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Abstract

Toeplitz matrices have garnered renewed interest in recent years due to their practical ap-

plications in engineering and computational sciences. Additionally, research has shown their

connection to other matrices and their significance in matrix theory. For example, one study

demonstrated that any matrix can be expressed as the product of Toeplitz matrices (Ye and

Lim, 2016), while another showed that any square matrix is similar to a Toeplitz matrix

(Mackey et al., 1999).

Numerous studies have examined various properties of Toeplitz matrices, including ideals

of lower triangular Toeplitz matrices (Dogan et al., 2018), matrix power computation with

band Toeplitz structures (Dogan and Suarez, 2017), and norms of Toeplitz matrices. More-

over, the use of Lucas and Fibonacci numbers has been employed to describe Toeplitz matrix

norms (Akbulak and Bozkurt, 2008). With their spectral properties, Toeplitz matrices are

crucial to physics, statistics, and signal processing. Furthermore, they aid in the modeling of

problems such as computing spline functions, signal and image processing, and polynomial

and power series computations (Bini, 1995).

This study investigates recursive forms for the determinants of k−tridiagonal Toeplitz

matrices. The aim is to extend the known recursions for 1 and 2-tridiagonal Toeplitz matri-

ces. The current research has led to a conjecture on recursive forms for determinants of all

k−tridiagonal Toeplitz matrices, k > 2. The study gives a finding of recursions in two forms:

one applying Binomial expansion and the other applying LU-decomposition of matrices.The

LU-Decomposition is considered, in the Literature, for k−tridiagonal of any matrix but not

for Toeplitz matrices. This thesis focused on Toeplitz matrices.
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Chapter 1

Introduction

1.1 Significance and Motivation

1.1.1 Significance

Due to recent advances and discoveries, Toeplitz matrices have become increasingly relevant

in the fields of science, engineering, and computerized algorithms.One recent discovery,is

that every n× n matrix can be expressed as a product of ⌊n
2
⌋+ 1 Toeplitz matrices (Ye and

Lim, 2016). Here, ⌊n
2
⌋ stands for the floor function of n

2
. Additionally, it was shown in the

same article that any n×n matrix can be expressed as a product of at most 2n+ 5 Toeplitz

matrices. The authors demonstrated that ⌊n
2
⌋ + 1 is the minimum number of r-Toeplitz

matrices required to express any generic n × n matrix (for more information on r-Toeplitz

matrices, see Ye and Lim (2016). Based on this finding, the authors further proved that

every n×n matrix can be expressed as a product of 4r+1 Toeplitz matrices, where r = ⌊n
2
⌋.

It is important to note that, unless stated otherwise, this proposal considers complex valued

matrices.

Mackey et al. (1999) presented another significant work in this field. These authors proved

that every n × n complex matrix with n ≤ 4 can be transformed into a Toeplitz matrix by

means of a similarity transformation. Specifically, they showed that every n × n complex

nonderogatory matrix can be transformed into a unique upper Hessenberg Toeplitz matrix.

Here, nonderogatory means that the matrix has only one linearly independent eigenvector for

each eigenvalue or the eigenvalue has a geometric multiplicity of one. The authors utilized the

concept of Jordan Canonical form to achieve this. Moreover, they established that any n×n
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matrix A with a canonical form and n ≤ 4 is either nonderogatory or diagonalizable, implying

that such a matrix can be transformed into a Toeplitz matrix via similarity transformation.

The presence of Toeplitz matrices in computerized algorithms highlights their significant

role in modeling various problems, including the computation of spline functions, statistics,

parallel computing, signal and image processing, numerical solutions of differential equations,

boundary value problems, interpolation problems, physics, and polynomial and power series

computations. As a result, there has been a renewed interest in Toeplitz matrices over the

years, and various properties have been studied. For example, studies have been conducted

on the ideals of lower triangular Toeplitz matrices (Dogan et al., 2018). Other areas of

research include Matrix Power Computation Band Toeplitz Structure (Dogan and Suarez,

2017), norms of Toeplitz matrices, and the use of Lucas and Fibonacci numbers to describe

Toeplitz Matrix norms (Akbulak and Bozkurt, 2008). The most pertinent Literature to my

thesis includes studies on the recursive forms of determinants for 1 and 2-tridiagonal Toeplitz

matrices, (Borowska et al., 2012; Borowska and  Lacińska, 2015), respectively. Additionally,

Gover’s work (1994) on tridiagonal 2-Toeplitz matrices is also relevant to my research.

In the thesis, I investigated recursive forms of the determinant for k-tridiagonal Toeplitz

matrices,k > 2, building upon the existing work on 1 and 2-tridiagonal Toeplitz matrices.

Toeplitz matrices play a crucial role in STEM fields as well. Various properties of these

matrices are studied extensively, including determinants, eigenvalues, eigen vectors, condi-

tion numbers, norms, and singular values. Mukherjee and Maiti (1988) noted that positive

definite Toeplitz matrices and their spectral properties have applications in econometrics,

psychometrics, structural engineering, seismology, and statistics. These authors asserted

that Toeplitz matrices can give rise to different matrix structures, such as flip matrix, cen-

trosymmetric matrix, symmetric Toeplitz matrix, and Hankel matrix. Böttcher and Grudsky

(2005) studied the spectral properties of band Toeplitz matrices, although their results were

asymptotic in nature, and mainly considered larger sized matrices.

The location of zeros associated with the eigenpolynomials in relation to a Hermitian

Toeplitz matrix is of high interest to signal processing (Trench, 1994). Toeplitz matrices are

2



also used in various modeling problems (Bini, 1995). These problems include the numerical

solution of certain differential and integral equations, computation of spline functions, time

series analysis, signal and image processing, Markov chains and queueing theory, and poly-

nomial and power series computations. In short, Toeplitz matrices are essential in scientific

research, and any new findings will add significant value to the field. This thesis is adding

new information to the field, discussing recursive forms of determinant of k− tridiagonal

Toeplitz matrices for k > 2.

1.1.2 Motivation-Driving Force

Before I began my thesis,I was experimenting with different determinant forms for various

k− tridiagonal Toeplitz matrices. As a result, I identified 4 different patterns listed below.

Conjecture 1.1.1. Given T
(k)
n , k > 2 and n = km + s for all 0 ≤ s < k.

Then, in the expression:

W (k)
n = W

(1)

[nk ]
W

(k−1)

n−[nk ]
(1.1)

• Case 1

When k ∈ O and n ∈ 2N. Then, [n
k

]
is the nearest even integer.

• Case 2

When k, n ∈ O. Then, [n
k

]
is the nearest odd integer.

• Case 3

When k ∈ 2N and n ∈ O. Then, [n
k

]

3



is the nearest even integer.

• Case 4 (Special Case)

Let T
(k)
n , k > 2 and n, k ∈ 2N. Then for n = km + s, 0 ≤ s < k.

W (k)
n =

(
W

( k
2
)

n
2

)2
0nce I recognized these patterns among some Toeplitz matrices, I decided to take on the

challenge of proving them.Thus, my thesis is the result of this challenge

4



1.2 Terminology and Symbols

To ensure clarity, let us first define symbols and terminologies utilized throughout the thesis.

• k, n : a natural number.

• M : Any square Matrix.

• Mij: represents the ij entry of any matrix M.

• Tn: n× n Toeplitz Matrix.

• M (k): k− tridiagonal matrix, k > 0.

• T
(k)
n : k− tridiagonal Toeplitz matrix.

• Wn or W
(1)
n : determinant of T

(1)
n . That is detT

(1)
n = Wn.

• W
(k)
n : determinant of T

(k)
n , k > 1. That is, detT

(k)
n = W

(k)
n , k > 1.

• Rj: jth row of a matrix.

• N : Set of Natural Numbers. Here, we exclude 0.

• O : Set of odd natural numbers.

• 2N : Set of even natural numbers.

• C : Set of Complex Numbers.

•
[
n
k

]e
: The nearest even integer

•
[
n
k

]o
:The nearest odd integer

It is worth noting here that certain theorems discussed in the later sections of the thesis may

employ different symbols and terminologies than the ones in section 1.2 . If so, it will be

explicitly highlighted.

5



1.3 Basic Definitions

In this section,fundamental concepts and main ideas are pivoted. These concepts encom-

pass Toeplitz Matrix, Tridiagonal Matrix, and Tridiagonal Toeplitz Matrix. One can find

information on determinants and cofactor expansion in Shah and Thakkar (2020, p. 21).

Definition 1.3.1. A square matrix is considered a 1− tridiagonal matrix, denoted as M (1),

when it satisfies the following conditions:

M
(1)
ij =



ai ; i = j

bi ; j − i = 1 ,

cj ; i− j = 1

0 otherwise

for i, j = 1, 2, · · · , n and ai, bi, cj ∈ C.

A tridiagonal matrix generally exhibits the following structure:

M (1) =



a1 b1

c1 a2 b2 0

c2 a3 b3

c3 a4
. . .

0
. . . . . . bn−1

cn−1 an


. (1.2)

Example 1.3.2. This example gives a 4 × 4 tridiagonal matrix.

M (1) =


1 5 0 0

i 2 e 0

0 4 7 −i

0 0 1 π

 .

6



Definition 1.3.3. An n×n matrix, denoted as M
(k)
1 , is referred to as a k−tridiagonal matrix

when it satisfies the following conditions:

M
(k)
ij =



ai ; i = j

bi ; j − i = k ,

cj ; i− j = k

0 otherwise

for i, j = 1, 2, · · · , n and ai, bi, cj ∈ C. Here, k ∈ N.

The following is a typical structure of a k− tridiagonal Matrix.

M (k) =



a1 0 . . . b1 0

0 a2 0
. . .

...
...

... bn−k

c1 0 . . . ak+1

. . . . . .
...

0 · · · cn−k 0 · · · an


, (1.3)

where 1 ≤ k < n.

Remark 1.3.4. k = 1 gives the definition of a Tridiagonal Matrix.

Example 1.3.5. This is a 7×7 matrix that shows an example of Definition1.3.3 when k = 3.

M (3) =



1 0 0 −π 0 0 0

0 2 0 0 2 0 0

0 0 4 0 0 3 0

i 0 0 5 0 0 −i

0 π 0 0 3 0 0

0 0 e 0 0 6 0

0 0 0 −10 0 0 7


.
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Definition 1.3.6. A Toeplitz matrix is a matrix Tn with

Tij = Ti+1,j+1, ∀i, j = 1, 2, · · · , n.

Or Tn = [ti,j] where ti,j = ti−j.

According to Kırklar and Yılmaz (2015), a common structure of a Toeplitz matrix can

be represented using the form below.

Tn =



a0 a1 a2 · · · · · · an

a−1 a0 a1
. . .

...

a−2 a−1
. . . . . .

...
. . . . . . . . . . . . a1 a2
...

. . . . . . . . . a1

a−n · · · · · · a−2 a−1 a0


. (1.4)

Example 1.3.7. This example gives a 3 × 3 Toeplitz matrix.

T (1) =


3 1 π

2 3 1

i 2 3


Note that, definitions given next are special cases of definitions (1.3.1) and (1.3.3).

Definition 1.3.8. A 1− tridiagonal Toeplitz matrix, T
(1)
n is a 1− tridiagonal matrix where

a = ai, b = bi, ∀i, and c = cj,∀j. That is,

T
(1)
ij =



a ; i = j

b ; j − i = 1 ,

c ; i− j = 1

0 otherwise

for i, j = 1, 2, · · · , n and a, b, c ∈ C. Here, a, b, c ̸= 0.

8



The following describes a typical form of Definition 1.3.8.

T (1)
n =



a b

c a b 0

c a b
. . . . . . . . .

0
. . . . . . b

c a


. (1.5)

Definition 1.3.9. A k-tridiagonal Toeplitz matrix, T
(k)
n , is a k− tridiagonal matrix where

a = ai, b = bi, ∀i and c = cj, ∀j. That is

T
(k)
ij =



a ; i = j

b ; j − i = k ,

c ; i− j = k

0 otherwise

for i, j = 1, 2, · · · , n and a, b, c ∈ C. Here, a, b, c ̸= 0.

The following describes a typical structure of (1.3.9)

T (k)
n =



a 0 . . . b 0

0 a 0
. . .

...
...

. . .
... b

c 0 . . . a
. . . . . .

...

0 · · · c 0 · · · a


. (1.6)

Remark 1.3.10. k = 1 gives the definition of a tridiagonal Toeplitz Matrix.

Remark 1.3.11. All the work presented in this thesis is based upon the premise that W
(k)
n ̸= 0

for all k ≥ 1.

9



1.3.1 Organization of the study

The following is a conceptual breakdown of the remaining chapters:

• Chapter 2 delves into the foundational mathematical concepts essential to understand-

ing the subsequent chapters. Here,we explore existing lemmas and theorems related to

determinants of Toeplitz matrices.

• Chapter 3 discusses the new findings via lemmas, corollaries, and theorems. Specifi-

cally, new ideas are presented on previously established theorems on determinants of

Toeplitz matrices. These ideas are considered in the proof of the main conjecture,

which ignited my Thesis work.

• In Chapter 4, we present a proof of the main conjecture concerning the recursive forms

of the determinant of k− Tridiagonal Toeplitz matrices, k ≥ 2 .

• Finally, in Chapter 5, we discuss potential avenues for future research. We explore

possible directions that can build upon the current work and highlight areas that

warrant further investigations.

10



Chapter 2

Preliminaries

This section provides a brief overview of concepts and theories from relevant literature that

are closely linked to my study. Specifically, I explore various theorems that furnish the

necessary mathematical foundation for my research.

2.1 1-Tridiagonal Toeplitz Matrices

In this section, we delve into several concepts uncovered in articles pertaining to 1− tiadi-

agonal Toeplitz matrices. For instance, Bergum and Hoggatt Jr (1978) elaborated on “A

family of Tridiagonal Matrices” and presented a recursive sequence of determinants.

Theorem 2.1.1. (Bergum and Hoggatt Jr, 1978) For k = 1, determinants of Tn are recur-

sively given by:

Wn+2 = aWn+1 − bcWn

for n ≥ 1, with initial values, W0 = 1 and W1 = a.

Proof. Let us briefly discuss the ideas that were utilized in proving the theorem. Verifying

a few terms of the closed form of the sequence, {Wn}∞1 ,

W2 = a2 − bc, W3 = a3 − 2abc, W4 = a4 − 3a2bc + b2c2.

Inductively, one shows,

Wn+2 = aWn+1 − bcWn , for n ≥ 1.

11



Another related work on the topic is presented by Zhang (2011). Zang established recur-

sions for the determinants of 1− Tridiagonal Toeplitz as follows.

Theorem 2.1.2. (Zhang, 2011, p.133) Let T
(1)
n be as given in definition 1.3.8. Then, its

determinant is:

Wn =


an if bc = 0

(n + 1)(a
2
)n if a2 = 4bc

(αn+1−βn+1)
α−β

if a2 ̸= 4bc

where α = a+
√
a2−4bc
2

and β = a−
√
a2−4bc
2

Proof. A brief discussion of the ideas employed in the theorem is given here.

Considering the equation,

Wn = aWn−1 − bcWn−2. (2.1)

The case, bc = 0, will give Wn = an.

For the case bc ̸= 0, we suppose that α and β are the roots of the monic polynomial

x2 − ax + bc = 0.

Algebraically, we can infer that α + β = a and αβ = bc for the roots α and β. Utilizing the

discriminant a2 − 4bc, one obtains

a2 − 4bc = (α− β)2. (2.2)

Then,

Wn − αWn−1 = β(Wn−1 − αWn−2)

and

Wn − βWn−1 = α(Wn−1 − βWn−2).
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Let’s now consider

dn = Wn − αWn−1

and

hn = Wn − βWn−1.

Then, dn = βn and hn = αn. It follows that,

βn = Wn − αWn−1 (2.3)

and

αn = Wn − βWn−1. (2.4)

Subtracting (2.3) from (2.4),one obtains,

Wn =
αn+1 − βn+1

α− β

for α ̸= β.

For the case, α = β, one obtains,

Wn = (n + 1)
(a

2

)n
.
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2.2 2-Tridiagonal Toeplitz Matrices

Here, we discuss briefly some known results on 2− Tridiagonal Toeplitz matrices.

Theorem 2.2.1. (Bergum and Hoggatt Jr, 1978) For k = 2 and n ≥ 5,

W (2)
n = aW

(2)
n−1 − abcW

(2)
n−3 + b2c2W

(2)
n−4.

Proof. A brief discussion of the ideas employed in proving the Theorem. The first 3−terms

are:

W
(2)
1 = a, W

(2)
2 = a2, W

(2)
3 = a3 − abc.

Inductively, one shows

W (2)
n = aW

(2)
n−1 − abcW

(2)
n−3 + b2c2W

(2)
n−4 , n ≥ 5.

In the following Theorem, Borowska and  Lacińska (2015) presented an additional recur-

sive formula for the determinant of the 2-tridiagonal Toeplitz matrix.

Theorem 2.2.2. (Borowska and  Lacińska, 2015)

For T
(k)
n ,

W (2)
n =


(
Wn

2

)2
, n is even

Wn−1
2
Wn+1

2
, n is odd

Proof. A brief overview of the ideas is as follows. A proof of theorem 2.2.2 can be found in

Borowska et al. (2013). First, we shall introduce the notations used by the Authors in their

proof.The authors use the symbol P to represent 2-tridiagonal Toeplitz matrices and denote

the determinant as Fn. That is,

Fn = detP.

Additionally, the authors use the notation xi to represent the diagonal entries of U, an upper

triangular matrix. The proof employs the idea of LU− Decomposition,giving Fn =
∏n

i=1 xi,
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where xi ̸= 0 and given as :

xi =

a, i = 1, 2

a− bc
xi−2

, i = 3, · · · , n

In the paper, x2k−1 = Wk

Wk−1
. Specifically, for the case, n = 2k, x2k−1 = x2k. Therefore,

considering our terminology for the determinant of 1− tridiagonal Toeplitz matrices, one

writes,

Fn =

(
W1

W0

)2(
W2

W1

)2

× · · · ×
(
Wk−1

Wk−2

)2

×
(

Wk

Wk−1

)2

.

= (Wk)2 (2.5)

Hence,

W (2)
n =

(
Wn

2

)2
for n = 2k.

For the case n = 2k + 1, k = n+1
2

. Following similar logic, one arrives at:

Fn =

(
W1

W0

)2(
W2

W1

)2

× · · · ×
(
Wk−1

Wk−2

)2

×
(

Wk

Wk−1

)
.

= Wk−1Wk (2.6)

Hence,

W (2)
n = Wn−1

2
Wn+1

2
.
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2.3 LU Factorizations of Tridiagonal Matrices

In this section, we explore basic concepts related to the LU factorization (Lu, 2021), and

share literature work on k− tridiagonal matrices, M (k).

2.3.1 Framework of LU-Decompositions

Within this section, we aim to examine the composition of LU-Decomposition. Specifically,

we will focus on the visual representation of the Lower triangular Matrix, denoted as L, and

the Upper triangular Matrix, denoted as U , concerning a k-Triangular Toeplitz matrix. We

denote this matrix as T
(k)
n , where n = km + s and 0 ≤ s < k.

To establish the visual representation, we employ the relationship vl+1 = Wl+1

Wl
, where

j = lk + 1, · · · , (l + 1)k, with l = 0, · · · ,m − 1 for the case when n = km. The proof for

this relationship can be found in Theorem 3.1.7. Additionally, for the remaining s rows, we

utilize Wm+1

Wm
, where j = km + 1, · · · , km + s and l = m. The proof of this can be found in

Corollary 3.1.7.1.

2.3.1.1 1-Tridiagonal Toeplitz Matrix

Remark 2.3.1. The following describes structures of L and U for 1− tridigonal Topelitz

matrix when n = km. Here, k=1.

L =



1

c
v1

1 0

c
v2

1

c
v3

. . .

. . . . . .

0 c
vn−1

1


, (2.7)
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and

U =



v1 b

v2 b 0

v3 b

v4
. . .

0
. . . b

vn


. (2.8)

2.3.1.2 2-Tridiagonal Toeplitz Matrix

Remark 2.3.2. The following describes structures of L and U for 2− tridiagonal Toeplitz

matrix when n = km. Here, k = 2.

L =



1

0 1

c
v1

. . . 1 0

c
v1

. . . 1

c
v2

. . . . . .

c
v2

. . . . . .

. . .

0 c
vm−1

. . . . . .

c
vm−1

0 1



, (2.9)
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and

U =



v1 0 b

v1
. . . b 0

v2
. . . b

v2
. . . . . .

0
. . . . . . b

vm 0

vm


. (2.10)

Remark 2.3.3. The following describes structures of L and U for 2− tridiagonal Toeplitz

matrix when n = km + s for s = 1. Here, k = 2.

L =



1

0 1

c
v1

. . . 1 0

c
v1

. . . 1

c
v2

. . . . . .

c
v2

. . . . . .

. . .

0 c
vm−1

. . . . . .

c
vm−1

0 1

c
vm

0 1



, (2.11)
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and

U =



v1 0 b

v1
. . . b 0

v2
. . . b

v2
. . . . . .

0
. . . . . . . . .

vm
. . . b

vm 0

vm+1



. (2.12)
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2.3.1.3 k-Tridiagonal Toeplitz Matrix

Remark 2.3.4. The following describes structures of L and U for k− tridiagonal Toeplitz

matrix when n = km. Here, k ≥ 3.

L =



1
... 1

c
v1

... 1
. . .

...
. . . 0

c
v1

· · · . . .

c
v2

1
. . . . . .

c
v2

0
. . . . . .

c
vm−1

· · · 1
. . . · · · . . .

c
vm−1

· · · 1



, (2.13)
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and

U =



v1 · · · b
. . . · · · . . .

v1 · · · . . .

v2 · · · b 0
. . . · · · b

v2 · · · b
. . . · · · . . .

. . . · · · . . .

0
. . . · · · . . .

. . . · · · b

vm · · · b
. . .

...

vm



.

21



Remark 2.3.5. The following describes structures of L and U for k− tridiagonal Toeplitz

matrix when n = km + s. Here, k ≥ 3.

L =



1
...

. . .

c
v1

1
. . . 1 0

c
v1

. . .

. . . 1
. . . . . .

c
vm−1

1

0
. . . . . .

c
vm−1

1

c
vm

1
. . . . . .

c
vm

· · · 1



,
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and

U =



v1 · · · b
. . . · · · . . .

v1 · · · . . .

v2 · · · b 0
. . . · · · b

v2 · · · b
. . . · · · . . .

vm · · · . . .

0
. . . · · · . . .

vm · · · b

vm+1 · · · b
. . .

...

vm+1



.

Let’s now take a look at a few works from Literature making use of LU-decomposition

in their proofs.

Theorem 2.3.6. (Yalçiner, 2011)

(a). Given a k− tridiagonal matrix M (k) and n = ks + m, for r = 1, 2, · · · , k ; i =

1, 2, · · · , s with M (k) = LU. And, let t
(r)
i be the determinant of a 1-tridiagonal matrix

with dimensions i × i where r indicates the row in which this determinant is located

within the matrix along the diagonal.

Then,

t
(r)
i+1 = aki+rt

(r)
i − bki−k+rcki−k+r

t
(r)
i−1. (2.14)

(b). Given a k-tridiagonal matrix and n = ks + m for 0 ≤ m < k. Then

detM (k) =


∏k

r=1 t
(r)
s , m = 0∏m

r=1 t
(r)
s+1

∏k
r=m+1 t

(r)
s , 1 ≤ m < k

(2.15)
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Proof. We offer a brief overview of the concepts employed in the proof. The author furnishes

a comprehensive proof for (2.15), but omits the proof for (2.14). To prove the former, the

author utilizes the concept of elementary row operations.

The first step in the proof is to process by employing the first elementary row oper-

ation.That is, multiplying the first row by − c1
a1

and adding it to the (k+1)th row. This

process eliminates c1 and modifies the corresponding diagonal entry accordingly as:

t
(1)
2

t
(1)
1

.

Here, t
(1)
1 is the determinant of 1 × 1 matrix on R1. That is,[

a1

]
,

and t
(1)
2 is the determinant of a 2 × 2 matrix on R2. That is,a1 b1

c1 a2

 .

Repeating this process results in,

ar+(s−1)k −
br+(s−2)kcr+(s−2)kt

(r)
s−2

t
(r)
s−1

=
ts

(r)

ts−1
(r)

, 1 ≤ r ≤ k.

For the case m = 0, one obtains:

detM (k) = t
(1)
1 t

(2)
1 · · · t(k)1

t2
(1)

t1
(1)

· · · t2
(k)

t1
(k)

· · · ts−1
(k)

ts−2
(k)

ts
(1)

ts−1
(1)

· · · ts
(k)

ts−1
(k)

= t(1)s · · · t(k)s

=
k∏

r=1

t(r)s . (2.16)

Similarly for the case of m ̸= 0, one obtains:

detM (k) =
k∏

r=m+1

t(r)s

m∏
r=1

t
(r)
s+1 (2.17)

We shall note here that, a recursion for detT
(k)
n is briefly mentioned without a proof in

Yalçiner (2011). A proof is included in the thesis.
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Chapter 3

New Contributions To the Field

In this section, we first highlight new mathematical ideas with proofs. These are used in the

proof of the main theorem.

3.1 Description and Proofs

In this section, we share two separate ideas for the determinant of k− tridiagonal Toeplitz ma-

trices. One is using Binomial Expansion and the others are applying LU-Decomposition.

3.1.1 Binomial Coefficients

Let’s first take a look at two Lemmas regarding a few properties of Binomial coefficients

(Lipschutz, 1981, p.19).

Lemma 3.1.1. Given
(
n−1
m−1

)
,
(
n−1
m

)
for n,m ∈ N, n ≥ m. Then,(

n− 1

m− 1

)
+

(
n− 1

m

)
=

(
n

m

)
.

Proof. This is a standard proof in Lipschutz (1981, p.27).

Note: Lemma 3.1.1 is also the same as(
(n + 1 −m) − 1

m

)
+

(
(n + 1 −m) − 1

m− 1

)
=

(
n + 1 −m

m

)
(3.1)

where n∗ = n + 1 −m.

Lemma 3.1.2. For n,m ∈ N with m ≤ n and n = 2m + 1,(
n−m

m + 1

)
=

(
n−m− 1

m

)
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Proof. Let’s consider, (
n−m

m + 1

)
−
(
n−m− 1

m

)
(3.2)

where n = 2m + 1.

By Binomial Coefficients,(
n−m− 1

m

)
=

(n−m− 1)!

(n− 2m− 1)!m!

=
(n−m− 1)!(m + 1)

(n− 2m− 1)!m!(m + 1)

=
(n−m− 1)!(m + 1)

(n− 2m− 1)!(m + 1)!
(3.3)

and (
n−m

m + 1

)
=

(n−m)!

(n− 2m− 1)!(m + 1)!
(3.4)

Then, one obtains:(
n−m

m + 1

)
−
(
n−m− 1

m

)
=

(n−m− 1)! [(m + 1) − (n−m)]

(m + 1)!(n− 2m− 1)!

=
(n−m− 1)!(2m + 1 − n)

(m + 1)!(n− 2m− 1)!

= 0 for n = 2m + 1. (3.5)
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Now, let’s turn our attention to a theorem determining W
(1)
n of T

(1)
n in terms of Binomial

Coefficients.

Theorem 3.1.3 (New Contribution). Let n ≥ 2 and the largest m ∈ N with 2m ≤ n.

Then,

W (1)
n =

m∑
i=0

(−1)i
(
n− i

i

)
an−2i(bc)i (3.6)

Proof. We prove the Theorem inductively in two cases.

Case 1: n=2m

Let us first verify W
(1)
2 and W

(1)
3 .

W
(1)
2 =

1∑
i=0

(−1)i
(

2 − i

i

)
a2−2i(bc)i

= a2 −
(

2 − 1

1

)
a2−2(bc)1

= a2 − bc

and

W
(1)
3 =

1∑
i=0

(−1)i
(

3 − i

i

)
a3−2i(bc)i

= a3 −
(

3 − 1

1

)
a3−2(bc)1

= a3 − 2abc

Now, assume (3.6) for k = n− 1 and k = n.

Then by Theorem 2.1.1, for

W (1)
n =

m∑
i=0

(−1)i
(
n− i

i

)
an−2i(bc)i (3.7)
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and

W
(1)
n−1 =

m−1∑
i=0

(−1)i
(
n− 1 − i

i

)
an−1−2i(bc)i (3.8)

we write

Wn+1 = aW (1)
n − bcW

(1)
n−1

= a
m∑
i=0

(−1)i
(
n− i

i

)
an−2i(bc)i − bc

m−1∑
i=0

(−1)i
(
n− 1 − i

i

)
an−1−2i(bc)i (3.9)

Let’s now show that each Binomial term of W
(1)
n+1 is coming from 3.9

Considering i = 0 for W
(1)
n+1 ,

(−1)0
(
n + 1 − 0

0

)
an+1−0(bc)0 = an+1

we see that it is the first term of W
(1)
n multiplied by “a”.

That is,

a

(
(−1)0

(
n− 0

0

)
an−0(bc)0

)
= a(an)

= an+1

Now, let’s consider any ith term of Wn+1 for 0 < i < m :

(−1)i
(
n + 1 − i

i

)
an+1−2i(bc)i (3.10)

which is just the same as “a” times the ith term of Wn and “ − bc” times (i− 1)th term of

Wn−1
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That is:

a

(
(−1)i

(
n− i

i

)
an−2i(bc)i

)
− bc

(
(−1)i−1

(
n− 1 − i + 1

i− 1

)
an−1−2(i−1)(bc)i−1

)
=

(
(−1)i

(
n− i

i

)
an+1−2i(bc)i

)
+

(
(−1)i

(
n− 1 − i + 1

i− 1

)
an+1−2i)(bc)i

)
= (−1)ian+1−2i(bc)i

[(
n− i

i

)
+

(
n− i

i− 1

)]
= (−1)ian+1−2i(bc)i

[(
n + 1 − i− 1

i

)
+

(
n + 1 − i− 1

i− 1

)]
(3.11)

By Lemma 3.1.1, we get,

(−1)ian+1−2i(bc)i
(
n + 1 − i

i

)
.

This completes this part of the proof.

Now, for the last term i = m of Wn+1, one follows a similar process. That is:

(−1)m
(
n + 1 −m

m

)
an+1−2m(bc)m

= a

(
(−1)m

(
n−m

m

)
an−2m(bc)m

)
− bc

(
(−1)m−1

(
n− 1 −m + 1

m− 1

)
an−1−2(m−1)(bc)m−1

)
Case 2: n=2m+1

This case follows the steps similar to ones in Case 1. The only difference is in the verification

of the (m + 1)th term of Wn+1.

Let’s verify this step. Here, one considers: n + 1 = 2m + 2 and n− 1 = 2m.

The last term of Wn+1 comes from i = m + 1. That is:

(−1)m+1

(
n + 1 − (m + 1)

m + 1

)
an+1−2(m+1)(bc)m+1, (3.12)

and the last term of Wn−1 comes from i = m for n = 2m + 1. That is,

(−1)m
(
n− 1 −m

m

)
an−1−2m(bc)m (3.13)

This could clearly be seen that, 3.12 is obtained by multiplying the 3.13 by −bc.
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That’s :

(−1)m
(
n− 1 −m

m

)
an−1−2m(bc)m × (−bc). (3.14)

Hence, by Lemma 3.1.2, we recognize 3.14 is the same as 3.12.

Remark 3.1.4. This completes the case by case aspect of proof.

In summary, given n = 2m then n− 1 = 2m− 1 = 2t + 1 where t = m− 1.

One obtains:

W
(1)
n+1 = a

m∑
i=0

(−1)i
(
n− i

i

)
an−2i(bc)i − bc

t∑
i=0

(−1)i
(
n− 1 − i

i

)
an−1−2i(bc)i

Therefore, writing out the various terms, one obtains:

aW (1)
n = a

m∑
i=0

(−1)i
(
n− i

i

)
an−2i(bc)i

= a

(
n

0

)
an − a

(
n− 1

1

)
an−2(bc) + a

(
n− 2

2

)
an−4(bc)2 − · · · + a(−1)m

(
n−m

m

)
an−2m(bc)m

=

(
n + 1

0

)
an+1 −

(
n− 1

1

)
an−1(bc) + · · · + (−1)m

(
n−m

m

)
an+1−2m(bc)m (3.15)

and

−bcW
(1)
n−1 = −bc

t∑
i=0

(−1)i
(
n− 1 − i

i

)
an−1−2i(bc)i

= −bc

(
n− 1

0

)
an−1 + bc

(
n− 2

1

)
an−3(bc) − · · · − bc(−1)t

(
n− 1 − t

t

)
an−1−2t(bc)t

= −
(
n− 1

0

)
an−1bc +

(
n− 2

1

)
an−3(bc)2 − · · · − (−1)t

(
n− 1 − t

t

)
an−1−2t(bc)t+1

= −an−1bc +

(
n− 2

1

)
an−3(bc)2 − · · · − (−1)m−1

(
n−m

m− 1

)
an+1−2m(bc)m (3.16)

Thus,with Lemma 3.1.2 together with 3.15 and 3.16,

W
(1)
n+1 =

(
n + 1

0

)
an+1 −

(
n

1

)
an−1(bc) +

(
n− 1

2

)
an−3(bc)2 − · · · + (−1)m

(
n + 1 −m

m

)
an+1−2m(bc)m

=
m∑
i=0

(−1)i
(
n + 1 − i

i

)
an+1−2i(bc)i (3.17)
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We believe that this new Theorem can be useful in computational environments,especially

in improving complexity of algorithms applying determinants of k− tridiagonal Toeplitz

matrices, since it is recursive in nature and using basic arithmetic.

3.1.2 LU-Decomposition

This section will discuss basics on determinants in the context of LU Decomposition (Lu,

2021, page 22), and a new perspective to the determinant of T
(k)
n , k > 2.

It is well known that for T
(1)
n = LU,

Wn = det L× det U (Shah and Thakkar, 2020, p.26)

Using this idea, one can easily verify that if L is a lower triangular matrix with diagonals 1,

then

Wn = det U

For the remainder of the thesis, we consider L as a lower triangular matrix with diagonals 1

as described in subsection 2.3.1.

Now, let’s take a look at the Upper triangular matrix , U, closely.

Theorem 3.1.5 (New Contribution). Let T
(1)
n = LU with the condition W0 = 1. Then,

Ujj = sj =
Wj

Wj−1

where Wj = det
(
T

(1)
j

)
for j ≥ 1. Additionally,

sj =

a, j = 1

a− bcWj−2

Wj−1
, j = 2, 3, · · · , n

(3.18)

Ideas used in proving this theorem reported in Borowska et al. (2013) for k = 2 and

Yalçiner (2011) for k = 1. We see no reason to provide another proof. We refer readers to

the proof of the two papers included in an earlier section.
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Corollary 3.1.5.1. Let T
(1)
n = LU. Then,

Wn =
n∏

j=1

sj

Proof. By Theorem 3.1.5 and Remark 2.3.1 and Wn = detU, one obtains,

Wn = s1 × · · · × sn

=
n∏

j=1

sj. (3.19)

3.1.2.1 Determinant of T
(k)
n = W

(k)
n for k > 2.

The following Lemma uses the Least Integer function denoted by ⌈ j
k
⌉ for fractions j

k
.

Lemma 3.1.6. For n = km

t[j] =

⌈
j

k

⌉
= l + 1

∀j = lk + 1, · · · , (l + 1)k with l = 0, · · · ,m− 1.

Proof. The proof is obvious and straightforward.

Now, we are ready to introduce LU− Decomposition to the determinant of k− tridiagonal

Toeplitz matrices with k > 2.

Theorem 3.1.7 (New Contribution). Given n = km, T
(k)
n = LU, k > 2 and the

condition W0 = 1.

Then,

Ujj = vt[j] =
Wl+1

Wl

(3.20)

where j = lk + 1, · · · , (l + 1)k with l = 0, · · · ,m− 1.
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Proof. Let Ujj = vt[j]. The proof considers ideas from Theorem 3.1.5 for each k− cluster of

k−tridiagonal Toeplitz matrix. That is, each k− cluster of U has identical diagonal entries

in the LU− Decomposition of the matrix.

This repetition is determined by t⌈j⌉ in Lemma 3.1.6.Thus, for all j = lk+1, · · · , (l+1)k

and each l = 0, · · · ,m− 1, one gets same diagonal value in U which is:

Ujj = vt[j] =
Wl+1

Wl

This completes the proof.

Corollary 3.1.7.1 (New Contribution). Given T
(k)
n = LU, for n = km + s, s ̸= 0, then

Ujj =
Wm+1

Wm

(3.21)

where j = km + 1, · · · , km + s and l = m.

Proof. In addition to the first km−rows, this corollary looks at the last s− rows of T
(k)
n

where n = km + s. That is, this is a direct result of Theorem 3.1.7 for the case l = m

∀j = km + 1, · · · , km + s.

Theorem 3.1.8 (New Contribution). Let T
(k)
n = LU with n = km.

Then,

W (k)
n =

(
m−1∏
l=0

vl+1

)k

,

where vl+1 = vt[j], ∀j = lk + 1, · · · , (l + 1)k and l = 0. · · · ,m− 1.

Proof. By Lemma 3.1.6, t[j] = l + 1, ∀j = lk + 1, · · · , (l + 1)k.

Thus, for l = 0, · · · ,m− 1,

W (k)
n =

k−many︷ ︸︸ ︷
v1 × · · · × v1× · · · ×

k−many︷ ︸︸ ︷
vm × · · · × vm

= (v1)
k × (v2)

k × · · · × (vm)k

=

(
m−1∏
l=0

vl+1

)k

(3.22)
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Remark 3.1.9. Since n = km, then an interesting observation of Theorem 3.1.8 is that:

W
(k)
km = (v1)

k × (v2)
k × · · · × (vm)k

Corollary 3.1.9.1 (New Contribution). Let T
(k)
n = LU with n = km. Then,

W (k)
n = (Wm)k .

Proof. From Theorems 3.1.7 and 3.1.8,

W (k)
n = (v1)

k × (v2)
k × · · · × (vm)k

=

(
W1

W0

)k

×
(
W2

W1

)k

× · · · ×
(
Wm−1

Wm−2

)k

×
(

Wm

Wm−1

)k

= (Wm)k (3.23)

We shall note that Corollary 3.1.9.1 was shortly mentioned in Yalçiner (2011) but the

author did not provide a proof.

Corollary 3.1.9.2 (New Contribution). Given that, T
(k)
n = LU with n = km + s.

Then,

W (k)
n =

(
m−1∏
l=0

vl+1

)k

(vm+1)
s

Proof. The idea to this proof follows from Theorem 3.1.8. That is,

W (k)
n =

k−many︷ ︸︸ ︷
v1 × · · · × v1× · · · ×

k−many︷ ︸︸ ︷
vm × · · · × vm ×

s−many︷ ︸︸ ︷
vm+1 · · · × vm+1

= (v1)
k × (v2)

k × · · · × (vm)k × (vm+1)
s

=

(
m−1∏
l=1

vl+1

)k

× (vm+1)
s (3.24)

This completes the proof.

Remark 3.1.10. Since n = km + s, then an interesting observation of Corollary 3.1.9.2 is

that:

W
(k)
km+s = (v1)

k × (v2)
k × · · · × (vm)k × (vm+1)

s
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Corollary 3.1.10.1 (New Contribution). Let T
(k)
n = LU with n = km + s. Then,

W (k)
n = (Wm)k−s × (Wm+1)

s .

Proof. The proof to this follows from Corollary(3.1.9.1) and Corollary(3.1.9.2).

W (k)
n = (v1)

k × (v2)
k × · · · × (vm)k × (vm+1)

s

= (Wm)k × (vm+1)
s

= (Wm)k ×
(
Wm+1

Wm

)s

= (Wm)k−s × (Wm+1)
s (3.25)

Remark 3.1.11. Since n = km+ s, then an interesting observation of Corollary 3.1.10.1 is

that:

W
(k)
km+s = (Wm)k−s × (Wm+1)

s .
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Chapter 4

Recursive Forms of W
(k)
n , k > 2

The objective of this chapter is to highlight the primary theorems that were conjectured at

the start of the thesis.

4.1 Theorems and Proofs

Within this section, our focus lies on the main theorems along with their accompanying

proofs. In this context, we have identified two key theorems pertaining to the determinant

of k− Tridiagonal Toeplitz matrices, k > 2.

Let’s start with a Lemma.

Lemma 4.1.1 (New Contribution). Let T
(k)
n = LU with n = km + s, s ̸= 0.

Then,

W
(k−1)

n−⌈n
k⌉

= (Wm)k−s(Wm+1)
s−1 (4.1)

Proof. For n = km + s, ⌈n
k

⌉
=

⌈
mk + s

k

⌉
= m + 1 (4.2)

Then,

n−
⌈n
k

⌉
= mk + s− (m + 1) = m(k − 1) + (s− 1).

By Corollary 3.1.10.1, it follows that

W
(k−1)

n−⌈n
k⌉

= W
(k−1)
m(k−1)+(s−1)
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= (Wm)k−1−(s−1)(Wm+1)
s−1 by Remark 3.1.11

= (Wm)k−s(Wm+1)
s−1 (4.3)

Theorem 4.1.2 (New Contribution). Let T
(k)
n = LU and n = km.

Then,

W (k)
n = W

(1)

⌈n
k⌉
W

(k−1)

n−⌈n
k⌉

(4.4)

Proof. Let L and U be given as shown in Remark 2.3.4.

Since ⌈n
k
⌉ = m, the proof is a direct result of Theorem 3.1.8.

Here, we separate one vi from each k− cluster m− many times. That is,

W(k)
n =

k−many︷ ︸︸ ︷
v1 × · · · × v1× · · · ×

k−many︷ ︸︸ ︷
vm × · · · × vm by Theorem 3.1.8

= v1 × v2 × · · · × vm︸ ︷︷ ︸
Wm

× (v1)
k−1 × · · · × (vm)k−1︸ ︷︷ ︸

W
(k−1)
m×(k−1)

= WmW
(k−1)
m×(k−1) by Remark 3.1.9

= WmW
(k−1)
mk−m

= W⌈n
k⌉W

(k−1)

n−⌈n
k⌉

(4.5)

=⇒ W(k)
n = W⌈n

k⌉W
(k−1)

n−⌈n
k⌉

Corollary 4.1.2.1 (New Contribution). Let T
(k)
n = LU with n = km + s, s ̸= 0.

Then,

W(k)
n = W⌈n

k⌉W
(k−1)

n−⌈n
k⌉

(4.6)

Proof. Let L and U be given as shown in Remark 2.3.5
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Then, by Corollary 3.1.9.2, and separating one vi from each k− cluster and s− cluster,

one obtains:

W (k)
n =

k−many︷ ︸︸ ︷
v1 × · · · × v1× · · · ×

k−many︷ ︸︸ ︷
vm × · · · × vm ×

s−many︷ ︸︸ ︷
vm+1 · · · × vm+1

= v1 × v2 × · · · × vm+1︸ ︷︷ ︸
Wm+1

× (v1)
k−1 × · · · × (vm)k−1︸ ︷︷ ︸

(Wm)k−1

× (vm+1)
s−1︸ ︷︷ ︸(

Wm+1
Wm

)s−1

= Wm+1 × (Wm)k−1 ×
(
Wm+1

Wm

)s−1

= Wm+1 × (Wm)k−1−(s−1) × (Wm+1)
s−1︸ ︷︷ ︸

W
(k−1)

n−⌈n
k⌉

by Lemma 4.1.1

= W⌈n
k

⌉W
(k−1)

n−
⌈n
k

⌉ (4.7)

=⇒ W (k)
n = W⌈n

k

⌉W
(k−1)

n−
⌈n
k

⌉
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Theorem 4.1.3 (Initial Conjecture). Let T
(k)
n , k > 2 and n = km + s, 0 ≤ s < k.

Then in the expression (4.8),

W (k)
n = W

(1)

[nk ]
W

(k−1)

n−[nk ]
(4.8)

• Case 1

When k ∈ O and n ∈ 2N. Then, [n
k

]
is the nearest even integer.

• Case 2

When k, n ∈ O. Then, [n
k

]
is the nearest odd integer.

• Case 3

When k ∈ 2N and n ∈ O. Then, [n
k

]
is the nearest even integer.

Remark 4.1.4. In this context, the term “nearest” refers to the closest or most immediate.

That’s, either the greatest or least. Here,
[
n
k

]
∈ N. Recall that,

[
n
k

]
is either m or m + 1 for

n = mk + s, 0 ≤ s < k.

Lastly, since
⌈
n
k

⌉
in Theorem 4.1.3 is nearest even or odd integer, we shall represent[n

k

]o
and [n

k

]e
to be the nearest odd and even integers respectively.
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Before giving a proof for Theorem 4.1.3, let’s take a look at a few lemmas to be used in the

proof.

Lemma 4.1.5 (New Contribution). Let m =
[
n
k

]e
. For T

(k)
n , k > 2 and n = km + s

where 0 < s < k. Then,

W
(k−1)

n−[nk ]
e = (Wm)k−1−s(Wm+1)

s (4.9)

Proof.

The proof is quite trivial. Since n = km + s and m =
[
n
k

]e
.

Then,

n−
[n
k

]e
= km + s−m = m(k − 1) + s

Thus, W
(k−1)

n−[nk ]
e = W

(k−1)
m(k−1)+s.

By Corollary 3.1.10.1 and Remark 3.1.11, one obtains:

W
(k−1)
m(k−1)+s = (Wm)k−1−s (Wm+1)

s (4.10)

Lemma 4.1.6 (New Contribution). Let m =
[
n
k

]o
. For T

(k)
n , k > 2 and n = km + s

where 0 < s < k. Then,

W
(k−1)

n−[nk ]
o = (Wm)k−1−s(Wm+1)

s (4.11)

Proof.

The proof is quite trivial. Since n = km + s and m =
[
n
k

]o
.

Then,

n−
[n
k

]o
= km + s−m

= m(k − 1) + s (4.12)

Thus, W
(k−1)

n−[nk ]
o = W

(k−1)
m(k−1)+s.

40



By Corollary 3.1.10.1 and Remark 3.1.11, one obtains:

W
(k−1)
m(k−1)+s = (Wm)k−1−s (Wm+1)

s (4.13)

let’s now turn our attention to the proof of the theorem.

Proof.

Let T
(k)
n , k > 2. The proof of Theorem 4.1.3 is a direct result of Theorem 4.1.2 and

Corollary 4.1.2.1 needing only the verification of each case. In each case, we shall consider

various scenarios of n. That’s, n = km or n = km + s.

Case 1 : k ∈ O and n ∈ 2N.

In this case, we shall consider both n = km and n = km + s.

• Step 1 : n = km

Let n ∈ 2N and k ∈ O. Recall that,
⌈
n
k

⌉
= m in this step. Then, for n = km, m ∈ 2N.

Hence, by ideas from Theorem 4.1.2, we select one vi from each k− cluster to form
⌈
n
k

⌉
= m.

Since m ∈ 2N, then we conclude that
⌈
n
k

⌉
=
[
n
k

]e
= m.

Thus, by Theorem 4.1.3

W (k)
n = W[nk ]

eW
(k−1)

n−[nk ]
e .

• Step 2 : n = km + s, s ̸= 0.

Here, we have two scenarios. m is even or odd as in the case of Example 4.1.7.

Since our emphasis in Case 1 is that
[
n
k

]
∈ 2N. If m ∈ 2N, then

⌈
n
k

⌉
is odd. We only

select vi’s from k− clusters. That’s one obtains,

W (k)
n = (Wm)k−s × (Wm+1)

s by Corollary 3.1.10.1
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= Wm × (Wm)k−s−1 × (Wm+1)
s︸ ︷︷ ︸

W
(k−1)

n−[nk ]
e

(4.14)

= Wm × W
(k−1)

n−[nk ]
e by Lemma 4.1.5 (4.15)

= W[nk ]
eW

(k−1)

n−[nk ]
e (4.16)

In addition, if m ∈ O, then, by Corollary 4.1.2.1, we select one from each k− cluster and s−

cluster. Then, m + 1 ∈ 2N. That’s
⌈
n
k

⌉
=
[
n
k

]e
= m + 1. Hence, by Corollary 4.1.2.1

W (k)
n = W[nk ]

eW
(k−1)

n−[nk ]
e

Thus, we conclude that, for Case 1,

W (k)
n = W[nk ]

eW
(k−1)

n−[nk ]
e

is verified.

Case 2 : k, n ∈ O.

In this case, we shall consider both n = km and n = km + s.

• Step 1 : n = km

Let n, k ∈ O. Recall that,
⌈
n
k

⌉
= m in this step. Therefore, for n = km where both n, k ∈ O,

m ∈ O. Hence, by ideas from Theorem 4.1.2, we select one from each k− cluster to form⌈
n
k

⌉
= m. Since m ∈ O, then we conclude that

⌈
n
k

⌉
=
[
n
k

]o
= m.

Thus, by Theorem 4.1.2

W (k)
n = W[nk ]

oW
(k−1)

n−[nk ]
o .
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• Step 2 : n = km + s, s ̸= 0.

Here, we have two scenarios. m is even or odd as in the case of Example 4.1.8.

Since our emphasis is
[
n
k

]
∈ O in this case. Therefore, If m ∈ O, then ⌈n

k
⌉ is even. We

only select vi’s from k− clusters. Hence, one obtains:

W (k)
n = (Wm)k−s × (Wm+1)

s by Corollary 3.1.10.1

= Wm × (Wm)k−s−1 × (Wm+1)
s︸ ︷︷ ︸

W
(k−1)

n−[nk ]
o

= Wm × W
(k−1)

n−[nk ]
o by Lemma 4.1.6 (4.17)

= W[nk ]
oW

(k−1)

n−[nk ]
o (4.18)

In addition, if m ∈ 2N, then, by Corollary 4.1.2.1, we select one from each k− cluster and

s− cluster. Then, m + 1 ∈ O. That’s,
⌈
n
k

⌉
=
[
n
k

]o
= m + 1.

Hence, by Corollary 4.1.2.1

W (k)
n = W[nk ]

oW
(k−1)

n−[nk ]
o

Thus, we conclude that, for Case 2,

W (k)
n = W[nk ]

oW
(k−1)

n−[nk ]
o

is verified.
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Case 3 : n ∈ O and k ∈ 2N.

In this case, n could only be km+s, s ̸= 0. However, we have 2 scenarios since m could be even

or odd. Consider Example 4.1.9. Our emphasis in this case is
[
n
k

]
∈ 2N. If m ∈ 2N,

⌈
n
k

⌉
∈ O.

That’s, we select vi’s from k− clusters and obtain:

W (k)
n = (Wm)k−s × (Wm+1)

s by Corollary 3.1.10.1

= Wm × (Wm)k−s−1 × (Wm+1)
s︸ ︷︷ ︸

W
(k−1)

n−[nk ]
e

(4.19)

= Wm × W
(k−1)

n−[nk ]
e by Lemma 4.1.5 (4.20)

= W[nk ]
eW

(k−1)

n−[nk ]
e (4.21)

On the other hand, if m ∈ O, then, by Corollary 4.1.2.1, we select one from each k−

cluster and s− cluster obtaining m + 1 many vi’s, and m + 1 ∈ 2N. That’s, m + 1 =
[
n
k

]e
.

Hence,

W (k)
n = W[nk ]

eW
(k−1)

n−[nk ]
e

Thus, we conclude that, for Case 3,

W (k)
n = W[nk ]

eW
(k−1)

n−[nk ]
e

is verified.

Example 4.1.7.

• Let n = 18 and k = 7, then m = 2.

• Let n = 16 and k = 3, then m = 5.
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Example 4.1.8.

• Let n = 19 and k = 3, then m = 6.

• Let n = 17 and k = 5, then m = 3.

Example 4.1.9.

• n = 21 and k = 4, then m = 5.

• n = 25 and k = 6, then m = 4.

This completes the proof of Theorem 4.1.3.

45



Corollary 4.1.9.1 (Special case of Initial Conjecture). Let T
(k)
n , k > 2 and n, k ∈ 2N.

Given n = km + s, 0 ≤ s < k.

Then,

W (k)
n =

(
W

( k
2
)

n
2

)2
Proof.

The proof of Corollary 4.1.9.1 is a direct result of Theorem 4.1.2 and Corollary 4.1.2.1.

Scenario 1 : n = km.

Let T
(k)
n , k > 2 and n = km. Here, m could be even or odd. Considering,

W (k)
n =

k−many︷ ︸︸ ︷
v1 × · · · × v1× · · · ×

k−many︷ ︸︸ ︷
vm × · · · × vm by Theorem 3.1.8

= (v1)
k × (v2)

k × · · · × (vm)k

= (v1)
k
2 × (v2)

k
2 × · · · × (vm)

k
2︸ ︷︷ ︸× (v1)

k
2 × (v2)

k
2 × · · · × (vm)

k
2︸ ︷︷ ︸

= (v1)
p × (v2)

p × · · · × (vm)p︸ ︷︷ ︸
W

(p)
mp

× (v1)
p × (v2)

p × · · · × (vm)p︸ ︷︷ ︸
W

(p)
mp

, where
k

2
= p

= W(p)
mp × W(p)

mp by Remark 3.1.9

=
(

W(p)
mp

)2
=
(

W
( k
2
)

n
2

)2
since k = 2p,

n

2
= mp. (4.22)

This shows that, regardless of whether m ∈ O or m ∈ 2N, a selection of vi’s
k
2

many from

each k− cluster is made m− many times. This will give us half- many entries of T
(k)
n . Thus,

we split T
(k)
n into two identical T

( k
2
)

n
2

giving W
(k)
n =

(
W

( k
2
)

n
2

)2
Scenario 2 : n = km + s, s ∈ 2N.

Let T
(k)
n , k > 2 and n = km + s, s ∈ 2N. Here, m could be even or odd. Regardless of

whether m ∈ O or m ∈ 2N, a selection of vi’s
k
2

many from each k− cluster and s
2

many

from s− cluster results in ;

W (k)
n =

k−many︷ ︸︸ ︷
v1 × · · · × v1× · · · ×

k−many︷ ︸︸ ︷
vm × · · · × vm ×

s−many︷ ︸︸ ︷
vm+1 · · · × vm+1 by Corollary 3.1.9.2
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= (v1)
k × (v2)

k × · · · × (vm)k × (vm+1)
s

= (v1)
k
2 × (v2)

k
2 × · · · × (vm)

k
2 × (vm+1)

s
2︸ ︷︷ ︸× (v1)

k
2 × (v2)

k
2 × · · · × (vm)

k
2 × (vm+1)

s
2︸ ︷︷ ︸

= (v1)
p × (v2)

p × · · · × (vm)p × (vm+1)
t︸ ︷︷ ︸

W
(p)
mp+t

× (v1)
p × (v2)

p × · · · × (vm)p × (vm+1)
t︸ ︷︷ ︸

W
(p)
mp+t

, let
k

2
= p,

s

2
= t

= W
(p)
mp+t × W

(p)
mp+t by Remark 3.1.10

=
(

W
(p)
mp+t

)2
=
(

W
( k
2
)

n
2

)2
since k = 2p,

n

2
= mp + t. (4.23)

This completes the proof.

Remark 4.1.10. If you recall, Borowska et al. (2013) proved a special case of Corollary

4.1.9.1 in Theorem 2.2.2 where k = 2. They used a different approach in proving.

Infact, Theorem 2.2.2 is one example of Corollary 4.1.9.1. In comparison to the proof

ideas they used, our approach is more powerful and simpler covering all cases not only k = 2.
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Chapter 5

Conclusion

Within this segment, I will provide a succinct overview of the accomplished tasks and outline

the anticipated future work related to our research.

5.1 Summary

To provide a brief overview of my project’s advancement, I would like to state that we

have successfully showcased how the determinant of a k-Tridiagonal Toeplitz matrix can be

computed based two main Theorems. That’s, Theorems 4.1.2 together with Corollary 4.1.2.1

and Theorem 4.1.3 together with Corollary 4.1.9.1. The methodology utilized to validate

our findings involves the incorporation of principles from LU decomposition.

5.2 Future Glance

Within this subsection, I draw attention to potential future work related to my research

findings. While my research focus was on identifying determinants of k− Tridiagonal Toeplitz

matrices, I could broaden our work to encompass k− Tridiagonal k− Toeplitz matrices.

Additionally, I could explore the eigenvalues and eigenvectors associated with these k−

Tridiagonal Toeplitz matrices and examine cases where W
(k)
n = 0 is permitted.
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