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Abstract

We develop a flexible single-index multinomial model for analyzing crime data. In addition

to the number of crimes reported, the data also includes covariates such as location, time

of day, weather, and other demographic factors. We provide an estimation algorithm and

develop R code for the single-index multinomial model. Using simulations, we evaluate the

performance of the proposed estimation algorithm. When applied to crime data, the single-

index multinomial model provides important insights into crime trends and risk variables,

assisting in the development of tailored crime prevention programs. Policymakers and

law enforcement organizations can use the model’s projections to more efficiently allocate

resources and design preemptive strategies to solve crime-related concerns. Finally, the

single-index multinomial model demonstrates itself to be a reliable tool for assessing crime

data and improving knowledge and management of crime occurrences in varied areas.

Keywords: Single-index model, High-dimensional data, Generalized additive model,

Crime data
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Chapter 1

Introduction

Crime analysis plays a vital role in understanding and combating criminal activities in so-

ciety. Law enforcement agencies, policymakers, and researchers strive to develop effective

strategies to address the complex dynamics of crime. Statistical models have grown in

popularity in recent years, and they have proven to be effective tools for assessing crime

data and finding major elements that contribute to criminal behavior. One such model,

the Single-Index Model (SIM), offers a promising approach to uncover the underlying rela-

tionships between various socioeconomic factors and crime rates.

Single-Index Model is a popular regression technique that assumes a nonlinear rela-

tionship between a response variable and a single-index variable. This index variable is a

weighted mixture of predictor variables which, for example, represent different socioeco-

nomic factors related to crime in the crime data. Researchers can use the SIM to analyze

many predictor variables at the same time and capture their cumulative influence on the

response variable. In single-index model, the object of interest depends on X through

g(X ′α) where α and g : ℜ → ℜ are unknown and ϵ is a random noise. A link function is

the function g(·). The semi-parametric single-index model (Han et al. 2020) is defined as

Y = g(X ′α) + ϵ

which, in other words, can be expressed as

E(Y |X) = g(X ′α)

1



where Y is a continuous response variable. Additional details are provided in Chapter 2.

The goal of this study is to propose an estimation algorithm when Y is multinomial

response variable. The proposed model is more flexible as it includes additive compo-

nent functions along with the single-index function. Using simulations, we evaluate the

performance of the proposed estimation approach.

Finally to illustrate the usefulness of the proposed method, we apply it on a dataset

containing crime data, demographic data, economic indicators. The single-index model will

serve as the primary analytical framework for this study. By estimating the model param-

eters, we can quantify the impact of various socioeconomic factors on crime rates, while

controlling for confounding variables. Moreover, the SIM will facilitate the development of

a comprehensive crime prediction model, allowing for the identification of areas at higher

risk and the formulation of targeted intervention strategies.

Last but not least, this thesis will add to the existing body of literature on crime analysis

by providing insights into the complex dynamics of criminal behavior and its relationship to

socioeconomic issues. The research findings will help legislators, law enforcement agencies,

and urban planners make informed decisions to reduce crime rates and promote safer cities.
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Chapter 2

Background

This section provides a brief background to the methods discussed in the study. First, it

starts with the single-index model and then provide details about the generalized additive

model and multinomial generalized additive model.

2.1 Single-Index Model

The single-index model is an extension of the generalized linear model that depicts the

connection between the response variable and a single-index (Hastie & Tibshirani 1990). It

has received a lot of attention in the field of dimensionality reduction and efficient parameter

estimation (Fan & Li 2001).

Let Y be a scalar random variable and X be a p× 1 random vector. The single model

has the form

E(Y |X) = g(X ′α) (2.1)

where α is a parameter vector of p× 1 and g(·) is an unknown function. The amount X ′α

is known as an index. If g(·) is cumulative normal or logistic distribution function then

the model becomes a binary probit or logit model. When g is unknown, the above model

provides a specification that is more flexible than a parametric model but retains many

of the desirable features of a parametric model. Flexibility is important in applications

because there is usually little justification for assuming that g is known a priori, and

seriously misleading results can be obtained if one makes an incorrect g specification. Use

of semi-parametric single-index model reduces the risk of obtaining misleading results.
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A single-index model achieves dimension reduction and avoids the curse of dimension-

ality because, the index X ′α aggregates the dimension of X. As a result, g in a single-

index model can be estimated with the same rate of probability convergence as if the

one-dimensional quantity X ′α were observable. Furthermore, α can be estimated with the

same rate of convergence, n−1/2, as in a parametric model. In terms of probability rate of

convergence, the single-index model is as accurate as a parametric model for estimating

α and as accurate as a one-dimensional non-parametric mean regression for estimating g.

This dimension-reduction feature of single-index models gives them a considerable advan-

tage over non-parametric methods in applications where X is multidimensional and the

single-index structure is plausible.

The assumptions of a single-index model are weaker than those of a parametric model

but stronger than those of a fully non-parametric model. In comparison to a parametric

model, a single-index model reduces the chance of misspecification. While avoiding some of

the disadvantages of fully non-parametric techniques, such as the curse of dimensionality,

interpretation difficulty, and lack of extrapolation capabilities. There is a significant ex-

ception to classifying a single-index model as intermediate or as having lesser assumptions

than a non-parametric model. This exception happens when structural economic models

are estimated. A structural model is one in which the components have a clear relationship

to economic theory. It turns out that the constraints required to allow for a structural in-

terpretation of a non-parametric model can reduce the non-parametric model’s generality

to that of a single-index model.

Before estimating α and g, restrictions must be imposed to ensure their identification.

That is, α and g must be uniquely determined by the population distribution of (Y,X).

Identification of single-index models has been investigated by Ichimura (1993) and, for the

special case of binary-response models, by Manski (1988). Interpreting SIMs and making

statistical inferences pose unique challenges. Multicollinearity can affect the estimation of

the index coefficients, leading to unstable parameter estimates (Wang et al. 2013). When

the linearity assumption is violated, model misspecification can arise, necessitating the use

4



of diagnostic techniques to assess model fit. Simulation studies and comparative analysis

have been used to assess SIMs’ performance in contrast to other statistical models. These

research have demonstrated that SIMs can deliver competitive predicted accuracy while

also providing interpretability and simplicity when compared to more complicated models

such as neural networks. Despite the advancements in SIM methodology, challenges re-

main. Nonlinearity, high-dimensional data, and missing data present ongoing challenges

in SIM modeling. Future research directions should focus on developing robust estimation

techniques, addressing model assumptions, and exploring applications in emerging areas

such as network analysis and spatio-temporal modeling.

2.2 Generalized Additive Model

The Generalized Additive Model (GAM) is a versatile statistical modeling framework that

supports non-linear connections between predictors and responses. Hastie (1986) intro-

duced GAMs as an extension of the Generalized Linear Model (GLM) that integrates non-

parametric smooth functions of the predictors.The multiple linear regression model can be

extended using a generalized additive model (GAM) [James et al., 2021]. The general form

of a GAM is:

E(Y ) = g(β0 + f1(X1) + f2(X2) + .....+ fd(Xd)) (2.2)

where g(·) is a specified link function. E(Y ) represents the expected value of the response

variable Y , β0 is the intercept term, and fj(·), j = 1, . . . , d, are smooth function of the

predictor variables of Xj. An exponential family distribution is specified for Y (for example

normal, binomial or Poisson distributions), where Y relates a univariate response variable to

some predictor variables. The flexibility of GAMs lies in the choice of smoothing functions.

These smooth functions allow for capturing complex and non-linear relationships between

predictors and the response variable without imposing rigid assumptions. Commonly used

smoothing techniques in GAMs include splines, local regression, kernel smoothing, and

smoothing splines.
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2.2.1 Multinomial Generalized Additive Model:

This can be written in a similar form to the GAM, but with the inclusion of multiple

outcome categories for the response variable. The response variable represents a categorical

outcome with more than two levels. The purpose of the MGAM is to model the probabilities

of each category of the response variable as a function of predictor variables.Each category

represents a distinct outcome or class.

For the response variable which stems from the exponential family, it has K categories

(K > 2), denoted as Y , and p predictor variables. The MGAM can be expressed as:

logit(p(Y = j)) = β0j + f1(X1) + f2(X2) + .....+ fd(Xd) (2.3)

for j = 1, 2, ...., K − 1, where P (Y = j) represents the probability of the response variable

taking the j − th category. The logit transformation (log-odds) is commonly used to link

the predictor functions with the probabilities.

The goal of the MGAM is to model the probabilities of each category for a given set

of predictor variables. The probabilities are usually modeled using a logit link function,

which transforms the linear combination of predictors into the logarithm of the odds of

each category. The logit transformation (log-odds) is commonly used to link the predictor

functions with the probabilities. The logit transformation of the response variable can be

denoted as log
(

pj
1−pj

)
where pj is the probability for jth each category.

The fitting procedure for the Multinomial Generalized Additive Model (MGAM) in-

volves estimating the model parameters that maximize the likelihood or minimize a penal-

ized likelihood criterion specific to multinomial responses. While there is no universally

standardized approach for fitting MGAMs, several methods and algorithms have been pro-

posed. The estimation procedure for MGAMs typically involves two steps: estimation of

smooth functions and estimation of category probabilities.

Estimation of smooth functions fj(·):

• Specify the form of the smooth functions,f1(X1), f2(X2), ....., fd(Xd) for each predictor

6



variable, X1, X2, ..., Xd (e.g., splines, smoothing splines, or other basis functions).

• Estimate the smooth functions separately for each category of Y (K categories) while

holding other terms fixed.

• Choose an appropriate estimation method based on the chosen smooth function type

and available software packages (e.g., penalized regression, backfitting algorithm, or

other optimization techniques).

Estimation of category probabilities:

• Use the estimated smooth functions to calculate the category probabilities for each

observation.

• Employ appropriate multinomial regression techniques, such as maximum likelihood

estimation, to estimate the category probabilities based on the observed data.

It should be noted that the specifics of fitting a GAM may differ based on the program or

modeling framework employed. To estimate the smooth functions and model parameters,

many software packages provide different algorithms and optimization techniques. Overall,

the GAM fitting method entails iteratively estimating the smooth functions and updating

the linear terms until a sufficient model fit is obtained.

7



Chapter 3

Single-Index Multinomial Model

We propose the single-index multinomial model as a statistical model method for analyzing

a categorical response variables with more than two categories. It is an extension of the

single-index model to the multinomial setting. Suppose we have a categorical response

variable Y that can take K different levels or categories, labeled as 1, 2, ..., K. Additionally,

we have a set of predictor variables or covariates represented as X1, X2, ..., Xp.

The proposed method can be thought as a combination of additive model and single-

index model. Generally, estimating a nonparametric function with a small dimension, say 2

or 3, is not a problem as it is done my most the of the existing software programs. However,

if X is of higher dimension, most of those methods will breakdown. This problem is called

curse of dimensionality. On the other hand, if the data includes many categorical variables,

nonparametric model is not adequate. To make our model more flexible, we propose a

semiparametric model blending the parametric function with the nonparametric function.

Here, the parametric functions uses the single-index approach whiles the non-parametric

functions uses the GAM model with the help of the mgcv package in R.

3.1 Model Formulation

We define the single-index multinomial model(SIMM) as

P (y = j|X, z1, z2, . . . , zd) = g
(
f0j(X

Tα) + f1j(z1) + f2j(z2) + ....+ fdj(zd)
)
, (3.1)

for j = 1, . . . , K, where

8



• y: This is the categorical response variable, which takes values from a set of K

categories (labeled as 1, 2, ..., K). The variable y represents the outcome we want to

predict or model.

• g(·) is a multinomial logistic function, g(wj) = exp(wj)/
∑K

j=1 exp(wj).

• X : This is a matrix of predictor variables, with each row representing a data point

and each column representing a different predictor. X ′ denotes the transpose of the

matrix X.

• α : This is a vector of coefficients corresponding to the predictor variables in X.

• f0j(·): This term represents a smooth function of the single-index X ′α. This function

is modeled nonparametrically.

• z1, z2, ..., zd : These are additional covariates or predictors that are not part of the ma-

trix X. They could be continuous or categorical variables that influence the response

variable y but are not part of the linear predictor X ′α.

• f1j(z1), f2j(z2), ..., fdj(zd) : These terms represent smooth functions of the additional

covariates z1, z2, ..., zd. Similar to f0(·), these functions are smooth and modeled

nonparametrically.

Overall, the equation represents a flexible model that allows for nonlinear relationships

between the predictors and the multinomial response. The goal of fitting this single-index

multinomial model is to estimate the single-index coefficients α and the smooth functions

f0j(·), f1j(·), ..., fdj(·) that best describe the relationship between the predictors and the

categorical response variable y. In the following, we provide a pseudo algorithm for model

estimation.

3.2 Algorithm for Model Estimation

The estimation of the single-index multinomial model includes the following steps:

9



• Start with an initial α(0).

• Use optim function in R to find α̂ based on the grid search for α. The solution

minimizes the gcv.ubre criterion when additive model is fitted with X ′αgrid, z1, . . .,

zd using mgcv package in R. Denote the solution as α(final).

• ComputeX ′α(final) and fit an additive model to compute f̂0j, . . . , f̂dj, j = 1, . . . , K−1.

We take α̂ = α(final).

The R code for estimation is provided in the Appendix.

10



Chapter 4

Simulation Study

4.1 Simulation Design and Results

We conduct a simulation study to assess the performance of the proposed method. It is

aimed at evaluating the accuracy and efficiency of the algorithm in estimating the param-

eters under different scenarios. The single-index covariates X1, X2, X3 are generated from

the standard uniform distribution. Another covariate Z is generated from the standard nor-

mal distribution. Let α = (0.1,−0.2, 0.1) and fix the number of categories in the response

variable Y as three. The data generation includes the following steps:

• Compute two linear predictors η1 and η2 such that the ith element

ηi1 = sfi1 + f2(Zi), ηi2 = sfi2 + f3(Zi)

where sfi1 = f1((
∑3

j=1 Xijαj + 0.41)/4), sfi2 = f4(
∑3

j=1Xijαj) with

f1(x) = 0.2x11(10(1− x))6 + 10(10x)3(1− x)10,

f2(x) = sin(3πx) exp(−x),

f3(x) = x3

f4(x) = sin(2πx).

• Compute the probability matrix p = exp(0, η1, η2) and divide each row by their row

sum. Calculate the cumulative values for each row and denote it by matrix cp.

11



• Generate a uniform random number and consider Yi = index−1 where index denotes

which ever the first value it exceeds in each row.

• Finally, the simulated response variable Y with K = (0, 1, 2) levels of categories.

The simulation process is repeated 20 times for different sample sizes 200, 500, and

1000. Each iteration of the simulation involves fitting the multinomial single-index Model

and calculating the MSE. The resulting MSE values are then aggregated to calculate the

average MSE for each smooth term across the 20 iterations. The Mean Square Error (MSE)

is defined as

MSE = n−1

n∑
i=1

(mi − m̂i)
2,

where mi represents each of sfi1, sfi2, f2(Zi) and f3(Zi). For this purpose, the model was

applied to predict the smooth terms, and the differences between the predicted and true

values were computed. The R code use for this simulation can be found in the appendix.

The MSE values are provided in the following table:

Mean Square Error(MSE) N=200 N=500 N=1000
MSE.1 1.5520623 1.2145308 1.4299910
MSE.2 0.7022928 0.3172879 0.3379416
MSE.3 4.8810909 3.9086439 3.3457132
MSE.4 3.4953102 3.4301909 3.7679205

Table 4.1: MSE values for the single-index model for n = 200,500 and 1000

Now we also provide three performance measures, the accuracy, κ statistic, and the

Pabak statistic to evaluate the performance of the model. The accuracy is defined as

Accuracy = n−1

n∑
i=1

1(Yi == Ŷi),

where 1(·) is the indicator function, from the proposed single-index model in Table 5.3.

12



The κ statistic, which denotes the agreement beyond chance alone, is defined as

κ =
Po − Pe

1− Pe

where

• Po is the observed agreement (proportion of cases where both raters or classifiers

agree).

• Pe is the expected agreement by chance, which is calculated as the product of the

marginal proportions of agreement for each category (Fleiss et al. 2013).

In general, κ values ranges from -1 to 1.

• κ < 0 indicates less agreement than expected by chance

• κ = 0 indicates agreement equal to what would be expected.

• 0 < κ < 1 indicates agreement beyond what would be expected by chance.

• κ = 1 indicates perfect agreement

We also provided the prevalence adjusted and bias adjusted κ statistic (pabak), this corrects

for imbalances induced by variances in prevalence and bias in the data (Byrt et al. 1993).

The pabak can be denoted as :

pabak =
Po − Pe

1− Pe

+
Pe(1− Pe)

Pc(1− Pc)

where

• Po and Pe are same as in κ statistic

• Pc denotes the positive category’s prevalence (the proportion of positive examples in

the data).

13



For comparison, we also fit a regular multinomial GAM for the data and provide its

accuracy, Kappa, and pabak values. The GAM is fitted with the following model

E(Y = j|Z,X1, X2, X3) = g(α0 + α1X1 + α2X2 + α3X3 + f(Z)).

The results in Table 5.3 indicate that the proposed single-index method is more flexible

compared to regular GAM.

Model Accuracy Kappa pabak
Single-Index 0.755 0.62634 0.51

GAM 0.76 0.63396 0.52

Table 4.2: Average accuracy, Kappa and pabak values for the single-index and the
regular additive models for samples sizes n = 200

Model Accuracy Kappa pabak
Single-Index 0.736 0.59442 0.472

GAM 0.732 0.58612 0.464

Table 4.3: Average accuracy, Kappa and pabak values for the single-index and the
regular additive models for samples sizes n = 500

Model Accuracy Kappa Pabak
Single-Index 0.731 0.59132 0.462

GAM 0.719 0.57272 0.438

Table 4.4: Average accuracy, Kappa and pabak values for the single-index and the
regular additive models for samples sizes n = 1000

14



Chapter 5

Chicago Crime Data

5.1 Data source and description

The data for this study is compiled from two sources: kaggle and data.cityofchicago.org.

It includes information about the crimes of Chicago along with some weather related in-

formation. To include the spatial information, the longitude and latitude of 277 police

beat are extracted from the city of Chicago data portal and mapped them to the various

crimes happening in each beat. Since the coordinates of each beat comprises a polygon,

the median of the coordinates of each polygon police beat is calculated to get one single

longitude and latitude. The combined data has 26 columns and 187989 observation for the

year 2021. Among the 26 columns, primary-type is the response variable. While there are

31 different crimes recorded under primary-type, the the number of categories is reduced

to 6 levels for simplifying the analysis.

5.1.1 Multinomial Response Variable

Table 5.1 shows the grouping of 31 different crimes into 6 groups. Each group is categorized

based on general understanding of the crime in its entirety. Meaning, similar crimes are

grouped under one umbrella. Hence, our new response variable has only 6 levels.
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Group1 Group2 Group3 Group4 Group5 Group6
Weapon
Violation

Obscernity Deceptive
Practice

Burglary Assault Offense
Involving
Children

Conceal
Carry
License
Violation

Criminal
Sexual
Assault

Gambling Motor Ve-
hicle Theft

Battery Human
Trafficking

Liquor
Law Viola-
tion

Prostitution Non-
Criminal

Robbery Intimidation Kidnapping

Other Nar-
cotic Vio-
lation

Public In-
decency

Interference
with Pub-
lic Officer

Theft Homicide Other Of-
fense

Public
Peace Vio-
lation

Sex Of-
fense

None Criminal
Damage

Narcotics None

Criminal
Trespass

Stalking None Arson None None

Table 5.1: categorization of the response variable into 6 levels
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5.1.2 Variables Description

variable description
’Primary-type’ type of crime
’Date’ Date when the incident occurred
’Hour’ Hour when the incident occurred
Month’ month
’ DayOfWeek’ day of the week
’Dholiday’ dummy of official us holiday
’Location-description’ Description of the location where the incident occurred
’Beat’ police geographic area where the incident occurred
’Ward’ City Council district where the incident occurred
’HubDist’ distance between the location of the incident and the

nearest police station
’PRCP’ Precipitation
’SNOW’ Snowfall
’SNWD’ Snow depth
’TMAX’ Maximum temperature
’TMIN’ Minimum temperature
’WDF2’ Direction of fastest 2-minute wind
’WSF2’ Fastest 2-minute wind speed
’WT01’ - dummy of Fog, ice fog, or freezing fog
’WT02’ dummy of Heavy fog or heaving freezing fog
’WT03’ dummy of Thunder
’WT04’ dummy of Ice pellets, sleet, snow pellets, or small hail
’WT06’ dummy of Glaze or rime
’WT08’ dummy of Smoke or haze
’WT09’ dummy of Blowing or drifting snow
’Lati’ latitude of police beat where crime happened
’Longi’ Longitude of police beat where crime happened

Table 5.2: variable description of the dataset

Table 5.2 describes the available variables in the combined dataset. This will ensure that

anyone working with the dataset understands the variables’ meanings and can make in-

formed decisions during data analysis and modeling.
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Figure 5.1: Map of Chicago city and group of crimes within the 277 police beat

Figure 5.1 shows the crimes for each type of crime in the city of Chicago. The left side

figure shows the frequency of these crimes in their respective location and the figure on

the right side shows the category of crimes in the city of Chicago in the month of January

2021. In other words, the left side plot is shedding more light, in the sense of total number

of occurrences of the category of crimes.
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Figure 5.2: Crime Trends

Figure 5.2 contains the output from the additive model. The covariates beat, day, hour,

latitude and longitude and ward are modeled as nonparametric effects. We note that each

of these variables exhibit different behavior for each crime type.
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5.2 Application of Real Data on Models

We fit a single-index multinomial model to the Chicago city crime and weather data,

where our response variable is primary-type. As shown in Chapter 3, the proposed method

comprises of both the single-index part and the GAM part. The goal of this method is

to understand the relationship between the weather conditions and the crime type. Since

the the data is large and the model is computationally heavy, only partial data (1000

observations) from week 1 is used to train the model. Further, the number of crime types

has been restricted to only 4.

To evaluate the performance of the proposed model, another 500 observations from week

2 are considered as test data. The accuracy, Kappa and Pabak values of the predictions

generated from the test data are used in the evaluation. For comparison, the accuracy,

Kappa and Pabak estimates of the regular additive is also computed. The predictions from

both the proposed and the regular additive model on test data are presented as a bar chart

in Figure 5.3.

20



Figure 5.3: Comparison of actual and predicted response from the proposed model
on the test data

Figure 5.3 shows the comparison of the actual response variable with the predicted response

in respect to the four level of categories. The model accuracy, Kappa and Pabak results

are summarized in the following table.
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Model Accuracy Kappa pabak
Single-Index 0.65821 0.13587 0.31641

GAM 0.63458 0.11047 0.26904

Table 5.3: Accuracy, Kappa and pabak estimats for the proposed single-index and
the regular additive models for the crime data.

To sum up, the proposed multinomial single-index model provides more flexibility and

achieves better predictive accuracy, a better Kappa’s estimate and a better pabak estimate.

On the flip side, it is computationally expensive. There is a need for computationally

efficient method and we defer this for future research.
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Chapter 6

Conclusion

Single-index model is a powerful model and studied well in the literature. In this study, we

proposed and implemented a multinomial single-index model which is more flexible than

the regular additive model and can overcome the curse of dimensionality. We evaluate its

performance using simulations and a real application. In both cases, we demonstrated that

it outperforms the regular additive model in terms of the predictive performance.

While the proposed method displays superior performance than the regular additive

model, it certainly has some limitations. One of the most notable limitations is its com-

putational cost. Even with 1 week data, it took some day to obtain the output. Since the

model involves many parameters, the existing optimization libraries struggle to work fast.

A more efficient algorithms are needed to overcome this problem. We defer this issue for

future research.
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Appendix

R CODE FOR SIMULATION

l i b r a r y (mgcv)

l i b r a r y ( ml too l s )

s i <− f unc t i on ( theta , xmat , f i x . formula , tdata , opt=TRUE, k=k , fx=fx , levK=levK ) {

## Fit s i n g l e index model us ing gam ca l l , g iven theta ( d e f i n e s alpha ) .

## Return ML i f opt==TRUE and f i t t e d gam with theta added otherwi s e .

## Su i t ab l e f o r c a l l i n g from ’ optim ’ to f i nd optimal theta / alpha .

alpha <− c (1 , theta ) ## cons t ra ined alpha de f ined us ing f r e e theta

k=5

kk <− s q r t (sum( alpha ˆ2))

alpha <− alpha /kk ## so now | | alpha | |=1

tdata$a <− xmat%∗%alpha ## argument o f smooth

formula . updated <− eva l ( l app ly ( f i x . formula , f unc t i on (x ) update (x , ˜.+ s (a , fx=FALSE, k=5))))

e1 <− environment ( alpha )

b <− gam( formula . updated , data=tdata , fami ly=multinom (K=levK ) ) ## f i t model

i f ( opt ) re turn ( b$gcv . ubre ) e l s e {

b$alpha <− alpha ## add alpha

J <− outer ( alpha ,− theta /kkˆ2) ## compute Jacobian

f o r ( j in 1 : l ength ( theta ) ) J [ j +1, j ] <− J [ j +1, j ] + 1/kk

b$J <− J ## da lpha i / d th e t a j

r e turn (b)

}

} ## s i
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sim . data . s i <− f unc t i on (n , seed=123 , p l o t=FALSE)

{

# se t t i n g random seed

s e t . seed ( seed )

f 1 <− f unc t i on (x ) 0 .2 ∗ xˆ11 ∗ (10 ∗ (1 − x ))ˆ6 + 10 ∗

(10 ∗ x )ˆ3 ∗ (1 − x )ˆ10

f2 <− f unc t i on (x ) s i n (3∗ pi ∗x )∗ exp(−x )

f3 <− f unc t i on (x ) xˆ3

f4 <− f unc t i on (x ) s i n (2∗ pi ∗x )

m <− 3

x <− matrix ( r un i f (n∗m) ,n ,m) ## the c ova r i a t e s f o r the s i n g l e index part

z <− rnorm (n) ## another c ova r i a t e

alpha1 <− c ( 0 . 1 , −0.2 , 0 . 1 ) ; alpha1 <− alpha1 / sq r t (sum( alpha1 ˆ2))

#alpha1 <− c ( 0 . 1 , −0.4 , 0 . 1 )

# c ( 0 . 1 , −0.2 , 0 . 1 )

# 0 .08 , −0.2 , 0 . 1

#c ( 0 . 0 5 , −0.2 , 0 . 08 )

#c (0 . 05 , −0 . 2 , 0 . 1 )

s f 1 <− s c a l e ( as . numeric ( f 1 ( ( x%∗%alpha1 +.41)/4) ) , s c a l e=FALSE)

s f 2 <− s c a l e ( as . numeric ( f 4 ( x%∗%alpha1 ) ) , s c a l e=FALSE)

i f ( p l o t==TRUE)

{
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par (mfrow=c (1 , 2 ) )

p1=p lo t ( x%∗%alpha1 , s f1 , y lab = ”Function1 ” , xlab = ” S ing l e Index1 ”)

p2=p lo t ( x%∗%alpha1 , s f2 , y lab = ”Function2 ” , xlab = ” S ing l e Index2 ”)

}

f 2 f <− s c a l e ( f 2 ( z ) , s c a l e=FALSE)

f 3 f <− s c a l e ( f 3 ( z ) , s c a l e=FALSE)

eta1 <− s f 1 + f 2 f

eta2 <− s f 2+ f 3 f

p <− exp ( cbind (0 , eta1 , eta2 ) )

p <− p/rowSums(p) ## prob . o f each category

cp <− t ( apply (p , 1 , cumsum) ) ## cumulat ive prob .

## simulate mult inomial r e sponse with these p r o b a b i l i t i e s

## see a l s o ? rmultinom

y <− apply ( cp , 1 , f unc t i on (x ) min ( which (x>r un i f (1)))) −1

#

tdata <− data . frame (y=y , x1=x [ , 1 ] , x2=x [ , 2 ] , x3=x [ , 3 ] , z=z )

#

return ( l i s t ( tdata , s f 1=s f1 , s f 2=s f2 , f 2=f2 f , f 3=f 3 f ) )

}

s i . f i t <− f unc t i on ( data , fn=s i , s formula , f formula , k=5, fx=fx , levK=3)

{

# input data arguments
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xmat <− model . matrix ( sformula , data = data ) [ , −1 ]

m <− dim( as . matrix (xmat ) ) [ 2 ]

th0 <− rep (0 ,m−1)

## get i n i t i a l theta , us ing no p ena l i z a t i o n . . .

f 0 <− optim ( th0 , fn , gr=NULL, xmat , f formula , tdata=data , fx=fx ,

levK=levK , k=k)

## now get theta / alpha with smoothing parameter s e l e c t i o n . . .

fx=FALSE

f1 <− optim ( f0$par , fn , gr=NULL, xmat , f formula , tdata=data , he s s i an=TRUE, fx=fx ,

levK=levK , k=k)

theta . e s t <−f 1$par

## ext r a c t and examine f i t t e d model . . .

b <− s i ( theta . est , xmat , f formula , tdata = data , opt=FALSE, fx=fx ,

levK=levK , k=k) ## ext r a c t bes t f i t model

##

Vt <− b$J%∗%so l v e ( f 1$hes s i an , t ( b$J ) )

se <− diag (Vt ) ˆ . 5

# return

re turn ( l i s t ( f i t=b , pcoe f=theta . est , se=se ) )

}

MSE <− f unc t i on ( n samples ) {

r e s u l t <− data . frame ( )

f o r ( s i z e in n samples ) { # I t e r a t e over d i f f e r e n t sample s i z e s

ms e pe r s i z e <− data . frame ( )

f o r ( i in 1 : 20 ) {

s e t . seed ( i ) # Set the seed f o r each i t e r a t i o n

t rue <− data . frame ( sim . data . s i ( s i z e ) )
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s formula <− as . formula (˜ x1 + x2 + x3 )

f fo rmula <− l i s t ( y ˜ s ( z ) , ˜ s ( z ) )

d <− s i . f i t ( true , s formula = sformula , f f o rmula = fformula , levK = 2)

pred <− p r ed i c t . gam( d$ f i t , type = ’ terms ’ )

MSE.1 <− mse( pred [ , ’ s ( a ) ’ ] , t r u e$ s f 1 )

MSE.2 <− mse( pred [ , ’ s . 1 ( a ) ’ ] , t r u e$ s f 2 )

MSE.3 <− mse( pred [ , ’ s . 1 ( z ) ’ ] , t r u e$ f 3 )

MSE.4 <− mse( pred [ , ’ s ( z ) ’ ] , t r u e$ f 2 )

ms e pe r s i z e <− rbind ( mse pe r s i z e , data . frame (MSE. 1 , MSE. 2 , MSE. 3 , MSE. 4 ) )

}

# Calcu la te the mean o f MSE f o r each sample s i z e and s t o r e in the r e s u l t

mse mean <− colMeans ( mse pe r s i z e )

r e s u l t <− rbind ( r e su l t , mse mean )

}

r e turn ( r e s u l t )

}

# Run the func t i on f o r sample s i z e s 200 , 500 , and 1000

s amp l e s i z e s <− c (200 , 500 , 1000)

mean square e r ro r s <− MSE( samp l e s i z e s )

rownames ( mean square e r ro r s )=c (”N=200” ,”N=500” ,”N=1000”)

colnames ( mean square e r ro r s )=c (”MSE.1” , ”MSE.2” , ”MSE.3” , ”MSE. 4” )

t ( mean square e r ro r s )

# Display the mean square e r r o r s f o r each sample s i z e
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#pr in t ( mean square e r ro r s )

R CODE FOR SINGLE-INDEX AND GAM ACCURACY

l i b r a r y (mgcv)

l i b r a r y ( ml too l s )

s i <− f unc t i on ( theta , xmat , f i x . formula , tdata , opt=TRUE, k=k , fx=fx , levK=levK ) {

## Fit s i n g l e index model us ing gam ca l l , g iven theta ( d e f i n e s alpha ) .

## Return ML i f opt==TRUE and f i t t e d gam with theta added otherwi s e .

## Su i t ab l e f o r c a l l i n g from ’ optim ’ to f i nd optimal theta / alpha .

alpha <− c (1 , theta ) ## cons t ra ined alpha de f ined us ing f r e e theta

k=5

kk <− s q r t (sum( alpha ˆ2))

alpha <− alpha /kk ## so now | | alpha | |=1

tdata$a <− xmat%∗%alpha ## argument o f smooth

formula . updated <− eva l ( l app ly ( f i x . formula , f unc t i on (x ) update (x , ˜.+ s (a , fx=FALSE, k=5))))

e1 <− environment ( alpha )

b <− gam( formula . updated , data=tdata , fami ly=multinom (K=levK ) ) ## f i t model

i f ( opt ) re turn ( b$gcv . ubre ) e l s e {

b$alpha <− alpha ## add alpha

J <− outer ( alpha ,− theta /kkˆ2) ## compute Jacobian

f o r ( j in 1 : l ength ( theta ) ) J [ j +1, j ] <− J [ j +1, j ] + 1/kk

b$J <− J ## da lpha i / d th e t a j

r e turn (b)

}

} ## s i
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sim . data . s i <− f unc t i on (n , seed=123 , p l o t=FALSE)

{

# se t t i n g random seed

s e t . seed ( seed )

f 1 <− f unc t i on (x ) 0 .2 ∗ xˆ11 ∗ (10 ∗ (1 − x ))ˆ6 + 10 ∗

(10 ∗ x )ˆ3 ∗ (1 − x )ˆ10

f2 <− f unc t i on (x ) s i n (3∗ pi ∗x )∗ exp(−x )

f3 <− f unc t i on (x ) xˆ3

f4 <− f unc t i on (x ) s i n (2∗ pi ∗x )

m <− 3

x <− matrix ( r un i f (n∗m) ,n ,m) ## the c ova r i a t e s f o r the s i n g l e index part

z <− rnorm (n) ## another c ova r i a t e

alpha1 <− c ( 0 . 1 , −0.2 , 0 . 1 ) ; alpha1 <− alpha1 / sq r t (sum( alpha1 ˆ2))

#alpha1 <− c ( 0 . 1 , −0.4 , 0 . 1 )

# c ( 0 . 1 , −0.2 , 0 . 1 )

# 0 .08 , −0.2 , 0 . 1

#c ( 0 . 0 5 , −0.2 , 0 . 08 )

#c (0 . 05 , −0 . 2 , 0 . 1 )

s f 1 <− s c a l e ( as . numeric ( f 1 ( ( x%∗%alpha1 +.41)/4) ) , s c a l e=FALSE)

s f 2 <− s c a l e ( as . numeric ( f 4 ( x%∗%alpha1 ) ) , s c a l e=FALSE)

i f ( p l o t==TRUE)

{

par (mfrow=c (1 , 2 ) )

p1=p lo t ( x%∗%alpha1 , s f1 , y lab = ”Function1 ” , xlab = ” S ing l e Index1 ”)

p2=p lo t ( x%∗%alpha1 , s f2 , y lab = ”Function2 ” , xlab = ” S ing l e Index2 ”)

}
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f 2 f <− s c a l e ( f 2 ( z ) , s c a l e=FALSE)

f 3 f <− s c a l e ( f 3 ( z ) , s c a l e=FALSE)

eta1 <− s f 1 + f 2 f

eta2 <− s f 2+ f 3 f

p <− exp ( cbind (0 , eta1 , eta2 ) )

p <− p/rowSums(p) ## prob . o f each category

cp <− t ( apply (p , 1 , cumsum) ) ## cumulat ive prob .

## s imulate mult inomial r e sponse with these p r o b a b i l i t i e s

## see a l s o ? rmultinom

y <− apply ( cp , 1 , f unc t i on (x ) min ( which (x>r un i f (1)))) −1

#

tdata <− data . frame (y=y , x1=x [ , 1 ] , x2=x [ , 2 ] , x3=x [ , 3 ] , z=z )

#

return ( tdata )

}

s i . f i t <− f unc t i on ( data , fn=s i , s formula , f formula , k=5, fx=fx , levK=3)

{

# input data arguments

xmat <− model . matrix ( sformula , data = data ) [ , −1 ]

m <− dim( as . matrix (xmat ) ) [ 2 ]

th0 <− rep (0 ,m−1)

## get i n i t i a l theta , us ing no p ena l i z a t i o n . . .
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f 0 <− optim ( th0 , fn , gr=NULL, xmat , f formula , tdata=data , fx=fx ,

levK=levK , k=k)

## now get theta / alpha with smoothing parameter s e l e c t i o n . . .

fx=FALSE

f1 <− optim ( f0$par , fn , gr=NULL, xmat , f formula , tdata=data , he s s i an=TRUE, fx=fx ,

levK=levK , k=k)

theta . e s t <−f 1$par

## ext r a c t and examine f i t t e d model . . .

b <− s i ( theta . est , xmat , f formula , tdata = data , opt=FALSE, fx=fx ,

levK=levK , k=k) ## ext r a c t bes t f i t model

##

Vt <− b$J%∗%so l v e ( f 1$hes s i an , t ( b$J ) )

se <− diag (Vt ) ˆ . 5

# return

re turn ( l i s t ( f i t=b , pcoe f=theta . est , se=se ) )

}

sample=c (200 ,500 ,1000)

f o r ( i in sample ){

ac tua l1=sim . data . s i ( i )

s formula <− as . formula (˜ x1 + x2 + x3 )

f fo rmula <− l i s t ( y ˜ s ( z ) , ˜ s ( z ) )

d <− s i . f i t ( actual1 , s formula = sformula , f f o rmula = fformula , levK = 2)

pred <− p r ed i c t . gam( d$ f i t , type = ’ response ’ )

colnames ( pred)=c ( ’ 0 ’ , ’ 1 ’ , ’ 2 ’ )
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max columns1 <− data . frame ( colnames ( pred ) [max . c o l ( pred , t i e s . method = ” f i r s t ” ) ] )

colnames (max columns1 ) = ’ yhat ’

Accuracy1=sum( actua l1$y==max columns1 )/ sample # accuracy f o r s i n g l e index

}

f o r ( i in sample ){

ac tua l=sim . data . s i ( i )

gam . model=gam( l i s t ( y˜ x1 +x2 +x3 + s ( z ) ,

˜ x1 +x2 +x3 + s ( z ) ) , f ami ly=multinom (K=2) , data=actua l )

gam . pred= pr ed i c t . gam(gam . model , type=’ response ’ )

colnames (gam . pred)=c ( ’ 0 ’ , ’ 1 ’ , ’ 2 ’ )

max columns <− data . frame ( colnames (gam . pred ) [max . c o l (gam . pred , t i e s . method = ” f i r s t ” ) ] )

colnames (max columns ) = ’ yhat ’

Accuracy=sum( actua l$y==max columns )/ sample # accuracy f o r gam

}

Accuracy1

Accuracy

Accuracy1=t ( Accuracy1 )

colnames ( Accuracy1)=c ( ’N=200 ’ , ’N=500 ’ , ’N=1000 ’) ; Accuracy1 #s i n g l e index
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Accuracy=t ( Accuracy )

colnames ( Accuracy)=c ( ’N=200 ’ , ’N=500 ’ , ’N=1000 ’) ; Accuracy #gam

35



Curriculum Vitae

Kwame Duodu and Osei Boateng Margaret’s second child, Kwabena Gyamfi Duodu, was

born on December 14, 1993. He pursued higher study at the Kwame Nkrumah University

of Science and Technology (KNUST) in Ghana after finishing his secondary education at

Dwamena Akenten Senior High School in 2013. He registered there for a four-year bachelor’s

degree in statistics program. Kwabena actively participated in the Mathematical Science

Student Association events while he was a student at KNUST and received commendable

recognition for his efforts. Following graduating from college, he worked as a medical

records clerk at Kumasi’s Tafo Government Hospital. At The University of Texas at El

Paso, Kwabena started his Master’s program in Statistics and Data Science in the fall

of 2021. He gained a solid foundation in statistics and machine learning throughout his

studies, which piqued his interest in the subject of data science even more. Maxwell actively

participated in the academic community as a teaching and research assistant and had the

chance to work with Dr. Suneel Babu Chatla on a project. With a clear career goal of

becoming a senior biostatistician and data scientist in the health sector, Kwabena plans

to pursue a doctorate program in Data Science at the University of Texas at El Paso. His

dedication to advancing his knowledge and skills in the field of Data science reflects his

commitment to making a meaningful impact on healthcare research and data analysis.

E-mail address: kgduodu@miners.utep.edu

36


	Single-Index Multinomial Model for Analyzing Crime Data
	Recommended Citation

	Acknowledgement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	 Single-Index Model 
	Generalized Additive Model
	Multinomial Generalized Additive Model:


	Single-Index Multinomial Model
	Model Formulation
	Algorithm for Model Estimation

	Simulation Study
	Simulation Design and Results

	Chicago Crime Data
	Data source and description
	Multinomial Response Variable
	Variables Description 

	Application of Real Data on Models

	Conclusion
	Bibliography
	Appendix
	Curriculum Vitae 

