.33 0.89 0.76 0.33 0.92

BCE-CE-RC – – – 0.75 0.38 0.81 0.73 0.25 0.91 0.78 0.33 0.88 0.80 0.33 0.93

RC

50k

0.87 0.04 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.80 0.25 0.95 0.90 0.04 0.97 0.84 0.21 0.97 0.88 0.13 0.98

BCE-CE-RC – – – 0.82 0.25 0.92 0.90 0.04 0.98 0.84 0.21 0.97 0.88 0.13 0.97

RC

70k

0.90 0.08 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.91 0.13 0.98 0.92 0.04 0.99 0.93 0.13 0.98 0.94 0.04 0.99

BCE-CE-RC – – – 0.91 0.13 0.98 0.88 0.04 1.00 0.93 0.13 0.98 0.94 0.04 0.99

RC

90k

0.96 0.00 1.00 – – – – – – – – – – – –

BCE-RC – – – 0.98 0.04 0.98 0.94 0.04 0.96 0.98 0.04 0.97 0.98 0.04 0.99

BCE-CE-RC – – – 0.98 0.04 0.98 0.9 0.04 0.97 0.98 0.04 0.97 0.98 0.04 0.99

Experiment Set D

BCE-CE∗ – – – – 0.59 0.58 0.76 0.54 0.42 0.83 0.63 0.50 0.79 0.67 0.50 0.87

RC

10k

0.17 0.33 0.62 – – – – – – – – – – – –

BCE-RC – – – 0.59 0.58 0.67 0.44 0.25 0.87 0.44 0.67 0.73 0.11 0.42 0.78

BCE-CE-RC – – – 0.56 0.58 0.69 0.43 0.33 0.84 0.63 0.50 0.78 0.63 0.50 0.86

RC

30k

0.50 0.42 0.87 – – – – – – – – – – – –

BCE-RC – – – 0.50 0.67 0.67 0.43 0.33 0.87 0.59 0.58 0.74 0.63 0.50 0.85

BCE-CE-RC – – – 0.50 0.67 0.64 0.47 0.42 0.88 0.56 0.58 0.8 0.67 0.50 0.87

RC

50k

0.79 0.08 0.96 – – – – – – – – – – – –

BCE-RC – – – 0.74 0.42 0.90 0.71 0.17 0.91 0.70 0.42 0.88 0.80 0.17 0.96

BCE-CE-RC – – – 0.70 0.42 0.91 0.69 0.17 0.90 0.74 0.42 0.86 0.80 0.17 0.91

RC

70k

0.83 0.17 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.91 0.17 0.96 0.88 0.08 0.92 0.91 0.17 0.94 0.96 0.08 0.92

BCE-CE-RC – – – 0.91 0.17 0.96 0.88 0.08 0.92 0.91 0.17 0.93 0.96 0.08 0.92

RC

90k

0.96 0.08 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.96 0.08 0.96 0.92 0.08 0.94 0.91 0.17 0.94 0.96 0.08 0.95

BCE-CE-RC – – – 0.96 0.08 0.96 0.92 0.08 0.95 0.91 0.17 0.94 0.96 0.08 0.92

Combined Set C&D

BCE-CE∗ – – – – 0.68 0.47 0.83 0.73 0.33 0.9 0.72 0.42 0.85 0.76 0.39 0.9

RC

10k

0.27 0.25 0.65 – – – – – – – – – – – –

BCE-RC – – – 0.67 0.5 0.83 0.64 0.25 0.88 0.67 0.39 0.86 0.71 0.39 0.91

BCE-CE-RC – – – 0.69 0.44 0.86 0.68 0.25 0.9 0.69 0.44 0.84 0.76 0.39 0.91

RC

30k

0.63 0.33 0.90 – – – – – – – – – – – –

BCE-RC – – – 0.71 0.42 0.87 0.66 0.25 0.92 0.79 0.31 0.94 0.72 0.42 0.91

BCE-CE-RC – – – 0.72 0.42 0.84 0.64 0.28 0.92 0.75 0.39 0.91 0.72 0.42 0.93

RC

50k

0.84 0.06 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.87 0.19 0.96 0.86 0.08 0.97 0.91 0.11 0.96 0.85 0.14 0.97

BCE-CE-RC – – – 0.86 0.22 0.94 0.86 0.08 0.96 0.86 0.22 0.96 0.85 0.14 0.98

RC

70k

0.88 0.11 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.96 0.08 0.97 0.92 0.06 0.94 0.96 0.08 0.96 0.93 0.06 0.97

BCE-CE-RC – – – 0.93 0.08 0.97 0.89 0.06 0.97 0.96 0.08 0.96 0.92 0.06 0.97

RC

90k

0.96 0.03 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.97 0.06 0.97 0.93 0.06 0.98 0.97 0.06 0.96 0.97 0.06 0.98

BCE-CE-RC – – – 0.97 0.06 0.97 0.92 0.06 0.94 0.97 0.06 0.97 0.97 0.06 0.98
∗Denotes the input combinations that achieved the best performance among the Crowdsourcing-based ML

methods

(see Table 3.4). However, the hybrid approach did not show better results for Experiment

Sets C and D separately over the same training set size in some cases. This can be explained

by the fact that Experiment Sets C and D have fewer data points than Combined Set C&D.

This attests that, while crowdsourcing-based methods supplemented with the outputs of the

30

automated classifier perform very well on small datasets, too few data points can negatively

affect the performance of the hybrid approach.

3.3 Discussion

The results demonstrate that the automated classifier significantly improves the classical

machine learning model–based input aggregation methods. When the training set is small,

any of the four ML classifiers tested in this work generated dependable results for datasets

of varying difficulty levels. However, when the training set is larger, integrating the inputs

from the automated classifier with the crowdsourcing-based ML methods improved the

results even further. Those methods achieved near-perfect FNRs thanks to a large dataset

used to train the automated classifier. The F1-score was also significantly improved through

this hybrid approach. Although smaller training sets of 50,000 samples slightly reduced the

performance of the automated classifier, the numbers were still better than those obtained

by standalone crowdsourcing-based methods. Altogether, the results demonstrate that it is

possible to obtain better classifications at a relatively low cost by including diverse inputs

as features within an ML classifier.

3.4 Conclusions

Crowdsourcing-based ML classifiers are useful to aggregate expert feedback and improve

data quality. However, these methods rely on the data points obtained from the experts,

which could be expensive and time-consuming. This study shows that using the predicted

labels of automated classifiers as additional features with no direct involvement with the

experts greatly enhances the results when large datasets are available. That way, one could

avoid getting a large number of data points from the experts and still produce better results.

The code used to generate the synthetic images [78] can be found at https://github.

com/O-ARE/2D-Image-Generation-HCOMP. In addition, the code used to train and evaluate

31

https://github.com/O-ARE/2D-Image-Generation-HCOMP
https://github.com/O-ARE/2D-Image-Generation-HCOMP

the automated classifier [79] can be found at https://github.com/O-ARE/2d-image-classification.

32

https://github.com/O-ARE/2d-image-classification

Chapter 4

Improving input aggregation Methods

Using Self-Supervised Features

4.1 Introduction

Crowdsourcing has provided a useful approach to tackling complex tasks by aggregating user

inputs and harnessing the collective intelligence and diverse perspectives of a large number

of individuals to solve complex tasks. Aggregating user inputs to obtain accurate labels in

numerous crowdsourcing scenarios is essential for generating reliable, high-quality results.

However, noisy and misleading user inputs pose a significant challenge to the aggregation

process, often resulting in suboptimal outcomes.

To tackle this challenge, various input aggregation methods have been proposed in

the literature, aiming to combine user inputs effectively while mitigating the impact of

noise. These methods typically rely on shallow machine learning models, such as k-nearest

neighbors (KNN), logistic regression, or support vector machines (SVM), to learn decision

boundaries from labeled training data (as discussed in Chapter 3). However, the performance

of these models heavily relies on the quality of the input features.

Deep learning models have demonstrated remarkable success in a wide range of tasks,

particularly in learning rich and hierarchical representations from raw data. These models

are trained on large-scale labeled datasets, enabling them to capture complex patterns and

extract high-level features. However, in scenarios where labeled data are scarce or expensive

to obtain, leveraging the power of deep learning becomes challenging.

In recent years, self-supervised learning has emerged as a promising alternative for

33

training deep learning models without the need for extensive labeled data. Self-supervised

learning tasks involve training models to predict certain aspects of the input data without

explicit supervision. When labeled data are scarce, deep learning models can learn useful

representations of the data without the need for explicit supervision or labeled data after the

models are trained to perform “pretext” tasks, such as image colorization, image in-painting,

and image-context prediction. A pretext task, in the context of machine learning and deep

learning, refers to a task that is formulated to help the model learn useful representations

of the data without the need for explicit supervision or labeled data. The term “pretext”

implies that the task is not the primary objective or end goal of the learning process but

serves as a means to an end. Instead, the model learns to solve the pretext task as a form

of self-supervised learning, where the training data itself provides implicit supervision. The

representations learned by the model during the pretext task can be highly informative.

They can subsequently be used in various downstream tasks, such as image classification,

object detection, and semantic segmentation.

By leveraging self-supervised learning with pretext tasks, deep learning models can

extract meaningful and generalizable features from unlabeled data, reducing the reliance on

large labeled datasets. This approach has shown promise in improving the performance and

efficiency of deep learning models, making them more adaptable to real-world applications

with limited labeled data. Motivated by the potential advantages of self-supervised learning,

we propose a deep learning-based approach to improve existing input aggregation methods

in crowdsourcing. Our key hypothesis is that incorporating additional features learned by

a self-supervised deep learning model will enhance the performance of shallow machine

learning models used in input aggregation. We train the model on a large-scale dataset of

unlabeled images to test this hypothesis to learn robust and discriminative image features.

Subsequently, we integrate the learned features with the existing input features and retrain

the shallow machine-learning models.

This study aims to provide empirical evidence supporting the ability of self-supervised

features to enhance the performance of input aggregation methods. By demonstrating the

34

advantages of incorporating self-supervised features, we expect to open up new possibilities

for improving the accuracy and reliability of crowdsourcing tasks. Furthermore, our findings

have the potential to impact existing input aggregation methods used in this domain.

The remainder of this chapter is organized as follows. Section 4.2 describes the deep

learning model used in this study, Section 4.3 presents our proposed approach, and Section

4.4 provides an insight into the dataset used to train the model. Experiments are discussed

in Section 4.5, which contains the methodology employed in this research, including details

about the extraction and integration of self-supervised features. The results and analysis

are presented in Section 4.6. Finally, Section 4.7 concludes the chapter, summarizing the

contributions and highlighting future directions of research.

4.2 SimCLR Model

The SimCLR (Simple Framework for Contrastive Learning of Representations) model

incorporates various components, including the encoder, projection head, and contrastive

loss function, to learn powerful representations from unlabeled data. This section explains

each component and its role in the SimCLR model.

4.2.1 Encoder

The encoder serves as the backbone of the SimCLR model and is responsible for extracting

informative features from the input data. In our implementation, we adopt the ResNet-50

[80] architecture as the encoder. ResNet-50 is a deep convolutional neural network that has

demonstrated exceptional performance in image classification tasks. It consists of multiple

convolutional layers, residual blocks, and downsampling operations. This architecture allows

the model to capture low-level and high-level visual features, enabling it to learn rich

representations from raw image data.

35

Data
Augmentation

Encoder

Encoder

Dense ReLU Dense

Dense ReLU Dense

Downstream
tasks

Representation

Transformed
Images

Base Encoder
𝑓(.)

Projection Head
g(.)

𝑍𝑖

𝑍𝑗

Maximize
Similarity

ℎ𝑖

ℎ𝑗

Figure 4.1: SimCLR framework. Two separate data augmentation operators are sampled
from the same family of augmentations (t ∼ T and t ∼ T) and applied to each data
example to obtain two correlated views. A base encoder network f(·) and a projection head
g(·) are trained to maximize agreement using a contrastive loss. [1]

4.2.2 Projection Head

The projection head is a crucial component of the SimCLR model, designed to map the

high-dimensional features extracted by the encoder into a lower-dimensional latent space. By

reducing the dimensionality of the features, the projection head enhances the model’s ability

to capture semantically meaningful information and improves generalization. Typically, the

projection head comprises one or more fully connected layers followed by a normalization

layer. The fully connected layers act as a bottleneck, encouraging the model to learn more

compact representations. The normalization layer enhances the stability and robustness of

the learned features by normalizing their magnitudes.

36

4.2.3 Contrastive Loss Function

At the core of the SimCLR model lies the contrastive loss function, which drives the learning

process by maximizing agreement between augmented views of the same sample while

minimizing agreement with augmented views of different samples.

InfoNCE, where NCE stands for Noise-Contrastive Estimation, is a type of contrastive

loss function used for self-supervised learning, which can be written as:

LInfoNCE = − 1

N

N∑
i=1

log

(
exp(sim(zi, ci)/τ)∑K
j=1 exp(sim(zi, cj)/τ)

)
where:

– N represents the batch size,

– zi refers to the representation of the anchor sample,

– ci denotes the representation of the positive sample,

– τ is the temperature parameter that controls the sharpness of the distribution,

– sim(zi, cj) represents a similarity function that measures the similarity between zi and

cj,

– K is the number of negative samples used for contrastive estimation.

The combination of the encoder, projection head, and contrastive loss function enables

the SimCLR model to learn powerful and transferable representations from unlabeled data.

Leveraging the expressive power of the ResNet-50 encoder, the SimCLR model captures a

wide range of visual features, encompassing both low-level details and high-level semantics.

The projection head refines these representations by reducing their dimensionality, leading

to a more compact and informative latent space. Finally, the contrastive loss function guides

the learning process, compelling the model to discriminate between different samples and

learn representations that effectively capture the underlying data distribution.

37

4.3 Proposed Approach

In this section, we present our proposed approach for improving input-aggregation methods

using self-supervised features learned by a SimCLR model. The main goal of our approach

is to use the self-supervised model to learn meaningful representations from unlabeled data

and subsequently combine these representations into existing features obtained through

input elicitation methods to enhance the performance of the input aggregation methods.

Figure 4.2 provides an overview of the workflow of our proposed approach.

Unlabeled
Data

SimCLR
Model

Labels/Features

Train

Feedback

Train

Experts

Combined
Feature Set

Input Aggregation
Methods

Figure 4.2: SimCLR-based feature extraction and training input aggregation methods on
the combined feature set

4.3.1 SimCLR-based Feature Extraction

Our approach begins with training a SimCLR model on a large corpus of unlabeled images.

SimCLR is a powerful self-supervised learning framework that has shown remarkable success

in learning rich and discriminative representations. During training, the SimCLR model

learns to maximize agreement between differently augmented views of the same image while

38

minimizing agreement with other images in the dataset. This encourages the model to

capture high-level features and semantics present in the data.

Once the SimCLR model is trained, we extract the learned features from the base

encoder f(.), which serves as a rich representation of the input images.

4.3.2 Integration with Input-Aggregation Methods

With the self-supervised features in hand, we proceed to add them with existing features

obtained through different input elicitation methods (see Section 3.1.1). Specifically, we

focus on enhancing the performance of a group of machine learning models, including

k-nearest neighbors (k-NN), logistic regression, Random Forest (RF), and support vector

machines (SVM) classifiers.

For each of the shallow machine learning models, we augment the original set of

input features with the learned self-supervised features from the SimCLR model. This

augmentation effectively adds a 256-dimensional feature space, incorporating the additional

information captured by the self-supervised features. By doing so, we aim to enrich the

input data and enable the models to leverage the complementary knowledge contained

within the self-supervised features.

4.3.3 Workflow Overview

The proposed workflow can be summarized as follows:

1. Train a SimCLR model on a large dataset of unlabeled images to learn self-supervised

features.

2. Extract the learned self-supervised features from the base encoder f(.) of the SimCLR

model.

3. For each shallow machine learning model (k-NN, logistic regression, random forest,

SVM), combine the original input features with the self-supervised features.

39

4. Perform model training and evaluation using the augmented feature set.

5. Compare the performance of the models with and without the self-supervised features

to assess the improvement in input-aggregation methods.

4.4 Dataset

A collection of 100,000 images was generated using the image generation method described

in Section 3.1.2, which serves as the basis for self-supervised learning. The code to generate

the images is available at https://github.com/O-ARE/2D-Image-Generation-HCOMP [78].

The dataset consists of positive and negative samples, where positive images have a 2D

image of a bat in different shapes and orientations among other objects (see Table 4.1).

While the labels for these images are available during generation, the self-supervised model

did not use these labels to learn discriminative image features.

The images underwent preprocessing steps to ensure their suitability for training the

self-supervised model. This included data cleaning, normalization, and resizing of images

to a consistent resolution to facilitate efficient training and feature extraction. For details,

please see Section 3.1.2.

4.5 Experimental Setup

4.5.1 Self-supervised Training

To facilitate self-supervised learning, the SimCLR model employed augmentation techniques

to increase the diversity of the training data. Images larger than the desired input size

were resized to 256× 256 and cropped to focus on multiple areas of the image. Additional

flipping and rotation transformations were applied to introduce further variations in the

data.

The model was trained using the Adam optimizer [76] with a small learning rate. The

40

https://github.com/O-ARE/2D-Image-Generation-HCOMP

Table 4.1: Sample images from the dataset

learning rate was dynamically adjusted if the validation loss did not exhibit consecutive

improvement over a predefined number of epochs. This optimization strategy ensured

effective convergence and prevented overfitting.

Throughout the training process, relevant metrics were monitored and logged periodically.

The PyTorch Lightning framework facilitated model training, providing checkpointing,

logging, and learning rate monitoring functionalities. Following are the hyperparameters

used during the training.

41

Table 4.2: Hyperparameters

Hyperparameter Value

Batch Size 256

Hidden Dimensions 256

Learning Rate 5e-4

Temperature 0.07

Weight Decay 1e-4

Maximum Epochs 1300

4.5.2 Feature Extraction

Once the self-supervised model was trained on the unlabeled dataset, it was utilized to

extract features from the images in the target dataset. The target dataset is the dataset used

in Chapter 3 to train and evaluate the shallow machine learning-based input aggregation

methods. The extracted features represented the learned representations obtained from the

self-supervised learning process that used image augmentation to help the SimCLR model

identify discriminative features.

The self-supervised features were incorporated into the existing features that were

collected via input elicitation methods (see Chapter 3) to create a comprehensive feature

representation for each image in the target dataset. The input elicitation methods are:

1. Binary Choice Elicitation (BCE)

2. Spatial Elicitation (SE)

3. Confidence Elicitation (CE)

4. Guess of Majority Elicitation (GME)

5. Perceived Difficulty Elicitation (PDE)

This fusion of features aimed to leverage both the self-supervised representations and the

existing features to enhance the performance of the subsequent input aggregation models.

42

4.5.3 Training Shallow Machine Learning Models

The aggregated features, comprising the self-supervised and existing features, were used to

train shallow machine learning models. Specifically, k-nearest neighbors (KNN), logistic

regression, Random Forest (RF), and support vector machines (SVM) classifiers were

employed. These models learned decision boundaries based on the combined features and

aimed to classify the images in the target dataset accurately.

4.6 Results

4.6.1 Self-Supervised Training

The SimCLR model demonstrated strong performance and effectively learned discriminative

image representations during the self-supervised training.

Figure 4.3 showcases a t-SNE (t-distributed Stochastic Neighbor Embedding) plot

that assesses the quality of the learned representations from the SimCLR model. By

applying the t-SNE algorithm, the high-dimensional representations obtained from the

model were projected into a two-dimensional space, revealing the distribution of the images.

In the resulting t-SNE plot, we observed a slight clustering of the images into two groups

representing the positive and negative classes. While perfect clustering is not expected in a

2D projection, the observed separation in the t-SNE plot indicates that the learned features

encode crucial characteristics distinguishing positive and negative instances.

The t-SNE plot’s clustering pattern further supports the adoption of the self-supervised

training approach. The slight separation of the positive and negative images in the two-

dimensional space indicates that the SimCLR model has learned meaningful representations

that align with the class labels. This finding suggests that self-supervised learning has suc-

cessfully captured important discriminatory information in the image representations. The

observed clustering provides valuable insights into the model’s ability to learn representations

that facilitate subsequent classification tasks.

43

Figure 4.3: t-SNE plot of self-supervised features learned by the SimCLR model

4.6.2 Performance of the ML Models

This section presents the evaluation and comparison of various machine learning (ML)

models in terms of their performance with and without the inclusion of self-supervised

features. Performance metrics, F1 score, false negative rate (FNR), and area under the

receiver operating characteristic curve (AUC) are used to assess the models across input

aggregation methods.

44

k-Nearest Neighbor

Table 4.3: Performance analysis of the k-Nearest Neighbor model with and without self-
supervised features

Input Elicitation (-) Self-supervised feat. (+) Self-supervised feat.

F1 FNR AUC F1 FNR AUC

BCE 0.73 0.38 0.82 0.55 0.62 0.79

BCE-CE 0.75 0.38 0.89 0.59 0.58 0.80

BCE-SE 0.81 0.29 0.83 0.65 0.5 0.79

BCE-PDE 0.81 0.29 0.83 0.53 0.62 0.76

BCE-CE-SE 0.76 0.33 0.92 0.63 0.54 0.83

BCE-CE-PDE 0.81 0.29 0.90 0.63 0.54 0.82

BCE-CE-SE-PDE 0.81 0.29 0.92 0.68 0.46 0.79

BCE - Binary Choice Elicitation, CE - Confidence Elicitation, SE - Spatial
Elicitation, PDE - Perceived Difficulty Elicitation

Table 4.3 showcases the performance analysis of the k-Nearest Neighbor (KNN) model

with and without self-supervised features. Comparing the F1 scores, we observe that

the KNN model without self-supervised features generally outperforms the model with

self-supervised features. The F1 scores range from 0.73 to 0.81 for the KNN model without

self-supervised features, while the scores range from 0.55 to 0.68 for the model with self-

supervised features. These findings suggest that the inclusion of self-supervised features did

not significantly enhance the KNN model’s ability to balance precision and recall in the

classification task.

Analyzing the false negative rate (FNR), it is noted that the model with self-supervised

features exhibited higher FNR values than the model without self-supervised features. This

indicates that the inclusion of self-supervised features might have negatively affected the

KNN model’s capability to correctly identify positive instances, leading to a higher number

of false negatives.

Regarding the area under the receiver operating characteristic curve (AUC), the results

indicate no consistent improvement with the incorporation of self-supervised features. This

shows that the inclusion of self-supervised features did not consistently enhance the KNN

45

model’s ability to discriminate between positive and negative instances.

It is important to note that we refrained from conducting any scaling operation on

the features utilized to train the k-nearest neighbors (kNN) model. Due to the model’s

sensitivity to scaling, the performance of the model did not improve after adding the

self-supervised features.

Logistic Regression

Table 4.4: Performance analysis of the Logistic Regression model with and without self-
supervised features

Input Elicitation (-) Self-supervised feat. (+) Self-supervised feat.

F1 FNR AUC F1 FNR AUC

BCE 0.78 0.33 0.79 0.81 0.29 0.94

BCE-CE 0.81 0.29 0.90 0.84 0.25 0.93

BCE-SE 0.84 0.25 0.95 0.85 0.21 0.96

BCE-PDE 0.76 0.33 0.94 0.77 0.25 0.93

BCE-CE-SE 0.81 0.29 0.92 0.81 0.21 0.95

BCE-CE-PDE 0.81 0.29 0.86 0.81 0.21 0.96

BCE-CE-SE-PDE 0.81 0.29 0.86 0.81 0.21 0.96

Table 4.4 presents the performance analysis of the Logistic Regression model with and

without self-supervised features. Comparing the F1 scores, it is evident that the Logistic

Regression model with self-supervised features shows equal or better performance compared

to when it was trained without self-supervised features. The F1 scores range from 0.81 to 0.85

when self-supervised features are included, indicating a significant improvement compared

to the range of 0.76 to 0.84 observed without self-supervised features. This enhancement

suggests that leveraging self-supervised learning effectively improves the model’s ability to

balance precision and recall in the classification task.

Moreover, the false negative rate (FNR) is reduced when self-supervised features are

incorporated. The model with self-supervised features consistently exhibits lower FNR

values, indicating its improved capability to identify positive instances accurately and

46

minimize false negatives. This enhancement highlights the positive impact of self-supervised

learning on the Logistic Regression model’s ability to capture and utilize meaningful features

in the classification process. With AUC scores ranging from 0.93 to 0.96, the model with

self-supervised features demonstrates enhanced discriminative abilities compared to the

range of 0.79 to 0.94 observed without self-supervised features.

Random Forest

Table 4.5: Performance analysis of the Random Forest model with and without self-
supervised features

Input Elicitation (-) Self-supervised feat. (+) Self-supervised feat.

F1 FNR AUC F1 FNR AUC

BCE 0.73 0.33 0.81 0.71 0.33 0.85

BCE-CE 0.78 0.33 0.86 0.77 0.35 0.85

BCE-SE 0.76 0.29 0.87 0.84 0.29 0.90

BCE-PDE 0.68 0.38 0.81 0.75 0.33 0.84

BCE-CE-SE 0.77 0.29 0.90 0.82 0.29 0.88

BCE-CE-PDE 0.79 0.29 0.86 0.82 0.29 0.87

BCE-CE-SE-PDE 0.81 0.29 0.90 0.85 0.25 0.93

Table 4.5 illustrates the performance analysis of the Random Forest model with and

without self-supervised features. In terms of the F1 scores, the Random Forest model’s

performance improved when we added the self-supervised features. Without self-supervised

features, the F1 scores range from 0.68 to 0.81; with self-supervised features, the scores

range from 0.71 to 0.85. These findings suggest that the inclusion of self-supervised features

led to a consistent improvement in the F1 scores of the Random Forest model.

Analyzing the false negative rate (FNR), we also observe that the model’s performance

improved with the inclusion of self-supervised features. Without self-supervised features,

the FNR values range from 0.29 to 0.38, while with self-supervised features, the values

range from 0.25 to 0.35. These results indicate that the inclusion of self-supervised features

enhanced the model’s ability to identify positive instances correctly and reduced the number

47

of false negatives.

Considering the area under the receiver operating characteristic curve (AUC), the

inclusion of self-supervised features consistently led to improved performance. Without

self-supervised features, the AUC scores range from 0.81 to 0.90; with self-supervised

features, the scores range from 0.84 to 0.93. These findings indicate that the inclusion

of self-supervised features enhanced the Random Forest model’s discriminative abilities,

resulting in better separability between positive and negative instances.

The observed improvements in performance resulting from the incorporation of self-

supervised features can be attributed to several underlying reasons. Unlike the k-nearest

neighbor model, the random forest model was able to leverage the additional features of

the inherent structure of the images. By leveraging self-supervised features, the model

gains a richer understanding of the images underlying patterns and variations and makes

more informed decisions during the classification process, resulting in a reduction in false

negatives, as observed in the lower false negative rate (FNR). The self-supervised features

likely capture nuances in the images that were not effectively represented by the original

input elicitation-based feature, enabling the model to better handle complex instances that

were previously challenging to classify correctly.

Therefore, the results demonstrate that the inclusion of self-supervised features signifi-

cantly improved the performance of the Random Forest model in terms of F1 score, false

negative rate, and area under the receiver operating characteristic curve. This finding

emphasizes the effectiveness of leveraging self-supervised learning to enhance the model’s

ability to classify instances in the classification task accurately.

Support Vector Machine

According to Table 4.6, the Support Vector Machine (SVM) consistently achieves higher

scores when self-supervised features are included. Without self-supervised features, the F1

scores range from 0.73 to 0.80; with self-supervised features, the scores range from 0.81 to

0.84. The FNR values range from 0.25 to 0.38 without self-supervised features and remain

48

Table 4.6: Performance analysis of the Support Vector Machine with and without self-
supervised features

Input Elicitation (-) Self-supervised feat. (+) Self-supervised feat.

F1 FNR AUC F1 FNR AUC

BCE 0.73 0.38 0.92 0.83 0.29 0.93

BCE-CE 0.80 0.33 0.90 0.84 0.29 0.94

BCE-SE 0.84 0.25 0.86 0.84 0.29 0.94

BCE-PDE 0.77 0.38 0.90 0.82 0.29 0.92

BCE-CE-SE 0.81 0.29 0.88 0.81 0.29 0.94

BCE-CE-PDE 0.80 0.33 0.90 0.81 0.29 0.94

BCE-CE-SE-PDE 0.81 0.29 0.86 0.84 0.25 0.94

relatively consistent at 0.29 with self-supervised features.

Considering the area under the receiver operating characteristic curve (AUC), it is

found that the inclusion of self-supervised features consistently improves the SVM model’s

discriminative abilities. Without self-supervised features, the AUC scores range from 0.86

to 0.92; with self-supervised features, the scores range from 0.93 to 0.94.

These findings indicate that the incorporation of self-supervised features leads to improved

classification accuracy of the SVM model, as higher F1 scores reflect a better balance between

precision and recall.

The results support the hypothesis that the inclusion of unsupervised features through

self-supervised learning can enhance the performance of the evaluated classifiers. The

improved AUC scores demonstrate the effectiveness of incorporating self-supervised features

in enhancing the classifiers’ ability to distinguish between positive and negative instances

accurately.

In summary, the results of our experiments provide evidence that the inclusion of self-

supervised features improves the AUC scores of the Logistic Regression, Random Forest

and Support Vector Machine models, signifying enhanced discriminative power. However,

for the k-Nearest Neighbor models, the impact of self-supervised features on performance

is negative, with no consistent improvement observed across all input elicitation methods.

49

But despite the fact that KNN is sensitive to feature scaling and hence did not perform

well after adding the self-supervised features, the other models’ performance highlight the

potential of self-supervised learning to enhance input aggregation methods in crowdsourcing

scenarios, improving the reliability and accuracy of derived labels. Future research could

further explore the integration of self-supervised learning in other machine learning models

and investigate additional input aggregation techniques to uncover further improvements in

performance.

4.7 Conclusions

The results of our experiments provide valuable insights into the impact of self-supervised

learning on the performance of these models. Overall, the findings suggest that including

self-supervised features can positively affect most of the ML models.

For the k-Nearest Neighbor model, the inclusion of self-supervised features did not

significantly enhance its performance. The F1 scores remained relatively consistent, and

in some cases, the model without self-supervised features outperformed the model with

self-supervised features. This suggests that self-supervised features did not substantially

improve the classification task’s balancing precision and recall.

In contrast, the Logistic Regression model demonstrated consistent improvements with

the inclusion of self-supervised features. The F1 scores increased, indicating better overall

classification accuracy. The false negative rate decreased, indicating an enhanced ability to

identify positive instances correctly. Additionally, the AUC scores improved, highlighting

better discriminative abilities of the model. These results emphasize the potential of

self-supervised learning in enhancing the Logistic Regression model’s performance.

The Random Forest model showed mixed results. While the F1 scores remained relatively

consistent, the inclusion of self-supervised features led to improved performance in terms of

false negative rate and AUC scores. This suggests that self-supervised features contributed

to better identification of positive instances and enhanced separability between positive and

50

negative instances in the classification process.

Similarly, the Support Vector Machine model demonstrated consistent improvements

with the inclusion of self-supervised features. The F1 scores increased, indicating improved

classification accuracy. The false negative rate decreased, indicating a better ability to

identify positive instances. Moreover, the AUC scores improved, indicating enhanced

discriminative abilities. These findings highlight the effectiveness of self-supervised learning

in enhancing the performance of the Support Vector Machine model.

While our experiments provided valuable insights into the impact of self-supervised

learning on input aggregation models, there are limitations to be considered. First, our

study focused on a specific set of input elicitation methods and ML models, and the findings

may not be generalized to all possible combinations. Further research is needed to explore

the effectiveness of self-supervised features across a wider range of input elicitation methods

and ML models.

Another limitation is the reliance on a specific dataset and task. Our experiments

were conducted on a specific crowdsourcing dataset, and the results may vary for different

datasets and tasks. It would be beneficial to conduct similar experiments on diverse datasets

to validate the generalizability of the findings.

In conclusion, our study demonstrated that including self-supervised features could

positively affect the performance of input aggregation models in crowdsourcing scenarios.

While the impact varied across different ML models, the findings suggest that self-supervised

learning has the potential to enhance classification accuracy, improve the identification of

positive instances, and enhance the discriminative abilities of the models. These findings

contribute to the understanding of leveraging self-supervised learning in improving input

aggregation methods. Future research should focus on exploring the effectiveness of self-

supervised features on a broader range of input elicitation methods, ML models, and diverse

crowdsourcing tasks to further advance the field.

51

Chapter 5

Optimization of Task–Assignment

5.1 Introduction

The task assignment problem is a type of optimization problem in which a set of tasks must

be assigned to a set of agents in a way that optimizes one or more objective functions. For

example, consider an image classification task where the agents must classify the images

correctly. Given a pool of unlabeled images, there is a set of tasks T = {t1, t2, . . . , tn}

for n images and a set of m agents, A = {A1, A2, . . . , Am}. Each task ti has a certain

set of requirements (e.g., time, cost), and each agent Aj has a certain set of capabilities

(e.g., availability, skill level). The objective is to find an assignment of tasks to agents

that maximizes the overall performance of these agents. The objective function f(X) is a

function that measures the quality or fairness of the assignment. It may depend on various

factors, such as the quality of the assignments (e.g., task completion time, cost, quality), the

fairness of the assignments (e.g., workload balance, agent preferences), or some combination

of these factors. It can take different forms depending on the specific problem and the

desired optimization criteria. For example, in the image classification problem, the objective

function might be the overall classification accuracy of the images. Constraints can be

added to the task assignment problem to satisfy certain requirements or limitations. For

example, constraints might be added to ensure that each agent is assigned one task at most.

Task assignment is a fundamental problem in many fields and has many real-world

applications. For example, in job scheduling, the task assignment problem could be assigning

tasks to employees to maximize their productivity while minimizing the cost of overtime or

the need for additional workers. In resource allocation, the task assignment problem could

52

be to assign resources to projects to maximize their utilization while minimizing the cost of

procurement. In project management, the task assignment problem could be assigning tasks

to team members to maximize the project’s progress while minimizing the risk of delays.

Conventional methods employed for solving task assignment problems, such as linear

programming and integer programming, have some limitations [81, 82, 83, 84, 85]. One of

the main limitations of these approaches is that they require strong assumptions about the

given problem and the objective function. For example, linear programming requires that the

objective function is linear and the problem constraints are linear as well [86]. This limits the

applicability of linear programming to problems with simple, linear structures. In contrast,

the task assignment problem often involves complex, nonlinear relationships between tasks,

agents, and objectives, which are difficult to capture using linear programming.

Moreover, scalability presents a further concern for these approaches [87, 88, 89]. As

the problem size expands, the number of potential task assignments increases exponentially,

rendering the identification of the optimal solution within a reasonable timeframe increasingly

difficult. This scalability issue significantly restricts the practicality of conventional methods

when confronted with large-scale problem instances.

Recently, there has been growing interest in using neural networks to solve task assign-

ment problems. Neural networks have shown great promise in solving complex optimization

problems, thanks to their ability to learn complex patterns and generalize to new scenarios

[3, 90]. In particular, recent research [91, 92, 93] has shown that neural networks can

be used to find optimized task assignments in a variety of settings of crowdsource-based

environments.

In this study, we propose a novel approach to solving the task assignment problem using

neural networks. Our approach leverages the power of deep learning to learn the agents’

ability directly from data without relying on handcrafted features or assumptions. The

neural networks model the task complexity and the agent’s ability to perform the tasks

successfully, and we use this model with the Hungarian algorithm [94] to get the optimized

task assignment that maximizes the overall performance of the simulated agents.

53

Our proposed approach offers several advantages. It follows a simple workflow, divided

into two main stages, which contributes to its practicality and ease of implementation.

It is highly flexible and can be applied to real-world scenarios. It can handle complex

and uncertain scenarios where traditional optimization techniques often fail. Besides, our

approach is scalable, enabling it to handle large-scale task assignment problems involving

tens or hundreds of agents.

5.2 Hungarian Algorithm

The Hungarian algorithm, also known as the Munkres algorithm or the Kuhn-Munkres

algorithm [94], is a combinatorial optimization algorithm used to solve the assignment

problem. It efficiently finds the optimal assignment of agents to tasks in a bipartite graph

while minimizing the total cost or maximizing the total profit of the assignments.

The Hungarian algorithm operates based on a cost matrix, where each entry represents

the cost of assigning a particular agent to a specific task. The algorithm iteratively finds a

series of augmenting paths in the graph and updates the assignment to reduce the total cost.

It efficiently finds the optimal solution in O(n3), where n is the number of agents or tasks.

Here is a pseudocode representation of the Hungarian algorithm:

1. Subtract the minimum value in each row from all the elements in that row.

2. Subtract the minimum value in each column from all the elements in that column.

3. Cover the zeros in the cost matrix using the minimum number of lines (horizontal or

vertical lines) to cover all zeros. If the number of lines equals the number of rows or

columns, a feasible assignment is found, and the algorithm terminates. Otherwise,

proceed to step 4.

4. Find the minimum uncovered value in the cost matrix and subtract it from all the

uncovered elements. Add it to all elements at the intersection of covered rows and

columns.

54

5. Repeat steps 3 and 4 until a feasible assignment is found.

Below is an example probability matrix where Ai are the agents, and Pj are the

corresponding probability of success for the task. The optimal assignment is obtained using

the Hungarian algorithm for maximization, a variation of the standard algorithm used to

find the optimal assignment.

Table 5.1: Probability Matrix

P1 P2 P3 P4

A1 0.82 0.83 0.70 0.92

A2 0.77 0.37 0.49 0.92

A3 0.11 0.35 0.05 0.86

A4 0.08 0.09 0.98 0.23

Given the probability matrix above, image I1 will be assigned to agent A2, I2 to A1, I3

to A4, and I4 to A3.

5.3 Proposed Framework for Optimized Task Assign-

ment

For our study, we opted for a binary classification task that requires agents to classify images

featuring a target object. If the object is present in the image, the agents classify it as

positive, otherwise as negative. We have n images to classify, with each agent assigned only

one image per classification round. At each round, m agents evaluate m images, meaning

all images will be classified over n/m rounds. No new tasks are assigned until all m agents

complete their assigned tasks, ensuring equal task distribution among all agents.

To optimize the task assignment, we propose a framework that follows the following

steps:

1. Train “predictor” networks on the agents’ historical data on past performance.

55

2. Estimate the probability of success for each agent for a given task.

3. Apply the Hungarian algorithm to assign the tasks.

The phases require us to have two entities:

1. Agents - that perform the tasks. We simulate human agents using a set of deep neural

networks. These networks are trained on synthetic images to recognize the target

object (see Section 5.5.1).

2. Predictors - that estimate the success probability of the agents. Once the agents are

trained, they are evaluated on the test set. Based on this performance data, we train

a deep neural network for every agent, called “predictor”, to predict the labels given

a set of images. These networks receive images and the corresponding binary values

that indicate failure/success for the agent as input and learn the relationship between

the complexity of a given task (in this case, the image complexity) and the agent’s

past performance.

The benefits of using neural networks in optimized task assignments are two-fold. First,

neural networks can be trained on historical data, which can capture the idiosyncrasies of

each agent’s performance. This can improve the accuracy of the predictions and lead to

better task assignments. Second, using neural networks can significantly reduce the time

complexity of the optimization problem, as the neural network can quickly compute the

probabilities of success for each agent on each task.

To classify a set of unlabeled images, we use the predictors to estimate the success

probability of the agents. We provide the images (I1, I2, . . . , In) as input to these predictors

(P1, P2, . . . , Pm) and receive a probability matrix, M , where the probability in each cell, Pij

represents the probability of a successful classification for the agent Ai for the image Ij.

The workflow is similar to the example given in Section 5.2 where Table 5.1 shows a similar

cost matrix. Since this is a one-to-one assignment, at each step, we take m images and

the corresponding probability matrix and apply the Hungarian algorithm to optimize for

56

maximum classification accuracy. According to the assignment given by the algorithm for

m images, we use m simulated agents to predict the class. We continue the process until we

classify all the images.

Our baseline is a randomized task assignment, assigning the images randomly to the

agents. We compare the overall performance of both randomized and optimized task

assignments in terms of overall accuracy.

5.4 Task Description

In this study, we used baggage inspection at the security checkpoints as an example task,

involving the examination of X-ray images by multiple agents to detect unwanted objects.

Given the scarcity of publicly available X-ray image datasets, we generated our own dataset

of synthetic images to address this limitation.

5.4.1 Datasets

We generated multiple datasets, D = {d1, d2, . . . , dm} for m agents. Each dataset had

three sets: training, validation, and test, each containing 50, 000 X-ray images. The image

generation method is described in the following section.

Synthetic X-ray Image Generation

Our synthetic X-ray images were generated using 3D objects. The 3D objects are described in

STL (STereoLithography) file format, which is an openly documented format for describing

the object surface as a triangular mesh. The image generation method was divided into

two main steps: 1. Voxelization and 2. Packing algorithm. To simplify the packing of

objects, they were voxelized after a random rotation around the x, y, and z axes. Then in

the packing algorithm, an exhaustive search was performed to find suitable places for the

objects in the 3D space. After that, false-colored X-ray images were generated for the top

view.

57

Figure 5.1: 3D objects

Voxelization

The voxelization process transforms a surface-based description of an object into a volume-

based description in the form of a 3D array. Objects are rotated randomly before they are

voxelized, producing a fixed orientation for the object. The degree of rotation around the x,

y, and z axes are drawn from a normal distribution N(µ = 0, σ = 5) such as:

θx,y ∼ N(µ, σ2)

θz ∼ c ϵ {0, 90, 180, 270}+N(µ, σ2)
(5.1)

that allows for more rotation around the z-axis compared to the other two. The output

array is populated based on imaginary lines that pass through the object along with one

of the three axes. We assign 1 to a voxel if the corresponding line segment is inside of an

object, and 0 if the segment is outside.

58

Figure 5.2: A 3D object in mesh and voxel format

Packing algorithm

The packing algorithm is designed to mimic the process of packing multiple objects in a box.

Using the algorithm, we search the 3D space to find suitable locations for the objects within

the box. The search space is divided into grids, with gridlines separated by a stride value

specified in the input JSON file. A grid point is considered suitable for an object if it is the

lowest available point and if the object does not overlap with others or go beyond the box’s

boundaries. However, the algorithm cannot guarantee that the same number of objects will

be packed every time due to the random orientation and placement of the objects. If the

packing sequence does not include the target object that the agents need to classify, it is

discarded, and corresponding X-ray images will not be generated.

Figure 5.3: Placing voxels in the 3D space

59

Image generation

The X-ray inspection system comprises an X-ray source and detector, where the source

emits X-rays of high and low photon energies that penetrate the baggage. The detector

captures the photons and produces two energy images to analyze the material type of the

objects. Due to the distinct attenuation characteristics of materials at different energy

values in the spectrum, two-energy X-ray detectors can identify the atomic numbers of the

objects by absorption. Subsequently, the raw X-ray image can be color-mapped with false

colors that represent the material types. However, [since physical ACC. wasn’t necessary

and beyond ehte schope , we use an approx.] to avoid physics-based simulations that are

beyond the scope of this study, we adopt a different approach to image generation. Our

algorithm generates a single X-ray image by utilizing the X-ray absorption equation:

N/N0 = e−µT (5.2)

where N0 is the number of photons emitted by the X-ray source, N is the number of photons

that pass through the object, τ is the attenuation coefficient, and T is the thickness of the

object. The number of photons that pass through the object depends on the attenuation

coefficient µ, which also depends on the density of the material (ρ) and mass attenuation of

the material (τ). τ is experimentally obtained. A complex physics-based simulation that

would produce the experimental values using the 3D objects is out of the scope of this

project; hence the term µ(= ρτ) in the above equation is replaced by λMc as below:

I = e−λMc,normalized (5.3)

where I = N/N0, λ = decay constant. The value of λ is set to 14 for metallic objects and 4

for other types. Mc,normalized is normalized material constant, Mc, as defined below:

60

Table 5.2: Material constants Mc for each RGB channel

Material Type Material Constant (Red, Green, Blue)

Metal (0.161, 0.486, 0.965)

Plastic (0.957, 0.749, 0.478)

Leather (0.318, 0.741, 0.506)

Others (0.923, 0.341, 0.683)

Mi,c,normalized =
−log(Mi,c)√∑
j(−logMj,c)2

(5.4)

This method produces false-colored X-ray images as in Figure 5.4.

Figure 5.4: X-ray images of individual objects from different views

The first row shows a hat from three different perspectives. The second and the third

row have a mug and a pickaxe. The hat is considered to be made of leather, the mug is

61

Figure 5.5: Synthetic X-ray images from all the datasets

made of plastic, and the pickaxe is made of metal. The constants defined in Table 5.2

contribute to different colors that represent material types.

For this study, we generated six datasets in total to train a maximum of six agents. The

datasets’ images differ in object clutteredness where d1 is the least cluttered and dm is the

most cluttered. Figure 5.5 shows representative image samples from all the datasets.

The code to generate the X-ray images is available here https://github.com/hassanmohsin/

xray [95].

62

https://github.com/hassanmohsin/xray
https://github.com/hassanmohsin/xray

5.5 Experiments

5.5.1 Agent Training

We hypothesize that optimized task assignment is most useful when the group of agents

is diverse in terms of their level of expertise. Each agent should specialize in recognizing

certain image patterns and features for the image classification task. As a starting step, we

developed a baseline neural network architecture for our most naive agent, which performs

slightly better than random guessing. For the rest of the agents, we relied upon off-the-

shelf networks that are available in the literature. Considering the complexity level of the

tasks, we chose Residual Neural Networks [96] and its subsequent variations that have

shown significantly better performance over the other contemporary methods in the image

classification tasks. Table 5.3 shows the network architectures used for each agent.

Table 5.3: Agent network architectures and corresponding datasets used for training

Agent Network Architecture Dataset

A1 Baseline d1
A2 ResNet-18 d2
A3 ResNet-34 d3
A4 ResNet-50 d4
A5 ResNet-101 d5
A6 ResNet-152 d6

The baseline network is shown in Figure 5.6 below.

Convolution Max-Pool Convolution Max-Pool Convolution Max-Pool Flatten

3@500x500

8@248x248

8@124x124

16@122x122

16@61x61

32@59x59
32@29x29

1x64

1x1

Figure 5.6: Baseline architecture

63

Datasets

Training

Validation

Test

Agents Performance
Data

Predictors

Probability
MatrixTask Assignment

Train

Evaluate Train

Evaluate

Performance Estimation

Task Optimization
(Hungarian Algorithm)

Figure 5.7: Experimental setup

We trained a total of six neural networks, each on 50,000 images from their corresponding

datasets. The training set was balanced, meaning the number of positive and negative

samples was the same. The training parameters for the agent models are given in Table 5.4.

Table 5.4: Training parameters for agent models

Agent model Batch size Epochs Learning rate

Baseline 512 30 0.001

ResNet-18 128 30 0.001

ResNet-34 64 30 0.0001

Resnet-50 32 30 0.0001

ResNet-101 64 30 0.0001

ResNet-152 32 30 0.0001

Starting from a very simple baseline model, we increased the complexity of the networks

as we trained more models. More complex neural networks have the ability to learn image

features better and perform well in the classification task. Therefore, we had some agents

64

that were more “skilled” at the given task compared to others. This ensured that our

diverse group of agents performed at different skill levels. Although the models were trained

for 30 epochs, producing 30 different versions of each model, we chose the best accuracy on

the validation set consisting of 300,000 images from all six datasets.

5.5.2 Predictor training

We used the baseline network architecture for all the predictor models since our goal was

not to build the best possible predictor networks. Instead, our focus was to show that a

neural network-based approach can be used for skill estimation of the agents and that the

probability of success given by these networks can be used to optimize the task assignment.

Therefore, we did not explore other network architectures or perform any hyperparameter

search.

5.5.3 Task optimization

The unlabeled set contained 300,000 images, with each dataset contributing 50,000 images

from their respective test sets. We employed randomized and optimized task assignment

methods to classify these images, assign them to agents, and obtain their predictions. We

then compared the overall classification accuracy of the agents. The number of tasks was

equal to the number of images in the unlabeled set, and we divided these tasks into N/m

rounds.

In each round, we used predictor networks to estimate the probability of success for m

agents on m images. We then passed the resulting probability matrix (as shown in Table 5.1)

to the Hungarian algorithm to obtain a one-to-one assignment. We subsequently used the

agent models to predict the images’ labels based on the Hungarian algorithm’s assignments.

For the randomized assignment, we randomly sampled m images from the set and

assigned them to the agents for prediction in each round. After obtaining all the predicted

labels, we compared their performance with the optimized assignments.

65

5.6 Results

In this section, we present the results obtained from the experiments conducted with the

agents (A1 to A6) performing image classification tasks on different datasets (D1 to D6).

Table 5.5 displays the individual performance of each agent on the respective datasets, as

well as the mean performance across all datasets.

Table 5.5: Agents’ performance (in accuracy) on all the datasets

D1 D2 D3 D4 D5 D6 Mean

A1 0.986 0.911 0.816 0.726 0.685 0.710 0.806

A2 0.996 0.999 0.992 0.879 0.714 0.689 0.878

A3 0.928 0.995 0.998 0.993 0.972 0.910 0.966

A4 0.856 0.848 0.956 0.993 0.978 0.938 0.928

A5 0.670 0.784 0.920 0.966 0.954 0.946 0.873

A6 0.592 0.654 0.658 0.971 0.980 0.988 0.870

The diagonal values in Table 5.5 represent the expected maximum performance of each

agent when evaluated on their corresponding datasets. These values indicate the best

possible performance an agent can achieve when classifying images from a dataset similar

to the one it was trained on. As expected, the agents generally performed better on their

own test datasets, and the diagonal values serve as an upper bound for their individual

performance.

We anticipate the agents to exhibit good performance on datasets with simpler images

compared to the ones they were trained on. For instance, agent A5 is expected to perform

well on dataset D5, and we would expect similar performances on datasets D1 to D4 since

these datasets consist of less complex images than D5. Consequently, in the 6× 6 matrix of

Table 5.5 (shaded area), we expect the highest values along the diagonal cells, relatively

close values to the diagonal in the lower triangular matrix, and lower values in the upper

triangular matrix.

However, it is intriguing to observe a few lower values in the lower triangular matrix,

as seen with agents A5 and A6. On the other hand, there are a few higher values in the

66

upper triangular matrix, particularly for agents A3 and A4. This suggests that some more

“capable” agents struggled to classify simpler images, indicating a failure to generalize on

easier tasks, while some less “capable” agents successfully classified more complex images

than those they were trained on. As a result, agent A3 achieved the best performance in

terms of mean accuracy, followed by agent A4, making them the top-performing agents

overall.

Table 5.6: Agents’ performance when the tasks are randomly assigned vs. when they are
network assigned

Random assignment Dataset-based assignment Assigned by predictors

A1 0.806 0.986 1.000

A2 0.878 0.999 1.000

A3 0.966 0.998 0.999

A4 0.928 0.993 0.999

A5 0.873 0.954 0.997

A6 0.870 0.988 0.996

Mean 0.887 0.986 0.999

Moving on to Table 5.6, we compare the random assignment performance, dataset-based

assignment performance, and the actual performance achieved when the network assigned

the tasks to the agents.

Initially, the tasks are randomly assigned to the agents without considering their historical

performance. As seen in the previous table, agents A3 and A4 outperformed the other

agents, while agent A1 exhibited the lowest performance. This outcome is reasonable as

agent A1 had a relatively simple network architecture, and it was assigned tasks that were

more complex in nature.

The dataset-based assignment is obtained from the diagonal values of the previous table,

representing the upper bound of their individual performances. If the agents were to be

evaluated on images similar to those they were trained on, their best performance would be

expected, as indicated in this column.

On the other hand, when the agents were optimally assigned tasks using the network-

67

provided success probability and the optimization algorithm, we observed that their perfor-

mance surpassed the dataset-based assignment performance, which was theoretically the

upper bound for their individual performance. This finding aligns with what we observed in

the previous table, indicating that some agents demonstrated the ability to classify images

that were supposedly more complex than the ones they were trained on. This adaptability

shows the capability of certain agents to generalize well and accurately classify images with

varying levels of complexity.

Moreover, the results highlight that not all agents would consistently perform well when

faced with tasks that differ in terms of complexity. Even the most capable agents may

struggle due to various unknown factors. Hence, it is crucial to optimize task assignments

for a group of experts with diverse levels of expertise. By doing so, we can leverage their

varied skills effectively and achieve improved overall performance in image classification

tasks.

5.7 Discussion

The results demonstrate the effectiveness of utilizing neural networks for task assignment

optimization in achieving better performance in image classification tasks. Notably, the

performance of “novice” agents can be significantly enhanced when they are assigned

tasks that align with their level of expertise. By ensuring task assignments are tailored to

individual competencies, the group’s collective performance can be substantially elevated. In

this section, we discuss the implications of these results and the limitations of our approach.

One of the key benefits of our approach is its scalability. Traditional approaches to

task assignment suffer from scalability issues, particularly when the number of agents and

tasks is large. Our proposed approach leverages the power of neural networks to learn

the agents’ level of expertise, estimate the probability of success for an unknown task and

use the Hungarian algorithm, making it a viable solution for large-scale task assignment

problems. Furthermore, the use of neural networks allows for the incorporation of learnable

68

complex features and constraints related to the agents’ historical performance, enabling a

more flexible and robust approach to skill estimation.

However, some limitations to our approach should be addressed in future research. One

limitation arising from using complex neural networks is the need for large amounts of

training data which might be scarce. Our experiments used a balanced dataset to train

the neural networks. The performance of our approach on unbalanced datasets is unclear,

and further research is needed to investigate this issue. Another limitation is the choice

of evaluation metrics. While accuracy provides a comprehensive measure of the agents’

performance, other metrics may be more appropriate for certain types of tasks, such as

outlier detection and spam detection. Furthermore, we used a group of simulated agents

that have a diverse level of expertise in classification tasks; the results were not verified

by humans. Besides, by simulating human agents, it is impossible to capture all sorts of

human behavior while performing the tasks that could affect their performance.

5.8 Conclusions

We proposed an approach to task assignment optimization using a two-step method, the

estimation phase, which uses the neural networks trained on historical performance, and the

assignment phase, which uses the Hungarian algorithm and applies it to image classification

tasks. Traditional approaches to task assignment suffer from limitations such as scalability

and inefficiency. Our proposed approach addresses these limitations by leveraging the

power of neural networks to learn the agents’ historical performance data and optimize the

assignment of tasks to agents.

The results of our experiments show that the approach is effective in assigning images

to the most appropriate agent among a set of available agents. The agents achieved high

accuracy, especially the novice ones who can classify only the simpler images, demonstrating

the approach’s effectiveness in optimizing task assignments.

Our proposed approach can potentially be extended to other types of tasks beyond image

69

classification. It could also be used in a variety of settings, such as distributed computing,

crowdsourcing, and multi-robot systems. However, further research is needed to explore

the performance of the approach on other types of tasks and optimize the neural network’s

hyperparameters to achieve better results.

70

Chapter 6

Conclusions and Future Work

Throughout this thesis, we explored how deep learning techniques can enhance various

aspects of collective intelligence methods for image classification tasks. Our research has

focused on improving input aggregation methods, incorporating self-supervised features,

and optimizing task assignments. We have gained valuable insights and drawn important

conclusions by investigating these areas.

We have examined the use of automated classifiers to enhance input aggregation methods

in crowdsourcing. Machine learning models for input aggregation methods rely on the

features obtained through different input elicitation methods. Our study has demonstrated

that by utilizing the output of automated classifiers as an additional feature, we can achieve

significant improvements in the results. This approach allows us to use additional datasets

and reduce the dependency on expert feedback, reducing the timeline to get accurate results.

Additionally, we have explored the inclusion of features learned by a self-supervised

model in training the input aggregation methods. Through our experiments, we have

observed the additional features’ positive impact on the aggregation methods’ performance.

While the effectiveness varies across different models, we have witnessed improvements in

classification accuracy, the identification of positive instances, and discriminative abilities.

These findings highlight the potential of self-supervised learning as a valuable technique for

enhancing the features obtained through different elicitation methods.

Next, we have focused on optimizing task assignments in crowdsourcing using a two-

phase approach. By combining neural networks in the estimation phase and the Hungarian

algorithm in the assignment phase, we have addressed common limitations associated with

scalability and inefficiency. Our experiments on image classification tasks have shown that

71

our proposed approach effectively assigns tasks to the most suitable agents, resulting in

higher accuracy than expected.

Through our research, we have uncovered the vast potential of deep learning techniques

to transform and enhance many areas where crowd intelligence is used. We can enhance

crowdsourcing tasks’ efficiency, accuracy, and scalability by leveraging automated classifiers,

optimizing task assignments, and incorporating self-supervised features. However, as with

any field of study, there are opportunities for further exploration and improvement. We

think further advancements can be made in the following areas.

• Complex Modeling of Expert-Sample Pair: In this thesis, we modeled the

relationship between the complexity of samples and the expertise of the labelers in

terms of the labelers’ success probability. But there are other factors involved when

the experts accomplish the tasks, such as associated cost, boredom, and fatigue. An

advanced version of the modeling could consider these factors and capture a broad

spectrum of the relationship between the experts and the tasks to accomplish better

task optimization.

• Reduction of Queries: Additionally, the task optimization algorithm can be ex-

tended by assessing the informativeness of each sample for the expert and strategically

selecting the most valuable samples for annotation, optimizing the overall crowd-

sourcing process in the context of active learning. By utilizing error probabilities

and informativeness measures, researchers can develop efficient query strategies that

reduce the total number of samples requiring expert feedback, effectively streamlining

the data collection process and minimizing the labeling effort, and compare the per-

formance of strategies with the existing methods such as uncertainty sampling [97]

and query-by-committee [98].

• Hybrid AI-Crowdsourcing platform: Hybrid AI-crowdsourcing systems for image

classification present a promising avenue for further research and development in the

field of artificial intelligence and human-computer interaction. Building upon the

72

findings of agent adaptability and AI integration from the previous research, these

hybrid systems can leverage the strengths of AI models and crowd workers to enhance

the overall performance of image classification tasks.

Furthermore, during the literature review, we found many research works that focus on

either the optimization algorithm or the approaches that are purely based on machine learning

for optimal task assignment. However, only a few research works focus on data-driven

approaches that are at the intersection between machine learning and task optimization

techniques. Similar to what is presented in this thesis, data-driven approaches have the

potential to tackle the challenges in this interdisciplinary research.

73

References

[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In International conference

on machine learning, pages 1597–1607. PMLR, 2020.

[2] Anita Williams Woolley, Ishani Aggarwal, and Thomas W Malone. Collective intelli-

gence and group performance. Current Directions in Psychological Science, 24(6):420–

424, 2015.

[3] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[4] M Mitchell Waldrop. What are the limits of deep learning? Proceedings of the National

Academy of Sciences, 116(4):1074–1077, 2019.

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet

large scale visual recognition challenge. International journal of computer vision,

115(3):211–252, 2015.

[6] Danna Gurari, Diane Theriault, Mehrnoosh Sameki, Brett Isenberg, Tuan A Pham,

Alberto Purwada, Patricia Solski, Matthew Walker, Chentian Zhang, Joyce Y Wong,

et al. How to collect segmentations for biomedical images? a benchmark evaluating

the performance of experts, crowdsourced non-experts, and algorithms. In 2015 IEEE

winter conference on applications of computer vision, pages 1169–1176. IEEE, 2015.

[7] Reid Hastie and Tatsuya Kameda. The robust beauty of majority rules in group

decisions. Psychological review, 112(2):494, 2005.

74

[8] Tian Tian and Jun Zhu. Max-margin majority voting for learning from crowds. Advances

in neural information processing systems, 28, 2015.

[9] Dapeng Tao, Jun Cheng, Zhengtao Yu, Kun Yue, and Lizhen Wang. Domain-weighted

majority voting for crowdsourcing. IEEE transactions on neural networks and learning

systems, 30(1):163–174, 2018.

[10] Gal Cohensius, Omer Ben Porat, Reshef Meir, and Ofra Amir. Efficient crowdsourcing

via proxy voting. arXiv preprint arXiv:1806.06257, 2018.

[11] Ruth Urner, Shai Ben David, and Ohad Shamir. Learning from weak teachers. In

Artificial intelligence and statistics, pages 1252–1260. PMLR, 2012.

[12] Stefanie Nowak and Stefan Rüger. How reliable are annotations via crowdsourcing: a

study about inter-annotator agreement for multi-label image annotation. In Proceedings

of the international conference on Multimedia information retrieval, pages 557–566,

2010.

[13] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.

Learning deep features for scene recognition using places database. Advances in Neural

Information Processing Systems, 27:487–495, 2014.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. Ieee, 2009.

[15] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew

Zisserman. The pascal visual object classes (voc) challenge. International journal of

computer vision, 88(2):303–338, 2010.

[16] Jiyin He, Jacco van Ossenbruggen, and Arjen P de Vries. Do you need experts in the

crowd? a case study in image annotation for marine biology. In Proceedings of the 10th

Conference on Open Research Areas in Information Retrieval, pages 57–60, 2013.

75

[17] Jasper Oosterman, Archana Nottamkandath, Chris Dijkshoorn, Alessandro Bozzon,

Geert-Jan Houben, and Lora Aroyo. Crowdsourcing knowledge-intensive tasks in

cultural heritage. In Proceedings of the 2014 ACM conference on Web science, pages

267–268, 2014.

[18] Alexandra Swanson, Margaret Kosmala, Chris Lintott, Robert Simpson, Arfon Smith,

and Craig Packer. Snapshot serengeti, high-frequency annotated camera trap images

of 40 mammalian species in an african savanna. Scientific data, 2(1):1–14, 2015.

[19] Mahyar Salek, Yoram Bachrach, and Peter Key. Hotspotting—a probabilistic graphical

model for image object localization through crowdsourcing. In Twenty-Seventh AAAI

Conference on Artificial Intelligence, 2013.

[20] Giles Foody, Linda See, Steffen Fritz, Inian Moorthy, Christoph Perger, Christian Schill,

and Doreen Boyd. Increasing the accuracy of crowdsourced information on land cover

via a voting procedure weighted by information inferred from the contributed data.

ISPRS International Journal of Geo-Information, 7(3):80, 2018.

[21] Kotaro Hara, Victoria Le, and Jon Froehlich. A feasibility study of crowdsourcing

and google street view to determine sidewalk accessibility. In Proceedings of the 14th

international ACM SIGACCESS conference on Computers and accessibility, pages

273–274, 2012.

[22] Sam Mavandadi, Stoyan Dimitrov, Steve Feng, Frank Yu, Uzair Sikora, Oguzhan

Yaglidere, Swati Padmanabhan, Karin Nielsen, and Aydogan Ozcan. Distributed

medical image analysis and diagnosis through crowd-sourced games: a malaria case

study. PloS one, 7(5), 2012.

[23] Danny Mitry, Kris Zutis, Baljean Dhillon, Tunde Peto, Shabina Hayat, Kay-Tee Khaw,

James E Morgan, Wendy Moncur, Emanuele Trucco, and Paul J Foster. The accuracy

and reliability of crowdsource annotations of digital retinal images. Translational vision

science & technology, 5(5):6–6, 2016.

76

[24] Veronika Cheplygina and Josien PW Pluim. Crowd disagreement about medical

images is informative. In Intravascular Imaging and Computer Assisted Stenting and

Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, pages 105–111.

Springer, 2018.

[25] Humayun Irshad, Eun-Yeong Oh, Daniel Schmolze, Liza M Quintana, Laura Collins,

Rulla M Tamimi, and Andrew H Beck. Crowdsourcing scoring of immunohistochemistry

images: Evaluating performance of the crowd and an automated computational method.

Scientific reports, 7(1):1–10, 2017.

[26] Tan B Nguyen, Shijun Wang, Vishal Anugu, Natalie Rose, Matthew McKenna, Nicholas

Petrick, Joseph E Burns, and Ronald M Summers. Distributed human intelligence for

colonic polyp classification in computer-aided detection for ct colonography. Radiology,

262(3):824–833, 2012.

[27] Danny Mitry, Tunde Peto, Shabina Hayat, James E Morgan, Kay-Tee Khaw, and

Paul J Foster. Crowdsourcing as a novel technique for retinal fundus photography

classification: Analysis of images in the epic norfolk cohort on behalf of the ukbiobank

eye and vision consortium. PloS one, 8(8):e71154, 2013.

[28] Andrew Mao, Ariel D Procaccia, and Yiling Chen. Better human computation through

principled voting. In AAAI, 2013.

[29] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia.

Handbook of computational social choice. Cambridge University Press, 2016.

[30] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality management on amazon

mechanical turk. In Proceedings of the ACM SIGKDD workshop on human computation,

pages 64–67, 2010.

[31] David Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowd-

sourcing systems. Advances in neural information processing systems, 24, 2011.

77

[32] David White, A Mike Burton, Richard I Kemp, and Rob Jenkins. Crowd effects in

unfamiliar face matching. Applied Cognitive Psychology, 27(6):769–777, 2013.

[33] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, and Karl Aberer. An

evaluation of aggregation techniques in crowdsourcing. In International Conference on

Web Information Systems Engineering, pages 1–15. Springer, 2013.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.

Curran Associates, Inc., 2012.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1–9, 2015.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. CoRR, abs/1512.03385, 2015.

[37] Stephan Rasp, Hauke Schulz, Sandrine Bony, and Bjorn Stevens. Combining crowd-

sourcing and deep learning to explore the mesoscale organization of shallow convection.

Bulletin of the American Meteorological Society, 101(11):E1980–E1995, 2020.

[38] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee,

and Fillia Makedon. A survey on contrastive self-supervised learning. Technologies,

9(1):2, 2020.

[39] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with

momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[40] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,

Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad

78

Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised

learning. Advances in neural information processing systems, 33:21271–21284, 2020.

[41] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clus-

tering for unsupervised learning of visual features. In Proceedings of the European

conference on computer vision (ECCV), pages 132–149, 2018.

[42] Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng, Chuanqi Tan, Mosha Chen, Fei

Huang, Luo Si, and Huajun Chen. Document-level relation extraction as semantic

segmentation. arXiv preprint arXiv:2106.03618, 2021.

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[44] David M Ryan and Brian A Foster. An integer programming approach to scheduling.

Computer scheduling of public transport urban passenger vehicle and crew scheduling,

pages 269–280, 1981.

[45] Osama Yaseen M Al-Rawi and Taniya Mukherjee. Application of linear programming

in optimizing labour scheduling. Journal of Mathematical Finance, 9(3):272–285, 2019.

[46] James Munkres. Algorithms for the assignment and transportation problems. Journal

of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[47] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement

learning: A survey. In Journal of Artificial Intelligence Research, volume 4, pages

237–285, 1996.

[48] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

79

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

Cambridge, MA, 2016.

[50] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. John

Wiley & Sons, 16(2):267–293, 2001.

[51] Juan Li and Ningji Fang. Improved genetic algorithm for multi-agent task allocation

with time windows. In 2022 IEEE International Conference on Mechatronics and

Automation (ICMA), pages 6–11. IEEE, 2022.

[52] Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations research,

52(1):35–53, 2004.

[53] Jung-Ug Kim and Yeong-Dae Kim. Simulated annealing and genetic algorithms

for scheduling products with multi-level product structure. Computers Operations

Research, 23(9):857–868, 1996.

[54] Marco Dorigo and Thomas Stützle. Ant colony optimization algorithms for the traveling

salesman problem. 2004.

[55] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings

of ICNN’95-international conference on neural networks, volume 4, pages 1942–1948.

IEEE, 1995.

[56] Marco Dorigo. Swarm-bot: A novel type of self-assembling robot. In Kazuyuki Murase,

Kosuke Sekiyama, Tomohide Naniwa, Naoyuki Kubota, and Joaquin Sitte, editors,

Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research

and Edutainment (AMiRE 2005), pages 3–4, Berlin, Heidelberg, 2006. Springer Berlin

Heidelberg.

[57] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning, pages 6105–6114.

PMLR, 2019.

80

[58] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision

transformers. arXiv preprint arXiv:2106.04560, 2021.

[59] Veronika Cheplygina, Marleen de Bruijne, and Josien PW Pluim. Not-so-supervised:

a survey of semi-supervised, multi-instance, and transfer learning in medical image

analysis. Medical image analysis, 54:280–296, 2019.

[60] Bjorn Stevens, Sandrine Bony, Hélène Brogniez, Laureline Hentgen, Cathy Hohenegger,

Christoph Kiemle, Tristan S L’Ecuyer, Ann Kristin Naumann, Hauke Schulz, Pier A

Siebesma, et al. Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the trade

winds. Quarterly Journal of the Royal Meteorological Society, 146(726):141–152, 2020.

[61] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings. In

2016 IEEE European symposium on security and privacy (EuroS&P), pages 372–387.

IEEE, 2016.

[62] Patrick McDaniel, Nicolas Papernot, and Z. Berkay Celik. Machine learning in adver-

sarial settings. IEEE Security Privacy, 14(3):68–72, 2016.

[63] James Surowiecki. The wisdom of crowds. Anchor, 2005.

[64] Sheng Kung Michael Yi, Mark Steyvers, Michael D Lee, and Matthew J Dry. The

wisdom of the crowd in combinatorial problems. Cognitive science, 36(3):452–470, 2012.

[65] Luke Barrington, Shubharoop Ghosh, Marjorie Greene, Shay Har-Noy, Jay Berger,

Stuart Gill, Albert Yu-Min Lin, and Charles Huyck. Crowdsourcing earthquake damage

assessment using remote sensing imagery. Annals of Geophysics, 54(6), 2012.

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. arXiv preprint arXiv:1512.03385, 2015.

81

[67] Romena Yasmin, Md Mahmudulla Hassan, Joshua T Grassel, Harika Bhogaraju,

Adolfo R Escobedo, and Olac Fuentes. Improving crowdsourcing-based image classifi-

cation through expanded input elicitation and machine learning. Frontiers in Artificial

Intelligence, 5:848056, 2022.

[68] Romena Yasmin, Joshua T. Grassel, Md Mahmudulla Hassan, Olac Fuentes, and

Adolfo R. Escobedo. Enhancing image classification capabilities of crowdsourcing-based

methods through expanded input elicitation. Proceedings of the AAAI Conference on

Human Computation and Crowdsourcing, 9(1):166–178, Oct. 2021.

[69] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based

algorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96,

pages 226–231, 1996.

[70] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality management on amazon

mechanical turk. In Proceedings of the ACM SIGKDD workshop on human computation,

pages 64–67. ACM, 2010.

[71] Faiza Khan Khattak and Ansaf Salleb-Aouissi. Quality control of crowd labeling through

expert evaluation. In Proceedings of the NIPS 2nd Workshop on Computational Social

Science and the Wisdom of Crowds, volume 2, page 5, 2011.

[72] Sylvie Jeannin and Miroslaw Bober. Description of core experiments for mpeg-7

motion/shape. MPEG-7, ISO/IEC/JTC1/SC29/WG11/MPEG99 N, 2690, 1999.

[73] Naihui Zhou, Zachary D. Siegel, Scott Zarecor, Nigel Lee, Darwin A. Campbell,

Carson M. Andorf, Dan Nettleton, Carolyn J. Lawrence-Dill, Baskar Ganapathysubra-

manian, Jonathan W. Kelly, and Iddo Friedberg. Crowdsourcing image analysis for plant

phenomics to generate ground truth data for machine learning. PLOS Computational

Biology, 14(7):1–16, 07 2018.

82

[74] Irwan Bello, William Fedus, Xianzhi Du, Ekin D Cubuk, Aravind Srinivas, Tsung-Yi

Lin, Jonathon Shlens, and Barret Zoph. Revisiting resnets: Improved training and

scaling strategies. arXiv preprint arXiv:2103.07579, 2021.

[75] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-

heng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,

and Fei-Fei Li. Imagenet large scale visual recognition challenge. CoRR, abs/1409.0575,

2014.

[76] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification, 2015.

[78] Joshua T Grassel and Adolfo R Escobedo. 2D Image Generation. https://github.

com/O-ARE/2D-Image-Generation-HCOMP, 09 2021.

[79] Md Mahmudulla Hassan and Olac Fuentes. 2D Image Classification. https://github.

com/O-ARE/2d-image-classification, 12 2021.

[80] Brett Koonce and Brett Koonce. Resnet 50. Convolutional Neural Networks with Swift

for Tensorflow: Image Recognition and Dataset Categorization, pages 63–72, 2021.

[81] Ying Zhen, Abdullah Khan, Shah Nazir, Zhao Huiqi, Abdullah Alharbi, and Sulaiman

Khan. Crowdsourcing usage, task assignment methods, and crowdsourcing platforms:

A systematic literature review. Journal of Software: Evolution and Process, 33(8):e2368,

2021.

[82] Antony E Phillips, Hamish Waterer, Matthias Ehrgott, and David M Ryan. Integer pro-

gramming methods for large-scale practical classroom assignment problems. Computers

& Operations Research, 53:42–53, 2015.

83

https://github.com/O-ARE/2D-Image-Generation-HCOMP
https://github.com/O-ARE/2D-Image-Generation-HCOMP
https://github.com/O-ARE/2d-image-classification
https://github.com/O-ARE/2d-image-classification

[83] James K Ho. A successive linear optimization approach to the dynamic traffic assignment

problem. Transportation Science, 14(4):295–305, 1980.

[84] Dimitri P Bertsekas. The auction algorithm: A distributed relaxation method for the

assignment problem. Annals of operations research, 14(1):105–123, 1988.

[85] Jean-François Bérubé, Michel Gendreau, and Jean-Yves Potvin. An exact ϵ-constraint

method for bi-objective combinatorial optimization problems: Application to the

traveling salesman problem with profits. European journal of operational research,

194(1):39–50, 2009.

[86] Yan Zhao, Jinfu Xia, Guanfeng Liu, Han Su, Defu Lian, Shuo Shang, and Kai Zheng.

Preference-aware task assignment in spatial crowdsourcing. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 2629–2636, 2019.

[87] Abdullah Alfarrarjeh, Tobias Emrich, and Cyrus Shahabi. Scalable spatial crowdsourc-

ing: A study of distributed algorithms. In 2015 16th IEEE International Conference

on Mobile Data Management, volume 1, pages 134–144. IEEE, 2015.

[88] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. Crowdsearch: exploiting crowds

for accurate real-time image search on mobile phones. In Proceedings of the 8th

international conference on Mobile systems, applications, and services, pages 77–90,

2010.

[89] Carl Vondrick, Donald Patterson, and Deva Ramanan. Efficiently scaling up crowd-

sourced video annotation: A set of best practices for high quality, economical video

labeling. International journal of computer vision, 101:184–204, 2013.

[90] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends® in

Machine Learning, 2(1):1–127, 2009.

84

[91] Lijun Sun, Xiaojie Yu, Jiachen Guo, Yang Yan, and Xu Yu. Deep reinforcement

learning for task assignment in spatial crowdsourcing and sensing. IEEE Sensors

Journal, 21(22):25323–25330, 2021.

[92] Mingze Wang, Yingjie Wang, Akshita Maradapu Vera Venkata Sai, Zhaowei Liu, Yang

Gao, Xiangrong Tong, and Zhipeng Cai. Task assignment for hybrid scenarios in spatial

crowdsourcing: A q-learning-based approach. Applied Soft Computing, 131:109749,

2022.

[93] Pengcheng Zhao, Xiang Li, Shang Gao, and Xiaohui Wei. Cooperative task assignment

in spatial crowdsourcing via multi-agent deep reinforcement learning. Journal of

Systems Architecture, 128:102551, 2022.

[94] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1-2):83–97, 1955.

[95] Md Mahmudulla Hassan and Olac Fuentes. X-ray Image Generation from 3D objects.

https://github.com/hassanmohsin/xray, 06 2021.

[96] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[97] Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann. Multi-

class active learning by uncertainty sampling with diversity maximization. International

Journal of Computer Vision, 113:113–127, 2015.

[98] Robert Burbidge, Jem J Rowland, and Ross D King. Active learning for regression

based on query by committee. In Intelligent Data Engineering and Automated Learning-

IDEAL 2007: 8th International Conference, Birmingham, UK, December 16-19, 2007.

Proceedings 8, pages 209–218. Springer, 2007.

85

https://github.com/hassanmohsin/xray

Chapter 7

Curriculum Vitae

Md Mahmudulla Hassan earned his bachelor’s degree in Physics from the University of

Dhaka, Bangladesh, in 2011. He pursued further studies and obtained a Master’s in Physics

and Computer Science from the University of Texas at El Paso in 2016 and 2018, respectively.

Continuing his academic journey, in the fall of 2018, Hassan joined the Ph.D. program

in the same department, dedicating himself to research in the fields of machine learning and

artificial intelligence. Under the guidance of Professor Dr. Olac Fuentes, he worked as a

research assistant as well as a teaching assistant throughout his Ph.D. studies. Hassan’s

research interests primarily revolve around the intersection of machine learning and computer

vision, with a particular focus on the application of deep learning in crowdsourcing-based

methods.

During his academic tenure, Hassan had the opportunity to expand his expertise through

internships at prominent technology companies. In 2019 and 2020, he interned at GoDaddy

as a Software Engineer, where he led the development of a Deep Learning-based domain

recommender system and an automated A/B testing platform. He spent the summer of

2022 at Microsoft as an intern and developed an automated instability detection tool for

the Bing Search platform.

Email address: me@mhassan.net

86

	Increasing the efficiency and accuracy of collective intelligence methods for image classification
	Recommended Citation

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Challenges
	Scope of the Thesis
	Thesis Contributions
	Outline

	Related Works
	Improving Input Aggregation Methods Using Automated Classifiers
	Crowdsourcing-based ML classification
	Features for Crowdsourcing-based ML Methods
	Experiment Design
	Description of Activities

	Enhancement of Crowdsourcing-based ML Methods with an Automated Classifier
	Discussion
	Conclusions

	Improving input aggregation Methods Using Self-Supervised Features
	Introduction
	SimCLR Model
	Encoder
	Projection Head
	Contrastive Loss Function

	Proposed Approach
	SimCLR-based Feature Extraction
	Integration with Input-Aggregation Methods
	Workflow Overview

	Dataset
	Experimental Setup
	Self-supervised Training
	Feature Extraction
	Training Shallow Machine Learning Models

	Results
	Self-Supervised Training
	Performance of the ML Models

	Conclusions

	Optimization of Task–Assignment
	Introduction
	Hungarian Algorithm
	Proposed Framework for Optimized Task Assignment
	Task Description
	Datasets

	Experiments
	Agent Training
	Predictor training
	Task optimization

	Results
	Discussion
	Conclusions

	Conclusions and Future Work
	References
	Curriculum Vitae

