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Abstract 

The purpose of this study is to integrate multiple sources of information from patients with acute 

myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) to construct organized datasets 

that would enable downstream bioinformatics and statistical analyses of the patients’ survival 

status and overall survival times in relation to their demographic, clinical, and genomic mutation 

profiles.  

With NIH Genomic Data Commons as the primary data resource and cBioPortal as the access 

portal, datasets on 149 and 603 unique patients with AML and ALL, respectively, were obtained. 

Python scripts were written to compile individual patients’ single nucleotide variant (SNV) data 

files into one dataset for each patient group. In both groups, over 95% of the SNVs occurred only 

in tumor samples while less than 0.02% only in normal samples. Compared to normal variants, 

tumor SNV change types favored mutations that reduced GC content of genes in both patient 

groups. Additional results showed shifts of variant densities on all chromosomes, most noticeably 

on chromosome 11 in patients with AML and chromosome 2 in patients with ALL.  

One important task accomplished in this work was merging the individual patients’ SNV data with 

their corresponding demographic and clinical information, which includes ethnicity and race, 

disease classification or staging, as well as survival outcomes among other variables. With the 

merged data, we propose several bioinformatics studies to investigate the functional effects of 

SNVs and to select likely leukemia-associated genes not reported to date in published literature. 

SNV occurrence frequencies in the selected genes will augment the patients’ demographic and 

clinical information to form the final set of variables to be analyzed. Our goal is to establish a 

predictive model for patients’ overall survival times to facilitate discoveries of potential gene 

therapy targets for acute leukemia.  
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Chapter 1: Introduction 

With the technological developments just in the last two decades, communities across the 

world have been able to work together to push further than previous generation could have 

imagined. Using next generation sequencing on collected samples, biotech laboratories can 

determine the nucleotide sequences in DNA molecules, which are then written to computer-

readable files. Once generated, these data files can be published for others to utilize for various 

purposes. With the vast amount of data currently available, one can use computational tools to 

extract useful information and organize them for downstream analyses to help answer many 

scientific and biomedical questions, but the process is usually very tedious and time consuming. 

Fortunately, with the advancements in computing technology these tasks have become more 

efficient in time and quality. Focusing on abnormalities found in the available DNA sequences 

from patients with cancer, our goal is to help identify a causation and ultimately a resolution for 

this disease. In this thesis, I will describe my work in organizing integrated datasets for two types 

of acute leukemia in preparation for downstream bioinformatics analysis. 

1.1 MUTATION IN DNA 

There are two ways a mutation in DNA can arise, naturally or through an external 

component. The natural occurrence of a mutation is seen during cellular division, the DNA is 

copied and in some cases the copy taken is not an exact replica. As for the external components, 

exposure to radiation and other chemicals can increase the levels of reactive oxygen species (ROS) 

which are harmful to the body and all major components of the cell. ROS are formed when a 

molecule containing oxygen gains or losses an electron, causing it to become negatively charged 

and ultimately interfering with a number of different pathways, including DNA replication [13, 

14].  
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One type of mutation that can conduce to cancer is termed single nucleotide variant (SNV), 

where an alteration of a single base in the nucleotide sequence occurs. If an SNV occurs on a 

protein-coding DNA segment, there will be either a synonymous or nonsynonymous change in the 

amino acid sequence during translation. Synonymous changes arise when the nucleotide bases 

changes, but the amino acid sequence remains the same, whereas nonsynonymous changes lead to 

changes in both the nucleotide sequence and amino acid sequence. By altering the amino acid 

sequence in cancer-related genes (e.g., oncogenes that may transform a normal cell to tumor cell, 

or tumor suppressant genes that are responsible for protecting the body from cancer), a functional 

effect that results in the reduction or total loss of the protein’s normal function may be observed.  

Leukemia, or cancer of blood cells, can be a rapid or stagnant growing disease. The growth 

primarily depends on the affected blood cells and the symptoms are more obscure than those in 

solid tumors. From previous studies throughout the year, leukemia, has shown to be more 

prominent in patients over the age of fifty-five or children under the age of 15. With an incredible 

amount of research spent on this topic, the National Cancer Institute estimated the five-year 

survival rate at 65.7% [2]. Depending on the type of leukemia, patients can be classified using 

staging system that physicians define based on the current progression of the cancer. This can be 

useful when determining a patient’s prognosis and treatment [15].  

Leukemia can be broken into two groups: Myeloid and Lymphoblastic. Both of which can 

have the prefix as acute or chronic. Chronic Leukemia is one in which the mutation arises in a 

mature blood cell, that has had time to function normal prior to the mutation, versus, Acute 

Leukemia where the mutation is in a young blood cell. Due to the shortened normal functioning 

period of the altered young blood cell, the acute form of leukemia is much more aggressive.  
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1.2 ACUTE LEUKEMIA 

As one of the most common leukemias in the adult population, acute myeloid leukemia 

(AML) originates in early forms of myeloblast, red blood cells, and platelets. Responsible for 

approximately 4% cancer related deaths in 2022, this form of cancer has mixed prognosis with a 

66% five-year survival rate [2]. Although AML research has advanced, unfortunately those 

diagnosed over the age of 60 have a lower survival rate [3].  

Unlike the traditional classification system used in solid tumors, due to the diversity of 

myeloid cells that the mutation occurs in, AML uses the French, American, and British (FAB) 

classification to categorize these outcomes. Ranging from M0 through M7, this system was 

developed in the 1970s using a cell staining methodology and gave an idea the type and maturity 

of the cell being altered [1]. Similarly, to solid tumor cancers, AML can also be classified as 

primary or secondary, using it to identify the order of metastasized tumors. Due to the multidrug 

resistance mechanisms affected, as a result, most cases of secondary AML has shown to have a 

poor prognosis [4]. An example of primary AML is one that originates in the bone marrow 

allowing it to spread to other vital organs, including the liver and spleen [1], this also reduces the 

likelihood of a positive prognosis by causing other organ failures.  

 The table below displays the different FAB subtypes that occur in AML and their 

corresponding morphological classifications. The classifications are named based on the damaged 

cell type within the myeloid stem cell lineage. This can be determined using a blood stain test.  
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Table 1.1: FAB subtypes and their morphological classifications. 

FAB Subtype Morphological Classification 

M0 Undifferentiated acute myeloblastic leukemia 

M1 Acute myeloblastic leukemia with minimal maturation 

M2 Acute myeloblastic leukemia with maturation 

M3 Acute promyelocytic leukemia 

M4 Acute myelomonocytic leukemia 

M5 Acute monocytic leukemia 

M6 Acute erythroid leukemia 

M7 Acute megakaryoblastic leukemia 

 

In contrast to AML, acute lymphoblastic leukemia (ALL) is most common in children. 

ALL originates in early forms of lymphocytes, which can be broken into two different types: B-

cells and T-cells, each having separate functions in the body’s immune defenses. B-cells are 

responsible for attacking foreign bodies that have entered blood stream by latching on, whereas T-

cells are responsible for destroying the body’s own cells that have become cancerous or infected 

from another foreign body [5].  

One of the repercussions of ALL is the spreading of the diseases in the central nervous 

system (CNS). While this is not typically observed in the initial diagnosis of patients with ALL, 

its presence is one of the most severe complications that can occur and has been found to 

significantly reduce the overall survival. The CNS involvement is most detected in ALL patients 

who have relapsed, at approximately 30%, this event usually results in treatment failures [26].  
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By collecting a sample of cerebral spinal fluid, the CNS involvement can be categorized 

by the number of white blood cells and leukemia blasts that are present [27]. The table below 

displays the classification of the CNS involvement by the three main subtypes [28].  

Table 1.2: CNS stage types with their ranges of WBCs and presences of Leukemia Blasts. 

CNS Stage 

White Blood Cells (WBC) 

Description 

Leukemia Blasts 

CNS 1 <= 5/mL Absent 

CNS 2 <= 5/mL Present 

CNS 3 > 5/mL Present 

 

1.3 RESEARCH OBJECTIVE 

The ultimate goal of this research is to identify and understand common trends in the SNV 

profiles in a variety of patients with leukemia and eventually generate an integrated predictive 

model that can help to design personalized treatment regimens of individual patients.  Within the 

scope of this thesis, my specific aims are:  

(1) Review published literature and databases to look for data collected from patients with AML 

and ALL, and compile a list of genes currently known to be associated with them. 

(2) Organize integrated datasets for patients with AML and ALL that include their demographic, 

clinical, and SNV data.  

(3) Conduct statistical overviews for the organized patient data to facilitate downstream 

bioinformatics analysis to be conducted as your PhD dissertation research. 
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Chapter 2: Literature Review 

2.1 SNV AND GENES ASSOCIATED WITH ALL AND AML 

For years the traditional chemotherapy using cytotoxic agents has been the primary 

treatment for AML and ALL. However, with the vast information and advancements in sequencing 

the human genome, researchers have been able to utilize this information to develop targeted gene 

therapies for both. Target gene therapy is less invasive on the body than chemotherapy and has 

been shown to be more responsive [8]. With the goal of either replacing, or enhancing traditional 

chemotherapy, next generation sequencing (NGS) has facilitated great progress in target gene 

therapies for these patients. NGS technology determines genetic variation, one of those being 

SNVs, and their association to diseases. Advantages to NGS is its ability to detect the variations 

with a lower input requirement while still maintaining high accuracy by being able to identify these 

variants even at low allele frequencies, making the performance quick and cost effective [29].  

The crucial step in developing the targeted gene therapies is the use of NGS data to find 

frequently occurring genetic mutation commonalities, including SNVs, among patients and 

ultimately understanding their specific pathways. An example of a registry that has been developed 

utilizing this data is the American Association for Cancer Research (AACR) Genomics, Evidence, 

Neoplasia, Information, Exchange (GENIE) project. Affiliated with over 20 participating cancer 

institutions, within the states and internationally, AACR project GENIE contains 167,000 

sequenced samples from over 148,000 patients, with leukemia being one of the top eleven frequent 

cancers [30]. The data files of these patients can be directly downloaded from Sage Bionetworks, 

which is an organization that promotes scientifical practices and patient engagement into the 

researching process. The data was also imported into cBioPortal, a portal that will be discussed in 

detail later being that it is a primary resource that was used within this study, which it can also be 
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accessed within this site. However, to access the data information on the following AML and ALL 

that was used in AACR project GENIE, a user must be granted authorization, so the background 

information on their findings are limited. Using the AACR project GENIE, it was found that the 

most prevalent gene alterations for ALL were WT1, NOTCH1, EZH2, BCORL1, and USP7. These 

alterations include a variety of mutation types from missense (nucleotide base change in sequence) 

to frame shifts (insertion or deletion of a nucleotide base in sequence) [7], both of which are 

subtypes of an SNV that alter the amino acid sequence during translation making them 

nonsynonymous mutations.  

AACR project GENIE found the corresponding data for AML. They determined that AML 

had high mutation rates in DNMT3A, FLT3, TP53, NPM1, and RUNX1 [9]. Other studies have 

also confirmed that mutations in FLT3 have shown to have a correlation to AML [8]. In both 

studies, they review already FDA approved targeted gene therapies to have shown to be highly 

effective for these patients.   

Previously mentioned about the external environmental risks being a factor in the causation 

of mutations, one article investigated the effects of a thyroid cancer treatment plan has on 

developing AML. This article reports that after receiving a single dose of Iodine-131 isoform, 

patients experienced a single base substitution resulting in a RAS gene mutation [10]. Aftereffects 

of this mutation leads to uncontrolled proliferation and blocking the cell from apoptosis.  

2.1.1 AML Associated Genes 

 Compiled from several published articles within the last 10 years, a list of genes that have 

been found to have alteration in patients with AML. This list contains 93 different genes, many of 

these articles highlighted the importance of the FLT3, NPM1, CEBPA, ASXL1, RAS and IDH 

groups as key contributors. Meaning that the mutations that arose in these genes created a 
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cascading effect that resulted in the malfunction of the other listed genes. Nonetheless, to validate 

the research found in this study all the genes that had any found link to AML were annotated.  

2.1.2 ALL Associated Genes 

A similar literature approach to the list generated for the AML-associated genes was done 

for the associated genes with patients with ALL. The ALL-associated gene list obtained from other 

published sources contained 89 unique genes. Again, these articles emphasize that the key 

contributing genes as the RAS group, IKZF1, PAX5, EZH2, and MEF2D which was also found in 

the AML associated genes list, create the expression level changes in later genes.  

2.2 DATA PORTALS AND DATA REPOSITORIES 

With the rapid advancements in technology over the past few decades, vast resources for 

research in multiple fields have also grown exponentially. In the biomedical areas, we have seen 

enormous developments ranging from large public databases sharing intertwined information, to 

software and their limitless packages that are being added and updated continuously. Portals, such 

as the National Cancer Institute Genomic Data Commons (GDC) and cBioPortal for Cancer 

Genomics, are developed to facilitate in the storage of this information to be easily found and 

downloaded.  

An example of this type of relationship previous mentioned was AACR GENIE, where the 

data is now readily available on cBioPortal. Additional examples of this are also The Cancer 

Genome Atlas Program (TCGA) and Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) [32, 33]. Both of which, have their clinical or mutational data on GDC and 

cBioPortal, and share the common goal of utilizing and distributing information to better 

treatments and improve patient prognosis.  
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2.2.1 Data Portals 

By supporting several cancer genome projects, GDC, provides the capability to upload 

information, thus aiding in the exploration of this shared data to cancer researching communities. 

To oblige this mission, GDC contains the ability to upload, access, and analyze data into their 

portal. In total, they provide the researchers and institutions with over 100 programs and projects 

and have over 86,000 cases that can be accessed [34].  

 Particularly useful for my research is the large collection of SNV records of individual 

patients with different types of cancer obtained from various NGS projects. When a specimen is 

collected from normal and tumor tissue sample of a patient, these samples can be sequenced and 

the mutations deviating from the reference human genome are annotated and stored as variant call 

format (VCF) files that can be accessed and downloaded by registered members of GDC. 

However, these VCF files contain only mutational data but not demographic information. The only 

available information about the patient is a patient ID assigned by the group conducting the 

sequencing.  

Originally developed at Memorial Sloan Kettering Cancer Center, a cancer treatment and 

research institution located in New York, cBioPortal is now managed and maintained by multiple 

cancer-related institutions within the United States and internationally. With a similar focus as 

GDC, by bridging the genomic data to external cancer researchers, they also provide molecular 

profiles and clinical attributes from the genomic projects that are being submitted. Additional tools 

on this site, allow users to build their own visualizations and reports by connecting to their 

application programming interface (API) [35].  

The cBioPortal for Cancer Genomics (cBioPortal), contains mutational data which requires 

authorization to obtain certain datasets, but conveniently has demographic detail about the patients 
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that are downloadable for all users. To protect the patient’s privacy, no personal information is 

provided, just demographic factors that could contribute to types of cancers is known. These 

factors can include age, gender, ethnicity, stage of cancer, and some overall survival rates. 

Additional information given such as treatment and remission or relapse can be potentially known, 

however some demographic details may not be available for all cancer types.  

2.2.2 Data Repositories 

Data repositories, also referred to as programs or projects, are organized projects that 

conduct their own research independently with their own specific focuses. Once finalized they 

upload their analysis onto Data Portals, along with the data they have collected to form this 

analysis. Typically, the well-established projects focus is on genomic results for therapeutic 

enhancements on current forms of treatments.  

An example of this would be the previously mentioned TARGET and TCGA projects. 

TCGA, is one that was found to have three different sub-studies performed using the data that was 

uploaded onto the cBioPortal. The three sub-studies in this case were the New England Journal of 

Medicine (NEJM), PanCancer Atlas, and Fire Hose, all of which uploaded their own findings onto 

cBioPortal. By allowing the public to obtain these findings, it creates an opportunity for fellow 

researchers to build upon similar topics and expand into a new perspective.  

2.3 Programming tools 

When handling large data, format for any software or program is crucial due to the 

specificity of the input information. As any researcher dealing with big data analysis has found, 

having properly organized data is of paramount importance. After exploring different possibilities, 

I have found that a combination of Python, Microsoft Excel, and R would be optimal for organizing 

the data from multiple sources into a format that will be best suited for our planned downstream 
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bioinformatics analysis. Python is preferred for its capabilities of manipulating text strings, which 

is essential for extracting information from the individual VCF files downloaded from the public 

databases. Excel is the most convenient tool for manual examination of the data files, both before 

and/or after processing. R provides the most comprehensive functions and packages for statistical 

analysis and visualization.  

The features that were used in organized the data using python was a package called 

Pandas, that included being able to read in a csv file and convert it to a dataframe, or a virtual table 

formatted data type in software programming, merging multiple dataframes together based on 

column(s) common entries, remove duplicated information, and finally being able to extract any 

modified dataframe back into a new csv file. When using R for the statistical features, it is an easier 

application to use for finding unique values, creating, and exporting tables, and generating box 

plots and other types of graphs for interpretation. Excel allows for an easier readability of the csv 

file and a faster resource for finding certain values and generating linear and bar graphs. 
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Chapter 3: Materials and Methods 

 Mentioned previously the different portals in which databases were extracted and how they 

were constructed all were based on certain variant criteria. Since there were two separate 

extractions from different portals the information that needed to be condensed into a single file. 

Once this was completed, there was a large dataset with many variables and information so an 

exploratory data analysis could be conducted.  

3.1 DATA EXTRACTION AND CONSTRUCTION 

From the GDC portal, variant call format (VCF) files were downloaded on both AML and 

ALL search criteria. Different filtration parameters can be introduced in this step including, the 

mutation type (i.e. SNV or motif), file type, ethnicity, etc. Although this web-based portal contains 

various types of mutations, our specific search was focused on only the single nucleotide variants 

(SNVs) and that they were VCF files. With this, 182 VCF files for AML and 620 VCF files for 

ALL, were downloaded. Using PyCharm these VCF files were read into a outsourced Python script 

[23], that converted the VCF files into comma-separated values (CSV) files and implemented a 

criteria that only extracted variants that would be most informative, which was concluded based 

on their allele depth (AD). More detail on AD is provided below.    

The purpose behind reorganizing the data into CSV files was to create easier readability 

for the user, as well as compatibility when integrating it into programming scripts. Below are 

figures for the main AML and ALL folders. Once downloaded the VCF files were stored into a 

subfolder on a local computer for the conversion script to operate on. For each VCF file, the script 

outputs two separate CSV files, one normal and one tumor. These CSV files were then stored into 

their corresponding subfolders “Normal” and “Tumor”.  
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Figure 3.1: AML main folder, containing subfolders: “AMLFiles” with all 182 extracted AML 

VCF files, “Normal” with 182 normal CSV files, and “Tumor” with 182 tumor 

CSV files. 

 

 

Figure 3.2: ALL main folder, containing subfolders: “ALLFiles” with all 620 extracted ALL 

VCF files, “Normal” with 620 normal CSV files, and “Tumor” with 620 tumor 

CSV files. 

 

In transforming the VCF files to CSV format, the main parameter that needs to be set was 

the allele depth (AD) for screening the SNVs in the VCF files. AD is defined as the number of 

reads that support each reported allele and a low AD would identify the SNV to be uninformative. 
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Using this as a filtering parameter will retain the variants that have enough statistical evidence to 

continue for downstream analysis. This information is stored within the VCF along with 

chromosomal, positions, change types, and additional annotations, but these other values will not 

be used as variant screening criteria. 

 Figures 3.3 and 3.4 display the top lines of respective VCF file examples for AML and 

ALL, opened with a text editor. Each figure contains the header in the first row, and the first variant 

in the example file in the subsequent rows. The entries for different columns are tab-separated. 

The previously described AD values are initially found and read within this stage by using the 

FORMAT, NORMAL, and TUMOR columns. FORMAT column identifies how this entry is to 

be read, AML and ALL having the same format with GT:AD:BQ:DP:SS, meaning that each value 

within the entries for the NORMAL and TUMOR columns will be separated by colons. Focusing 

on the AD value only, the script reads the values after the first colon within the NORMAL and 

TUMOR columns. 

 

Figure 3.3: Example of variant information found on an AML VCF file. 

 

 

Figure 3.4: Example of variant information found on an ALL VCF file. 

For both AML and ALL, each VCF file has a unique sample ID taken from a patient, but 

VCF files with different sample IDs could come from the same patients. It is assumed that during 
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extraction of these samples, partitions were made to do multiple analysis on each main sample and 

the sample ID that was given is the identity of each part. However, the patient ID is available 

within the meta data of each VCF files.  Figures 3.5 and 3.6 display the small portions of the 

metadata where the sample information and patient ID can be found. Applying the same 

methodology as that used for extracting the AD values, we were able to extract the patient IDs and 

include them onto the corresponding CSV files. The sample name, for both the normal and tumor 

samples, are hyphen-separated (e.g., TCGA-AB-2941-11A-01W-0745-08) with the patient ID 

number as the third value within this sequence. The subsequent information corresponds to the tier 

levels of the sub cut that was taken.  

 

Figure 3.5: Example of the sample information found on an AML VCF file. 

 

 

Figure 3.6: Example of the same information found on an ALL VCF file.  

 

The next step was to construct a binary matrix to indicate which variants occurred in which 

patients. Each row of this matrix represents a distinct variant found in the set of patients, and each 

column represents a unique patient. This matrix was constructed by writing a Python script to first 

compile a single list of unique SNVs contained in all the CSV files to create the rows, and then 

isolate the patient ID from the corresponding VCF and generate a list of unique patient entries. 

Once this was done, new columns were generated and named with the word “Patient_” followed 

by the ID entry. This resulted in each column representing a unique patient. For each column, the 

entries in the rows correspond to the listed unique variant, with a “0” indicating that this variant is 
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not found in the patient, and a “1” indicating that the variant is present. The full Python script of 

this binary matrix construction process can be found in Appendix B.2 – B.4.  

Organizing the data is crucial for any downstream analysis to performed, including the 

exploratory data analysis described in a later section of this chapter, as well as the future 

bioinformatics analyses proposed in Chapter 5. To do so, the columns that were extracted from the 

VCF files include: 

Table 3.1: Variant file column names and descriptions. 

Variant File Columns 

Column Name Description 

Chr Chromsome number, or letter, in which the variant occurs on 

ref_seq The reference allele, or nonvariant base 

var_seq1 First version of the variant sequence 

var_seq2 Second version of the Variant sequence 

alt_seq The alternate allele, or variant base 

VCF_ID The downloaded Variant Call Format file name 

Whole_Sample_ID The patient biopsy sample identification number  

Aliquot_ID 
Extended version of sample ID, identifies the well within the plate in 

whice the sample was placed 

Case_ID Case identification number from the study or project 

Additional information was extracted from the Whole_Sample_ID, which include the 

patient ID in the study and the main sample ID that was extracted from the patient. Ultimately this 

meant that each VCF file does not correspond to a unique patient but to a unique 

Whole_Sample_ID. In order to get an accurate count of the number of patients, only that partition 

of the Whole_Sample_ID containing the 4–6-character patient ID number was taken and inserted 

in an additional column labelled Patient_ID. Only unique values of column, ultimately meaning 

the unique patient counts, was found and then a column name “Patient_[unique patient ID]” was 

created for every patient. The rows values inserted in this each column were either a 1 or 0, 

identifying if the variant in the given row is found in each unique patient. Descriptions regarding 
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the dimensions and content of the final version for the variant files can be found in the results 

sections, 4.3.1 and 4.3.2, below.  

As both AML and ALL have been studied at the genomic level by many researchers, we 

have been able to utilize published articles to compile two lists of genes that have been reported to 

be associated with AML and ALL respectively, with specific focus on their genomic effects. The 

lists were organized on Excel which provided the capability of detecting any duplicated genes that 

had already been annotated. The columns on this list included the gene name and the reference in 

which it was mentioned. A third column was added later that correlated the reference number 

within this study. 

3.2 INCLUSION OF DEMOGRAPHIC INFORMATION 

Once the master file in CSV format was created with the variant binary key, the next goal 

was to find the demographic details of the patients with these mutations. This step was successfully 

done using the cBioPortal website, using the original VCF file name, this entry matched with the 

another found on the data_clinical_patient.txt file for a TCGA patient study that was performed 

on the same samples collected in the prior section for the AML dataset and a corresponding 

TARGET patient study for the ALL dataset. Information provided on the files varied slightly 

between AML and ALL, it was found that the ALL had more demographic variables collected 

from the TARGET patient study than the ones found from the AML TCGA patient study. Also, 

for this step different databases for the same project, TCGA, on this portal were found leading to 

multiple demographics details for AML patients. The different databases for the AML TCGA 

project were PanCancer Atlas, Firehose, and New England Journal of Medicine. Although all three 

had overlapping variables in their database, they were all extracted, and a separate CSV master 

file was create containing only the unique variables. The Python script for that merges the three 
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databases can be viewed in Appendix B.18. On this portal, ALL only had the one database for the 

TARGET study. Once all the demographic information was gathered here the information was 

then matched to the previous mutational data found from the VCF files using the unique patient 

ID (refer to Appendix B.17). 

3.3 EXPLORATORY DATA ANALYSIS  

After gathering and organizing the data, the next step is to perform an exploratory data 

analysis and find certain trends and correlations within the AML and ALL patient groups, and then 

ultimately finding common trends between the AML and ALL groups. The first analysis was on 

the mutational data, reviewing this without any demographic information helps remove bias 

towards certain groups of people, age or gender.  

Additionally, using the binary matrix generated from the previous step, the variant counts 

per patient were determined and a statical summary was performed on these values to its 

distribution. The last mutational data analysis that was performed was analyzing the chromosomal 

effects, by determining the number of variants per chromosome and then taking into consideration 

the size of these chromosome by divided the number of variants by the length of the chromosome 

[36]. The value of each chromosomal variant density was then ranked and graphed for further 

analysis (refer to Appendix C.2). Equation (1) is the formula for this calculation, where the 

individual chromosomes are represented by chr. It should be noted that within this formula the 

scale is being multiplied by 106, making the variant density per Megabase. 

density(𝑐ℎ𝑟) =  
Total number of variants on 𝑐ℎ𝑟

length(𝑐ℎ𝑟)
 ∗ 106     (1) 

 

For both the AML and ALL datasets, the mutational data of the normal and tumor samples 

were analyzed separately. Viewing the change type counts, was performed multiple ways, first 

method was taking the summation of the 12 individual counts and storing their values in a tabular 



 19 

format. Using the values, a column can be generated with the summation across each row 

representing the total number of variants for each ref base. Using this value, a conditional 

probability formula, Equation (3), was applied to each entry, where given that Y is the reference 

base being altered to any of the other three bases, X.  

𝑃(𝑋|𝑌) =  
𝑃(𝑋∩𝑌)

𝑃(𝑌)
=  

Total count of 𝑌→𝑋 mutations 

Total count 𝑜𝑓 𝑌 mutations
            (2) 

 

 To further this interpretation, refFlat and chromosome files were incorporated to expand 

the individual change types into their occurrences on the gene level. To briefly describe refFlat 

files, they are tab delimited text files, each file separated by chromosome, that contain all the 

unique genes along with their positional information and can be downloaded [37]. This 

information includes, transcription start and stop positions, coding region start and stop positions, 

and each exon within a coding region start and stop positions.  

The positions are given in respect to the individual chromosomes, which is why the fasta 

files for each chromosome were assimilated into this study. Fasta files are formatted in a particular 

way, beginning with a header row that provides information on the sequence’s identity, such as 

name, and in some cases certain identification numbers of the sequence. Within the next row, a 

“>” symbol is displayed, followed by the corresponding nucleotide or amino acid sequence.  

Using Python, a script (refer to Appendix B.9) was created to find the unique genes within 

the mutational data. Once this list was compiled, it can then be cross referenced to the 

corresponding refFlat and chromosome fasta files, extracting each gene’s positional information 

as well as the full reference genome transcription sequence (refer to Appendix B.10). With the full 

sequence, a count can be conducted for each nucleotide bases on the total number of times they 

occur within the unique gene sequences (refer to Appendix B.). Now taking the summation of 
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these counts, it provides the total number that each base occurs in all the reference sequences (refer 

to Appendix B.11 – B.14).  

Doing a summation on these values, an Sxy, can be calculated by taking the individual 

change type summations found previously and dividing it by the total number each bases 

occurrence in all the reference sequence. With this formula, it takes into consideration if a 

particular gene has a high normal occurrence of a particular base, its likelihood to be mutated is 

increased compared to a base that is less like to be found typically. The formula of Sxy is as follows: 

𝑆𝑋𝑌 =  
Number of 𝑋→𝑌 mutations observed in sample sequences

Number of base 𝑋 observed in corresponding reference sequence
            (3) 

Based on the formula above, the necessary information to calculate this is the list of genes 

and their full sequence in which the mutations occur. With this a total count for each base in all 

the sequences can be found and then used as the denominator in this equation. The numerator is 

the change type that was previously calculated.  

Now using the collected demographic data on only AML patients that had matches to the 

original VCF data, the patients without mutational data were not incorporated in this next analysis. 

By using the FAB M0 through M7 stages as a subgrouping method the first analysis performed 

was on the patients who were still living at that time and who were deceased against their overall 

survival (in months). The next step was then to determine the genders and ethnicities within these 

stages to get an idea of the patients within our mutational data (refer to Appendix C.3).  

When working with categorical data, it is important to find methods that quantify data, one 

of which is FATHMM. By inputting all the SNVs, two separate list for the AML and ALL datasets, 

into FATHMM, a score is assigned to each as well as a determination of the harmfulness of the 

mutation. Using this information to understand further assess the genes that were found among the 

SNVs, a python script was created to isolate the unique genes while still maintaining the individual 
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variant scores that were obtained. With the genomic information that was previous found on the 

genes for the other analyses, a formula was applied which generated an overall score for each gene, 

g. 

𝑃𝑙(𝑔) =  
1

ln 𝑙(𝑔)
∑ F-score(𝑣) ∗ [𝑠(𝑣, tumor) − 𝑠(𝑣, normal)]𝑣        (4) 

Equation (4) takes the summation of the products for each variant, v, score found from 

FATHMM, F-score, and the counts on which they occur in the normal and tumor samples, s(v, *).  

This summation is then divided by the natural log of the length of the gene, l(g).  With this a every 

gene found within the mutational dataset can be assigned a quantitative value and sorted from 

highest to lowest. By using this scoring approach, the genes with the highest values can be 

considered most influential in the patients’ development of AML and ALL.  
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Chapter 4: Results and Discussion 

The main results of this work consist of four compiled data files and a statistical overview 

of them in preparation for more detailed bioinformatics and computational analyses to be 

conducted in the next two years. The four files consisted of mutational and clinical information on 

AML and ALL, allowing an exploratory statistical overview on them in parallel and a compare-

and-contrast type of discussion of results.   

4.1 COMPILED DATA FILES  

By compiling that data into files that contained similar information, the product of this was 

4 separate files, containing AML and ALL variants and another that held the clinical information. 

These files are stored in the UTEP Bioinformatics data repository, and have the capability to be 

downloaded at the following link, 

https://datarepo.bioinformatics.utep.edu/getdata?acc=VYXBEYQ4OAFF5JR. The AML and ALL 

variant files, hold the binary matrix, with AML having 326 columns and 136,072 rows and ALL 

having 1,232 columns and 181,967 rows. The first row being the header for the columns, all other 

rows in these files represents a unique SNV that is found in both the normal and tumor samples. 

The first 28 columns in both files, are informational towards the unique SNV that they represent. 

The remaining columns are the patient binary matrix: in the AML file there are 149 columns that 

represent the patient’s tumor samples and 149 columns for their normal samples, ALL has 603 

columns for patient tumor samples and 603 for their normal samples. It should be noted, that after 

applying filter parameter when converting the ALL VCFs to CSV there were two patients that 

contained variants in the tumor sample but not the normal samples. These two patients are 

PARMEG and PASKRN, they were added to ensure that there were 603 patient columns for both 

normal and tumor samples. Within these columns, a 1 or 0 is entered, that determines if that unique 

https://datarepo.bioinformatics.utep.edu/getdata?acc=VYXBEYQ4OAFF5JR
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SNV is present in the patients corresponding sample (1 is found, 0 is not found). By doing so, this 

binary matrix allowed for a deeper look in the number of variants per patient. 

The two clinical files, one for AML and one for ALL, do not hold the same consistency in 

information between each other as the variant files. This is due to separate projects that were 

conducted individually, TCGA for AML and TARGET for AML. However, they still contain 

important patient information regarding the mutational data. Within the clinical files, the AML has 

56 columns and 150 rows, while ALL has 37 columns and 604 rows. In both files, the first row is 

the header for all the columns, while the remaining rows are the unique patients that have 

correlating information from the mutational data. Mentioned previously, the AML columns are 

from 3 separate sub studies. The first 6 columns are: the Patient ID assigned from the TCGA study, 

which is still used in all 3 sub studies, followed by variant counts for normal and tumor samples. 

For the remaining columns: 20 are from the New England Journal of Medicine, 23 are from Fire 

House, and 7 are from Pan Cancer. In the ALL clinical file, most of the columns are from the 

TARGET project, there are only 4 columns that were added regarding the variants occurrence in 

patients.  

4.2 STATISTICAL OVERVIEW OF DEMOGRAPHIC AND CLINICAL DATA FOR AML AND ALL 

The figures and tables below are using the FAB classification system, previously described, 

and comparing these classifications against the overall survival for patients living and deceased. 

The table below represents the number of patients broken up by the FAB classification system and 

some important demographic information.  
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Table 4.1: Categorized by the FAB classification system, the number of patients of within overall 

status, gender, and ethnicity demographic groups. 

 

Classifications Living Deceased Male Female White Non-White 

M0 5 11 12 4 11 5 

M1 9 25 16 18 18 16 

M2 10 23 14 19 21 12 

M3 4 4 3 5 5 3 

M4 11 23 20 14 27 7 

M5 4 12 8 8 15 1 

M6 0 3 3 0 2 1 

M7 0 3 2 1 3 0 

n.c. 1 1 2 0 1 1 

Totals: 44 105 80 69 103 46 

 

From this table we can interpret that the majority of the 149 patients in our AML dataset 

were classified as white males. Additionally of the 149 patients, only 44 patients’ overall status is 

living, while 105 are deceased. You can also see the distribution of these demographics by the 

different classifications, such as the highest sample groups are the M1 and M4 classification with 

a total of 34 patients. M1 has an even distribution of gender and ethnicity, while M4 has more 

males, and the majority of these patients are white. 

The figures below are notched boxplots, showing the overall survival in months for the 

patients who are deceased (Figure 4.1) or living (Figure 4.2) separated by their FAB classification. 
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With the black line representing the median overall survival, if this line surpasses the notches on 

the other classification boxes, then it can be concluded that there is significant difference with a 

95% confidence interval.  

With that, in figure 4.1, it can be said that the overall survival of patients with the M3 

classification is significantly different than the other classification, excluding M0. Additional 

observations on this figure are the outliers that are found in the classifications M1, M2, and M4.  

 

 

Figure 4.1: Notched boxplot of the FAB classification against the Overall Survival (in months) 

for deceased AML patients. 

 

Looking at the next figure below, this is the same type of boxplot as the one above but is 

testing it for the patients who are still living. The main result here is that within this study there 

are no patients who are alive with type M6 and M7. Based on the median and its position to the 

other box plots, Figure 4.2, has the M3 classification being significantly different than only M1 

and M2 classification with a 95% confidence interval.  
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Figure 4.2: Notched boxplot of the FAB classification against the Overall Survival (in months) 

for living AML patients. 

 

4.3 STATISTICAL OVERVIEW OF SNV DATA FOR AML AND ALL 

4.3.1 SNV counts in AML dataset 

For the 149 unique patients within the AML collection, the number of SNVs found in the 

normal sample was 6,769, whereas the tumor sample had 136,051 SNVs. A further analysis 

showed an overlap of these two lists of variants, which can be referred to as common. In the 

common area are a total of 6,749 SNVs that occur in both normal and tumor samples. Now using 

this value, the actual unique variants in both the normal and tumor groups are, 20 and 129,302 

respectively.  

 

Figure 4.3: Venn diagram displaying the number of variants that are unique and shared between 

the normal and tumor samples in patients with AML. 
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Graphical representation of the number of variants per patient can be seen below, for both 

normal (orange line) and tumor (blue line) samples. The scatter plot graph has been organized to 

have the patient with the lowest tumor variant count first and then increasing to the patient with 

the highest tumor variant count last. Although two patients with the similar tumor variant counts, 

does not necessarily mean that they will have similar normal variants, Figure 4.4 actually shows 

that their normal variant counts can be drastically different. However, it is also seen on the 

extremities on this graph that the patient with the lowest and highest variant counts in their tumor 

samples also have the corresponding lowest and highest values in their normal samples. The five-

point summary of these SNV counts is also shown in Table 4.2. 

 

Figure 4.4: SNV counts (in log10 scale) in normal (orange) and tumor (blue) samples for patients 

with AML, sorted from lowest to highest tumor counts.  

 

 

Table 4.2: Five-Point summary of the SNV counts for patients with AML. 

AML Variant Count per Patient Five-Point Summary 

Sample Type Minimum 1st Quartile Median 3rd Quartile Maximum 

Normal 3 16 23 48 553 

Tumor 34 197 282 547 22007 
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4.3.2 SNV counts in ALL dataset  

For the total number of variants found in the normal samples there were 7,507, versus the 

tumor sample having 181,956. Among these, there were a total of 7,497 variants that are common 

between the normal and tumor samples. Using this value to exclude the overlap between the two 

original counts and find the unique variant counts between the normal and tumor, which are 10 

and 174,459, respectively.  

 

Figure 4.5: Venn diagram displaying the number of variants that are unique and shared between 

the normal and tumor samples in patients with AML. 

 

Again, sorting the patients from smallest to largest tumor SNV counts (blue line) and then 

graphing along with their corresponding normal variants (orange line) resulted in Figure 4.6. It 

differs slightly from Figure 4.4 due to the patients who have variants found in the tumor sample, 

but none in the normal sample after filtering under the AD parameter when converting the VCF to 

CSV. For this reason, we can see a larger fluctuation in the normal variants per patient.  
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Figure 4.6: SNV counts (in log10 scale) in normal (orange) and tumor (blue) samples for patients 

with ALL, sorted from lowest to highest tumor counts. *If SNV count = 0, we 

changed it to 1 in order to avoid taking log of 0. 

 

The five-point summaries for the SNV counts in ALL normal and tumor samples are displayed in 

the Table 4.3.  

Table 4.3: Five-Point Summary on the variant counts occurring in patients with ALL. 

ALL Variant Count per Patient Five-Point Summary 

Sample Type Minimum 1st Quartile Median 3rd Quartile Maximum 

Normal 0 8 12 17 119 

Tumor 75 169 264 441.5 1951 

 

4.3.3 Comparing AML and ALL data 

Referring to the tables of the five-point summaries above, the medians are quite similar, but the 

most notable difference found between the two leukemia’s is the minimum and maximum values. 

AML had a much larger range between these two values, at 21,973, whereas ALL was much closer 

together at 1,876. On a closer look at the SNV counts of individual patients, we found that this can 

be explained by the presence of outliers. Actually only 13 (< 9%) of the patients with AML have 

tumor counts higher than the maximum number found in the ALL tumor sample type.  As yet, it 
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would not be possible to conclude that there is any significant difference between the ranges of 

tumor sample SNV counts between AML and ALL.  

4.3.4 AML mutation levels  

For the AML SNV dataset, counts for the 12 possible change types in the normal and tumor 

samples are presented in Tables 4.4 and 4.5. The left-most column lists the reference allele (Ref) 

while the top row lists the alternate allele (Alt).  

Table 4.4: AML Normal Change Type Counts. 

Ref/Alt A G T C Sum 

A 0 901 212 725 1838 

G 739 0 862 474 2075 

T 197 850 0 859 1906 

C 850 480 790 0 2120 

 

Table 4.5: AML Tumor Change Type Counts. 

Ref/Alt A G T C Sum 

A 0 10896 11394 2669 24959 

G 20523 0 31580 4270 56373 

T 9918 2853 0 11160 23931 

C 31541 4330 19861 0 55732 

 

The key difference between Tables 4.4 and 4.5 is that the SNV counts are significantly 

higher in the tumor samples than in the normal samples. Additionally, just interpreting the 

individual counts among the 12 change types, the highest change in the normal sample is the 

nucleotide change from A to G, versus its tumor sample counterpart, having the highest nucleotide 

change from G to T.  The last column on both tables (Sum) is the overall sum of the Ref being 

changed. This revealed a huge disparity between the normal and tumor samples as well. Although 

the individual counts within the given Ref row differ, one can see that there is less variability in 

the sums of the normal samples. This is not the case in the tumor samples, the Ref sum are 



 31 

drastically different, showing that the G and C ref alleles having double the number of alterations 

as the T and A nucleotides.  

The results of the individual change type conditional probabilities for normal and tumor 

are on Tables 4.6. and 4.7, respectively. With the reference allele in the first vertical column and 

the alternate allele as the first horizontal row.  

Table 4.6: AML Normal Conditional Probability. 

Ref/Alt A G T C 

A 0 0.4902 0.1153 0.3945 

G 0.3562 0 0.4154 0.2284 

T 0.1033 0.4460 0 0.4507 

C 0.4009 0.2264 0.3726 0 

 

Table 4.7: AML Tumor Conditional Probability. 

Ref/Alt A G T C 

A 0 0.4366 0.4565 0.1069 

G 0.3641 0 0.5602 0.0757 

T 0.4144 0.1192 0 0.4664 

C 0.5659 0.0777 0.3564 0 

 

Using the normal sample conditionally probability as a baseline of the acceptable changes 

that can occur and comparing these against the tumor samples. There is a visible shift in the 

probabilities for each row. First looking at the A reference allele, the lowest probability in the 

normal sample is the nucleotide change from A to T, whereas the tumor sample has this same 

change as the highest. Another difference found in these tables is the change from T to A, the 

normal sample has this change as the lowest probability, but the tumor sample has shifted into, a 

close, second highest probability.   

Graphical 3D bar plot representation of Tables 4.4 and 4.5 can be seen below for the AML 

normal and tumor change types. The most notable difference between the normal and tumor graphs 
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is at the vertical-axis scaling, the highest value among 12 change types is 901, whereas in the tumor 

sample it is 31,580. Other than the drastically increased scaling factor from the normal to tumor 

counts, there are also visible changes in the change-type distributions that were assessed in the 

conditional probabilities on Tables 4.6 and 4.7.  

 

Figure 4.7: Couns of individual change types found in the normal samples of patients with AML. 

 

 

Figure 4.8: Counts of individual change types found in the tumor samples of patients with AML. 
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Figure 4.9 displays the AML variant densities in different chromosomes, with the normal 

sample assessment on the left and the tumor sample on the right.  

 

Figure 4.9: Bar graphs (normal samples on left, tumor samples on right) displaying the variant 

densities per chromosome in patients with AML. 

 

Similar to the change type counts, the scale disparity between the normal and tumor 

samples is very noticeable. Also, when looking at the distribution trend of the bar graph, it can be 

observed in the ledge disparity, or shifts in the individual bars, of this distribution that chromosome 

11 has an increase when comparing its neighboring chromosome on the normal and tumor samples. 

Tables 4.8 and 4.9 provide another way to view the AML chromosome bar graph. These 

provide the numerical values for the normal and tumor variants per megabase after sorting and 

ranking them. Table 4.8 shows the chromosomes ranks when sorted based on the Normal Variants 

per Megabase column, while Table 4.9 is ranked after being sorted based on the Tumor Variant 

per Megabase columns. After sorting under these conditions, we can numerically see what the bar 

plot above had displayed, that chromosome 11 does jump to a higher rank going from the 9th 

highest in normal samples to the 4th highest in tumor samples.  

 Also included in the tables is a column called Ratio, whose entries are the ratio between 

tumor and normal calculated by taking the Tumor value and dividing it by Normal. These values 

allow for further interpretation to be done on chromosomes that appear to have higher than 
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average ratio but may not have shifted after sorting. There are no biologically significant outliers 

present in the AML dataset, although the highest ratio found was on Chromosome 18.  

 

Table 4.8: Chromosome variant density per Megabase on AML patients, sorted on the Normal 

Variants per Megabase column from largest to smallest values and their given rank 

in the first column. 

Rank Chromosome Tumor  Normal  Ratio (Tumor/Normal) 

1 chr19 121.50 6.65 18.26 

2 chr17 83.20 4.38 18.98 

3 chr16 64.11 3.90 16.45 

4 chr20 77.46 3.82 20.29 

5 chr21 62.43 3.32 18.81 

6 chr12 61.29 3.22 19.04 

7 chr15 51.91 3.14 16.54 

8 chr1 62.83 2.98 21.05 

9 chr11 64.73 2.85 22.71 

10 chr6 51.56 2.56 20.11 

11 chr9 47.57 2.48 19.20 

12 chr10 52.80 2.44 21.60 

13 chr2 50.06 2.43 20.58 

14 chr14 48.06 2.42 19.86 

15 chr3 50.21 2.38 21.14 

16 chr7 48.69 2.31 21.08 

17 chr8 47.19 2.26 20.88 

18 chr5 39.39 1.84 21.41 

19 chrX 32.70 1.74 18.76 

20 chr4 39.87 1.68 23.77 

21 chr18 38.92 1.36 28.70 

22 chr13 32.60 1.28 25.53 

23 chrY 8.28 0.33 24.95 
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Table 4.9: Chromosome variant density per Megabase on AML patients, sorted on the Tumor 

Variants per Megabase column from largest to smallest values and their given rank 

in the first column. 

Rank Chromosome Tumor  Normal  Ratio (Tumor/Normal) 

1 chr19 121.50 6.65 18.26 

2 chr17 83.20 4.38 18.98 

3 chr20 77.46 3.82 20.29 

4 chr11 64.73 2.85 22.71 

5 chr16 64.11 3.90 16.45 

6 chr1 62.83 2.98 21.05 

7 chr21 62.43 3.32 18.81 

8 chr12 61.29 3.22 19.04 

9 chr10 52.80 2.44 21.60 

10 chr15 51.91 3.14 16.54 

11 chr6 51.56 2.56 20.11 

12 chr3 50.21 2.38 21.14 

13 chr2 50.06 2.43 20.58 

14 chr7 48.69 2.31 21.08 

15 chr14 48.06 2.42 19.86 

16 chr9 47.57 2.48 19.20 

17 chr8 47.19 2.26 20.88 

18 chr4 39.87 1.68 23.77 

19 chr5 39.39 1.84 21.41 

20 chr18 38.92 1.36 28.70 

21 chrX 32.70 1.74 18.76 

22 chr13 32.60 1.28 25.53 

23 chrY 8.28 0.33 24.95 

 

4.3.5 ALL mutational levels  

With a similar approach, utilizing the mutational data from GDC on patients with ALL, the 

SNV experiment was executed. Focusing on the same trends in which the individual change types 

occur, it is important to annotate the data imbalance. Comparing against the AML, disregarding 

the previous biological factor being that the SNV arises in a different cell type, the ALL dataset 

had 3 times as many patients.  
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A comparison between the normal and tumor samples change type counts can be seen on 

the tables below, Tables 4.10 – 4.13. From these tables one distinction that can be made is in the 

summation column, when looking at the frequency that the G nucleotide changes in the normal 

samples is the lowest occurring change, while in tumor samples it is shown to be the second 

highest. Additionally, when looking at the alternate allele and what G is changing to, the most 

common appear to be A and T. This change can alter the GC content of gene and ultimately 

changing the thermal stability. Essentially, the higher the GC content, the more stable the double 

stranded helical molecule is [12].  

Table 4.10: ALL Normal Change Type Counts. 

Ref/Alt A G T C Sum 

A 0 991 210 830 2031 

G 1065 0 578 345 1988 

T 167 1000 0 1005 2172 

C 849 321 1208 0 2378 

 

 

                       Table 4.11: ALL Tumor Change Type Counts.  
Ref/Alt A G T C Sum 

A 0 16412 5139 3941 25492 

G 27922 0 16822 6660 51404 

T 5244 4439 0 16649 26332 

C 67431 6661 25681 0 99773 
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Table 4.12: ALL Normal Conditional Probabilities.  

Ref/Alt A G T C 

 
A 0 0.4879 0.1034 0.4087 

 
G 0.5357 0 0.2908 0.1735 

 
T 0.0769 0.4604 0 0.4627 

 
C 0.3570 0.1350 0.5080 0 

 
 

Table 4.13: ALL Tumor Conditional Probabilities. 

Ref/Alt A G T C 

 
A 0 0.6438 0.2016 0.1546 

 
G 0.5432 0 0.3272 0.1296 

 
T 0.1991 0.1686 0 0.6323 

 
C 0.6758 0.0668 0.2574 0 

 
 

Using the previous tables information, the conditional probabilities were calculated as an 

alternative way of viewing the change types between the normal and tumor ALL samples. When 

comparing the normal conditional probability table to the tumor conditional probability table, 

using the previous method considering the normal conditional probabilities as a baseline for 

acceptable changes given what base is being mutated. For this reason, the analysis is conducted 

row by row for shifts in the baseline found from the normal samples. When considering that 

reference A allele is being mutated, the conditional probability that the alternate allele changes to 

a T is almost double from normal to tumor. Additionally, the reference allele T changing to the 

alternate allele G or C are both approximately 0.46 in normal samples, however when comparing 

this to the tumor probabilities these values shift to 0.17 and 0.63, respectively. Finally, given that 
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the mutation is on the reference allele C, similar to the reference allele A changing to a T, the 

alternative allele being A in this case doubles from the normal to tumor samples.    

The figures below are the 3D bar plot of the ALL normal and tumor 12 change types counts. 

Here we can see the scaling being drastically higher in the tumor samples than the normal, which 

is to be expected. For this reason, the graphs are displayed separately to avoid loss of visual effect 

when using the same scaling criteria. The graph is also confirming the results found in the 

conditional probability and the shifts that were interpreted. The most significant result is the 

dramatic increase found from the C reference allele mutating to an A when comparing the normal 

to the tumor.  

 

Figure 4.10: 3-D Bar graph of the individual change types found in the normal samples of 

patients with ALL. 
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Figure 4.11: 3-D Bar graph of the individual change types found in the tumor samples of patients 

with ALL. 

 

Furthermore, when analyzing the variants per megabase on each chromosome for the ALL 

dataset, the scaling when looking at the normal versus tumor samples is drastically higher. Using 

the same method as the AML in assessing the ledge disparities among the chromosomes, visually 

it shows subtle changes among all the chromosomes, but the most significant change is chr2 drastic 

increase when going from the normal to tumor graph.  

 

Figure 4.12: Bar graphs (normal samples on left, tumor samples on right) displaying the variant 

densities per chromosome in patients with ALL. 

 

A

G

T

C

0

20000

40000

60000

80000

100000

A G T C Sum

ALL Tumor Change Type Counts

A G T C
Alternate Allele



 40 

The table below corresponds to bar graph above with the chromosome variants density 

numerical values. The values in each table are the same, however the sorting method is altered 

between the two. In the first table the Normal Variants per Megabase column is sorted based on 

largest to smallest, whereas the second table is being sorted by the Tumor Variants per Megabase 

column. The ranking is listed to help assess how the chromosomes are being shifted allowing it 

for an alternative reading format than the bar graph.  

Table 4.14: Chromosome variant density per megabase on ALL patients, sorted on the Normal 

Variants per Megabase column from largest to smallest values and their given rank 

in the first column. 

 

Rank Chromosome Tumor  Normal  

Ratio 

(Tumor/Normal) 

1 chr19 188.73 10.76 17.53 

2 chr17 128.61 6.33 20.32 

3 chr21 122.39 5.39 22.69 

4 chr16 104.27 4.15 25.12 

5 chr20 108.34 3.65 29.71 

6 chr15 70.80 3.61 19.62 

7 chr11 73.66 3.11 23.69 

8 chr1 79.56 3.04 26.20 

9 chr10 66.94 3.03 22.06 

10 chr12 72.35 2.83 25.58 

11 chr7 58.43 2.76 21.21 

12 chr3 53.60 2.54 21.09 

13 chr14 57.39 2.45 23.45 

14 chr9 57.99 2.36 24.54 

15 chr6 53.36 2.19 24.37 

16 chr8 47.16 2.19 21.53 

17 chr2 59.13 2.05 28.81 

18 chr5 46.51 1.81 25.74 

19 chrX 44.24 1.61 27.40 

20 chr4 45.04 1.58 28.56 

21 chr18 37.33 1.39 26.79 

22 chr13 31.94 1.11 28.76 

23 chrY 31.87 0.66 48.00 
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Comparing the two tables above and below, there are the shift in ranks among the 

chromosomes that we found in the previous bar plot. When focusing on chr2, this is the change 

that was found and now can be confirmed using this ranking method. In the table above, 

representing the normal sample, chr2 is ranked at 17th, now checking its rank in the tumor sample, 

chr2 is ranked at 11th.  

Alternatively, reviewing the ALL Ratio column entries, comparing with the AML, there is 

a slightly higher ratio average, but also within the ALL dataset there is a biologically significant 

outlier found on Chromosome Y. Previous work has also confirmed the significance associated to 

variants found in DQA1, supporting the ALL risk in males [51]. Although there was no change in 

rank when analyzing after sorting, this value shows a much higher than average mutation ratio 

when comparing tumor and normal.   
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Table 4.15: Chromosome variant density per megabase on ALL patients, sorted on the Tumor 

Variants per megabase column from largest to smallest values and their given rank 

in the first column. 

Rank Chromosome Tumor  Normal  

Ratio 

(Tumor/Normal) 

1 chr19 188.73 10.76 17.53 

2 chr17 128.61 6.33 20.32 

3 chr21 122.39 5.39 22.69 

4 chr20 108.34 3.65 29.71 

5 chr16 104.27 4.15 25.12 

6 chr1 79.56 3.04 26.20 

7 chr11 73.66 3.11 23.69 

8 chr12 72.35 2.83 25.58 

9 chr15 70.80 3.61 19.62 

10 chr10 66.94 3.03 22.06 

11 chr2 59.13 2.05 28.81 

12 chr7 58.43 2.76 21.21 

13 chr9 57.99 2.36 24.54 

14 chr14 57.39 2.45 23.45 

15 chr3 53.60 2.54 21.09 

16 chr6 53.36 2.19 24.37 

17 chr8 47.16 2.19 21.53 

18 chr5 46.51 1.81 25.74 

19 chr4 45.04 1.58 28.56 

20 chrX 44.24 1.61 27.40 

21 chr18 37.33 1.39 26.79 

22 chr13 31.94 1.11 28.76 

23 chrY 31.87 0.66 48.00 

 

4.3.6 Mutation levels in AML and ALL  

The formula for Sxy in equation (3) of Section 3.3 was used to calculate the mutation level 

of each change type of a base taking into account its frequency of occurrence in the genome 

sequences. Tables 4.16 and 4.17 respectively display the AML and ALL Sxy values for each change 

type. The values in the last column is the summation of each reference base count for all of the 

genes containing SNVs in our dataset.  
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Table 4.16: Sxy results, based on Equation (3), for patients with AML, entries in columns A,G,T, 

and C are multiplied by a scale of 106. 

Ref/Alt A G T C 

Ref Base 

Count 

A 0.00 31.0 32.5 7.6 351106379 

G 77.0 0.00 118.5 16.0 266526958 

T 25.9 7.5 0.00 29.2 382805654 

C 123.4 16.9 77.7 0.00 255650983 

 

Table 4.17: Sxy results, based on Equation (3), for patients with ALL, entries in columns A,G,T, 

and C are multiplied by a scale of 106. 

Ref/Alt A G T C 

Ref Base 

Count 

A 0.00 47.1 14.8 11.3 348148321 

G 104.6 0.00 63.0 24.9 266991806 

T 13.8 11.7 0.00 43.8 380101844 

C 263.4 26.0 100.3 0.00 255992249 

 

For both AML and ALL, the highest Sxy value is the change type from C to A. In AML, 

that next highest was G to T, followed by C to T and G to A. In ALL, the order slightly varied with 

G to A as the second highest, then C to T, and finally G to T. Overall the displayed Sxy values 

suggest that the SNV’s favor mutations that decrease the DNA GC content in these patients.  

Additionally, the “Ref Base Count” columns in these tables also show, for both AML and ALL, 

that both G and C occurrences in the reference sequences of the mutated genes are much lower 

than both A and T.  

4.4 SUMMARY OF MAIN RESULTS 

In both AML and ALL, using the normal samples as a baseline of the acceptable mutations 

that are found in patients with leukemia, there are noticeable shifts in the data that identify 

favoritism of the SNVs found in tumor samples. To address the change types patterns displayed, 

there is a large increase in the mutations that occur on original reference bases G and C nucleotide. 

Other trends in that the change types showed that the conditional probability of these changes 
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mutating to alternate bases A and T nucleotides. This reveals a decrease in the GC content of DNA, 

which has shown to affect the structural integrity of proteins.  

To further support this biologically significant finding, the Sxy mutational values were 

conducted. Recalling that these values incorporate the reference base counts, and in doing so, this 

alternate method confirmed the favored change types from reference bases G and C altering to 

either A and T.  

Continuing with the mutational data, chromosome frequencies were also determined. After 

taking into consideration the chromosomes length and calculating a density of the SNV 

occurrences, in both AML and ALL changes were noticed, however there was the greatest change 

displaying an increase on chromosome 11 for AML and chromosome 2 in ALL.  

Using the demographic data, the main discovery found was when comparing the staging 

(M0-M7) to the overall survival of patients (living or deceased) who have been diagnosed with 

AML. It was found that patients with M6 or M7 have all deceased, thus assuming that this 

particular stage of AML result in a very poor prognosis for these patients.  
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Chapter 5: Conclusion & Future Work 

This study has been more about the journey than the destination, sparking ideas to be 

explored further by applying computational approaches to analyze the organized merged clinical 

and genomics data for AML and ALL. After making a brief conclusion in Section 5.1 based on 

results obtained to date, extensions from my current work, planned to be completed within the next 

two years, are outlined in Section 5.2.  

5.1 CONCLUSION 

The process of utilizing multiple public portals to extract, compile, and organize datasets 

can be most strenuous due to vast amount of information collected, but having the properly merged 

datasets is key to downstream analysis that can link patients’ genetic variant profiles with their 

demographic and clinical information in relation to their survival outcomes. This step provided the 

necessary materials for an initial exploratory overview that showed promising observable trends 

for detailed investigation in the future. In addition, it has also served as a guide that suggests 

suitable bioinformatics analyses to be conducted and the software tools to be implemented for such 

investigations.  

5.2 FUTURE WORK 

The main objective of the proposed future work would be to expand the information that 

has been gathered and implement more refined methodology for detailed analyses of the AML and 

ALL datasets. The specific aims are: 

1. Develop a new scoring scheme to assess how likely a protein-coding gene is associated with 

AML and ALL The score will be based on the functional effects of the individual SNVs 

contained within the genes and used to provide a ranking. The top-ranking genes will then be 
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selected for downstream bioinformatics studies with special attention paid to their connections 

with phosphatases, kinases, and glycosyltransferases. 

2. Analyze the patients’ survival status and overall survival time with relevant clinical and 

demographic variables (e.g., FAB classification in AML, CNS stage in ALL) plus the selected 

top-ranking genes, along with the known AML- and ALL-associated genes compiled and listed 

in Appendix A. Multiple linear and logistic regression methods will be applied. 

Proposed approaches to achieve the above aims are described below. 

5.2.1 Variant Scoring Scheme for Identifying Likely AML- and ALL-associated Genes 

Step 1. Software tools for predicting functional effects of individual SNVs 

To assist with analyzing single nucleotide variants found, a number of existing software 

tools are available. After an initial survey of them to assess their usability, we settled on using the 

following:  

(i) FATHMM ([38], https://fathmm.biocompute.org.uk/fathmm-xf/). This is an online tool 

that predicts the pathogenic behavior of an SNV, allowing the user to adjust parameters.  

For every prediction when using this server, a p-value is assigned to test the significance. 

Other studies have shown that FATHMM to be most efficient against its competitors [11]. 

The original FATHMM scores that were calculated and interpreted in the results section 

were performed using the webserver. The input file was coded using python, a job was 

created in the queue, and the output file was downloaded once completed. This process has 

an alternative method, by using a downloadable package to be created on a personal device. 

This would eliminate the mandatory queue waitlist entirely and make utilizing this software 

more efficient.  
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(ii) PROVEAN [39]. this software is used to predict the variants effect. Utilizing the 

Oncominer tool to calculate PROVEAN scores for the nonsynonymous variants is also 

going to be performed. To be able to run this software missing components will need to be 

identified for each variant, such as the amino acid change in a specific format and a 

reference number both of which can be found in the original VCF files. This information 

was found much later when originally working on this research project, but the 

complication that arose is extracting the information from the column in which it is found. 

To extract the information column, the original python code that converts a VCF file into 

csv will need to be modified to include this as a column on the output. Next this column 

varies depending on the variant and includes extra information that is unnecessary for this 

software. Essentially the entire column will have to be cleaned to create two columns with 

the correct format of the amino acid alteration and the reference sequence. The format is 

displayed as follows: the original amino acid (Single capital letter abbreviation), the amino 

acid sequence position, and finally the new amino acid (single capital letter abbreviation). 

These three values have no spaces or special characters between them. The reference 

sequence is the second column that gives an identification number of the gene sequence. 

This number can be read into the Oncominer pipeline, in which it then will refer to the 

original sequence being modified and return a prediction score based on the change that 

was previously mentioned.  

(iii) STRUM [45]. Other approaches in interpreting SNV, besides the deterioration in genomic 

function is the protein folding changes that can occur when mutation arises. For this a 

software online called STRUM can be used. This method is used for nonsynomous 

mutations and their position to predict how they change the folding on that protein 
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molecule. As small as these changes may seem, just a single nucleotide change can alter 

the amino acid altering the hydrophobicity, acidity, and over shape of the protein. When 

exploring the STRUM’s capabilities, it was found to be very time consuming but returns 

interesting results. As an experiment, a single amino acid change was used in less than a 

15-length protein strand, this program took an estimated 5 days to return output versus the 

same day results the previously mentioned tools took. As promised, it returned the delta 

delta G energy change from the original and mutated strand, as well as a 3D models that 

displayed the bonding changes that occurred. The future intention for STRUM is to utilize 

this program without having to submit a job on the webservers queue. The main 

disadvantage with this software was the highly inefficient runtime, it is expected that if this 

software can be run on a personal device or an HPC, essentially avoiding the webserver, 

will help with this time issue. The main website has a package that can be downloaded, 

however if this method does not perform as expected, the next step would be to take a very 

select group of SNVs. This group would be formed using the other softwares and have 

provided evidence of the SNVs contribution in patients with acute leukemia.  

(iv) SNPnexus ([40-44], https://www.snp-nexus.org/v4/). This tool has undergone recent 

updates in the past decade that has made it a more reliable source in predictions on the 

functionality consequences that point mutations can cause. With the capabilities to choose 

from with Human Genome Reference, it generates hits on the imported data. This web-

based server provides information on the genomic coordinated based on their physical and 

cytogenetic positions. Additionally, this site also provides users with known SNV overlaps 

and if available a link to dbSNP, as well as the closest gene, the type of gene, and a 

predicted consequence. 

https://www.snp-nexus.org/v4/
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Other members of our group had previously used FATHMM and PROVEAN to predict the 

functional effects of individual variants on protein-coding genes [50]. Combining these with the 

variants’ occurrence frequencies among patients in the dataset resulted in a scoring scheme that 

helped predict several likely genes related to prostate cancer. I will first try using the same method 

on our leukemia SNV datasets to get a baseline prediction performance. Then I will incorporate 

the STRUM and SNPnexus results to form a new scoring scheme to improve prediction 

performance.  

Furthermore, incorporate additional prediction software that validate the importance of 

particular SNVs and the genes found. Some examples of this would be PROVEAN and STRUM, 

but also contribute to the Oncominer pipeline with a FATHMM feature that could be used for 

researchers. Additionally, this process can be implemented in the Oncominer pipeline with a few 

other modifications to the code. Allowing the user to use a default selection of variants (every 

variant within a VCF, or OMI file) or be able to specify only certain variants based on their 

classification and score (i.e. nonsynonymous and/or pathogenic).  

Step 2. Identification of high-scoring genes for downstream bioinformatics analysis 

 After utilizing the functional effect evaluation tools above on the individual variants, the 

next step of this investigation would be to score the protein-coding genes based on the functional 

effects of the SNVs contained in them and identify the high-scoring gene. As a preliminary trial, I 

have attempted this gene scoring process using the FATHMM tool alone. FATHMM scores for 

the unique set of genes found amongst the SNV lists containing normal and tumor variants. The 

figures below show the top 20 genes with highest scores for AML and ALL respectively based on 

their score from the gene and variant information formula from Equation (4).  
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 Within the first column there is the gene name and the last column is the score that was 

found. The warning column is another categorical variable that FATHMM has assigned to each 

variant that identifies its harmfulness, ranging from benign (not harmful) to pathogenic (harmful), 

in some cases no predictions can be found.  

 

Figure 5.1a: Top twenty genes based on the FATHMM scoring method, Equation 4, in patients 

with AML. 

 

 

Figure 5.2: Top twenty genes based on the FATHMM scoring method, Equation 4, in patients 

with ALL. 

 

From these figures, the top twenty genes can be cross-referenced to the known AML- and 

ALL-associated genes listed in Appendix A.1. None of the 20 high-scoring AML genes appear 

within the list in Appendix A.1. However, the ALL-highest score gene list has 6 hits that 

correspond with the list in Appendix A.2. The lack of overlap between the identified high-scoring 

AML genes with the known genes associated with the disease suggest that our scoring scheme can 

be improved. We anticipate that incorporating PROVEAN, STRUM, and SNPnexus assessments 
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of individual SNVs will bring about a more a balanced evaluation of the genes and lead to better 

predictions. 

 

Step 3. Bioinformatics analyses: GO terms, pathways, and protein-protein interactions 

Looking into the high scoring genes found in Step 2, we can conduct a more detailed 

bioinformatics investigation on them to find what biological processes they are involved in. This 

can be done via the following analysis: 

(i) Finding enriched GO terms  

Gene Ontology is a web-based server in which its purpose is to provide gathered 

knowledge about the functions of genes. This site contains biological information from the 

molecular level to larger pathway on cellular and organism level systems. With the 

evolutionary idea, that inherited genes across organisms can share homologous genes due 

to a common ancestor, the research performed on the biological process of a shared gene 

in one organism can be applicable to others. When investigating large scale data, on feature 

provided is the ability to cluster different kinds of biological functions into groups but can 

also indicate how these groups relate to each other [47].  

(ii) Identifying molecular pathways  

To do so, Kyoto Encyclopedia of Genes and Genomes (KEGG), a databased 

resource can be used. The key feature that will be used on this resource is the KEGG 

Pathway Maps section, by using an interaction and reaction network diagrams, it 

generalizes genomic information among organisms. With their in-house software, 

KegSketch, a map can be manually drawn and delivers an output KGML+ file is created 
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containing graphics of the KEGG objects that can be mapped using its object identifiers 

resource link [48]. 

(iii) Constructing protein-protein interaction networks. 

STRING [49] allows the user to input a list of genes, for this study it will be the 

high scoring genes, and the output is an analysis of how these nodes interact, or not, to each 

other. It creates a clustering mechanism that groups together the genes that have a 

connection and isolates that genes that have no correlation to each other. Ideally the 

clustered genes are the ones that will be used for the interpretation, whereas the stand-alone 

genes are typically disregarded. Additional information that STRING provides in their 

output is biological process, links to publication where they have been mentioned, KEGG 

pathways, and their local network. With the listed publications of articles these genes have 

been associated with, it will assist with the discovery of genes that have no known 

connection to patients with leukemia.  

 

Throughout the gene selection process and the downstream bioinformatics analyses, particular 

attention will be paid to the kinase, phosphatase, and glycosyltransferase genes because there are 

interests from collaborators who can conduct wet-lab experiments to investigate their biological 

roles in cancer. Indeed, some studies have shown the effect variants altering kinases and 

phosphatases links directly to cancer. Being that kinases and phosphatases are responsible for the 

post-translational modification of proteins, mutations in these can disrupt the cellular signaling 

pathway. The imbalance between kinases and phosphatases can also suppress the response to 

cancer treatments and decrease the likelihood of survival [24]. Glycosyltransferase, also involved 

in post- translational modification, prepare and transfer glycan chains on mucins to the correct 
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destination [25]. Abnormalities in these genes can alter their expression, thus being a driving force 

for cancer development and progression [46].  

I will start with compiling the list of human protein kinase, phosphatase, and 

glycosyltransferase genes. Once this list is compiled, a Python code can be used to identify the 

genes that were found in this study as one of the three human proteins that are being focused on. 

While all three are involved in post-translational modification, after the identification process, 

these genes can be then properly grouped and their role in AML and ALL can be assessed.  

5.2.2 Relating survival outcomes with demographic, clinical, and genetic variables 

 For this specific aim, we want to identify a predictive model relating the patients’ 

overall survival time to their demographic, clinical, and genomic mutation information using 

suitable regression type analysis or other statistical and machine learning techniques. This model 

development will be done in collaboration with a Data Science PhD student in our group, Mr. 

Kelvin Ofori-Minta, who is developing the model for a similar set of data for patients with prostate 

cancer. 

After selecting the high-scoring genes for AML and ALL from specific aim 1, we will add 

them to the lists of known AML- and ALL-associated genes in Appendix A. The new list of AML 

and ALL genes, expected to contain around 100 in total, will be added as variables (columns) to 

the respective data files that contain the patients’ demographic and clinical information. Under the 

column for each gene variable, we will enter at each row (patient) the count of SNVs found within 

that particular gene in the patient. 

The overall survival time, with survival status (alive or deceased) as censoring indicator, 

will be considered the response variable. All other variables in the integrated demographic-

clinical-genetic dataset will form the initial set of predictor variables for the regression model. We 
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will manually examine the column headings of the demographic and clinical variables to remove 

any uninformative variables such as those with too many missing data values or those with no 

variation from patient to patient. With the remaining variables, a simple pairwise correlation 

analysis will be conducted. If a group of variables are found to be highly correlated, only one of 

them will be selected as representative to be included in the model and others discarded.  

 The computational methods developed for the various analyses in my research project will 

be implemented in R and Python. These newly developed programs will be added to our existing 

OncoMiner Pipeline as new modules so that they can be publicly accessed and utilized by other 

researchers. 
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5.3 Timeline 

Table 5.1: 2 Year Timeline 

Summer 2023 
• Thesis/PhD Proposal defense 

• Attend and present at the ISCB 2023 international conference 

• Identify the kinase, phosphatase, and glycosyltransferase genes 

Fall 2023 
• Explore the use of STRUM and SNPnexus in scoring functional effects 

of individual SNVs 

• Incorporate structural changes predicted by STRUM to develop a new 

scoring function for genes 

• Attend and present at SC23 conference and cancer workshop 

Spring 2024 
• Implement new gene scoring function as a module to add on to the 

existing Oncominer Pipeline 

• Beta testing of new module 

Apply new module to identify novel ALL- and AML-associated genes 

Summer 2024 
• Finalize new OncoMiner module go live on UTEP website 

• Prepare and submit manuscript on new scoring function for publication 

• Begin analysis of survival outcomes in relation to clinical, demographic, 

and genetic variables. 

Fall 2024 
• GO term, pathway, protein interaction analyses for identified ALL- and 

AML-associated genes 

• Finish modeling for survival outcomes with assessment of predictive 

power.  

• First complete dissertation draft ready  

• Committee meeting to go over main results  

Spring 2025 
• Prepare and submit manuscript on findings of the above bioinformatics 

analyses 

• Revise dissertation and prepare final draft for defense 
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APPENDIX A 

A.1 List of acute myeloid leukemia associated genes found in literature 

Gene 
Name 

Reference 
Number 

PML [16] 

RARA [16] 

DNMT1 [16] 

DNMT3 [16] 

MLL [16] 

MLLT3 [16] 

H3K4 [16] 

DOT1L [16] 

MENIN1 [16] 

HOX [16] 

DEK [16] 

NUP214 [16] 

FLT3 [16] 

EVI1 [16] 

HSC [16] 

DATA2 [16] 

PBX1 [16] 

PLM [16] 

RPN1 [16] 

RBM15 [16] 

MKL1 [16] 

KIT [16] 

NPM1 [16] 

CEBPA [16] 

RAS [16] 

WT1 [16] 

BAALC [16] 

ERG [16] 

MN1 [16] 

TET2 [16] 

IDH [16] 

ASXL1 [16] 

PTPN11 [16] 

CBL [16] 
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ARF [16] 

RUNX1 [17] 

CBFB [17] 

MYH11 [17] 

RMB15 [17] 

BCOR [17] 

KMT2A [17] 

NRAS [17] 

KRAS [17] 

PHF6 [17] 

TP53 [17] 

GATA2 [18] 

VDAC1 [19] 

ZYX [19] 

VAT1 [19] 

NPC2 [19] 

AZU1 [19] 

HOMER-3 [19] 

PGD [19] 

ENSA [19] 

TKT [19] 

BST1 [19] 

STK17B [19] 

CDK6 [19] 

RAB32 [19] 

PTP4A2 [19] 

APLP2 [19] 

CYLN2 [19] 

OGT [19] 

HNRPD [19] 

POLR2H [19] 

TIAL1 [19] 

ATP6F [19] 

NME1 [19] 

GRIK5 [19] 

CD14 [19] 

GABARAP [19] 

NFKBIA [19] 

GCN5L2 [19] 
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HSPE1 [19] 

LBR [19] 

ECE2 [19] 

BZRP [19] 

XPO1 [19] 

HIPK2 [20] 

SF3B1 [20] 

TERC [20] 

TERT [20] 

FPDMM [20] 

PFBMFT1 [20] 

PFBMFT2 [20] 

SMMHC [20] 

AF9 [20] 

BRD4 [20] 

WNT [20] 

BET [20] 

CXXC6 [20] 

MCL1 [20] 

DNMT3A [20] 

 

A.2 List of acute lymphoblastic leukemia associate genes found in literature 

Gene 
Name 

Reference 
Number  

RAS [21] 

IKZF3 [21] 

TP53 [21] 

CDKN2A [21] 

CDKN2B [21] 

RB1 [21] 

IKZF2 [21] 

ETV6 [21] 

RUNX1 [21] 

TCF3 [21] 

PBX1 [21] 

IKZF1 [21] 

PAX5 [21] 

CRLF2 [21] 
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JAK1 [21] 

JAK2 [21] 

PI3K [21] 

P2RY8 [21] 

KMT2A [21] 

MLL [21] 

DUX4 [21] 

MEF2D [21] 

ZNF384 [21] 

TAL1 [21] 

LMO2 [21] 

TLX1 [21] 

TLX2 [21] 

NUP214 [21] 

ABL1 [21] 

NOTCH1 [21] 

FBXW7 [21] 

EML1 [21] 

HOX11 [21] 

HOX11L2 [21] 

HLF [21] 

EBF1 [21] 

ERG [21] 

PTPN11 [21] 

NF1 [21] 

FLT3 [21] 

NTRK3 [21] 

BLNK [21] 

TYK2 [21] 

PTK2B [21] 

EPOR [21] 

EP300 [21] 

HDAC9 [21] 

ID4 [21] 

ARID1B [21] 

SYNRG [21] 

EWSR1 [21] 

CREBBP [21] 

TAF15 [21] 
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BCR-ABL1 [21] 

RAG [22] 

MGA [22] 

ATF7IP [22] 

TXNIP [22] 

CNR2 [22] 

AMPK [22] 

ITGA6 [22] 

BAX [22] 

LEF1 [22] 

IL7R [22] 

TLX3 [22] 

PHF6 [22] 

NCOR1 [22] 

SPI1 [22] 

TCF4 [22] 

TCF7L2 [22] 

CTCF [22] 

STAT5 [22] 

HOXA [22] 

SUZ12 [22] 

EZH2 [22] 

PRC2 [22] 

CNOT3 [22] 

RPL5 [22] 

RPL10 [22] 

NSD2 [22] 

GNB1 [22] 

NT5C2 [22] 

DNM2 [22] 

RELN [22] 

ECT2L [22] 

EED [22] 

SETD2 [22] 

GATA3 [22] 

SH2B3 [22] 
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APPENDIX B 

B.1 Post VCF to CSV conversion, this script merges all the normal and tumor CSV files within 

the assigned directory (Python, Pycharm). 
import pandas as pd 

import os 

 

###Merging the csv from the vcf files into a single normal and tumor file ### 

csvFiles = os.listdir() 

 

for file in csvFiles: 

    dframe = pd.read_csv(file, sep=",") 

    temp1, temp2 = str(file).split("_") 

    dframe["Patient"] = temp1 

    dframe.to_csv(file, sep = ",") 

 

 

allFiles = glob.glob(os.path.join(path, "Patient*.csv")) 

eachFile = (pd.read_csv(f, sep=',') for f in allFiles) 

 

dfMerged = pd.concat(eachFile, ignore_index = True) 

dfMerged.to_csv("Tumor.csv") 

 

csvFiles = os.listdir() 

 

for file in csvFiles: 

    dframe = pd.read_csv(file, sep=",") 

    temp1, temp2 = str(file).split("_") 

    dframe["Patient"] = temp1 

    dframe.to_csv(file, sep = ",") 

 

 

allFiles = glob.glob(os.path.join(path, "Patient*.csv")) 

eachFile = (pd.read_csv(f, sep=',') for f in allFiles) 

 

dfMerged = pd.concat(eachFile, ignore_index = True) 

dfMerged.to_csv("Normal.csv") 

 

 

B.2 Finds the unique patients in the dataset and inserts columns for the patient binary matrix. 
def uniquePatients(filename): 

    csv = pd.read_csv(filename, sep=",") 

 

    temp = csv["Patient_ID"].drop_duplicates().tolist() 

    for element in temp: 

        pID = "Patient_" + str(element) 

        csv.insert(csv.shape[1], pID, 0) 

    csv.to_csv(filename, index=False, sep=",") 
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B.3 Changes the entries of the patient binary matrix to 1 if the variant is present in patient 
def variant(filename): 

    csv = pd.read_csv(filename, sep=",") 

    csv["Patient_ID"] = csv["Patient_ID"].to_list() 

    for row in range(csv.shape[0]): 

        temp = csv["Patient_ID"][row].replace("[", "") 

        temp = temp.replace("'", "") 

        temp = temp.replace("]", "") 

        temp = temp.replace(" ", "") 

        temp = temp.split(",") 

        for element in temp: 

            # print(element) 

            name = "Patient_" + element 

            csv.loc[row, name] = 1 

    newName = "Final_" + filename 

    csv.to_csv(newName, sep=",") 

 

B.4 Combines the normal and tumor csv files into a single csv with the binary matrix. 
####### Combine normal and tumor binary matrices for AML ############### 

columns = list(amlNorm.columns) 

 

for element in columns: 

    temp = "Normal_" + element 

    amlNorm = amlNorm.rename(columns={element : temp}) 

 

 

aml = amlTumor.merge(amlNorm, left_on=["chrom", "left", "ref_seq", "alt_seq", 

"New_Gene_Name"], right_on=["Normal_chrom", "Normal_left", "Normal_ref_seq", 

"Normal_alt_seq", "Normal_New_Gene_Name"], how="outer") 

 

aml.to_csv("Final_AML.csv", index=False) 

 

 

# Do the same for ALL 

 

allNorm = pd.read_csv("Final_New_ALL_Norma_Prep.csv", sep=",") 

allTumor = pd.read_csv("Final_New_ALL_Tumor_Prep.csv", sep=",") 

 

columns = list(allNorm.columns) 

 

for element in columns: 

    temp = "Normal_" + element 

    allNorm = allNorm.rename(columns={element : temp}) 

 

 

all = allTumor.merge(allNorm, left_on=["chrom", "left", "ref_seq", "alt_seq", 

"New_Gene_Name"], right_on=["Normal_chrom", "Normal_left", "Normal_ref_seq", 

"Normal_alt_seq", "Normal_New_Gene_Name"], how = "outer") 

 

all.to_csv("Final_ALL.csv", index=False) 
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B.5 Returns the common variants found between the normal and tumor, prints this value. 
def common(file1, file2): 

    csv1 = pd.read_csv(file1, sep=",") 

    csv2 = pd.read_csv(file2, sep=",") 

 

    # Concatenate the two csv get a total count of both normal and tumor 

together 

    csv = pd.concat([csv1, csv2]) 

    all = len(csv) 

    # drop only the common rows from the total to get the new shape the whole 

without the overlap 

    newcsv = csv.drop_duplicates(subset=["chrom", "left", "ref_seq", 

"alt_seq", "New_Gene_Name"], keep=False) 

    uncom = len(newcsv) 

    return print(all, uncom) 

 

B.6 Creation of the translation dictionary for genes found on the negative strand of DNA (Python, 

Pycharm). 
conversion_dictionary = { 

    "A": "T", 

    "T": "A", 

    "U": "A", 

    "G": "C", 

    "C": "G", 

    "Y": "R", 

    "R": "Y", 

    "N": "N" 

} 

 

B.7 Function that takes a variant with many isoforms and in a new column assigns the first isoform 

as this value (Python, Pycharm)..  
def condense(filename, column): 

    csv = pd.read_csv(filename) 

    newCol = [] 

    for row in range(csv.shape[0]): 

        temp = csv[column][row].replace("[", "") 

        temp = temp.replace("'", "") 

        temp = temp.replace("]", "") 

        temp = temp.replace(" ", "") 

        temp = temp.split(",") 

        newCol.append(temp[0]) 

    newName = "New_" + column 

    csv.insert(csv.shape[1], newName, newCol) 

    csv.to_csv(filename, sep=",", index=False) 
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B.8 Function that writes in text file that exact format required for the FATHMM input (Python, 

Pycharm). 
def fathmmFormat(csv, txtfile): 

    with open(txtfile, 'w') as f: 

        for row in range(csv.shape[0]): 

            chrom = csv.loc[row, "chrom"][3:] 

            left = str(csv.loc[row, "left"]) 

            ref = csv.loc[row, "ref_seq"] 

            alt = csv.loc[row, "alt_seq"] 

            temp = chrom + "," + left + "," + ref + "," + alt 

            f.write(temp) 

            f.write("\n") 

    f.close() 

 

B.9 Isolates only the gene information and removes duplicates, resulting in a unique gene list for 

both normal and tumor (Python, Pycharm) 
############ Isolating the Gene info only ############ 

norm = pd.read_csv("Normal_refFlat.csv") 

tumor = pd.read_csv("Tumor_refFlat.csv") 

 

geneNorm = norm[["New_Gene_Name", "chrom", "strand", "cdsStart", "cdsEnd",  

"exonStarts", "exonEnds"]] 

geneTumor = tumor[["New_Gene_Name", "chrom", "strand", "cdsStart", "cdsEnd",  

"exonStarts", "exonEnds"]] 

 

geneNorm.to_csv("Normal_Gene.csv", sep=",") 

geneTumor.to_csv("Tumor_Gene.csv", sep=",") 

 

####################### Removing duplicated genes ########################### 

norm = norm.drop_duplicates() 

tumor = tumor.drop_duplicates() 

 

norm.to_csv("Normal_Gene.csv", sep=",") 

tumor.to_csv("Tumor_Gene.csv", sep=",") 

 

B.10 Creates a dataframe from all the refFlat files, pointing to the directory where they are saved, 

and merges specified columns to the unique gene lists 
#### Adding specified information from the refFlat files onto the OMI ###### 

refFlatfiles = os.listdir() 

 

chrDF = pd.DataFrame(columns=["New_Gene_Name", "name", "chrom", "strand", 

"txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", 

"exonEnds"]) 

for file in refFlatfiles: 

 

    chrDF1 = pd.read_csv(file, sep="\t", header=None, names=["New_Gene_Name", 

"name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", 

"exonCount", "exonStarts", "exonEnds"]) 
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    chrDF = pd.concat([chrDF, chrDF1], axis=0) 

 

 

 

newNorm = pd.merge(norm, chrDF[["New_Gene_Name", "chrom", "strand", 

"cdsStart", "cdsEnd",  "exonStarts", "exonEnds"]], how="left", 

on=["New_Gene_Name", "chrom"]) 

newNorm.drop_duplicates(subset=['chrom', "left", "ref_seq", "alt_seq", 

"VCF_ID", "New_Gene_Name"]) 

 

 

newTumor = pd.merge(tumor, chrDF[["New_Gene_Name", "chrom", "strand", 

"cdsStart", "cdsEnd",  "exonStarts", "exonEnds"]], how="left", 

on=["New_Gene_Name", "chrom"]) 

newTumor.drop_duplicates(subset=['chrom', "left", "ref_seq", "alt_seq", 

"VCF_ID", "New_Gene_Name"]) 

 

newNorm.to_csv("Normal_refFlat.csv", sep=",") 

newTumor.to_csv("Tumor_refFlat.csv", sep=",") 

 

B.11 Adjusts the format of the exon columns, in normal and tumor files, to be in a dataframe list 

datatype format (Python, Pycharm) 
######### fixing the format of the Exon Lists from refFlat files ############ 

for row in range(norm.shape[0]): 

    #Changing Exon Starts from string to list 

    norm["exonStarts"][row] = norm["exonStarts"][row].split(",") 

    norm["exonStarts"][row] = norm["exonStarts"][row][:-1] 

 

    norm["exonStarts"][row] = [eval(i) for i in norm["exonStarts"][row]] 

 

    # Changing Exon Ends from string to list 

    norm["exonEnds"][row] = norm["exonEnds"][row].split(",") 

    norm["exonEnds"][row] = norm["exonEnds"][row][:-1] 

 

    norm["exonEnds"][row] = [eval(i) for i in norm["exonEnds"][row]] 

 

for row in range(tumor.shape[0]): 

    #Changing Exon Starts from string to list 

    tumor["exonStarts"][row] = tumor["exonStarts"][row].split(",") 

    tumor["exonStarts"][row] = tumor["exonStarts"][row][:-1] 

 

    tumor["exonStarts"][row] = [eval(i) for i in tumor["exonStarts"][row]] 

 

    #Changing Exon Ends from string to list 

    tumor["exonEnds"][row] = tumor["exonEnds"][row].split(",") 

    tumor["exonEnds"][row] = tumor["exonEnds"][row][:-1] 

 

    tumor["exonEnds"][row] = [eval(i) for i in tumor["exonEnds"][row]] 

 

norm.to_csv("Normal_refFlat.csv", sep=",") 

tumor.to_csv("Tumor_refFlat.csv", sep=",") 
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B.12 Inserts five additional columns, for each of the four bases (A, G, T, C) and the full sequence. 

The sequence is obtained from a .fasta file with the full chromosome sequence (using gene’s exon 

columns to parse this into the desired segment) and the four base columns are the counts in which 

they occur in the found sequence (Python, Pycharm). 
sequences = [] 

for row in range(UN.shape[0]): 

    chr = UN.iloc[row]["chrom"] 

    if UN.iloc[row]["Length"] == 0: 

        sequences.append(0) 

        continue 

    start = int(UN.iloc[row]["txStart"]) 

    end = int(UN.iloc[row]["txEnd"]) 

    strand = UN.iloc[row]["strand"] 

 

    temp = geneSeq(chr, start, end, strand) 

    UN.loc[row, 'Sequence'] = temp 

    UN.loc[row, 'A'] = temp.count("A") 

    UN.loc[row, 'G'] = temp.count("G") 

    UN.loc[row, 'T'] = temp.count("T") 

    UN.loc[row, 'C'] = temp.count("C") 

# 

# UN = UN.insert(UN.shape[0], "Sequence", sequences) 

UN.to_csv("check1Normal_A*L.csv", index = False) 

 

for row in range(UT.shape[0]): 

    chr = UT.iloc[row]["chrom"] 

    if UT.iloc[row]["Length"] == 0: 

        sequences.append(0) 

        continue 

    start = int(UT.iloc[row]["txStart"]) 

    end = int(UT.iloc[row]["txEnd"]) 

    strand = UT.iloc[row]["strand"] 

 

    temp = geneSeq(chr, start, end, strand) 

    UT.loc[row, 'Sequence'] = temp 

    UT.loc[row, 'A'] = temp.count("A") 

    UT.loc[row, 'G'] = temp.count("G") 

    UT.loc[row, 'T'] = temp.count("T") 

    UT.loc[row, 'C'] = temp.count("C") 

# 

# UN = UN.insert(UN.shape[0], "Sequence", sequences) 

UT.to_csv("check2Tumor_A*L.csv", index = False) 

 

B.13 Calculates the length of the sequence, inserts this value in a new column (Python, Pycharm). 
######### Get lengths of sequences ###### 

length = [] 

for row in range(uniqueN.shape[0]): 

    if uniqueN.iloc[row]["txStart"] == 0: 

        length.append(0) 

        continue 
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    min = int(uniqueN.iloc[row]["txStart"]) 

    max = int(uniqueN.iloc[row]['txEnd']) 

    temp = max - min 

    length.append(temp) 

uniqueN = uniqueN.insert(uniqueN.shape[1], "Length", length) 

 

B.14 Function that sums the four base columns, returns this value (Python, Pycharm). 
def counts(csv): 

    a = csv["A"].sum() 

    g = csv["G"].sum() 

    t = csv["T"].sum() 

    c = csv["C"].sum() 

    print("A: " + str(a)) 

    print("G: " + str(g)) 

    print("T: " + str(t)) 

    print("C: " + str(c)) 

 

print("Normal:") 

counts(n) 

print("Tumor:") 

counts(t) 

 

B.15 Using the unique gene values, in the cases that have many isoforms, the isoform with the 

largest length is selected and the others are dropped (Python, Pycharm). 
##################### Use only the unique genes to avoid double counting, 

isoforms present by taking the largest length of the same gene, strand, and 

chrom ########################## 

########## ALL ########### 

UN = pd.read_csv("ALL_Normal_UniqueGenes.csv", sep=',') 

UT = pd.read_csv("ALL_Tumor_UniqueGenes.csv", sep=',') 

UN = UN.sort_values(by="Length", ascending=False).drop_duplicates(['chrom', 

'strand', "New_Gene_Name"]).sort_index() 

UT = UT.sort_values(by="Length", ascending=False).drop_duplicates(['chrom', 

'strand', "New_Gene_Name"]).sort_index() 

UN.to_csv("ALL_Normal_UniqueGenes.csv", index = False, sep=',') 

UT.to_csv("ALL_Tumor_UniqueGenes.csv", index = False, sep=',') 

########## AML ############## 

UN = pd.read_csv("AML_Normal_UniqueGenes.csv", sep=',') 

UT = pd.read_csv("AML_Tumor_UniqueGenes.csv", sep=',') 

UN = UN.sort_values(by="Length", ascending=False).drop_duplicates(['chrom', 

'strand', "New_Gene_Name"]).sort_index() 

UT = UT.sort_values(by="Length", ascending=False).drop_duplicates(['chrom', 

'strand', "New_Gene_Name"]).sort_index() 

UN.to_csv("AML_Normal_UniqueGenes.csv", index = False, sep=',') 

UT.to_csv("AML_Tumor_UniqueGenes.csv", index = False, sep=',') 

 

B.16 Scores each gene, based on the FATHMM results, inserts these scores into a new column 

(Python, Pycharm). 
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def geneWeights(csv, file): 

    for row in range(csv.shape[0]): 

        genelen = csv.loc[row, "Length"] 

        sum = 0.0 

 

        #clean Score column and convert string to list 

        score = csv.loc[row, "Tumor Total Score"].replace("[", "") 

        score = score.replace("'", "") 

        score = score.replace("]", "") 

        score = score.replace(" ", "") 

        score = score.split(",") 

 

        #clean tumor count and normal count and convert string to list 

        tumor = csv.loc[row, "SNV_Tumor_Total"].replace("[", "") 

        tumor = tumor.replace("'", "") 

        tumor = tumor.replace("]", "") 

        tumor = tumor.replace(" ", "") 

        tumor = tumor.split(",") 

 

        normal = csv.loc[row, "SNV_Normal_Total"].replace("[", "") 

        normal = normal.replace("'", "") 

        normal = normal.replace("]", "") 

        normal = normal.replace(" ", "") 

        normal = normal.split(",") 

 

        for (a, b, c) in zip(score, tumor, normal): 

            diff = int(b) - int(c) 

            temp = float(a) * float(diff) 

            sum += temp 

        if genelen == 0: 

            co = 0 

        else: 

            co = 1.0 / (ln(genelen)) 

 

        val = co*sum 

 

        csv.loc[row, "Gene_Score"] = val 

 

 

    csv.drop(csv[csv['New_Gene_Name'] == "NoName"].index, inplace=True) 

 

    csv.to_csv(file, sep=",", index=False) 

 

B.17 Reads in a folder of VCF file and extracts the sample/patient information.  
def CaseIDs(vcffile, csv): 

    temp = vcffile.split(".") 

    vcffile = open('%s'%(vcffile), 'r') 

    vcf = vcffile.readlines() 

    vcffile.close() 

 

    for l in range(0, len(vcf)): #looking line by line in the inputted VCF 

file 

        if vcf[l].startswith('##INDIVIDUAL'): 

            ind = vcf[l].find("ID=") 
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            line = vcf[l] 

            if ind == -1: 

                print("Problem with: " + temp[0]) 

                return 

            else: 

                #print(line[ind+3:-2]) 

                ele1 = temp[0] #Patient ID/VCF file name 

                ele2 = line[ind+3:-2] #Case ID that will be matched with cBio 

portal 

                row = [ele1, ele2] 

                #print(row) 

                with open(csv, 'a', encoding='windows-1252') as f: 

                    file = writer(f) 

                    file.writerow(row) 

                    f.close() 

 

    return 

 

 

####### Run function on all the VCF files for AML ######## 

# vcfFiles = os.listdir() 

# for each in vcfFiles: 

#     CaseIDs(each, 

"/Users/abataycan/PycharmProjects/CaseIDs/CaseIDS_ALL.csv") 

 

 

 

 

####### Run function on all the VCF files for ALL ######## 

# vcfFiles = os.listdir() 

# for each in vcfFiles: 

#     CaseIDs(each, 

"/Users/abataycan/PycharmProjects/CaseIDs/CaseIDS_ALL.csv") 

 

 

 

def SampleIDs(vcffile, Ncsv, Tcsv): 

    temp = vcffile.split(".") 

    vcffile = open('%s'%(vcffile), 'r') 

    vcf = vcffile.readlines() 

    vcffile.close() 

 

    for l in range(0, len(vcf)): #looking line by line in the inputted VCF 

file 

        if vcf[l].startswith('##SAMPLE=<ID=NORMAL'): 

            ind1 = vcf[l].find("NAME=") 

            ind2 = vcf[l].find("ALIQUOT_ID=") 

            ind3 = vcf[l].find("BAM_ID=") 

            line = vcf[l] 

            #print(line[ind+3:-2]) 

            ele1 = temp[0] #Patient ID/VCF file name 

            ele2 = line[ind1+5:ind2-1] #TCGA ID 

            ele3 = line[ind2+11:ind3-1] #ALIQUOT_ID 

            Nrow = [ele1, ele2, ele3] 

            # print(Nrow) #normal sample assorted ids 

            with open(Ncsv, 'a', encoding='windows-1252') as f: 

                file = writer(f) 
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                file.writerow(Nrow) 

                f.close() 

        if vcf[l].startswith('##SAMPLE=<ID=TUMOR'): 

            ind1 = vcf[l].find("NAME=") 

            ind2 = vcf[l].find("ALIQUOT_ID=") 

            ind3 = vcf[l].find("BAM_ID=") 

            line = vcf[l] 

            ele1 = temp[0]  # Patient ID/VCF file name 

            ele2 = line[ind1 + 5:ind2 - 1]  # TCGA ID 

            ele3 = line[ind2 + 11:ind3 - 1]  # ALIQUOT_ID 

            Trow = [ele1, ele2, ele3] 

            # print(Trow) 

            with open(Tcsv, 'a', encoding='windows-1252') as f: 

                file = writer(f) 

                file.writerow(Trow) 

                f.close() 

    return 

 

 

####### Run function on all the VCF files for AML ######## 

# vcfFiles = os.listdir() 

# for each in vcfFiles: 

#     SampleIDs(each, 

"/Users/abataycan/PycharmProjects/CaseIDs/Normal_AML_Sample_IDs.csv", 

"/Users/abataycan/PycharmProjects/CaseIDs/Tumor_AML_Sample_IDs.csv") 

 

####### Run function on all the VCF files for ALL ######## 

# vcfFiles = os.listdir() 

# for each in vcfFiles: 

#     SampleIDs(each, 

"/Users/abataycan/PycharmProjects/CaseIDs/Normal_ALL_Sample_IDs.csv", 

"/Users/abataycan/PycharmProjects/CaseIDs/Tumor_ALL_Sample_IDs.csv") 

 

B.18 Merging the three clinical databases, from cBioPortal, into a single clinical summary. 
FH = pd.read_csv("data_clinical_patient_FH.csv") 

NEJM = pd.read_csv("data_clinical_patient_NEJM.csv") 

PC = pd.read_csv("data_clinical_patient_PC.csv") 

p2 = pd.read_csv("Check.csv") 

p1 = pd.merge(FH, NEJM, on=["PATIENT_ID", "SEX", "AGE"], how="inner") 

p1.to_csv("Check.csv", sep=",", header=True) 

 

fin = pd.merge(PC, p2, on=["PATIENT_ID", "OS_STATUS"], how="inner") 

fin.to_csv("Patient_Summary.csv", sep=",", header=True) 

 

APPENDIX C 

C.1 Compares the unique patients in tumor file to the normal file, identifies the ID of those who 

are missing (R, Rstudio). 
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## Checking for the missing patients between normal and tumor samples... 

```{r} 

tum <- read.csv("AML_Tumor.csv", header=TRUE, sep=",") 

length(table(tum$Patient_ID)) 

norma <- read.csv("AML_Normal.csv", header=TRUE, sep=",") 

length(table(norma$Patient_ID)) 

 

unique(norma$Patient_ID)[!unique(norma$Patient_ID) %in% unique(tum$Patient_ID)] 

unique(tum$Patient_ID)[!unique(tum$Patient_ID) %in% unique(norma$Patient_ID)] 

 

tum <- read.csv("ALL_Tumor.csv", header=TRUE, sep=",") 

length(table(tum$Patient_ID)) 

norma <- read.csv("ALL_Normal.csv", header=TRUE, sep=",") 

length(table(norma$Patient_ID)) 

 

unique(norma$Patient_ID)[!unique(norma$Patient_ID) %in% unique(tum$Patient_ID)] 

unique(tum$Patient_ID)[!unique(tum$Patient_ID) %in% unique(norma$Patient_ID)] 

``` 

 

C.2  Calculates the variant densities (per Megabase) for each chromosomes, plots the values on a 

bar plot sort by chromosome, and generates a table with these values with the tumor to normal 

ratio (R, Rstudio).  

## Chromosome density Barplot  

```{r} 

len = c(248956422, 242193529, 198295559, 190214555, 181538259, 170805979, 159345973, 

145138636, 138394717, 133797422, 135086622, 133275309, 114364328, 107043718, 
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101991189, 90338345, 83257441, 80373285, 58617616, 64444167, 46709983, 156040895, 

57227415) 

 

order = c("chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8", "chr9", "chr10", 

"chr11", "chr12", "chr13", "chr14", "chr15", "chr16", "chr17", "chr18", "chr19", "chr20", "chr21", 

"chrX", "chrY") 

 

tChromFreq <- table(tumor$chrom) 

t = (tChromFreq[order]/len)*1000000 

barplot(t, col = rainbow(length(tChromFreq[order])), main = "AML Tumor Variants per 

Mega-base (Mb)") 

 

nChromFreq <- table(normal$chrom) 

n = (nChromFreq[order]/len)*1000000 

barplot(n, col = rainbow(length(nChromFreq[order])), main = "AML Normal Variants per 

Mega-base (Mb)") 

 

tab = data.frame(Variants=tChromFreq[order], Length=len, "Normalize(1000)"=t) 

tab = tab[ , c(-4)] 

 

tabn = data.frame(Variants=nChromFreq[order], Length=len, "Normalize(1000)"=n) 

tabn = tabn[ , c(-4)] 

``` 

 

C.3 Using the clinical data, creates a table with the number of patients for there current status, 

gender, ethnicity for each stage of AML. Generates a notched boxplot based on their current status 

comparing the overall survival in month against the stage classification (R, Rstudio).  



 78 

## FAB Notched Boxplot and identifying others values in demographic csv 

```{r} 

#sub_Cl <- read.csv("sub_AML_Clinicals.csv", header=TRUE, sep = ",") 

sub_Cl <- read.csv("subset_AML_FAB.csv", header=TRUE, sep = ",") 

 

boxplot(OS_MONTHS~FAB, data = sub_Cl, notch = TRUE, 

col=rainbow(length(table(sub_Cl$FAB))), main = "French, American, and British Classification 

against Overall Survival", ylab = "Overall Survival (in Months)", xlab = "FAB Classification") 

 

# prints table of the unique values found in RACE and SEX columns from the 

demographic data 

table(sub_Cl$RACE) 

table(sub_Cl$SEX) 

 

X <- split(sub_Cl, sub_Cl$OS_STATUS) 

living <- X$`0:LIVING` 

deceased <- X$`1:DECEASED` 

table(living$FAB) 

table(deceased$FAB) 

 

graph_living <- boxplot(OS_MONTHS~FAB, data = living, notch = TRUE, 

col=rainbow(length(table(sub_Cl$FAB))), main = "French, American, and British Classification 

against Overall Survival (Living)", ylab = "Overall Survival (in Months)", xlab = "FAB 

Classification") 

 

graph_deceased <- boxplot(OS_MONTHS~FAB, data = deceased, notch = TRUE, 

col=rainbow(length(table(sub_Cl$FAB))), main = "French, American, and British Classification 
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against Overall Survival (Deceased)", ylab = "Overall Survival (in Months)", xlab = "FAB 

Classification") 

``` 
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