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Abstract 

In drylands, crop water use varies considerably where high temperatures and limited water 

availability constraints farming activities, and irrigation planning is essential for the efficient water 

use and long-term sustainability of agriculture. However, despite dwindling water supplies and the 

looming threat of more frequent and intense droughts, low-efficient irrigation (e.g., furrow and 

flooding) continues to be the most widely used method for water delivery into agricultural parcels. 

Transitioning into more sustainable agriculture requires knowledge of the period of productive vs. 

unproductive crop water use during the agricultural cycle. I developed a method using satellite 

images for partitioning evapotranspiration (ETa) into Evaporation (Ev) and Transpiration (Tr). The 

method was named Partitioning of Evapotranspiration Through Vegetation Index (PETVI). I 

verified the Ev and Tr estimates with independently measured ETa using Eddy Covariance (ECET), 

satellite-derived ET from the METRIC algorithm, point measurements of Ev using the Maximum 

Entropy Production (MEP) method, and Ev and Tr obtained from ECET using the underlying Water 

Use Efficiency (uWUE) method. We tested this approach on an experimental wheat plot in 

Mexico. Once I had validated PETVI, I used it in an agricultural valley located in Cuauhtémoc, 

Chihuahua, in a cornfield under three irrigation schemes (furrow, sprinkler, and drip), I also used 

PETVI in a pecan orchard located in the south of Texas to quantify the productive and 

unproductive water use. In all cases unproductive water use by the crops occur in the early season, 

due to a long-time interval between the first irrigation and the planting or resprouting of the crops. 

Because groundwater supplies early season irrigation, shortening the time between the first 

irrigation and planting or resprouting would decrease the total consumptive water use in these 

crops. 
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1 Chapter 1. Introduction 

In arid and semiarid regions, comprising nearly 30% of the land in the world, water 

scarcity, and highly inefficient agricultural irrigation practices represent significant obstacles for 

achieving sustainable food production systems (Wang et al., 2007; Ma et al., 2021). Naturally, 

drylands are susceptible to large climatic fluctuations and sustained high temperatures for extended 

periods. Those conditions drive high evapotranspiration rates and make crops highly sensitive to 

slight environmental changes (Krol et al., 2007). It is well documented that arid and semi-arid 

regions frequently experience years of below-average rainfall and continuous and severe droughts 

(Bhering et al., 2021). These naturally occurring phenomena directly impact the agricultural 

industry and other water-using sectors resulting in multiple social and environmental challenges 

(Perry, 2011; Huang et al., 2021). In addition, multiple factors such as population growth, land-

use changes, agricultural and urban expansion, and overexploitation of surface and groundwater 

reservoirs driven by a warming climate and recurrent drought spells are compromising the 

sustainability of dryland food production (Zhang et al., 2017). 

The circumstances above described, have steadily risen water demands, while water 

reservoirs continue to dwindle, threatening the long-term social and economic viability of 

populated drylands worldwide. Therefore, arid and semi-arid areas of the world are facing more 

complex problems than ever in accessing freshwater (Fallatah et al., 2019), and pervasive, highly 

inefficient irrigation practices in agriculture are putting further stress on freshwater supplies. For 

instance, in intensive dryland agriculture, irrigation using water from reservoirs is essential for 

maintaining productivity (Portmann et al., 2010; Biemans et al., 2011). However, this agricultural 

practices are subject to the sizeable hydrological variability that prevails in arid and semi-arid areas 
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(i.e irrigation depleting groundwater). Groundwater in these locations is a limited resource, and in 

many instances, at current extraction and recharge rates, it has turned into a non-renewable water 

source (Bierkens & Wada, 2019). Despite its limited or non-renewable nature, groundwater has 

played an essential role in transforming vast arid ecosystems into prosperous croplands (Turner et 

al., 2019). Indeed, global agriculture has been labeled as the largest user of groundwater, with 

about ~70% of global water consumption (Rost et al., 2008; Wallace, 2000). 

Consequently, agriculture is considered the major contributor to the decrease in this water 

source (Lan et al., 2021). For example, recent studies on the footprint of large aquifers found that 

northwestern Mexico, the United States High Plains, North Arabia, the Persian, Upper Ganges, 

and North China plains’ aquifers are in a condition of generalized stress (Gleeson et al., 2012). In 

all these areas, aquifer stress is mainly attributed to groundwater use by agricultural production, 

while other socio-economic sectors, including urban water supply and industry, are increasingly 

competing for that water (de Frutos Cachorro et al., 2021). Considering that about 50% of the 

world’s population currently depends on groundwater to meet its drinking water needs (Kumar et 

al., 2020), competition for this resource is expected to continue growing between all sectors 

(Huang et al., 2021).  

Globally, water depletion rates doubled during the 1960 to 2000 period, particularly in 

areas with intensive agricultural production (Wada et al., 2010). Because arid and semiarid areas 

are prone to experience severe and prolonged droughts, the use of groundwater to supplement or 

replace surface water irrigation in agricultural activities will continue to grow, and with it, the 

decline of water availability and quality in aquifers (Famiglietti & Rodell, 2013). For these reasons, 

there is an urgent need to improve water use efficiency in these regions, which inevitably involves 

improving irrigation practices in agriculture. In advanced economies and countries with strong 
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support for the modernization of agricultural practices, switching from furrow to sprinkler or drip 

irrigation can improve the water use efficiency of agricultural activities. However, in developing 

countries, changing irrigation techniques requires significant economic investments that are not 

within reach of most farmers and governments. The above is one of the biggest obstacles to 

sustainable food production systems in developing countries, particularly in semi-arid regions, 

where it can lead to the abandonment of croplands and food shortages (António dos Anjos & 

Cabral, 2021).  

In Mexico, large portions of the territory on the north and central high plains are susceptible 

to frequent and intense droughts due to their location between both the Sierra Madre Oriental and 

Sierra Madre Occidental Mountain ranges, creating a rain-shadow effect from moisture influxes 

of the Gulf of Mexico and the Pacific Ocean respectively (Roy et al., 2021). For that reason, surface 

water reservoirs dwindle during meteorological droughts, and groundwater extraction is used to 

compensate for the surface water deficit (Magaña et al., 2021). Mexico has 60% of the territory in 

semiarid environments (Montecillo-Cedillo., 2016). Thus, intensive agricultural activities in these 

locations frequently resort to groundwater sources for irrigating crops. This has triggered an urgent 

and severe problem of aquifer overexploitation throughout most groundwater basins in northern 

Mexico. Overexploitation of an aquifer occurs when water extraction rates exceed those of the 

natural and/or induced recharge. Many areas of Mexico’s arid north and central High Plains are 

experiencing sustained overexploitation of aquifers on which large urban centers rely for their 

water supply (Arreguín et al., 2010). For instance, in 2018, Mexico’s National Water Commission 

(CONAGUA) reported that 72 of the 106 overexploited aquifers in Mexico are located in the north 

and high plains (CONAGUA, 2011). This represents an urgent concern because 50.6 % of the 
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water used in the country comes from overexploited aquifers, where agriculture is the primary 

water user (CONAGUA, 2011). 

Considering all the issues described above, improving water use in agricultural practices is 

urgently needed. To do this, a better understanding of the periods in which water delivered to the 

crops is used productively, would inform . When is the water delivered to crops being used by the 

plants and when and how much is being lost to the atmosphere? These are the questions that 

constitute the core of the motivation for the studies conducted in this dissertation. The works 

contained in this document are organized as follows: in Chapter 2, I describe a method developed 

to partition evapotranspiration (ETa) of well-watered crops into its two components: evaporation 

(Ev) and transpiration (Tr). The work was carried out in an experimental plot located in northwest 

Mexico, where winter wheat was grown and fed with flood irrigation. The experimental plot was 

instrumented with meteorological and soil moisture sensors, and an Eddy Covariance station to 

measure gas exchanges between the crop and the atmosphere. The method developed uses 

vegetation indices and satellite-derived ETa values from the LandSat platform. The method was 

named Partitioning of Evapotranspiration Through Vegetation Index (PETVI) and was tested 

and validated with independent measurements of ET, Ev and Tr. After building confidence in the 

resulting Tr and Ev data produced, various analyses of the crop water balance and water usage were 

performed to evaluate its water use efficiency and the effect of spatial resolution of the input data 

on the correct estimation of those variables.  In Chapter 3, I used the PETVI method to evaluate 

the water use efficiencies of different irrigation schemes (furrow, sprinkler, and drip) in an 

agricultural valley in northern Mexico with maize production that relies for its water supplies on 

an overexploited aquifer. For this chapter, I redefined the concept of water use efficiency to 

consider only the productive water use based on the relationship between the transpiration of the 
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crop and the total water delivered to the plot. I then used the PETVI method to evaluate the periods 

in which productive and unproductive water use occurs and how current agricultural practices have 

an impact on the total consumptive water use in the agricultural valley. In Chapter 4, I used the 

PETVI method in a pecan orchard in west Texas, to investigate the impacts of the properties of the 

soil, tree canopy development, and flood irrigation on the productive and unproductive water use 

of the orchard, following the seasonal dynamics of soil evaporation and tree transpiration after 

each irrigation event. A final fifth chapter offers a synthesis of the main findings of these works 

while addressing future work to improve the method's performance and its application under 

different scenarios and spatial scales. 
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2 Chapter 2. Assessing the productive (Transpiration) and unproductive 

(Evaporation) consumptive water use in agriculture by Partitioning 

Evapotranspiration Through Vegetation Indices (PETVI) 

2.1 Introduction 

In arid and semiarid regions, comprising nearly 30% of the land in the world, water scarcity, 

and highly inefficient agricultural irrigation practices represent major obstacles for achieving 

sustainable food production systems (Wang et al., 2007; Ma et al., 2021). Naturally, drylands are 

susceptible to large climatic fluctuations and sustained high temperatures for extended periods  of 

time. Those conditions drive high potential evapotranspiration rates and make crops highly 

sensitive to slight environmental changes (Krol et al., 2007). It is well documented that arid and 

semi-arid regions frequently experience years of below-average rainfall and continuous and severe 

droughts (Bhering et al., 2021). In those regions, these naturally occurring phenomena directly 

impact the agricultural industry together with all other water-using sectors resulting in multiple 

social and environmental challenges (Perry, 2011; Huang et al., 2021). Furthermore, other factors 

such as population growth, land-use changes, agricultural and urban expansion, and 

overexploitation of surface and groundwater reservoirs driven by a warming climate and recurrent 

drought spells, are compromising the sustainability of dryland food production (Zhang et al., 

2017).  

Under these scenarios, there is an urgent need to promote water conservation practices such 

as enhancing (diminishing) the productive (unproductive) use of water in agriculture to help relieve 

the current pressure on water resources in arid zones. Reducing the water use footprint in 

agriculture, known as consumptive water, remains challenging. Consumptive water use is all the 

water lost during the agricultural cycle to the atmosphere through a process known as 
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evapotranspiration. This process can be separated into two components: evaporation (from soil, or 

open water bodies) and transpiration. In agricultural practices, evaporation is expected to occur at 

various stages: 1) during systematic pre-sowing irrigation to raise soil water content and ensure 

germination of annual crops or off-season early irrigation to flush salts from the soils’ root zones 

and to refill the soil column with water for the regrowth of perennial crops; 2) during and after 

each irrigation events from the ponding water on the surface and the moisture in the upper soil 

layers that are most exposed to the wind and sun; 3) after each rainfall event from the water 

intercepted by the crops as well as the processes described in the previous point. As the growing 

season of the crop advances, both the plants’ water requirements and the microclimatic conditions 

on the crops’ soils change, and with it, the relative proportion of water that is consumed as 

transpiration for biomass production (i.e. productive water) and evaporation (i.e. unproductive 

water). In most instances, the relative or absolute magnitude of those productive and unproductive 

waters comprising the crops’ consumptive water use are not known, measured or estimated. 

Knowing the magnitudes of these components and how they change over time in response to both 

climatic conditions and water management can help improve irrigation practices for water 

conservation and yield optimization. Reducing the unproductive water use of the crops’ water 

footprint, especially early in the season, should lead to higher water use efficiency of crops in 

semi-arid and arid regions where water resources are depleting, and intensive agriculture is under 

constant stress. 

Another problem faced by areas with intensive agricultural activity is using primarily low-

efficiency irrigation systems with a lack of data-based water management practices. For example, 

in Mexico, some of the largest irrigation districts are located in the country's arid and semi-arid 

northern regions, where frequent and severe droughts can lead to significant reductions in 
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cultivated land, large losses in food production and economic hardship for communities relying on 

agricultural activities (Ojeda-Bustamante et al., 2007). Where systematic pre-sowing irrigation 

prevails ~30 days before the planting date, irrigation practices favor unproductive water use 

(evaporation). In these periods, there is still no vegetative activity, so the high evaporation rate is 

one of the critical factors causing water losses, especially in semi-arid areas (Banihabib et al., 

2018). In addition, inefficient irrigation systems such as furrow irrigation and long parcels favor 

water losses as evaporation, runoff, and deep percolation (i.e. infiltration beyond the root zone). 

For these reasons, improving irrigation practices that increase the efficient use of water is urgently 

needed.  

This work aims to develop and test an accessible methodology for partitioning 

evapotranspiration in croplands using vegetation indices (PETVI) during an agricultural cycle and 

assess its applicability in determining the productive and unproductive use of water at the plot that 

could be used to improve water conservation practices. To accomplish this goal, the specific 

objectives of this work are: (1) to evaluate the resulting Tr and Ev terms from the partitioning of  

ETa from the PETVI model against various independent estimates of evaporation and transpiration 

using established approaches; and (2) to assess the utility of the  ET partitioning at the plot scale 

for identifying the periods at which irrigation can be improved for water conservation. 

2.2 Materials and Methods 

2.2.1 Study site 

The study was carried out at the Experimental Center for Technology Transfer (CETT, 

from its acronym in Spanish), an experimental site station owned and managed by the Sonoran 

Institute of Technology (ITSON, for its acronym in Spanish) located in the Yaqui Valley, in 
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Northwest Mexico (27.37º N latitude and -109.91º W longitude; see Figure 2.1). The climate in 

the Yaqui Valley is classified as semi-arid (Bsh according to Köppen classification) with a mean 

annual precipitation of 317 mm, most of which occurs between July and September (Méndez-

Barroso et al., 2008). Irrigated winter wheat (Triticum durum, cv. CIRNO), the dominant crop in 

the region, is grown during the winter-spring cycle (November through May), followed by maize 

(Zea mays) and safflower (Carthamus tinctorius) (Meisner, 1992). Most of the region's soils are 

vertisols with less than 1% organic matter (Lobell et al., 2002). The experimental plot was located 

within the CETT facilities and covered an area of approximately 0.44 hectares (52 x 85 meters). 

Winter wheat was planted on December 19, 2018, following the wheat production practices in the 

region (Aquino-Mercado, 1998). Wheat planting was done 34 days after pre-planting irrigation 

using a seeding arrangement of three rows (separated by 15 centimeters) within an 80-cm bed with 

a seed density of 100 kg ha-1 and placed to a depth of 8 centimeters. Because soil moisture was not 

adequate for sowing in some parts of the plot, additional light irrigation was applied immediately 

after planting to ensure seedling emergence. Three additional irrigations were used at different 

crop stages. The observation period was performed during the key phenological development 

stages of the crop (February 2 to April 9)  
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Figure 2.1 ) Location of the study area in northwestern Mexico, the study site represented by a 

blue dot, b) Aerial image of the Experimental parcel showing the location of the Eddy Covariance 

system (EC) denoted by the red star with its footprint (reddish oval)and the location of 5 soil 

moisture sensors (blue dots) 30 cm depth distributed within the footprint of the EC. 

2.2.2 Data and Methods 

2.2.3  Meteorological data 

Meteorological data was collected from February 2 to April 9 from a standard weather 

station installed at 2.5 m within the experimental site. Observations were carried out at 5 second 

intervals and averaged every 30 minutes. Air temperature [°C] and relative humidity [%] were 
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measured using a Campbell Scientific CS-215 sensor (Campbell Scientific, Logan, UT, USA); net 

radiation (net shortwave and net longwave radiation [W m-2]) was measured using a Kipp & Zonen 

NR Lite-2 net radiometer (OTT Hydromet, Delft, Netherlands). In contrast, precipitation [mm] 

was measured using a Texas electronics TE-525MM automatic tipping bucket rain gauge (Texas 

Electronics Inc., Dallas, TX, USA). A Campbell Scientific CR6 datalogger (Campbell Scientific, 

Logan, UT, USA) was used to record the meteorological data. The 30 min data was averages (ex., 

air temperature, relative humidity) or accumulated (ex., radiation, and rainfall) to obtain daily 

values. 

2.2.4  Eddy Covariance Evapotranspiration measurement (EC) 

An Eddy Covariance system (EC) was used to measure turbulent exchange fluxes of water, 

carbon, and energy between the experimental plot and the atmosphere from February 2 through 

April 9, 2019.  The EC system consisted of a LI-COR LI-7500A open-path infrared gas analyzer  

(LI-COR biogeosciences, Lincoln, NE, USA) to measure at a high-frequency rate (10-Hz) the 

fluctuations in water and CO2 concentrations and a Gill Windmaster Pro 3D-ultrasonic 

anemometer (Gill Instruments, Lemington, UK) to measure the three vector components of wind 

velocity (u, v, and w) at high frequencies. The meteorological instruments and the EC system were 

installed on a 3-m tall tripod. The EC system and the net radiometer were installed two meters 

above the surface. In contrast, the temperature-relative humidity sensor and the tipping-bucket rain 

gauge were installed at the upper end of the tripod (3-m). The footprint area captured by the EC 

system was calculated using a two-dimensional footprint model (Kljun et al., 2015) and enclosed 

a small 20-meter-wide domain southwest of the instruments (Figure 1). Volumetric water content 

[%] was obtained from a monitoring network of 5 soil moisture sensors (Campbell CS616, Logan, 
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UT, USA) deployed at different locations throughout the experimental plot. Soil moisture sensor 

rods were inserted perpendicular to the surface and captured the average water content of the top 

30 cm profile of the soil. Sensors were calibrated prior to field installation using a linear fit model 

obtained from the relation between probe output frequency or period (microseconds) and 

gravimetric soil water content in the laboratory using soil from the area. Soil moisture readings 

from the network were recorded with a Campbell CR1000 datalogger (Campbell Scientific, Logan, 

UT, USA), averaging and storing data every 30-minutes. 

Integrated 30-minute fluxes of CO2, sensible (H [W m-2]) and latent heat (λE [W m-2]), and 

evapotranspiration (ET [mm]) were estimated from the raw high-frequency data using the 

processing tool EddyPro version 6.2.1 (LI-COR biogeosciences, Lincoln, NE, USA). Fluxes 

corrections were performed within EddyPro and included double rotation correction for Gill 

anemometers, spike removal, low-pass and high-pass filtering, and density corrections for air 

temperature and relative humidity fluctuations (Burba and Anderson, 2010). Quality control of the 

corrected 30-minute fluxes was performed by applying the flagging system developed by Mauder 

and Foken (2006), followed by removal of fluxes collected during rainfall events and below a 

friction velocity (u*) threshold of 0.29 ms-1. Finally, CO2, energy, and ET flux outliers were 

removed by eliminating those fluxes that were two-standard deviations above and below flux 

mean. 

2.2.5  Remote sensing data 

For the evapotranspiration partition process, we used remote sensing data available from 

three main sources: (1) Sentinel-2 hyperspectral imagery to calculate vegetation indices and the 

fraction of vegetation and soil cover at the plot (Defourny et al., 2019; Dimitrov et al., 2019; Xue 
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& Su, 2017); (2) Landsat derived  ET from the METRIC  algorithm (Allen et al., 2007); (3) high-

resolution hyperspectral images taken using an unmanned aerial vehicle (UAV).  The following 

subsections describe in detail each of these remote-sensing data products.  

2.2.6 Sentinel-2 data pre-processing 

Sentinel-2 is a constellation of 2 polar-orbiting satellites with a variable revisiting time 

depending on latitude, producing multispectral images with a 10 m spatial resolution. We acquired 

Sentinel-2 (S2) top-of-atmosphere reflectance (TOA) data from November 2018 to May 2019 

(Table 2.1). Specifically, we used bands in the near-infrared (~0.84 μm wavelength) and the red 

(~ 0.66 μm central wavelength) portion of the electromagnetic spectrum (Huete et al., 2002) to 

create a time series of the Normalized Difference Vegetation Index (NDVI) for monitoring 

vegetation dynamics (Martínez & Gilabert, 2009) during the crop growth cycle. We processed all 

S-2 images in the Google Earth Engine (GEE) online platform. S-2 images in GEE have been 

atmospherically corrected (Zhang et al., 2019).  

 

 

 

 

 

 

 

 

 

 



 

14 
 

Table 2.1 Images selected from S-2 with their main characteristics; Granule ID, sensing date, 
and clouds cover percentage. 

Granule ID sensing date Clouds percentage* 

L1C_T12RXR_A008747_20181108T175835 2018-11-08 0 

L1C_T12RXR_A017727_20181113T180219 2018-11-13 0 

L1C_T12RXR_A018013_20181203T180113 2018-12-03 0 

L1C_T12RXR_A018156_20181213T180605 2018-12-13 0 

L1C_T12RXR_A018299_20181223T175737 2018-12-23 0 

L1C_T12RXR_A009462_20181228T180308 2018-12-28 14 

L1C_T12RXR_A018442_20190102T175731 2019-01-02 2 

L1C_T12RXR_A009605_20190107T180358 2019-01-07 15 

L1C_T12RXR_A018728_20190122T180402 2019-01-22 60 

L1C_T12RXR_A009891_20190127T175854 2019-01-27 0.14 

L1C_T12RXR_A010177_20190216T175907 2019-02-16 0 

L1C_T12RXR_A010320_20190226T180543 2019-02-26 11.7 

L1C_T12RXR_A019443_20190313T175842 2019-03-13 6.9 

L1C_T12RXR_A010606_20190318T180200 2019-03-18 0.49 

L1C_T12RXR_A019586_20190323T175719 2019-03-23 0 

L1C_T12RXR_A010749_20190328T175739 2019-03-28 0 

L1C_T12RXR_A010892_20190407T180036 2019-04-07 0 

L1C_T12RXR_A019872_20190412T175958 2019-04-12 1.4 
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L1C_T12RXR_A011178_20190427T180043 2019-04-27 34 

L1C_T12RXR_A011321_20190507T180044 2019-05-07 10 

L1C_T12RXR_A020301_20190512T180340 2019-05-12 12 

L1C_T12RXR_A011607_20190527T180038 2019-05-27 0 

* information from metadata quality indicator. 

2.2.7 METRIC data  

The “Mapping Evapotranspiration at high Resolution with Internalized Calibration” 

(METRIC) product is available from Earth Engine Evapotranspiration Flux (EEFlux) website 

(https://eeflux-level1.appspot.com/) (Allen et al., 2007; Allen et al., 2015; Allen et al., 2011; Wan 

et al., 2021), was used to retrieve ETa for our study period. We use ETa from both Landsat 7 and 

8 missions selecting the best available images. To obtain the highest temporal resolution and best 

data quality, we inspected all images within the study period and selected those without clearer 

cloud issues for our study site (Table 2.2).  

 

Table 2.2 Images selected from Landsat 7 and 8 with their main characteristics Granule ID, 

sensing date, and clouds cover percentage. 

Granule ID sensing date Cloud percentage 

LE70340412018314EDC00 2018-11-10 0 

LC80340412018322LGN00 2018-11-18 19 

LE70340412018346EDC00 2018-12-12 70 

LC80340412018354LGN00 2018-12-20 0 
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LE70340412018362EDC00 2018-12-28 23 

LE70340412019013EDC00 2019-01-13 0 

LC80340412019021LGN00 2019-01-21 8 

LC80340412019037LGN00 2019-02-06 76 

LE70340412019077EDC00 2019-03-18 1 

LC80340412019085LGN00 2019-03-26 45 

LE70340412019093EDC00 2019-04-03 0 

LC80340412019101LGN00 2019-04-11 0 

LE70340412019109EDC00 2019-04-19 43 

LC80340412019117LGN00 2019-04-27 4 

LC80340412019133LGN00 2019-05-13 0 

LE70340412019141EDC00 2019-05-21 0 

 

2.2.8 Multispectral high spatial resolution images from Unmanned Aerial 

Vehicle Surveys  

A 3DR Solo quadcopter (3DRobotics Inc., San Diego, CA, USA), hereinafter referred to 

as unmanned aerial vehicle (UAV), equipped with a Mapir Survey-2 multi-spectral camera 

(MAPIR Inc., San Diego, CA, USA) and Pixhawk 2.0 autonomous flight controller (Ardupilot 

development team) was used to obtain high spatial resolution images at different times during the 

wheat growing season. Ground sample distance (GSD) was ~7 cm per pixel. UAV flight routine 
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was programmed for a flight speed of 5 m/s, an altitude of 20 m with and a side/forward overlap 

of 70% to ensure highest image quality. The MAPIR Survey-2 camera has a dual band-filter that 

captures reflected light in the red (660 nm) and near infrared (870 nm) regions with a resolution 

of 16 MP and a focal length of 23 mm. To ensure a good image mosaic, the camera was set to 2-

second shooting intervals, a shutter speed of 1/500 seconds, an ISO value of 50, and a focal 

aperture of f/2.8. Camera was calibrated before each flight using a calibration ground target that 

consisted of four targets with known reflectance value.  Image alignment, Normalized Difference 

Vegetation Index (NDVI) calculation, and orthophotos generation were performed in Agisoft 

Metashape v1.6. A total of 6 NDVI-orthophotos were acquired from February 15 to March 28, 

2019. All images were taken around local noon to avoid shading issues and maximize illumination. 

UAV-based NDVI orthophotos were uploaded into the GEE platform to estimate the basal crop 

coefficient (Kcb). 

2.2.9 Development of the Partitioning Evapotranspiration through 

Vegetation Indices algorithm (PETVI)  

We propose a method to estimate the water exchange between cropland and the atmosphere 

that allows inferring the amounts of water transferred to the atmosphere by the plants and those 

that are evaporated directly from the soil. The approach takes into consideration the prevailing 

meteorological conditions in the area and the energy balance of the parcel, and it is based on a 

combination of the dual crop coefficient method to calculate ET (Allen et al., 2007) and an energy 

balance algorithm such as geeSEBAL (Laipelt et al., 2021). Figure 2.2 shows the criterion and the 

components of the crop coefficient (Kc) considered in our approach, which is represented by a 

curve that has the same shape as the phenological evolution of the crop. This Kc comprises two 
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coefficients: the evaporation coefficient (Ke) and the basal crop coefficient (Kcb). Typically, the Ke 

at the beginning of the crop cycle is higher, especially if the soil is wetted by irrigation or rain. It 

decreases as the soil dries or is covered by vegetation. On the other hand, Kcb has an inverse 

relationship to Ke; Kcb values are low at the beginning of the season because it represents the 

proportion of active vegetation transpiring, which is minimal early in the season. However, Kcb 

increases with crop development and reaches its maximum value when the crop reaches its full 

development. Kc is usually estimated using a lysimeter or relating crop height and meteorological 

variables (Ko et al., 2009). However, these measurements are not always recorded in the field, but 

it is possible to infer them from independent estimates of ET using the relationship Kc = ETa/ET0 

(Allen et al., 1998). Discrete daily values of ETa can be derived from energy balance algorithms 

using satellite imagery and meteorological data (e.g. geeSEBAL, Laipelt et al., 2021; eeMETRIC, 

Allen et al., 2011). Although the Kc function can vary in response to year-to-year variations in 

climate conditions and availability of water, for most crops, the shape has been widely studied and 

therefore is well known, and it can be reconstructed by simple linear interpolation from a few 

values distributed throughout the growing season (Allen et al., 2007; Duchemin et al., 2006; 

Kumar Gontia et al., 2010). On the other hand, the shape of the Kcb function can be tracked by 

following the phenology of the crop using a vegetation index, such as the NDVI. In other words, 

Kcb can be inferred using satellite-derived vegetation indices. It is also worth noting that in a well-

watered crop, the phenology of the vegetation shows a smooth curve, and potential issues of 

spurious values on the vegetation indices can be easily discarded by removing outliers and 

interpolation in between satellite images to obtain daily vegetation index values can be performed. 

In summary, this technique is based on well-documented methods for quantifying crops' water 
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needs by following their phenological activity during their growth cycle (Allen and Pereira, 2009; 

Pôças et al., 2015; Paço et al., 2014; Ran et al., 2017; Allen et al., 2007).  

 
Figure 2.2 Representation of the phenological evolution of the crop and its corresponding crop 

coefficient represented by a solid black line (Kc) throughout the growing season as comprised of 

basal crop coefficient (Kcb) green solid line, and the soil crop coefficient (Ke) yellow dashed line.  

Figure 2.3 shows the flow diagram of the algorithm developed for partitioning 

evapotranspiration through the vegetation index (PETVI) method. The yellow boxes represent the 

main inputs (from top to bottom: S-2 images, daily micrometeorological variables, and Landsat 7 

and 8 data), the blue boxes show the calculations, and the green boxes show the outputs. Following 

the schematic, first, NDVI values are calculated from S-2 images and rescaled into basal crop 

coefficient (Kcb) using equation 4. Detailed description of each process in Figure 3 is described in 

the following subsections.  
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Figure 2.3 Flow diagram for estimating the evapotranspiration partitioning on productive water 

(Tr) versus unproductive water (Ev) through the partitioning evapotranspiration through 

vegetation index (PETVI) method. The input variables shown in yellow (from top to bottom) are 

S-2 images with a temporal resolution of 5 days and spatial resolution of 10 m., Meteorological 

data from the weather stations, and evapotranspiration (ETa) images from the METRIC algorithm. 

The blue squares show the calculation of the complementary variables to partition 

evapotranspiration (ETa). The green squares show the last step of the calculations; transpiration 

(Tr) is calculated as the product of the Kcb times ET0, and Kc times ET0 to calculate ETa. 

Evaporation (Ev) is the residual between ETa end Tr. 

 

2.2.10 Transpiration using Basal crop Coefficient (Kcb) and Vegetation 

Fraction (Fc) 

We propose a method to estimate a daily basal crop coefficient (Kcb) using a vegetation 

index (VI) following the close relationship between VI’s and crop development during the growing 

cycle, and the fact that they are in close correspondence with transpiration demands (Allen et al., 
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2011; Glenn et al., 2008). To monitor vegetation growth dynamics, we calculated the normalized 

difference vegetation index (NDVI) using S-2 imagery. The images were processed in the GEE 

platform (Gorelick et al., 2017; Kandekar et al., 2021) using bands 8 (near-infrared) and 4 (red). 

Before the analysis, the area of interest is defined inside GEE by loading a shapefile using the 

assets manager. For the calculation of NDVI, no cloudiness filter was performed on the images at 

this stage because sometimes an image may have a high percentage of cloudiness, but the study 

site may be free of clouds. Once NDVI values had been established for the days with available 

satellite observations, a quality control procedure was carried out to eliminate spurious values that 

may have been produced by contamination of the reflectance values in the satellite images from 

cirrus clouds or cloud shading. To do this, we plotted the NDVI time series and identified abnormal 

data values by locating unrealistic sudden drops of NDVI that depart from the normal evolution of 

the vegetation cycle; we eliminated data values from those dates to generate a clean time series. 

After that procedure, instantaneous Kcb values were calculated from the NDVI time series by 

rescaling the NDVI values to the seasonally maximum possible Kc reported for that particular crop 

using the equation for the vegetation cover fraction (Schüttemeyer et al., 2007; Allen et al., 1998; 

Hunsaker et al., 2005): 

𝐾!" = 1.15 ∗ #$%&'#$%&!"#
#$%&!$%'#$%&!"#

                                                     (1). 

In our study we used NDVImin = 0.10, NDVImax = 0.75 and a maximum value of 1.15 for 

the wheat crop coefficient (Kc). The maximum value of Kc represents an upper limit of evaporation 

and transpiration from a cultivated area. It is assigned to reflect the crop’s surface limitations in 

using the available energy to transfer water directly from the soil or through the plant to the 

atmosphere. Kc max ranges from about 1.05 to 1.30 when using the grass reference ET0: (Allen et 

al., 1998). Drerup et al., 2017, used the same Kc value to calculate wheat's basal crop coefficient 
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(Kcb) at an experimental site in Hanninghof, Germany. Another study by Ko et al., 2009 in Uvalde, 

Texas, found maximum Kc values of 1.15 during three irrigation seasons using lysimeter 

measurements, coinciding with those used by Allen et al., 1998. Because the Kcb function of a 

well-watered crop should follow a relatively smooth trajectory, daily Kcb values can be obtained 

by linearly interpolating between the satellite-derived values, producing a daily time series of Kcb. 

During the growing cycle of the crop one of the most important variables changing the proportion 

of evaporation to transpiration is the evolution of the vegetation fractional cover Fc. As Fc grows, 

the area of exposed bare soil decreases reducing the direct evaporation of soil moisture, while the 

vegetation demand of water increases and with it the fraction of ET that becomes transpiration. To 

account for this process, we calculated Fc through the entire growing cycle with two methods: 1) 

using an unmixing model to separate the different land cover types (soil, vegetation, and water) 

using the S-2 images with vegetation and soil indices to determine manually the control points 

based on the known land surface cover (Vermuelen et al., 2021; Xu and Somers, 2021); and 2) 

using a linear relationship with NDVI from S-2 following (Irmak et al., 2012) (Eq 2.). Both methods 

yielded very similar Fc values and we chose to use the NDVI linear relationship approach to 

maintain the simplicity of the method since unmixing models require training of endmembers for 

decomposing the spectral signal of the various land cover types diminishing the parsimony of the 

method.  

𝐹! =
#$%&	'#$%&!"#

#$%&!$%'#$%&!"#
                    Eq. (2). 

The final form of the equation for Tr is then as follows: 

𝑇) =	𝐾!" ∗ 𝐹! ∗ 𝐸𝑇* = 1.15 ∗ + #$%&'#$%&!"#
#$%&!$%'#$%&!"#

,
+
∗ 𝐸𝑇*                 Eq. (3). 
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2.2.11 Evapotranspiration from METRIC. 

For our study period, we used ETa data [mm day-1] derived from the METRIC algorithm 

(Allen et al., 2007) using Landsat 7 and 8 missions (path 034 and row 040)1 with a spatial 

resolution of 30 m and temporal resolution of 16 days. The images were obtained from the EEFLux 

website https://eeflux-level1.appspot.com/ (Allen et al., 2007; Allen et al., 2015; Allen et al., 2011; 

Wan et al., 2021) and inspected manually to select those free of cloudiness for the study area. The 

images were uploaded into an image collection inside GEE with their respective metadata. Once 

the collection of images was created, a scene cut was made for the area of interest using a shapefile. 

Given the characteristics of the study, it was necessary to have daily ETa values. However, linear 

interpolation of ETa values is not possible due to their dependence on daily conditions in local 

weather that can vary substantially from day to day. To overcome this problem, we derived Kc 

values from the satellite-derived ETa following the well-established relationship between the ratio 

of evapotranspiration and the reference Evapotranspiration (ET0) from local weather data to Kc  

(Eq. 4). 

 𝐾! =
,-$
,-&

                                                                                                                Eq. (4). 

where Kc is the crop coefficient, ETa is the daily evapotranspiration from METRIC, and ET0 is the 

reference evapotranspiration. Using equation 4, we obtained the Kc daily values. With this 

approach, some dates with low ETa can yield lower Kc values than those expected based on the 

crop phenological stage. Therefore, ETa images obtained from the energy balance algorithm (i.e. 

METRIC) need to be previously calibrated by adjusting the Kc using the tabulated values and 

observations of the crop in the experimental site based on its phenological stage.  
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2.2.12 Reference evapotranspiration 

Standard meteorological data collected every 30 minutes by a weather station installed 

within the study plot was used to estimate the reference evapotranspiration (ET0) using the 

Penman-Monteith equation at a daily scale (Allen et al., 1998): 

𝐸𝑇* =
*./*01(3#'4)678

'&&
()*+,9:*(;-';$)

167(<6*.=/:*)
                    Eq. (5). 

where ET0 is the reference evapotranspiration (mm day-1), Rn is the net radiation (MJ m2 day-1), G 

is the heat flux density of the soil (MJ m2 day-1), T is the daily mean air temperature at 2 m height 

(° C), u2 is the wind speed at 2 m height (m s-1), es is the saturation vapor pressure (kPa), ea is the 

real vapor pressure ( kPa), Δ is the slope of the vapor pressure curve (kPa ° C-1), γ is the 

psychrometric constant (kPa ° C-1), and es-ea is the saturation vapor pressure deficit (kPa). 

2.2.13 Partitioning Evapotranspiration 

The ET flux separation in evaporation (Ev) and transpiration (Tr) for the proposed approach 

was estimated as the residual of ETa and Tr, similar to the FAO-56 dual crop coefficient method 

(Allen et al., 1998; Allen, 2000). Our approach diverges from previous versions of the dual crop 

coefficient method in the way we obtained daily values of Tr and ETa, by using the smooth function 

of the phenology of a well-watered crop to obtain values for Kcb and Kc in between days were 

vegetation indices and satellite-derived ETa observations are not available.  
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2.2.14 Evapotranspiration from the Maximum Entropy Production Model 

(MEP-ET) 

In this study,  we used the Maximum Entropy Production model of evapotranspiration 

(MEP-ET) (Wang and Bras, 2011) estimate point-scale soil evaporation directly in the 

experimental plot.  The MEP-ET calculates soil evaporation (E) by solving the energy balance 

(eqn.1) simultaneously with sensible heat flux (H  [W m-2])  and ground heat flux (G [W m2]) as 

follows: 

Rn = E + H + G,                                                                 Eq. (6) 

𝐺 = 	>(?)
?
	 &-
&&
	𝐻|𝐻|'

.
/,                       Eq. (7) 

𝐸 = 	𝛽(𝜎)𝐻,                      Eq. (8) 

where Rn is the net radiation at the evaporating surface (W m2), Is and I0 are the thermal inertia 

and “apparent thermal inertia" of the soil and air, respectively (W m-2 K- s1/2) [Wang and Bras, 

2009], b(σ) is the reciprocal of the Bowen ratio [-] expressed as: 

 β(𝜎) = 6781 + <<
=@
𝜎 − 1;,                   Eq. (9) 

where s is a dimensionless parameter characterizing the thermal-moisture state of the evaporating 

surface as a function of surface temperature (Ts [K]) and specific humidity (qs [kg kg-1]): 

 𝜎(𝑇A, 𝑞A) =
B*

!031
	 C-
--*
,                  Eq. (10) 
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where l is the vaporization heat of liquid water [J kg-1], cp is the specific heat of air under 

constant pressure [J kg-1], and Rv is the gas constant for water vapor [J K kg-1]. For the derivation 

of equations 4 and 5 the reader is referred to the work of Wang and Bras (2011). 

 

2.2.15 Underlying Water Use Efficiency (uWUE) model 

The capacity to produce biomass through photosynthesis per unit of water consumed can 

be quantified through the Water Use Efficiency (𝑊𝑈𝐸) at the plant/canopy, and ecosystem levels 

(Blum, 2005; Niu et al., 2011; Tang et al., 2014). Water consumption at the plot scale can be 

associated with stomatal, and stomatal/non-stomatal fluxes (Zhu et al., 2015; Drake et al., 2017). 

Therefore, if the water consumed is observed at the plant/canopy level (only stomatal behavior), it 

can be related to transpiration. In contrast, if it is observed at the plot or ecosystem level 

(stomatal/non-stomatal behaviors), it is related to evapotranspiration (Tang et al., 2014).  The 

underlying Water Use Efficiency (𝑢𝑊𝑈𝐸) method developed by Zhou et al. (2016), based on a 

stomatal conductance model, establishes a maximum or potential (constant) Water Use Efficiency 

(𝑢𝑊𝑈𝐸𝑝) that is related to the transpiration (Tr) during the growing season, and an averaged or 

apparent (periodically changing) Water Use Efficiency (𝑢𝑊𝑈𝐸𝑎) that is related to 

evapotranspiration (𝐸𝑇), as follows: 

𝑢𝑊𝑈𝐸𝑝 = 4DD√%D$
-)

                                                                                                   Eq. (11). 

𝑢𝑊𝑈𝐸𝑎 = 4DD√%D$
,-

                                                                                                  Eq. (12). 
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Where 𝐺𝑃𝑃	 is the gross primary production i.e. the amount of carbon fixed during photosynthesis 

by the ecosystem, and the 𝑉𝑃𝐷 is the vapor-pressure deficit. Since  𝐺𝑃𝑃, 𝑉𝑃𝐷, and 𝐸𝑇 could be 

obtained from Eddy Covariance observations, the 𝑢𝑊𝑈𝐸𝑝 and 𝑢𝑊𝑈𝐸𝑎, are derived statistically 

from those variables time series using a 95-quantile (to capture the maximum transpiration 

response) and a mean linear regression method (𝐺𝑃𝑃√𝑉𝑃𝐷 over 𝐸𝑇), respectively (Zhou et al., 

2016). Thus, Tr/ET can be calculated by dividing 𝑢𝑊𝑈𝐸𝑎 to 𝑢𝑊𝑈𝐸𝑝: 

 𝑇𝑟 = G:FG,H
:FG,I

H𝐸𝑇                                                                                                  Eq. (13). 

The 𝑢𝑊𝑈𝐸 method has been used and evaluated in various ecosystems including croplands (Zhou 

et al., 2016; Zhou et al., 2018; Jiang et al., 2020; Chen et al., 2022). 

2.3 Results 

2.3.1 Climatology 

The observed meteorological conditions during the crop’s observation periods are shown 

in Figure 2.4. The daily average temperature was 16.8 °C, and the vapor pressure deficit (VPD) 

ranged between 0.36 to 1.88. Average net radiation during the observation period was 111.1 W m-

2, with daily maximum values of net radiation (Rn) ~124.2 W m-2 until March 11, after which Rn 

steadily increased to a maximum of 179 Wm-2 on the last day of observation. The maximum wind 

speed was 2.56 m s-1 on February 7, and the average wind speed was 1.3 m s-1. Three small rain 

events were recorded during the observation period. The maximum rainfall recorded was 0.7 mm 

day-1 on February 11. The total rainfall during the observation period was recorded at 1.3 mm, 
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showed minimum values of 0.88 and maximum values of 6.75 mm day-1, and an average of 3.68 

mm day-1, with inflections that coincided with substantial decreases in Rn. 

 
Figure 2.4 Environmental conditions during the observation period from February 2 to April 9, 

2019. In panel a), the orange line indicates the daily average air temperature, and the dashed blue 

line denotes the vapor pressure deficit (VPD).  The black line in panel b) represents the net 

radiation (Rn). Panel c) represents the wind speed. The blue bars in panel d) represent 

precipitation in mm dia-1, and the red line denotes Evapotranspiration (ET, mm dia-1) measured 

by the Eddy covariance system 

2.3.2 Dynamics of Evapotranspiration during the growing cycle. 

The phenological stages of the crop were measured on the field based on the day-after-

sowing (DAS) method. The complete cycle for the wheat grown, from sowing (So) to physiological 

maturity (Pm), takes ~139 days. The NDVI closely tracked the trajectory of the phenological stages 
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during the observation period, with a steep rising limb at the start of tillering to reaching its 

maximum around F, and then slightly decreasing between grain filling to milk grain, after which 

a steep and steady decrease takes the NDVI values close to 0.19. At that stage, the plant has reduced 

its physiological activities significantly and, as a consequence, the water transfer rates from 

transpiration. The temporal dynamics of ET in the experimental plot also closely follow the 

trajectories of the NDVI and phenology of the crop in all estimates from the various methods 

employed (Figure 2.5 b); at the beginning of the crop establishment period, a considerable 

increment in ET from 0 to 3.4 mm day-1 occurred (observed from the METRIC derived ET). The 

ET rate decreased on February 6, reaching 0.04 mm day-1, after which it increased gradually, 

showing inflections at various times coinciding with the observed rainfall events (Figure 4). Except 

for a time in mid-December, large increases in ET are always observed a day after irrigation events. 

Notably, Figure 2.5 c) shows close agreement among the trajectory of three independent ET 

estimates (Eddy Covariance, METRIC, and MEP) and the Tr obtained from PETVI and the uWUE 

methods during the observation period, suggesting the majority of ET was coming from crop 

transpiration. After the last irrigation, the ET and Transpiration (Tr) showed similar values until 

April 11, then, ET and Tr started to diverge, suggesting the beginning of crop physiological 

maturity and a sustained decline in transpiration (Tr). Initially, the average transpiration rate in the 

first 58 days is 0.22 mm day-1 due to the presence of some weeds. After that, the transpiration 

values follow the same trajectory as the ET. The maximum recorded value of Tr was, 6.15 mm 

day-1. As of April 11, the values started to decrease as a result of diminished vegetation activity 

when the crop reached physiological maturity, and its water use eventually approaches 0.  
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Figure 2.5 a) Phenological stages of wheat in the study area: (S) sowing, (Fi) flowering initiation, 

(Ts)  Terminal spikelet, (Fn) First node, (H) Heading, (An) Anthesis, and (Pm), Physiological 

maturity; b) Evolution of NDVI during the agricultural cycle (black line); c) Evapotranspiration 

(ET) and transpiration (Tr) time series calculated using observation data and different methods: 

TrPETVI (blue line), ETMETRIC (red dashed line), ETMEP (green line), ETEC (purple line) Tr uWUE (black  

dashed line). Black arrows pointing up show times of irrigation events) 

2.3.3 Performance of Evapotranspiration Models 

2.3.4 Evapotranspiration from Eddy covariance (ETEC), Evapotranspiration 

from METRIC algorithm (ETM). 

The temporal evolution of ET measured with the Eddy Coviariance method (ETEC), and 

the one estimated from METRIC (ETM) are shown in figure 2.6 a). Minimum and maximum values 

of ETEC during the growing period were 0.88 and 6.75 mm day- 1 respectively while ETM were 0.75 

and 5.91 mm day-1. Overall, both methods show a similar ET pattern diverging briefly on some 
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days. For example, ETM overestimates ETEC on February 28 and March 3, with an average 

difference between the observed and estimated value of 1.49 mm. On March 28, the difference 

between the ETEC and the ETM was 1.55 mm, with the largest discrepancy occurring on March 31 

with 1.66 mm. In general when daily ET was below 5 mm day-1, there is a good correlation between 

estimated and observed values, and the periods of maximum discrepancy occurred on days of large 

ET (>5mm). The cumulative ET of the observed values was 246.5 mm, while for the METRIC 

method was 244.9 mm. That is a difference of 1.6 mm during the observation period, providing 

confidence in the performance of the ETM. 

 
Figure 2.6 a) Time series of ET from the EC system (solid line), and the METRIC method (dotted 

line); b) scatter diagram comparing the measured (ETEC) and estimated (ETMETRIC) 

evapotranspiration in the experimental plot; the red line shows the slope of the function, the dotted 

line shows the 1:1 relation of the linear regression. 
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2.3.5 Performance of Transpiration models. 

2.3.6 Transpiration from uWUE as reference method 

The performance of the uWUE method in obtaining accurate estimates of Tr relies on the correct 

estimation of the potential uWUE, which can be obtained during the period of fastest vegetation 

development. The NDVI data during the agricultural cycle used in this study show that the fastest 

growing period of this crop takes place between February 2 and 20 (Figure 2.5 b). Therefore, we 

take a sample for this period to determine the uWUEp through the slope of the 95th quantile 

regression between 𝐺𝑃𝑃 ∙ 𝑉𝑃𝐷*.J and ET (Eq. 11). The slope indicated that uWUEp was 

13.56	gK	hpa*.J/kgL+M (Figure 2.5 a).  By applying a linear regression (Eq. 12) to every daily 

data sample, we can determine the daily uWUEa for the entire time series (Figure 2.6 b). The daily 

uWUEa/uWUEp ratio determines the daily Tr/ET ratio for the period of observation. Finally, the 

half-hour ET data were accumulated to daily values, and applying the daily values of the Tr/ET 

ratio to the daily ET series we can obtain both the Tr and E daily time series (Figure 2.8 a and 

Figure 2.10 a). 
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Figure 2.7 The 95th quantile regression using the half-hourly growing season data (between 

February 2 and 20) for our site to estimate uWUEp and b) the linear regression using half-hourly 

data for March 21 to estimate uWUEa for this day. The uWUa/uWUEp determines the T/ET ratio. 

The intercept was set to zero for both quantile and linear regressions. 

 

2.3.7 Performance of Transpiration from PETVI and ETEC - EvMEP 

When evaluating the dynamics of transpiration during the observation period from the 

different methods employed, we took Tr uWUE as the reference (i.e. closer to true value) to assess 

the performance of the Tr values using the PETVI method (Tr PETVI) and transpiration as a residual 

of ETEC and EvMEP (Tr = ETEC - EvMEP). The transpiration values calculated with the ETEC - EvMEP 

method ranged from 0.56 to 6.61 mm day-1, while the Tr PETVI values ranged from 0.39 to 5.26 mm 

day-1, and the Tr uWUE recorded values from 0.73 to 4.92 mm day-1.  The total amount of water 

transferred to the atmosphere by transpiration during the observation period using the Tr ETEC - MEP 

method was 237.9 mm., while for the Tr PETVI method was 209.2 mm, and for the Tr uWUE was 202.7 

mm. The difference between the uWUE and the other approaches ranged between 35 mm and 6 
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mm for Tr ETEC - MEP and Tr PETVI, respectively. Generally, the values calculated using Tr ETEC-

MEP overestimate the values obtained using the uWUE, while the values estimated using PETVI are 

similar in magnitude to the values obtained using the uWUE method (Figure 2.8). All methods 

show similar trajectories of transpiration, increasing and decreasing together and as a result yield 

similar correlation coefficients (between 0.85 and .087; Figure 7.c). When the magnitude in the 

transpiration rate increases during the observation period, Tr PETVI  shows little dispersion relative 

to Tr uWUE but maintains a high correlation coefficient of 0.87. Tr ETEC - EvMEP tends to overestimate 

Tr uWUE at the beginning and at the end of the observation period (Figure 2.7 a,b). Intercomparison 

of the three Tr methods using a taylor diagram (Figure 2.7 c) show Tr PETVI (blue diamond), closely 

agreeing with Tr uWUE, with a root mean square difference (RMSD) of 0.66 mm day-1, a correlation 

coefficient 0.87, and standard deviation of 1.21 mm day-1, similar to the 1.04 mm day-1 standard 

deviation of Tr uWUE; on the other hand, Tr ETEC - EvMEP has a standard deviation of 1.13 mm day-

1, a correlation coefficient of 0.85, and a RMSD of 0.69 mm day-1. Summarizing, both transpiration 

estimation methods show large correlation coefficients, relatively small  RMSD (<0.7mm day-1) 

and similar standard deviations relative to Tr uWUE. 
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Figure 2.8 a) Transpiration time series obtained with the underlying water use efficiency method 

(uWUE; blue line), as residual from Eddy covariance Evapotranspiration and soil evaporation 

calculated with Maximum Entropy Production (ETEC - EvMEP; red dashed line), and with the 

PETVI method (Tr PETVI; yellow line); b) Scatter plot of the transpiration calculated with the uWUE 

method (x-axis) and Tr PETVI and Tr ETEC-EvMEP (y-axis); c) Taylor diagram displaying the 

correlation coefficient, standard deviation and root means square difference between the modeled 

transpirations (Tr ETEC-EvMEP (red circle) and Tr PETVI (blue diamond )) and the reference 

transpiration (Tr uWUE (black circle)); green dashed lines represent the root mean square difference 

(RMSD) in mm. 

2.3.8 Performance of PETVI transpiration using high-resolution images (Tr 

PETVI(HR)) 

In this work we evaluated if images of vegetation indices with higher spatial resolution can 

increase the precision in estimating transpiration at the sub-meter scale (<1m2). To do this analysis, 

we obtained average transpiration rates with the PETVI method using drone images through a 
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buffer analysis of a 5 cm radius around the point where the instruments were installed to compare 

it to a point-scale estimate of Tr from the residuals of ETEC and EvMEP . The temporal behavior of 

transpiration is shown in Figure 2.9, with the observation period of the drone images from February 

15 to March 28, 2019. During the observation period, all methods follow the same trajectory with 

slight discrepancies among them at different times. Tr PETVI(HR) ranged from a minimum of 1.19 

mm day-1 and a maximum of 6.11 mm day-1; with this method cumulative transpiration for the 

observation period was 161.57 mm. The Tr ETEC-EvMEP ranged from 1.53 to 5.26 mm day-1, and 

their cumulative values were recorded at 154.53 mm, while the Tr PETVI ranged from 1.08 to 5.26 

mm day-1, and had cumulative transpiration of 144.69 mm. Finally, the transpiration from uWUE 

ranged from 1.80 to 4.92 mm day-1, and the cumulative transpiration yielded a total of 138.76 mm 

for the observation period. The main differences among the methods can be observed in the 

maximum and cumulative values (Figure 2.8 b). Tr PETVI(HR) agrees well with the observed values 

when transpiration is less than 3.5 mm day-1. As transpiration rates increase, there is more 

dispersion in the data from a tendency of the methods to overestimate Tr uWUE. On the other hand,  

Tr ETEC-EvMEP shows a good correlation relative to Tr uWUE (0.83). In this analysis Tr PETVI using 

S-2 images agrees well with the reference values (Tr uWUE), but similar to the other estimates the 

values begin to disperse after Tr >3.5 mm day-1, although with a lower dispersion than Tr PETVI(HR). 

A Taylor diagram shows an intercomparison between the observed values and modeled 

transpiration (Figure 2.8 c). The diagram shows Tr ETEC-EvMEP agrees best with the reference 

values, displaying a standard deviation of 0.83 mm day-1, and a RMSD of 0.54 mm day-1 and a 

correlation coefficient of 0.8; Tr PETVI shows a standard deviation of 0.76 mm day-1, an RMSD of 

0.72 mm day-1, and a correlation coefficient of 0.76; Tr PETVI(HR) registered a standard deviation of 
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0.76 mm day-1, a RMSD of 0.87 and correlation coefficient of 0.76. In this analysis all metrics 

show Tr ETEC-EvMEP closer to the reference data. 

 

Figure 2.9 a) transpiration time series calculated with the underlying water use efficiency (uWUE; 

blue line) method, as residual from Evapotranspiration from Eddy covariance system and soil 

evaporation from the Maximum Entropy Production method (Tr = ETEC-EvMEP; r red dashed line), 

and with the proposed PETVI method using S-2 images (Tr PETVI; yellow line), and high spatial 

resolution images (Tr PETVI(HR); purple line); b) scatter plot comparing Tr PETVI (blue diamond), Tr 

PETVI(HR) (cyan squares), and Tr ETEC-EvMEP (red circles) versus reference data from the uWUE 

model;  c) taylor diagram displaying the correlation coefficient, standard deviation and root mean 

square difference between the modeled transpirations (Tr ETEC-EvMEP (red circle), Tr PETVI (blue 

diamond ), Tr PETVI(HR) (cyan squares)) and the reference transpiration (Tr uWUE (black circle)); 

green dashed lines represent the root mean square difference (RMSD) in mm. 
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2.3.9 Evaporation  

 

2.3.10 Evaporation MEP (Ev-MEP) & Evaporation PETVI (Ev-PETVI) 

The behavior of soil evaporation estimated with the MEP method (EvMEP), as a residual of 

ETEC - Tr uWUE (EvuWUE), and as a residual of ETMETRIC - TrPETVI (EvPETVI) is shown in Figure 2.10. 

Initially, the three methods show relatively high evaporation values (in one case of up to 0.9 mm 

day-1) due to a larger fraction of exposed soil and a smaller fraction of vegetation cover. The 

estimates from different methods show a slight separation among them at the beginning of the 

observation period from the 2nd to the 16th of February. This separation appears to be systematic 

between models. After this period the three evaporation estimates converge until the end of the 

observation period (April 5th) when EvuWUE separates from EvMEP and EvPETVI. This behavior can 

be observed in Figure 2.10 a, where both models, EvMEP and EvPETVI are consistently estimating 

soil evaporation of less than 0.15 mm day-1 while EvuWUE estimates grow to 0.43 mm day-1. Figure 

2.9 c shows a Taylor diagram comparing the standard deviation, correlation coefficients and RMSD 

of the reference values (uWUE) with those obtained from PETVI and EvMEP. EvPETVI standard 

deviation was recorded at 0.13 mm day-1, with a correlation of 0.8, and RMSD of ~0.13 mm day-

1, the EvMEP standard deviation was 0.11 mm day-1, had a correlation coefficient of 0.74 and a 

RMSD of 0.12 mm day-1. Overall, the methods show reasonable agreement when considering the 

high correlation coefficients between EvPETVI and EvMEP with EvuWUE (the reference). 
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Figure 2.10 a) Soil evaporation time series calculated with the uWUE method (blue line), as the 

residual of the Evapotranspiration from the METRIC algorithm (ETM) and transpiration through 

the PETVI method (TrPETVI; dashed red line), and from the Maximum entropy pro production model 

(EvMEP; yellow line); b) scatter plot of the reference evaporation obtained from the uWUE against 

the evaporation calculated with the Ev-MEP (red circles), and the EvPETVI (blue diamond); c) 

Taylor diagram displaying the correlation coefficient, standard deviation and root mean square 

difference between the modeled evaporations (Ev ETEC-TrMEP (red circle), Ev PETVI (blue diamond 

), and the reference evaporation (Ev uWUE (black circle)); green dashed lines represent the root 

mean square difference (RMSD) in mm. 

The analysis of evaporation using high-resolution images shows the trajectory of soil 

evaporation, between reference values from the EvuWUE method (Figure 2.11 a). The minimum Ev 

value was 0, the maximum 0.29 mm day-1, and the cumulative Ev for the observation period was 

1.99 mm. The evaporation through the EvPETVI method using S-2 images, showed a minimum value 

of 0.007 and a maximum of 0.14 mm day-1. The cumulative soil evaporation was recorded at 1.98 
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mm. Soil evaporation using the MEP method, the minimum value was 0.01, the maximum value 

is 0.33 mm day-1, the cumulative values recorded using this method during this period was 3.55 

mm, the Ev using high-resolution images (Ev PETVId) method, the minimum values were 0, and 

the maximum values were recorded at 0.17 mm day-1, the cumulative soil evaporation during this 

period was 0.94 mm, the latest method recorded less water than other. Figure 2.11 b), shows the 

scatter plot to observe the pattern of three methods compared with reference values uWUE, in this 

panel, we can see that the Ev-MEP adjust best with respect to uWUE with a slope of 0.7, the PETVI 

method using S-2 images and high-resolution images the slope are 0.36 a that detracts their 

performance. The above can be confirmed by the Taylor diagram, Figure 1.11 c) shows the 

statistical pattern to evaluate the performance of the three models used in this work. The standard 

deviation of the Ev-PETVI was 0.03 mm day-1, the RMSD was recorded at 0.044, and the 

correlation coefficient was 0.70, the soil evaporation from Ev-MEP the standard deviation was 

recorded at 0.05 mm day-1, the RMSD was 0.045 their correlation coefficient was 0.70, and the 

performance of the using high-resolution images Ev-PETVId their performance decrease a little 

bit compared with the two methods described above. This confirms that during this period, the Ev-

MEP agrees well concerning the reference values uWUE. 
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Figure 2.11 a) Soil evaporation time series calculated with underlying water use efficiency 

(uWUE; blue line) as residual from Evapotranspiration from Eddy covariance system and 

transpiration using uWUE, and soil evaporation with the proposed PETVI method using S-

2images (red dashed line), and Ev-MEP (yellow line), and high spatial resolution images Ev PETVI(HR)  

b) scatter plot comparing EvPETVI (blue diamond), EvMEP (red circles), Ev PETVI(HR) (cyan 

squares), versus reference data from the uWUE model; c) Taylor diagram displaying the 

correlation coefficient, standard deviation, and root mean square difference between the modeled 

evaporation (EvPETVI ETEC-TrPETVI (blue diamond), EvMEP (red circle), Ev PETVI(HR) (cyan squares)) 

and the reference evaporation  (Ev uWUE (black circle)); green dashed lines represent the root mean 

square difference (RMSD) in mm. 
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2.3.11 Spatial analysis of the evaporation and transpiration dynamics with 

high and moderate spatial resolution imagery 

2.3.12 Evaporation and Transpiration using PETVI method and high-

resolution UAV imagery. 

High-resolution images of vegetation indices used in PETVI produce detailed spatial 

patterns with high definition of the contrasting rates of evaporation (Ev) and transpiration (Tr) 

within the experimental plot. Figure 2.12, shows the evolution of the spatial variability of Ev and 

Tr with high resolution (5cm pixels) images during the growing season in the study site for the 

dates the UAV was flown. These images show an increasing (decreasing) proportion of pixels with 

Tr (Ev) as the crop develops and reaches its maximum cover on the last days of March. The images 

also show higher Ev on the northern portion of the plot, where vegetation cover took longer to 

develop. Probability density functions (PDFs) of the images (Figure 2.12.a3, b3, c3, d3, e3, and 

f3) show the ranges and distribution of Tr and Ev values for each scene. The PDFs show increases 

in Tr magnitudes as the crop developed, from a mean 4 mm day-1 in mid February to a 6 mm day-

1 mean in late March, while Ev value ranges and means remain relatively constant throughout the 

season with the exception of the last image in March, where the distribution of soil evaporation 

concentrates below ~1 mm day-1 values. In all images the increases shown in the Tr rate of the 

PDFs appear to be directly proportional to increases in vegetation cover. 
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Figure 2.12 Spatial distribution of evaporation (Ev) in mm day-1 as a residual of ETEC - Tr PETVI(HR); 

transpiration (Tr ) in mm day-1, and the probability density functions (PDFs) for Ev and Tr for a) 

February 15, 2019; b) February 23, 2019; c) March 02, 2019; d) March 15, 2019; e) March 23, 

2019; and f) March 28, 2019. 

2.3.13 Evaporation and Transpiration using PETVI method and Sentinel 2 

images. 

Satellite imagery with relatively high spatial (<30m) and temporal (<5 days) resolution can 

be useful for monitoring the evolution of vegetation growth cycles and particularly those of 

irrigated crops. In this work, we used satellite imagery for monitoring the Ev and Tr. using S-2 
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images and Landsat 7 and 8 derived ETa. Similar to Figure 2.12, shows the evolution of the spatial 

variability of Ev and Tr during the growing season in the study site but in this case produced with 

S-2 imagery at 10m spatial resolution. Overall, the scenes in Figure 2.13 capture the same spatial 

patterns and magnitudes of Tr of those produced with the UAV generated imagery, where the 

northern region of the plot shows the lowest fluxes. However, and although Ev spatial patterns of 

S-2 are also similar to those of the UAV, their magnitudes and range of values differ; S-2 derived 

Ev shows higher means and a wider spread of soil evaporation than the higher resolution data 

throughout the whole observation period. For example, the mean Ev in early February was 1.25 

mm day-1 with those values appearing in the north and south of the experimental site where the 

area has less vegetation cover than in the middle of the experimental site. 10 days later (February 

26, 2019), the Ev mean was 1.32 mm day-1 and in mid March (18th), soil evaporation increased 

relative to the earlier dates. At this time, the Ev recorded 1.92 mm day-1. In the last date shown, 

(March 28, 2019), the mean Ev was 1.31 mm day-1. It was also at this time when Tr showed the 

largest values during the study period; the mean Tr was 6.09 mm day-1, and coincidentally was the 

most frequent value as well. 
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Figure 2.13 Spatial analysis of Ev as a residual of ETMETRIC - TrPETVI using S-2 images with spatial 

resolution of 10 m per pixel for 6 dates within the observation period (panels a to d). Subpanels 

1,2 and 3 show the spatial patterns on Ev, Tr and their probability density functions (PDFs) within 

the experimental plot respectively. Subpanels 1,2, and 3 show the spatial patterns on Ev, Tr and 

their probability density functions (PDFs) within the experimental plot respectively. 

 

It has been shown that evaporation and transpiration from PETVI can be estimated at 

different spatial resolutions by changing the resolution of the input data on vegetation phenology 

and cover. However, to allow for a more direct comparison between spatial resolution products, 

we show in Figure 2.14 high (UAV 5 cm pixel) and moderate spatial resolution (S-2 10 m pixel) 
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Ev and Tr images and their PDFs for the only two coinciding dates for the images (i.e. 23 and 28 

of March, 2019). The images on the 23 of March show relatively moderate evaporation areas in 

the north of the experimental site, but only the lower resolution image shows high evaporation 

values on the south side, stretching the distribution of Ev values on the PDF (Figure 2.13.c.3). 

Seven days later, the images on the 28th of March show a more similar Ev and Tr pattern, where 

moderate Ev values appear on the northern portion of the plot and in the left edges on the S-2 

derived images but not on the southern edge anymore. Those differences in Ev between the high 

and moderate resolution images appear to be caused by contamination of the spectral signatures 

defining the vegetation indices on the southern and eastern edges of the plot, and are responsible 

for changing the means and distribution of Ev values between images. On the other hand, the means 

and ranges of Tr values between the UAV and S-2 derived images remain fairly similar for the two 

dates compared: the mean and median Tr values of the S-2-derived images were 5.62 and 5.86 mm 

day-1, while the mean and median Tr of the UAV-derived images were 5.48 and 5.81 mm day-1 

respectively. 
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Figure 2.14 Effects of spatial resolution (5 cm per pixel and 10 m per pixel) on Ev and Tr (in mm 

day- 1) calculated from PETVI; a) and b) show UAV derived images from March 23, 2019 and 

March 28, 2019 respectively; c) and d) show S-2 derived images on March 23, 2019 and March 

28, 2019, respectively. Subpanels 1,2, and 3 show the spatial patterns on Ev, Tr and their 

probability density functions (PDFs) within the experimental plot respectively. 
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2.3.14 Water balance at the plot scale 

The surface water balance approach was applied to our study site to monitor the partition of 

water fluxes between the land surface and the atmosphere. The partition of ETa into soil 

evaporation (Ev) and plant transpiration (Tr) is a requirement to understand carbon assimilation 

and water use by agro-ecosystems. As shown in figure 2.15 a) ETa is almost all composed of soil 

evaporation at the beginning of crop cycle (December and January) due to scarce vegetation cover. 

However, Tr dominance started to switch in late January-early February, consequently steadily 

increasing the ratio Tr/ETa until both crop development and ETa reached its maximum seasonal 

values which occurred in Mid to late March. Conversely, when crop senescence started in mid-

April, the rate of Tr values began to diminish, consequently, the ratio Tr/ETa started to decrease. 

The minimum value of Tr during the crop cycle was 0.01 mm day-1 observed after planting, while 

the maximum value was 6.15 mm day-1 observed during the peak of vegetation development. 

During the observation period (February-April), Tr closely tracks the evolution of ETa with the 

exception of the beginning of the agricultural cycle (mostly soil evaporation, Ev), with a cumulative 

value of 86.66 mm which represented the 39 % of the irrigated water returned to the atmosphere 

(unproductive water) while the remaining 61 % stored in the soil profile. The other period where 

evaporation comprises the majority of ETa occurred from April 2 to May 20 when the crop was in 

transition between milk to dough grain and close to physiological maturity resulting in a decrease 

in crop water demand. Cumulative evaporation (E) during this phenological stage was 84 mm 

which is equivalent to 56 % of the water applied in the last auxiliary irrigation (April 5). Total ETa 

during this analysis was 501 mm and ranged from 0.04 to 6.42 mm day-1 with an average of 2.51 

mm day-1. Cumulative rainfall during the crop cycle was 14.9 mm with three auxiliary irrigations. 

The evolution of productive water use (Transpiration, Tr) shows that most of these fluxes occurred 
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during two periods (Figure 2.15 c). The first period encompassed 102 days since planting through 

February 19 with a total of 75.9 mm of productive water use while the second period included the 

rest of the crop cycle with a cumulative Tr of 271 mm. One way to assess the efficiency of crop 

irrigation is by using the surface water balance approach that is shown in Figure 2.14 d. The pre-

sowing irrigation (applied in November 2018) supplied water until the 1-m soil profile reached 

146 mm of water content which was rapidly depleted to 91 mm in about 37 days. The irrigation at 

the sowing (applied in December 2018) increased water content until 159 mm with an additional 

water input from rainfall of 4.7 mm that was steadily depleted in about 48 days. Before the 

application of the first auxiliary irrigation, the water content was 116 mm, but after its application, 

the water on the 1-m soil profile increased to 265 mm and was steadily depleted during a period 

of 28 days. Before the application of the second auxiliary irrigation, the water content in the 30-

cm soil profile was 183 mm, but after its application, the water content rapidly increased to 330 

mm that was steadily depleted for 27 days. Finally, the water content before the third auxiliary 

irrigation was 200 mm and after its application water content increased up to 345 mm indicating 

that at the end of the study period, the system gains water. Soil moisture dynamics at 30-cm depth 

behaved similar to those observed at the 30-cm soil profile (Figure 15e). The water content before 

the first auxiliary irrigation was 44 mm but after its application water content increased to 105 mm 

and it steadily decreased during the following 28 days. A second auxiliary irrigation was applied 

and the water content increased to 103 mm, 28 days after the water content decreased until 48 mm 

at this time the last auxiliary irrigation was applied, and this increased the water content to 97 mm. 

Figure 2.14 f) and g) display the proportion of the different water balance components at the plot, 

showing that 98% of the water inputs came from irrigation and only 2% came from rainfall, that 
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40 %  of the water delivered turned to Tr (productive water use) and 34% turned to Ev (unproductive 

water), while the remaining 27% of the left the plot as either runoff or percolation.  

 

 
Figure 2.15 a) Temporal dynamics of Evapotranspiration (ETa) from METRIC (dashed red line)  

and Transpiration (Tr) from PETVI (blue line); b) water inputs at the experimental site showing 

irrigation (blue bars) and rainfall events (red bars); c) cumulative Evaporation (Ev, red line) and 

Transpiration (Tr, green line); d) time series of the surface water balance (inputs - outputs); e) 

dynamics of soil moisture content (red line) during the observation period where the dashed black 

line indicates the absence of data before and after the observation period; f) proportion of rainfall 

and irrigation on the plot; g) proportion of Tr, Ev and runoff or percolation on the plot. 
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2.4 Discussion 

2.4.1 PETVI depends on the vegetation index 

In our PETVI approach, we use a vegetation index to perform two functions: 1) to parameterize 

the development of the phenological evolution of the crop and its influence on its transpiration 

rates through the Kcb,, and 2) to estimate the vegetation fractional cover of the crop. Thus, the 

degree of uncertainty or accuracy on the resulting Tr estimates from PETVI and the 

evapotranspiration partitioning will depend on the performance of the chosen vegetation index to 

realize those two functions. To address those issues, we evaluated three vegetation indices to 

estimate Kcb and transpiration (Tr) using PETVI: the Normalized Difference Vegetation Index 

(NDVI), the Modified Soil Adjusted Vegetation Index (MSAVI), and the Enhanced Vegetation 

Index (EVI). When comparing the resulting Tr obtained with each index to the reference Tr from 

the underlying Water Use Efficiency method (uWUE), all three had similar performance; close to 

identical r2 and slopes although MSAVI, had the lowest RMSD closely followed by NDVI and EVI 

(Figure A). In this work, we used NDVI to test and validate the Tr generated with PETVI for two 

reasons: 1) it showed a similar performance to the Tr calculated with MSAVI, and better 

performance than Tr from EVI, and 2) because from the three indices NDVI is the most widely 

used vegetation index (Huang et al., 2021), it is frequently available as a custom estimate from 

UAV imagery post-processing software and remote sensing data gateways and is the easiest index 

to obtain with ground measurements using handheld multispectral cameras (Kharrou et al., 2011).  

The NDVI has been used to calculate the cover fraction in various crops; Tenreiro et al., (2021) 

validated the cover fraction of 13 crops (including wheat) using NDVI, and their results showed 

good agreement between the fractional cover estimated using NDVI and the fractional cover 
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measured on the ground to calibrate hydrological models. Also, Goodwin et al., (2018) 

investigated estimating wheat yield using NDVI and vegetation fraction. They found a linear 

relationship between crop yield with increasing NDVI and cover fraction. On the other hand, 

Drerup et al., (2017) used NDVI to estimate Kcb in a wheat crop finding a close relationship 

between the increase in the NDVI value and a higher transpiration rate of the wheat. Similarly, 

Kharrou et al. (2011) used NDVI to derive Kcb and wheat crop cover fraction in a semi-arid region; 

their results suggest that incorporating NDVI to derive Kcb provides the opportunity to improve 

the water demands of the crop. The above-mentioned works, evidence the adequacy and robustness 

of NDVI in reflecting crop growth and fractional cover and provide confidence in its use within 

PETVI. 

2.4.2 Partitioning of water flux using two digital products Sentinel 2 and 

UAV images 

This study demonstrated the use of two images with different spatial resolutions to make 

the partitioning of Evapotranspiration: UAV-derived images, and Sentinel-2 images. High spatial 

resolution scenes used in croplands are helpful for accurately monitoring the water transfer from 

land surface to the atmosphere, and that has an important application in precision agriculture. 

Monitoring the productive and nonproductive water is essential to save water in agricultural 

practices. The estimation of soil evaporation in croplands using UAV images increases the 

accuracy of calculating the soil evaporation, and this is possible due to the more precise separation 

of the soil and vegetation and the reduction or elimination of edge effects. On the other hand, the 

calculated values using S-2 images keep the variability of the soil evaporation values due to edge 

effect and pixel mixing. The difference is due to the pixel size between UAV and Satellite images 
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(Mengmeng et al., 2017). This strengthens the behavior described in Figure 2.12. Where we can 

see the soil evaporation appear in the north and south sites of the experimental site. This pattern is 

due to the size of the pixels from S-2. At the same time, the UAV images show the little pixels that 

show soil evaporation on these two dates (March 23 and 28, 2019, Figure 2.12) due to vegetation 

cover being almost complete and reducing the soil exposure and evaporation (Nieto et al., 2019). 

However, both resolution images work well to estimate the Tr using the PETVI method, with UAV 

images showing a good correlation (R2 = 0.77) between observed and measured data. 

On the other hand, the calculation of Tr using the PETVI method and S-2 images show a correlation 

coefficient of 0.70. These values are comparable with those found by Hou et al., (2021) in which 

correlations around (R2 0.84) of observed and estimated transpiration values using UAV thermal 

images compared with the eddy covariance system in desert conditions and two crops corn and 

soybean. We found that the values of mean Tr at the end of March were 6.14 mm using UAV 

images and 6.09 mm using S-2 images. These values can be compared with the maximum Tr values 

found by (Duchemin et al., 2006) at the end of March 2003 Tr values from 2 to 6 mm with a mean 

of 4.17 mm. Duchemin et al., attribute this variability to the different sowing dates on the study 

site. Satellite images such as those from S-2 can help us monitor large cropland areas at a low cost 

to monitor the trajectory of Tr to adjust irrigation scheduling and increase the efficiency of 

irrigation. 

 

2.4.3 Crop water use changes at different phenological stages 

The water used by the crop during the growing season increased gradually, modulated by the 

phenology stage and weather conditions. The initial trajectory of Tr is tightly coupled to the green-

up of the vegetation. Our results (Table 3) yield comparable values to those of Gómez-Candón et 
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al. (2021) who studied a wheat crop using UAV images and an energy balance method to calculate 

the Tr values on three phenological stages as follows: at jointing the average Tr was 2.45 mm day-

1, anthesis Tr was 4.45 mm day-1, and Grain filling Tr was recorded 5.47 mm day-1. Discrepancies 

between this work and theirs can be attributed to different weather conditions and agronomic 

practices, but the overall trends of the values also closely follow the change of phenological stages. 

Tr from PETVI is based on following vegetation activity through a vegetation index based on 

chlorophyll reflectance, as a proxy for photosynthesis and transpiration. This can be affected by 

weather conditions, but also by soil water availability. During the observation period, Tr increased 

with each phenological stage until the milk grain stage, and then steadily decreased. During its 

upward trajectory, Tr shows some inflections (dips) associated to changes in the weather conditions 

and particularly to attenuation of the net radiation by rainfall and overcast conditions.. 

 

2.4.4 Environmental conditions and dynamics of water transfer and soil 

moisture 

Plant transpiration is affected by environmental conditions and soil moisture. During the 

observation period, TrPETVI using S-2 images and TrPETVI using UAV images varied in the range 

0.32 to 5.26 mm day-1 and 1.19 to 6.11 mm day-1 with means of 3.12 - 3.84 mm day-1 respectively. 

These Tr values increase as vapor pressure deficit (VPD) increases. Because VPD is a function of 

temperature and relative humidity, it reflects humidity or dryness of the study area. Low Tr values 

coincided with low VPD values. The VPD values were recorded as 0.38, 0.52, 0.36 kPa. In our 

study, the low VPD values occur during rainy events and cloudy conditions. However, the soil 

moisture in those days was high (84 mm of water) and close to field capacity (FC) so this means 
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that Tr was low due to energy limitations.  On the other hand, water transfer to the atmosphere by 

Tr increases linearly with VPD values >1 kPa as it has been shown in other well-watered wheat 

crops (Schoppach & Sadok, 2013). Transpiration increases also and up to some point with 

increases in temperature. Our results show high transpiration with temperatures around 20 ℃ and 

high VPD values. Concurrently, while Tr remains high, water content decreases after irrigation 

events as energy in the system is available (Gourdji et al., 2012). 

 

 

 

Table 2.3 Average daily transpiration (Tr) at each phenological stage in mm day-1. 

Phenology stage Tr [mm day-1] 

Germination (Ge) 0.17 

Growing (Gr) 0.64 

Tillering (Ti) 1.37 

Stem elongation (St) 2.15 

booting stage (B) 2.35 

Heading (H) 3.81 

Anthesis (An) 2.77 

Flowering (F) 3.88 

grain filling (Gf) 4.95 

milk grain (Mg) 4.77 

dough grain (Dg) 4.40 

physiological maturity (Pm) 2.25 
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2.4.5 PETVI Soil Evaporation  

Transpiration using Kcb derived from vegetation indices (VI) is well documented in its use 

in monitoring the vegetation growing and basal crop coefficient (Kcb) (Allen et al., 2011; Calera et 

al., 2010; Carpintero et al., 2020; Duchemin et al., 2006; Hunsaker et al., 2005; Reyes-González 

et al., 2018). In this work, a VI was used to determine Kcb, which is necessary to estimate the 

portion ETa belonging to Tr (Allen et al., 2011). However, the other important part is the estimation 

of evaporation. In our proposed method, evaporation is calculated as residual of ETa from the 

METRIC algorithm minus Tr PETVI using S-2 or high-resolution images. The same idea using EC 

data was documented by (Perez-Priego et al., 2018). This relationship can be applied because the 

METRIC method, which is based on the energy-balance, has the ability to detect the portion of 

evaporation from bare soil (Allen et al., 2013). The time series of Figure 2.4 showing the behavior 

of ETa and Tr from PETVI, demonstrates that the majority of evaporation happens in the early 

season (Chi et al., 2017). This occurs because the irrigation was delivered before the sowing date, 

increasing soil moisture. Subsequently, during the crop's full development, the difference between 

ETa and Tr is reduced close to zero, and Tr values closely approximate those of ETa (Ferreira et al., 

2012). When the vegetation starts the senescence, the crop transpiration reduces (blue line, Figure 

2.4), and the ETa value remains above form Tr values. This probably occurs due to the difference 

in pixel size 10x10 m Tr (S-2) and 30x30 m ETa (METRIC) in these last images incorporating a 

mix of soil and vegetation signatures (Kadam et al., 2021). The PETVI method can be applied 

using high-resolution images to partition ETa. In this work, we tested the performance of high-

resolution images to make the partitioning by the nature of the UAV images during the observation 

period. We found more details to follow the trajectory of soil evaporation and transpiration (Figure 

2.10, panel 3). So far, the PETVI model can be used with different image resolutions. However, 
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with some limitations in the case of S-2 it is possible to make this analysis at a plot scale and in 

vast areas of irrigation croplands with reasonable accuracy. On the other hand, using high-

resolution images increases the plot scale's detail to monitor the unproductive water. 

2.4.6 Utility of PETVI method 

The parsimony of the PETVI method for partitioning ETa provides some advantages over 

other more complex methods, as it requires relatively minimal parameterization. The main data 

inputs are multispectral satellite images from S-2 and Landsat 7 and 8, that now can be processed 

using cloud computing such as GEE (https://earthengine.google.org/). GEE has reduced the time 

and cost related to image processing (Stromann et al., 2019), and allows computing of Ev and Tr 

fluxes of large areas while remaining suitable for relatively detailed spatial analysis of crop parcels 

(<1ha). There is, however, the need for specialized programming knowledge and background in 

remote sensing to perform these analyses, but the implementation of routine algorithms into 

application programming interfaces (APIs) can readily facilitate the reproduction of these 

computations for specific areas or crops (Gorelick et al., 2017). To estimate Tr, meteorological 

data needed to calculate the reference evapotranspiration (ET0) is required. Ideally, data from 

weather stations surrounding the study area can supply this information, but in the absence of local 

meteorological data, reanalysis products can be used (Dhungel et al., 2020; Pelosi & Chirico, 

2021). One of the most important steps in correctly estimating the partition of evapotranspiration 

is obtaining accurate crop coefficient values over the development of the crop. Using satellite 

derived ETa (e.g. from METRIC or SEEBAL algorithms) together with ET0 estimates provides a 

convenient avenue to back-calculate those Kc values taking advantage of the relationship between 

ET0 and ETa (Allen et al., 2007). Some of those ETa images are freely accessible through third 
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party APIs supported by GEE such as the METRIC ETa (Allen et al., 2007; https://eeflux-

level1.appspot.com/), and SEBAL ETa (Laipelt et al., 2021; https://etbrasil.org/geesebal). These 

two data sources of ETa can be readily used to implement the PETVI algorithm (Figure 2.2). 

Knowing the relative contribution of Tr to ETa in a crop parcel on a near real-time (i.e. every one 

or two days) basis can be a useful tool for monitoring the productive and unproductive water use 

to adjust irrigation timing and amounts following closely the varying daily crop water demand.  

2.4.7 Tracking the water balance during the agricultural cycle 

The soil water balance (SWB) is a useful tool for monitoring the trajectory of water transfers 

from the land surface to the atmosphere. From the agricultural and water conservation point of 

view, tracking when unproductive water use occurs can help in planning irrigation schedules and 

amounts to maximize Tr over Ev. In this work, the water balance shows the periods when the water 

enters and leaves the system and together with Tr data it is possible to determine the time the crop 

takes to consume that water. This information can be used for scheduling irrigation, and 

developing strategies for water management. For example, Pereira et al. (2020), used the 

calculation of a net irrigation requirement (NIR) as the water amount that needs to be applied in 

crops fields to satisfy the crop water requirement (CWR) occurring when the soil moisture 

decreases below certain thresholds based on the water balance equation.  The possibilities for the 

application of this methodology at different spatial resolutions with the use of various remote 

sensing platforms (e.g. satellite and UAVs) might prove useful for crop water use diagnostics at 

different spatial scales. Other works using the water balance approach for irrigation management, 

provide practical examples on the applicability of these methods for water conservation efforts. 

For example, Li et al. (2018), documented a method to improve irrigation scheduling with average 
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water savings of up to 22 % using SWB. A study by El-Naggar et al. (2020) showed the advantages 

of using soil moisture data from sensor arrays deployed in the crop parcels which increased the 

accuracy of the SWB calculation used for water management.  
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2.5 Conclusion 

The PETVI method can provide a viable alternative for estimating a crop’s water-use 

trajectory during the growing cycle where information on plants' water demands can be assessed 

in near-real-time (every 2 or 3 days). In combination with ETa, PETVI can produce images to 

detect the period when productive and nonproductive water use occurs in a crop. PETVI estimates 

of Tr and Ev showed good agreement with those obtained through other methods using ground-

based data, providing confidence in the method. PETVI’s proposed approach can aid in the 

continuous monitoring of evaporation (Ev) and transpiration (Tr) at different scales, depending on 

the spatial and temporal resolutions of the input variables, as exemplified with the use of the high-

resolution UAV imagery and moderate resolution S-2 scenes. The use of two different spatial 

resolutions did not have a significant difference between Tr estimates, although Ev did show larger 

values for lower resolution data at the edges of the crop than those obtained with higher resolution 

images. This behavior shows that the PETVI is a competent method to estimate the Tr, while Ev 

estimates should be more carefully evaluated depending on the spatial resolution of the data and 

paying attention to any edge effects on the boundaries of the crops. Despite the current challenges 

inherent to the spatial resolution of the input data, PETVI can provide timely and cost-effective 

information on the productive and unproductive water use of a crop by monitoring Tr and Ev at the 

parcel scale (< 1 Hectare). One of the most severe limitations to using PETVI for estimating Tr and 

Ev is the availability of ETa inputs. Most of the remote-sensing-derived ETa data available is 

produced using imagery with a relatively low temporal resolution such as from Landsat 7 and 8 

missions (16-day revisiting time). If low quality images such as those with significant cloud cover 

occur, there could be a significant gap in data inputs that might hinder accurate estimations of ETa 

and Kc for producing reliable daily ETa data. Our study shows that PETVI yields reasonable values 
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of Tr and Ev that closely follow the development of a perennial crop (wheat), and future work 

should include the evaluation of this approach in other annual and perennial crops under different 

irrigation systems and climate conditions. 
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3 Chapter 3. Assessment of Irrigation Efficiencies of An Agricultural Valley 

with An Over-Exploited Aquifer Using the PETVI Method. 

3.1 Introduction 

In Mexico, some of the largest and most productive irrigation districts and units are located 

in the northern part of the country, where arid and semiarid conditions prevail (SIAP, 2016). In 

those regions, the most challenging issue farmers are faced with is the availability of water. In 

most cases, water from surface reservoirs and aquifers are the main source of water for irrigation 

because precipitation is significantly lower than evapotranspiration. Hence those water sources are 

needed to guarantee good crop yields. Overexploited aquifers are a concern in different regions; 

specifically in arid and semiarid locations (Gleeson et al., 2012). In areas marked by urban growth, 

economic activities such as agriculture frequently lead to stressed groundwater sources (Konikow 

and Kendy., 2005). In Mexico’s northern drylands agriculture can make up 80% of the water use 

(Wurl et al., 2018). For example, in 2018, agricultural production in the state of Chihuahua used 

89 % of the total available water for all activities, and from this amount, groundwater used for 

agricultural production supplied around 2,772 hm3 year-1, and surface water used 2,054 hm3 year-

1 (CONAGUA 2018). The primary perennial crops planted in the state of Chihuahua, in north 

central Mexico, in 2018 were:  alfalfa with 89,688 hectares, pecans orchards with 84,928 hectares, 

and apple orchards with 28,368. Annual crops consisted of cotton, with 164,841 hectares planted, 

followed by corn with 125,862 hectares using both, surface and groundwater sources. All of these 

crops were cultivated under intensive irrigation schemes (SIAP, 2019). 

Similar to most regions of the world with arid and semiarid conditions, economic activities 

in northern and central Mexico, and particularly agriculture, rely on groundwater. Technical 
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reports from Mexico’s National Water Commission (CONAGUA, 2011) have shown that 32 of 

the most important aquifers of the country are overexploited, meaning more water is being 

extracted than that being recharged. Moreover, from the total amount of water used in the country, 

50.6 % comes from those overexploited aquifers, where agricultural activities are the main users. 

Consequently, higher water use efficiency and conservation in agriculture in those regions is 

urgently needed.  

Improving irrigation practices in agriculture can help alleviate the pressure on water 

resources, particularly in places where groundwater supplies the majority of the water. To do this, 

knowledge of irrigation efficiency, both at the parcel and irrigation district is critical. But 

depending on the definition of irrigation efficiency, some measures of this term may be more or 

less useful for the purpose of conserving water while maintaining high crop yields. Traditionally, 

irrigation efficiency is defined as the percentage of water delivered in the parcel that becomes 

evapotranspiration (ETa) (Tennakoon and Milroy, 2003; Ahadi et al., 2013). This definition 

implies that the higher the amount of water that becomes ETa, the higher the efficiency will be, 

regardless of how much of that water is actually used by the crop and how much is lost as direct 

evaporation from the soil or standing water on the furrows when flood irrigated. Because irrigation 

efficiency is used as an indicator of the modernization or technification of irrigation, this term can 

also be applied to systems that combine water management and irrigation technology (Wu et al., 

2009). Others have defined water use efficiency in agriculture as the crop transpiration ratio to the 

total water volume delivered to the field (Wang et al., 1996), or as the ratio of the volume of water 

stored in the root zone over the volume of water extracted from the primary source (Jia et al., 

2013). Taking the definition of Wu et al., (2019) in which irrigation efficiency is an indicator 

reflecting water management and irrigation technologies at different scales, this can then be used 
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to develop plans for adapting to current and future water scarcity scenarios (Fader et al., 2016). As 

freshwater has become scarce in many regions on a global scale and even more acutely in arid and 

semiarid areas, it is imperative to improve irrigation efficiency (Ma et al., 2018). A general vision 

of irrigation efficiency is measuring the opportune water delivery to the crops through different 

irrigation systems without reducing the water for environmental and human uses.  

The Mexican National Water Commission (CONAGUA) reported an average decline of 2 

m year-1 in the regional water levels of the Cuauhtémoc aquifer of Northern Mexico in between 

the years 1988 to 1997 (CONAGUA, 2002). This report aligns with the stress level found by 

Gleeson et al., (2012) in other places of the world with similar conditions, showing that 

northwestern Mexico has attained high groundwater stress levels as well. Under these stress levels 

it is necessary to improve water management and conservation for irrigated agriculture where 

deficient water delivery practices is taking place along with the much needed application of 

strategies to improve water use efficiencies. 

Water supply conflicts between agricultural and urban areas have recently started to appear, 

particularly in population centers and agricultural regions located in arid and semi-arid 

environments (Hargrove et al., 2013). For example, projections from a study of 482 cities around 

the world using data from 1971 to 2000 found that 46% of the cities studied may experience a 

deficit of surface water, and in many of those cases, agricultural water users will conflict with 

cities due to water shortages to meet both urban and crop water needs (Flörke et al., 2018). 

Similarly, Molle and Berkoff (2009) found that wasteful irrigation and bureaucratic inefficiency 

point to water scarcity in urban areas. This is precisely what is occurring currently in the 

Cuauhtémoc aquifer, where water is supplied through 17 deep wells from which 12 Mm3 per year 

are extracted for use in urban contexts. Seasonally recurring issues with the city’s water supply 
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caused by the lowering of the water table in the aquifer affect the city’s wells at the height of the 

irrigation season and coincide with the warmest temperatures of the year, creating serious sanitary 

hazards for the population of Cuauhtémoc, Chihuahua (Díaz et al., 2014). The overexploitation of 

the Cuauhtémoc aquifer conflicts with its two main users. When irrigation for crop water is at its 

maximum in the valley, some of the city wells run dry and urban areas located in the higher areas 

of Cuauhtémoc face water cuts for considerable periods of time. 

Knowledge about water use efficiency in a parcel for different irrigation systems (Furrow, 

Sprinkles, and drip irrigation) is needed. The study's main objective is to assess the productive 

water use efficiency as the ratio of transpiration to the total water delivered in the plot, using the 

PETVI method in the Cuauhtémoc agricultural valley in northern Mexico. First, we describe the 

historical context leading to the current unsustainable agricultural activities discussing the climate 

conditions, principal activities, and prevailing irrigation practices in the region. Next, we address 

the methodology used to study the irrigation efficiencies of six observation plots representative of 

the region, by describing the material and methods that were used in the process. We then discuss 

the results of the irrigation efficiency analysis, their meaning and implication in the context of the 

aquifer overexploitation and finally we provide some concluding remarks projecting different 

scenarios of water irrigation improvements without further technification/modernization of the 

current irrigation systems. 

3.1.1 Background and historical evolution of water resources in the 

Cuauhtémoc valley 

Groundwater irrigated agriculture in the Cuauhtémoc valley started in the early 1950s 

(Sawatzky, 1971; Castro-Martínez, 2000). The first apple orchards were registered in 1953 
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(SAGARPA, 2013), and favorable climatic conditions and groundwater availability for irrigation 

helped Cuauhtémoc become the largest producer of apples in Mexico (SIAP, 2018). After 

industrial-scale apple production started, industrial-scale corn production followed, reaching 

approximately 470 km2 of irrigated croplands in Lagoon Bustillos Basing. The conversion of land 

from a pasture and small-scale rainfed agriculture to intensive irrigation changed the basin's 

hydrologic dynamics, producing an unsustainable groundwater exploitation scheme. Figure 3.1 

represents a hypothetical conceptual model of the Cuauhtémoc Aquifer (CA). Their hydrologic 

evolution, following changes in irrigation modes and magnitudes, and its resulting increases in 

production operation costs in 5 periods in which the first three periods have occurred or are 

presently occurring. The last two are desirable periods for the future. The description of each 

period is as follows:  1) An initial groundwater pumping (red line) did not affect the aquifer volume 

significantly because the water table (blue line) was able to recover and keep its original level from 

rapid natural recharge (green line); (2) Overexploitation (orange) started when water pumping 

exceeded the rate of recharge, resulting in an aquifer drawdown. At the same time, new drillings 

appear all over the basin, and the depth to the water table notably increases yearly, forcing deeper 

drillings to reach the water table, thus increasing pumping costs. During this period, the natural 

recharge rate is augmented and starts being affected by notable climate variability; (3) a period of 

gradual and non-stop groundwater overexploitation (Orange), with notable population growth 

(brownish), results in a gradual groundwater abatement (blue line) due to constant pumping 

activity leading to groundwater mining; (4) an ideal period of technological progress will 

contribute to gradually reduce the groundwater extraction rate (red line) and pumping costs making 

the groundwater level to recover gradually while helped by the natural recharge; (5) over time 

there will be equilibrium and recovering of the aquifer making water extraction sustainable. This 
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figure shows a changing recharge rate and a variable and out-of-phase groundwater pumping rate 

in response to the interannual changes in climatic conditions. The magnitudes and the ranges of 

fluctuation for recharge processes and groundwater pumping are currently unknown. We 

hypothesize that the fluctuation of these processes in the present time responds directly to human 

intervention in the hydrologic cycle of the Lagoon Bustillos Basin and indirectly to the natural 

climatic variability of the area that affects groundwater use in the basin. 

 
Figure 3.1 Conceptual model (not to scale) of the Cuauhtémoc aquifer recharge rate, pumping, 

and phreatic levels evolution versus the drilling and pumping costs from the beginning of the 

agriculture activity in the basin (periods 1-3), the actual situation (period 3) and a hypothetical 

and desirable sustainable future (periods 4 and 5). 
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3.2  Materials and Methods 

3.2.1 Study site 

The agricultural valley is located in the influence area of the Cuauhtémoc aquifer. It is 

between the coordinates 28°13'19" and 28°59'35" North and -106°34'39" and 107° 10'33" (Figure 

3.2). This aquifer has a similar shape to Bustillo's basin. In this area, 58 % of the surface is 

dedicated to agricultural activities. The site is located in the endorheic basin, where rainfall is the 

primary source of the natural recharge to the aquifer. It has an annual precipitation of 460 mm, and 

the temperature in this area is; minimum of -10.5, a maximum of 24, and an average of 14.6 degrees 

Celsius (Medina et al., 2006). The current situation of the aquifer shows an extraction of 497.90 

hm3 and recharge of 299.40 hm3, which points to the unsustainability of the Cuauhtémoc aquifer. 

The agricultural valley has an average elevation of 2000 meters above sea level (CONAGUA, 

1991; Alatorre et al., 2014). Cuauhtémoc, with a population of 160,000 people, is the most 

important city in the area of study. The main economic activity in the Cuauhtémoc Aquifer region 

is agriculture, with an extension of land measuring around 55,000 hectares that has access to 

irrigation. Of these 55,000 ha 47,000 ha are dedicated to corn, and 8,000 are used for apples. 

Groundwater is the primary source of water that maintains agricultural production. With respect 

to the cornfields, 97 % of them are irrigated with the furrow technique, 2 % through sprinkler 

irrigation, and only 1% makes use of drip irrigation (Santos-Hernández et al., 2019). This study 

examines seven field plots where corn was cultivated during the agricultural cycle in 2017; three 

plots are dedicated to furrow irrigation, two parcels to drip irrigation, and two parcels to sprinkler 

irrigation. The surface evaluated was: two sites equipped with drip irrigation systems of 16 and 20 

ha, respectively, two sites equipped with sprinkler irrigation, 50 and 63 ha, and the conventional 
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furrow irrigation systems 32, 25, and 47 ha. The sites of the cooperating producers were randomly 

selected along the agricultural valley. 

 
Figure 3.2 a) Show the state of Chihuahua Mexico; b) General view of the Bustillos Lagun Basin 

delimited by mountains represented by the black line forming a closed basin with its central part 

forming a large valley. The agricultural plots are shown in a light green color within the basin, 

making up ~ 80% of the basin's surface. The observation plots distributed in the farming valley 

are shown. The parcels were labeled as F-1, F- 2 for furrow irrigation, represented by small yellow 

squares; S-1, S-2 for sprinkler irrigation sites, represented by yellow; and D-1, D-2 for drip 

irrigation sites, represented by red triangles, standard weather stations are represented by black 

triangles. White dots represent the main population centers. In addition, three bodies of water are 

displayed, one in the north, one in the south, and a larger one that serves important ecological 

needs called the Laguna de Bustillos in the southwestern part of the basin that has following 

dimensions: 16 km long and 8 km wide at its maximum capacity. 
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3.2.2  Data 

3.2.3 Meteorological data 

The weather data was obtained from the Union Agricola Regional de Fruticultores del 

Estado de Chihuahua A. C. (UNIFRUT). Daily weather station observations of air temperature 

(°C), relative humidity (%), solar radiation (Kw m2), wind speed (Km hr-1), and precipitation (mm) 

are used. The location, latitude, and longitude coordinates of each weather station were obtained 

from the file manager data of UNIFRUT. We used data from three weather stations surrounding 

the study sites and nearest to the single observation sites. 

3.2.4 Remote sensing data 

In this study we used remote sensing data, including Landsat 8 evapotranspiration (ETa) 

images (16 days, 30 m temporal, and spatial resolution, respectively) downloaded from 

(https://eeflux-level1.appspot.com/), and Sentinel-2 (S-2) data (5 days, 10 m temporal and spatial 

resolution, respectively), S-2 data are available at (https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2) we used this data from March to November 2017. to 

cover the observation sites with one image from Landsat (path/Row 033 and 040). We used two 

scenes for S-2 (mosaic identifier T13RBM and T13RCM) to cover the observation plots. After 

applying the filter date, the data analysis for the specific observation sites was obtained using the 

vector shapefile for each plot. 
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3.2.5 Sentinel-2 data  

We used multispectral images with a high temporal and spatial resolution  from March to 

November 2017 (Table 3.1). We processed (S-2) imagery in Google Earth Engine (GEE) using the 

top-of-atmosphere reflectance (TOA)  (Zhang et al., 2019). Recent studies have shown the use of 

the Normalized  Difference Vegetation Index (NDVI) to estimate the basal crop coefficient (Kcb) 

(Jiang et al., 2014; López-Urrea et al., 2012; Toureiro et al., 2017). We  specifically selected the 

bands in the near-infrared (~ 0.84 μm wavelength) and the (R) red (~ 0.66 μm central wavelength) 

portion of the electromagnetic spectrum (Huete et al., 2002). We used these bands to create a time 

series of the NDVI to monitor vegetation dynamics (Martínez & Gilabert, 2009). To eliminate 

possible spurious data, we generated a time series of the normalized vegetation index for the study 

plot following standard procedures (Gorelick et al., 2017). This filter removes spurious data in the 

vegetation index extracted from S-2 images, rescaling these to Kcb values. These procedures were 

key in obtaining a clean and smooth time series of crop development. Finally, when we already 

had the data for each observation site, the numerical data was exported to a comma-separated 

values (CSV) file. to process them in Matlab. 

 

Table 3.1 Characteristics of S-2 Images processed on GEE 

DATE NAME Cloud % Band 8 Band 4 

T13RBM T13RCM 

4/29/2017 20170429T174752 12 74 X X 

5/19/2017 20170519T174800 6 0 X X 
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6/08/2017 20170608T174718 11 2 X X 

6/28/2017 20170628T174712 7 7 X X 

7/13/2017 20170713T174714 14 12 Nd Nd 

7/18/2017 20170718T174646 58 55 Nd Nd 

8/2/2017 20170802T174713 15 20 Nd Nd 

8/7/2017 20170807T174624 8 1 X X 

8/22/2017 20170822T174710 9 18 Nd Nd 

8/27/2017 20170827T174714 64 49 X X 

9/11/2017 20170911T174826 14 3 X X 

9/16/2017 20170916T175023 30 33 X X 

10/1/2017 20171001T174935 6 6 X X 

10/6/2017 20171006T175353 4 1 X X 

10/21/2017 20171021T175230 0 0 X X 

10/26/2017 20171026T174528 0 0 X X 

11/10/2017 20171110T174631 41 0 X X 

X= data available; Nd= no data 
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3.2.6 METRIC data 

We obtained the images of evapotranspiration (ETa) from the website (https://eeflux-

level1.appspot.com/). Images are freely available after processing with the METRIC algorithm 

using the Landsat images. The METRIC algorithm computes each pixel of daily actual (ETa) at 

each available satellite image of the Landsat series (Allen et al., 2007; Irmak et al., 2012). These 

ETa daily values can get the crop coefficient (Kc) using the back-calculation through the simple 

relationship between ETa and reference evapotranspiration (ET0) as follow Kc= ETa/ET0. The 

reference evapotranspiration will be calculated using the Penman-Monteith equation using data 

from the weather station at the time of the satellite overpass. Using this process it is possible to 

rescale the daily ETa on a daily time series. Also, the ETa images were selected with no cloud cover 

at the observation sites.  

 

Table 3.2 Characteristics of Landsat images processed on GEE 

Date ID Cloud [%] Doy 

2017-03-13 LC80330402017072LGN00 0 072 

2017-03-29 LC80330402017088LGN00 1 088 

2017-04-14 LC80330402017104LGN00 51 104 

2017-04-30 LC80330402017120LGN00 0 120 

2017-05-16 LC80330402017136LGN01 0 136 

2017-06-01 LC80330402017152LGN00 30 152 

2017-06-17 LC80330402017168LGN00 1 168 

2017-07-03 LC80330402017184LGN00 33 184 
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2017-08-13 LC80320402017225LGN00 58 225 

2017-08-21 LE70320402017233EDC00 0 233 

2017-08-29 LC80320402017241LGN01 33 241 

2017-09-21 LC80330402017264LGN00 1 264 

2017-10-07 LC80330402017280LGN00 6 280 

2017-10-23 LC80330402017296LGN00 0 296 

2017-11-08 LC80330402017312LGN00 23 312 

 

3.2.7 Methods 

3.2.8 Crop coefficient and basal crop coefficient. 

 The representative evolution of the crop coefficient (Kc) component is represented in 

Figure 3.3, which is represented by a curve that has the same shape as the phenological evolution 

of the crop. The Kc comprises the evaporation coefficient (Ke) and the basal crop coefficient (Kcb). 

The Ke at the beginning of the crop cycle is always higher, especially if the soil is wetted by 

irrigation or rain. It decreases as the soil dries or is covered by vegetation. The Kcb has an inverse 

relationship concerning Ke, the Kcb values are low at the beginning of the season because it 

represents the proportion of the vegetation, and at this time, the vegetation is small. However, it 

increases with crop develoment and reaches its maximum value when the crop reaches its full 

development. Kc is usually estimated using a lysimeter or relating crop height and meteorological 

variables (Ko et al., 2009). However, these measurements are not always recorded in the field, but 

it is possible to infer them from independent estimates of ETa using the relationship Kc = ETa/ET0. 
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Discrete daily values of ETa can be derived from energy balance algorithms using satellite imagery 

and meteorological data (e.g. geeSEBAL, Laipelt et al., 2021; eeMETRIC, Allen et al., 2011). 

Although the Kc function can vary in response to year-to-year climate and water variations, the Kc 

shape has been widely studied for most crops. Therefore, it is well-known and can be reconstructed 

by simple linear interpolation from a few values distributed throughout the growing season (Allen 

et al., 2007; Duchemin et al., 2006; Kumar Gontia et al., 2010). On the other hand, the shape of 

the Kcb function can be tracked by following the phenology of the crop using a vegetation index, 

such as the Normalized Difference Vegetation Index (NDVI). In other words, Kcb can be inferred 

using satellite-derived vegetation indices. Because in a well-watered crop, the phenology of the 

vegetation shows a smooth curve, potential issues of spurious data on the vegetation indices can 

be easily discarded by removing outliers data, and interpolation between satellite images to obtain 

daily vegetation index values can be performed. In the same way, the calculation of Kcb represents 

the proportion of the vegetation. For this reason, Kcb can be rescaled from vegetation indices due 

to its close relationship with the phenological development of the crop. Based on this fact, and if 

we have the punctual values in time, it is possible to make a linear interpolation to construct the 

Kcb curve for a particular agricultural cycle. 
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Figure 3.3 shows the scheme of the crop coefficient curve (Kc), represented by the black line; the 

evaporation coefficient curve (Ke), represented by the yellow dashed line. Moreover, the green 

line represents the basal crop coefficient curve (Kcb); the vertical dashed lines represent the crop 

growth stages 

 

3.2.9 Basal crop coefficient (Kcb) from NDVI and transpiration (Tr). 

The validation of the different methodologies using high-precision instruments helps 

implement the new methods at low cost and is accessible for sites without sophisticated 

meteorological instrumentation. In this work, we used the PETVI method to separate the 

productive and unproductive water through the estimation of a daily basal crop coefficient (Kcb) 

using a vegetation index (VI) following the close relationship between VI and crop development 

during the growing cycle, and the fact that they are in close correspondence with transpiration 

demands (Allen et al., 2011; Glenn et al., 2008). We calculated the normalized difference 

vegetation index (NDVI) to monitor vegetation growth dynamics using S-2 imagery. The images 
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were processed in the GEE platform (Gorelick et al., 2017; Kandekar et al., 2021) using bands 8 

(near-infrared) and 4 (red). Before the analysis, the area of interest is defined inside GEE by 

loading a shapefile using the assets manager. For the calculation of NDVI, no cloudiness filter was 

performed on the images because. Once NDVI values had been established for the days with 

available satellite observations, a quality control procedure was carried out to eliminate spurious 

data that may have been produced by contamination of the reflectance values in the satellite images 

from cirrus clouds or cloud shading. This analysis was developed through the NDVI time series 

and identified abnormal data values by locating unrealistic sudden drops of NDVI that depart from 

the expected evolution of the vegetation cycle; we eliminated data values from those dates to 

generate a clean time series. After that procedure, instantaneous Kcb values were calculated from 

the NDVI time series by rescaling the NDVI values to the seasonally maximum possible Kc reported 

for that particular crop using the equation for the vegetation cover fraction (Schüttemeyer et al., 

2007; Allen et al., 1998; Hunsaker et al., 2005): 

𝐾!" = 1.20 ∗ #$%&	'#$%&!"#
#$%&!$%'#$%&!"#

                                                                              Eq.   (1). 

In our study we used NDVImin = 0.14, NDVImax = 0.63 and a maximum value of 1.20 for 

the corn crop coefficient (Kc) following Allen et al., (1998). Because the Kcb function of a well-

watered crop should follow a relatively smooth trajectory, daily Kcb values can be obtained by 

linearly interpolating between the satellite-derived values, producing a daily time series of Kcb. 

During the growing cycle of the crop, one of the most essential variables changing the proportion 

of evaporation to transpiration is the evolution of the vegetation fractional cover Fc. As Fc grows, 

the area of exposed bare soil decreases, reducing the direct evaporation of soil moisture, while the 

vegetation increases its water demand and, with it, the fraction of ETa that becomes transpiration. 
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To account for this process, we calculated Fc through the entire growing cycle using a linear 

relationship with NDVI from S-2 following (Irmak et al., 2012) (Eq 2.).  

𝐹! =
#$%&	'#$%&!"#

#$%&!$%'#$%&!"#
                    Eq. (2). 

The final form of the equation for Tr is then as follows: 

 	

𝑇) = 𝐾!" ∗ 𝐹! ∗ 𝐸𝑇* = 1.20 ∗ + #$%&'#$%&!"#
#$%&!$%'#$%&!"#

,
+
∗ 𝐸𝑇*                            Eq. (3). 

 

3.2.10 Reference evapotranspiration (ET0) 

We used data from UNIFRUT provided by standard weather stations on a daily scale. 

Following the workflow illustrated in figure 3. Firstly we need to sort the data; maximum and 

minimum air temperature (°C), relative humidity (%), solar radiation (Kw m2), and wind speed 

(Km hr-1), after using Matlab to encode the Penman-Monteith equation (Allen et al., 1998), we 

obtain the ET0 in (mm day-1) for the study period. 

𝐸𝑇* =
*./*01(3#'4)678

'&&
()*+,9:*(;-';$)

167(<6*.=/:*)
                    Eq (4), 

where ET0 is the reference evapotranspiration (mm day-1), Rn is the net radiation (MJ m2 day-1), G 

is the heat flux density of the soil (MJ m2 day-1), T is the daily mean air temperature at 2 m height 

(° C), u2 is the wind speed at 2 m height (m s-1), es is the saturation vapor pressure (kPa), ea is the 

real vapor pressure ( kPa), Δ is the slope of the vapor pressure curve (kPa ° C-1), γ is the 

psychrometric constant (kPa ° C-1), and es-ea is the saturation vapor pressure deficit (kPa). 
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3.2.11 Evapotranspiration from METRIC 

In this work we used ETa data [mm day-1] derived from the METRIC algorithm (Allen et 

al., 2007) using Landsat 7 and 8 missions (path 034 and row 040)1 with a spatial resolution of 30 

m and temporal resolution of 16 days. The images were obtained from the EEFLux website 

https://eeflux-level1.appspot.com/ (Allen et al., 2007; Allen et al., 2015; Allen et al., 2011; Wan 

et al., 2021) and inspected manually to select those free of cloudiness for the study area. The 

images were uploaded into an image collection inside GEE with their respective metadata. Once 

the collection of images was created, a scene cut was made for the area of interest using a shapefile. 

Given the characteristics of the study, it was necessary to have daily ETa values. However, linear 

interpolation of ETa values is nonviable due to their dependence on daily conditions in local 

weather that can vary substantially daily. To overcome this problem, we derived Kc values from 

the satellite-derived ETa following the well-established relationship between the ratio of 

evapotranspiration and the reference Evapotranspiration (ET0) from local weather data to Kc (Eq. 

5). 

 𝐾! =
,-$
,-&

                                                                                                                Eq. (5). 

where Kc is the crop coefficient, ETa is the daily evapotranspiration from METRIC, and ET0 is the 

reference evapotranspiration. Using equation 6, we obtained the Kc daily values. With this 

approach, some dates with low ETa can yield lower Kc values than expected based on the crop 

phenological stage. Therefore, ETa images obtained from the energy balance algorithm (i.e. 

METRIC) need to be previously calibrated by adjusting the Kc using the tabulated values and 

observations of the crop in the experimental site based on its phenological stage.  
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3.2.12 Partitioning Evapotranspiration 

The ETa flux separation in evaporation (Ev) and transpiration (Tr) for the proposed approach 

was estimated as the residual of ETa and Tr, similar to the FAO-56 dual crop coefficient method 

(Allen et al., 1998; Allen, 2000). Using the PETVI approach to obtain daily values of Tr by using 

the smooth function of the phenology of a well-watered crop to obtain values for Kcb and Kc in-

between days where vegetation indices and satellite-derived ETa observations are not available. 

  

 
Figure 3.4 workflow to estimate the variables needed in the PETVI method. This workflow diagram 

shows the input variables from left to right with yellow squares. Here are the required S-2 images, 

meteorological data, and ETa images from Landsat using METRIC algorithms. In the center of the 

flow diagram are the basic calculations and procedures. Finally, in the green boxes are 

represented the results at the daily scale of Tr, ETa, and last but not less significantly, the 

evaporation as residual from the subtraction of the Tr of ETa. 



 

96 
 

3.3 Results 

3.3.1 Dynamics of Evapotranspiration (ETa) during the growing cycle in 

furrow-irrigated fields. 

In the observation plots with furrow irrigation (F1 and F2), evaporation (Ev) occurs in two 

different periods (Figure 3.5). The first period occurs at the beginning of the agricultural cycle, 

which starts from day 75 and goes until day 150. The second period begins when the crop enters 

senescence, which occurs from day 245 until the harvest date around day 280 approximately. The 

evaporation in the first period for both plots was different; plot F1 Ev was 166 mm and F2 Ev was 

91 mm. For the second period, F1 Ev was 164 mm and F2 Ev was 181 mm. Although planting dates 

were different at each site, (similar timing of crop emergence as revealed by the transpiration 

signal) total Tr for both parcels was very similar (F1 Tr = 500 mm and F2 Tr = 550 mm). In both 

sites, transpiration dominates ETa fluxes from day 150 to day 250. However, the evaporation totals 

between sites differ significantly; for F1 Ev was 380 mm while for the F2 Ev was 300 mm. This 

difference in Ev between sites was caused by an evaporation peak in the F1 site around days 160 

to 170 and to the fact that the transpiration in the F2 makes the entirety of ETa during that period. 

In both sites, most of the water irrigated was delivered before the rainy season, with a final 

irrigation delivered at the end of the rainy season. Analysis of surface water balances (SW) at both 

sites show that both plots end up with excess water, although in one plot SW is significantly higher 

(F1 SW = 350 mm and F2 SW = 450 mm). The difference in SW between F1 and F2 is due to the 

greater evaporation in F1 relative to F2.  
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Figure 3.5 Hydrological fluxes in observation parcels with furrow irrigation system for sites F-1 

and F-2. (a, e) showing the behavior of Evapotranspiration [ET mm d-1; orange line], and 

Transpiration [T mm d-1; blue line]. Soil evaporation is shown as a shaded orange region. The 

black dashed line shows the basal crop coefficient; (b, f) show the main water inputs to the parcel; 

effective rainfall [mm; orange bars], and irrigation events [mm; blue bars]; (c, g) show the 

cumulative Transpiration [mm; blue line] and Evaporation [mm; orange line], the dashed 

horizontal lines indicate the absence of analysis at the end of the cycle; (d, h) show the surface 

water balance (P-ET [mm]) at the plot scale, the dashed line indicates the absence of analysis in 

the final of the period and the dashed vertical lines in orange show the planting and harvest dates. 
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3.3.2 Dynamics of Evapotranspiration (ETa) during the growing cycle in 

sprinkler-irrigated fields. 

The observation sites equipped with sprinkler irrigation (S-1 and S-2) showed a behavior 

similar to the previously described sites related with evaporation periods (Figure 3.6). The first 

period occurred during the beginning of the establishment and development of the crop between 

days 72 and 180; the second period occurred when the crop begin dormancy until the day 280 

harvest period. The Ev in the first period for S-1 was 215 mm; in the second period, Ev was 193 

mm. For site S-2, Ev in the first period was 240 mm and second period was 187 mm. Planting 

dates for S-1, and S-2 were around day 110. Total evaporation and transpiration are very similar 

in both sites despite irrigations being delivered with different frequencies and amounts (S-2 

irrigations were more frequent and with smaller amounts than S-2). Irrigation management did not 

affect the proportion of ETa in both plots. However, the frequencies and amounts of irrigation had 

evident repercussions in the SW. Reviewing the behavior of the water balance in S-1, SWB 

remained almost neutral, while for S-2, the water balance maintained excess water before the rainy 

season; even after the rainy season, it was delivered the last irrigation, this increased the moisture 

content at the end of the cycle in both sites (S-1, SW = -0 and S-2, SWB = 150). Therefore, the 

SW difference between S-1 and S-2 was due to the differences in the operation of irrigation. 
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Figure 3.6 Hydrological fluxes in observation parcels with sprinkler irrigation systems for sites 

S-1 and S-2. (a, e) showing the behavior of Evapotranspiration [ET mm d-1; orange line], and 

Transpiration [T mm d-1; blue line]. Soil evaporation is shown as a shaded orange region. The 

black dashed line shows the basal crop coefficient; (b, f) show the main water inputs to the parcel; 

effective rainfall [mm; orange bars], and irrigation events [mm; blue bars]; (c, g) show the 

cumulative Transpiration [mm; blue line] and Evaporation [mm; orange line], the dashed 

horizontal lines indicate the absence of analysis at the end of the cycle; (d, h) show the surface 

water balance (P-ET [mm]) at the plot scale, the dashed line indicates the absence of analysis in 

the final of the period and the dashed vertical lines in orange show the planting and harvest dates. 

 



 

100 
 

3.3.3 Dynamics of Evapotranspiration (ETa) during the growing cycle in drip-

irrigated fields. 

Among all available irrigation systems, drip irrigation and particularly subsurface drip 

irrigation is the most efficient in delivering only the required water to crops, with maximum 

operation efficiencies of ~95%. In the two observation plots equipped with subsurface drip 

irrigation that were evaluated in the study (D-1 and D-2), we expected lower Ev totals than for the 

previously described systems. However, both the dynamics and totals of Ev maintain a similar 

pattern with two periods of Ev (Figure 3.7); one at the beginning and the end of the cycle. The first 

period occurred from day 75 to 175, and the second period occurred when the crop began the 

senescence period, from day 240 to harvest season. At D-1, Ev was 284 mm and 186 mm for the 

first and second periods respectively; at D-2, Ev was 137 mm, and 157 mm for the first and second 

period respectively. On the other hand, while Tr totals were remarkably similar at both sites (~ 550 

mm), the high Ev recorded at D-1 during the first period yielded large differences in Ev totals 

between the observation plots (470 mm and 294 mm for D-1 and D-2 respectively). Differences 

in irrigation observed between both sites may help explain the disparities in Ev totals:  at D-1, 

irrigation was more frequent throughout the entire crop development, stopping right before the 

start of the rainy season and favoring an Ev peak between days 130 to 175. With respect to the 

surface water balance (SW), we found a large difference at the end of the growing cycle between 

both sites, D-1 SW ended at 98 mm and D-2 SW ended at 230 mm. The difference between SW is 

because a large amount of evaporation occurs during the crop development period in D-1. 
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Figure 3.7 Hydrological fluxes in observation parcels with drip irrigation systems for sites D-1 

and D-2. (a, e) showing the behavior of Evapotranspiration [ET mm d-1; orange line], and 

Transpiration [T mm d-1; blue line]. Soil evaporation is shown as a shaded orange region. The 

black dashed line shows the basal crop coefficient; (b, f) show the main water inputs to the parcel; 

effective rainfall [mm; orange bars], and irrigation events [mm; blue bars]; (c, g) show the 

cumulative Transpiration [mm; blue line] and Evaporation [mm; orange line], the dashed 

horizontal lines indicate the absence of analysis at the end of the cycle; (d, h) show the surface 

water balance (P-ET [mm]) at the plot scale, the dashed line indicates the absence of analysis in 

the final of the period and the dashed vertical lines in orange show the planting and harvest dates. 
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3.3.4 Relative contribution of the Evaporation (Ev) component into total 

Evapotranspiration (ETa). 

The rainfall season in the study area begins in early June, at a time when the crops have 

attained their maximum development. This means that from the start of the sowing period farmers 

use groundwater to irrigate their crops at least until late May, which is the period when Ev has the 

most significant contribution to the total ETa. This pattern occurs on all six observation plots with 

slight variations on the Ev/ETa ratio (Figure 3.8.a-f). In plot F-1, after the second irrigation, Ev/ETa 

decreases to almost zero on day of year (doy) 150, but after the third irrigation is applied, the Ev 

contribution to ETa, quickly increases; a similar behavior occurs in F-2 (Figure 3.8b). In the case 

of the sprinkler irrigation system (Figure 3.8. c, d) Ev/ETa shows a gentler decrease relative to that 

of F-1 and F-2, where Ev/ETa = 0 is reached on doy 180. On the drip irrigated plots (Figure 3.8.e, 

f) a similar Ev/ETa behavior to sprinkler irrigated plots is observed, but with some differences 

inherent to their operation; during the early season the farmer delivered water on a highly frequent 

basis, increasing the availability of water for direct soil evaporation and increasing the Ev 

contribution to the ETa. After that, Ev/ETa slowly decreased until reaching zero values on doy 180, 

and then the crop continued with their physiological activities using water from rainfall. In plot D-

2, nonproductive water use occurred early in the growing season but with clear differences to D-

1. In D-2 irrigation was applied at larger intervals than in D-1, and Ev/ETa went to 20% quickly 

after the third irrigation, and to 0% after the fourth irrigation around doy 180. The analyses show 

that unproductive water use occurs when most of the water comes from groundwater and when the 

rainfall season begins most of that water is used by the crop (i.e. productive water). Also, the last 

irrigation on the six observation plots is delivered close to the physiological maturity in the last 
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stretch of the growing season. At that period, the crop’s water demand is reduced significantly, 

and the Ev/ETa ratio increases up to 100 % at the end of the cycle.  

 

 
Figure 3.8 Evaporation ratio (Ev/ET) displaying the contribution of soil evaporation (Ev) to the 

total Evapotranspiration (ET). a) and b) show the Ev/ET in the sites with furrow irrigation (F-1 

and F-2); c) and d) show the Ev/ET relationship in the parcel with sprinkler irrigation systems (S-

1 and S-2); e) and f) show the Ev/ET in the parcels using drip irrigation. The blue line shows the 

evolution of Ev/ET during the observation period. The light orange shaded area shows the period 

when groundwater was used for irrigation, and the blue-shaded regions shows the period when 

water came from rainfall. 

 

3.3.5 Impact of agricultural practices at the basin level 

Derived the parcel scale analysis of the irrigation systems operation; this result is essential 

to know how the water use at the basin scale. To do this analysis, we extrapolated the found results 
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using the area of corn under irrigation reported by (Santos-Hernandes et al., 2019). To see the 

performance of this analysis of the operation of the irrigation systems at plot scale corresponding 

to F-1 and F-2, we averaged transpiration, soil evaporation, and water inputs (precipitation and 

groundwater), and we extrapolated them. The same procedure it realized for the other observation 

plots. The results are in figure 8.a), the water volumes used to extrapolate the findings in the 

observation sites’ we assume a similar performance to the sampled areas. The water volume used 

by transpiration in the furrow irrigation system was recorded at 247 hm3, 136 hm3 corresponding 

to evaporation, and 157.93 hm3 as excess water. On the other hand, we quantified the water inputs; 

groundwater consumption at 391.45 hm3 , and the rainfall contribution was 150.02 hm3 ; to know 

the potential water savings, we use the maximum potential efficiency for furrow irrigation This 

means to satisfy the water volume of 247.39 hm3 demanded by transpiration using the 55 % of 

efficiency it is necessary to use 449.80 hm3, even with this efficiency and evaluating the 

contribution of rainwater of 150.02 hm3 and completing it with groundwater 299.80 hm3 to meet 

the water needs of the crop is possible to generate potential water saving of 91.67 hm3. Figure 3.9 

b) shows the results of the extrapolated values analysis in the area occupied by sprinkler irrigation; 

the results are shown in the same units of measurement, but a magnitude difference in the values 

due to the occupied area by the sprinkler irrigation. The water output of the system using the 

averages of the individual plots of sprinkler irrigation is given by transpiration that amounts to 

9.71 hm3 and estimated evaporation at 7.63 hm3 to satisfy this demand. The system uses the water 

from rain 7.52 hm3 and 9.74 hm3 of groundwater (pink color). Following this analysis, a scenario 

was performed managing the irrigation system with a theoretical efficiency of 80%. The water 

demand due to transpiration remains constant at 9.71 Hm3 with this efficiency, and after satisfying 

the water need due to transpiration, a volume of 2.43 hm3 of excess water is observed. On the 
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other hand, if we manage the irrigation system as close to the theoretical efficiency and consider 

the contribution of rainwater as 7.52 hm3, it will only be necessary to use 4.72 hm3. This 

management will allow a perception of a potential water saving of 5.12 hm3. 

 

Finally, the analysis for drip irrigation at the basin scale using Figure 3.9 c) the average 

data from individual observation plot. We calculated the water output in transpiration, evaporation, 

and excess water. Transpiration represents 6.90 hm3, evaporation 5.04 hm3 and excess water 1.48 

hm3. To satisfy these crop water demands, extracting 8.34 hm3 of groundwater and the water from 

rainfall of 5.10 hm3 is necessary. When we create the scenario with potential irrigation efficiency 

of 95%, we can see encouraging results. The water necessary to satisfy the transpiration needs of 

6.90 hm3, and the use of groundwater of 7.27 hm3 without considering the contribution of rain; 

that is, there are 0.37 hm3 of excess water. Nevertheless, considering the contribution of rainwater 

of 5.10 hm3, it only estimates an extraction of groundwater of 2.17 hm3. Suppose these results are 

consistent with the reality of what happens with the water management at the basin level. In that 

case, it is alarming to know the amount of water used in intensive agriculture in an unsustainable 

way. Moreover, the productive water use efficiencies with which the systems are operated should 

not be allowed for the degree of overexploitation of the aquifer. 
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Figure 3.9 Extrapolation analysis of the impact of the agricultural practices at basin scale; a) 

average behavior of the furrow irrigation based on F-1, and F-2; b) average behavior of the 

sprinkler irrigation based on S-1 and S-2; c) average behavior of drip irrigation based on D-1 and 

D-2. In all panels the two bars on the left show the average values considering current operation 

efficiencies, while the right-side bars show the theoretical water use considering the maximum 

theoretical efficiency for those irrigation systems. 

. 
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3.3.6 The behavior of soil evaporation during the interval between pre-

sowing irrigation and sowing date in the six observation plots 

We analyzed the amounts (cumulative) of unproductive water use for the observation sites 

(Figure 3.10) during the time interval between pre-sowing irrigation and sowing (TI-PS-S). The 

amount of unproductive water in Site S-1 during TI-PS-S was 54.31 mm; it corresponds to 45% 

of the total water delivered during the pre-sowing; 75% of nonproductive water was reached at 21 

days after pre-sowing irrigation (DAPI). Unproductive water on S-2 was calculated at 40.63 mm; 

this represents the 64 % of delivered water in the pre-sowing irrigation, the 75% of the 

unproductive water was reached in 17.5 DAPI. Site F-1 had a cumulative unproductive water of 

35.63 mm; this is equivalent to 12 % of the total water delivered in the pre-sowing irrigation, 75 

% of unproductive water was recorded during 13 DAPI. Site F-2 had a cumulative soil evaporation 

value of 47.31 mm, equivalent to 19 % of the total water delivered in the pre-sowing irrigation; 75 

% occurred during 18 DAPI. 

Site D-1 in this site recorded 34.14 mm of soil evaporation, equivalent to 17 % of the water 

delivered in the pre-sowing irrigation; 75% of the soil evaporation occurred during 22 DAPI. Site 

D-2 has cumulative soil evaporation recorded at 45.42 mm; this value corresponds to 27 % of the 

water delivered by the pre-sowing irrigation. 75 % was recorded during 13.5 DAPI. The average 

time between the pre-sowing irrigation and the sowing date is around 25.5 days. The analysis 

shows that, on average, 50 % of soil evaporation occurs 11 DAPI. This analysis allows us to 

glimpse the opportunity to develop techniques that will enable the saving of 50% of unproductive 

water in the early stages of the agricultural cycle. 
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Figure 3.10 Cumulative soil evaporation and the period between pre-sowing irrigation and the 

sowing date for: sprinkler irrigated parcels S-1 (black dashed line) and S-2 (black line); furrow 

irrigated parcels F-1 (red dashed line) and F-2 (red line); drip irrigated parcels D-1 (blue dashed 

line) and D-2 (blue line). Bottom, middle, and top points on each line represent 25, 50, and 75 % 

of the cumulative soil evaporation. 

3.3.7 Impact of irrigation operation on water balance at parcel scale  

To analyze the impact of irrigation operations on the water balance of the observation plots 

we separated the components of the water inputs and outputs in each site. Water inputs consisted 

of two primary sources, groundwater and rain; the sites with the highest use of groundwater were 

the plots with irrigated by furrows (F-1 = ~1,200 mm, F-2 = 1,232 mm), followed by the fields 

irrigated with subsurface drip (D-1 = ~990 mm, D-2 = ~1,050 mm), and lastly by sprinkler 

irrigation (S-1 = ~850 mm, S-2 = 980 mm). The productive use of water (i.e. transpiration), showed 

very similar values on all six sites regardless of irrigation mode and averaged ~ 542 mm for the 

entire agricultural cycle. Unproductive use of water (i.e. Ev), was highest on the sprinkler irrigated 
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fields (S1= 547 mm, S-2 = 575 mm [soil Ev + Ev canopy]), followed by drip irrigated (D1= 470 

mm, D-2 =294 mm), and the furrow irrigated plots with the least Ev (F-1= 330 mm, F-2 = 271 

mm). Residual runoff or deep soil moisture percolation was highest on the furrow irrigated fields 

(F-1 = 325 mm, F-2 = 422 mm), followed by drip irrigated (D-1= 61 mm, D-2 = 149 mm) and 

sprinkler irrigated fields (S-1 = ~ 0 mm and S-2 = 129 mm). This last component clearly shows 

how the management of the irrigation amounts directly affects the Ev, runoff, and percolation 

without significantly affecting the Tr values. 
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Figure 3.11Water balance in the observation plots. a) main water inputs (red color is rainwater 

and blue is groundwater); b) water input proportion (in %) of rainwater and groundwater; c) use 

of water by the transpiration component; d) outflow of water from the system due to soil 

evaporation (light orange), evaporation of rainwater intercepted by the canopy (yellow), and 

evaporation of irrigation water intercepted by the canopy (purple color); e) runoff or percolation; 

f) proportion of water outputs (in %) by each component. 
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3.4 Discussion 

3.4.1 Comparison of the observed efficiencies in three irrigation systems.  

In this study, we explore the efficiency of three irrigation systems for corn production: 

subsurface drip, sprinkler, and furrow. Despite the overexploited condition of the aquifer 

comprising the main water source in the region, currently there are only a handful of modern 

irrigation systems in the agricultural valley. Drip irrigation systems can achieve considerably high 

efficiency if two essential characteristics are met; proper design and careful operation (Lamm & 

Trooien, 2003). Water loss through soil evaporation is an important factor in the inefficiency of 

irrigation systems (Evett et al., 2005). For instance, drip irrigation's efficiency depends largely on 

soil evaporation losses from saturated soil and to a lesser extent on deep moisture percolating into 

the soil profile (Wang et al., 2013; Zhang et al., 2019). However, improved drip methods such as 

subsurface irrigation can reduce the inefficiency of the drip irrigation systems (Meshkat et al., 

2000). A study by Irmak et al., (2011) show a maximum attainable efficiency (i.e. theoretical 

efficiency) by subsurface drip irrigation of more than 95%. In the study area, we found much lower 

efficiencies relative to that theoretical efficiency. For example site D-1 equipped with subsurface 

drip irrigation had an actual efficiency of 46%. This low-efficiency value can be attributed to high 

evaporation losses of around 48% in addition to 6% losses from percolation or runoff. In 

observation site D-2 the efficiency was 47%, one percentage point higher than site D-1. In this 

case, 31% of the irrigated water was lost to evaporation and 22% was lost to percolation or runoff. 

Percolation or runoff values in our observation plots varied from 6% to 22% and are within the 

range of those reported by Nassah et al., (2018), who found deep percolation values of 37 and 45% 

in drip irrigation. These high percolation or runoff values occur when there is a mismatch between 
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irrigation and the crop's water demands. On the other hand, water losses from soil evaporation in 

D-1 and D-2 (48% and 31% respectively) are comparable to evaporation losses in the range of 

48% to 57% in studies of crops without mulching (Jia et al., 2021). Operating the drip system at 

an irrigation efficiency of 47% resulted in similar efficiency to furrow irrigation. The evidence 

shown in this study suggests that technification of irrigation without proper operation of the 

systems does not improve water conservation.  

The sprinkler irrigation systems in this study showed an efficiency of 50% for S-1 and 44% 

for S-2. These values are comparable with a ~ 42 % efficiency found by Wang et al., (2012), from 

a winter wheat irrigated with sprinkler irrigation in the southern part of the Shanxi Province with 

similar weather conditions to our study site. These reported efficiencies are relatively low 

compared to the maximum or potential efficiencies for this irrigation system of 75 to 85% (Irmak 

et al., 2011). In site S-1, the 50% efficiency is because part of the water delivered to the system is 

lost through the Evaporation component. In the observation plot S-2, the efficiency recorded is 

44%. It decreased by 6% concerning S-1 due to water output by percolation or runoff component 

at 10%, and the evaporation rate was accounted for at 34%. In the plots with furrow irrigation, the 

efficiency for the F-1 site was recorded at 44%, and for the F-2 site at 42%. These data can be 

compared with those reported by Wang et al., 2012, who documented values of efficiency for this 

irrigation method of 38%, Bakker et al., (2006) of 36%, Slatni et al., (2011), who reported 44%, 

also Reddy et al., (2013) found an irrigation efficiency of 48 %, Masseroni et al., (2022) found a 

range from 16 to 56 %, and Reddy et al., (2013) found an average 48 % of irrigation efficiency 

and 39 % of runoff loss. These efficiency values are low concerning potential efficiency for furrow 

irrigation 45 to 65% (Irmak et al., 2011). The efficiencies found in the study site are low due to 

the large portion occupied by percolation or runoff. For Site F-1, the percolation or runoff was 25 
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%, and  for the site, F-2 was recorded as up to, 32%. These results can be compared with (Huang 

et al., 2022), who found the 18 to 25 % loss of water from irrigation as runoff, another factor that 

reduces irrigation efficiency was 40% as evaporation. These values can be attributed to over-

irrigation. The result we found in the observation sites, can not be attributed to the irrigation 

system. However, this reflects their farmer's field operation, which does not have an irrigation 

schedule and no in situ soil moisture measurement to help manage the water most efficiently. The 

farmers apply irrigation based on their empirical knowledge. This reflects the deficiency or lack 

of training. In addition to the fact that there is no charge for the volume of water used, the only 

incentive for the efficient use of water is the reduction of energy expenditure to reduce the 

production costs of the crop. 

3.4.2 Effect on the different types of irrigation in the partition of the water 

balance. 

Attaining high water use efficiency in agriculture means supplying crop water needs 

without leaving excess water that would evaporate, runoff or percolate deep (past the root zone) 

in the soil. On average, the total amount of water required in a season for corn transpiration is 

estimated at ~542 mm. In an ideal scenario, farmers would deliver approximately the crop water 

demand considering the natural contribution of rainfall and irrigation water. However, our findings 

reveal that the water delivered to the parcel by irrigation plus the contribution from rainfall largely 

exceeds the crop's water requirements. On average, the water delivered at the observation sites is 

~ 1,170 mm (irrigation + rainfall). In all cases, the majority of the water not used by the crops is 

lost to evaporation, with differences among sites depending on the irrigation system and its 

operation: site D-1 recorded 440 mm, site D-2 363 mm, site S-1 554 mm, S-2 576 mm, sites F-1 
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421 mm, and F-2 349 mm. Furrow irrigation shows the lowest values of evaporation, with larger 

amounts of runoff or percolation compared to the other observation sites. Our observations indicate 

that the low performance of the different irrigation systems in this study is the result of their 

deficient operation.  

 

3.4.3 Non-productive water use (beginning or end of the agricultural cycle) 

Nonproductive water in our observation sites occurs during the beginning and end of the 

agricultural cycle. The larger amount of non-productive water occurs immediately after systematic 

pre-sowing irrigation. The higher evaporation values during the early growth stages compared to 

those at the end of the crop cycle are due to higher temperatures and wind speeds. The 

nonproductive water in sites D-1 and D-2 (42 and 25 % respectively), These values are 

significantly higher than ~ 15 % of Ev found by Nazari et al. (2021) who conducted the water 

delivered using subsurface drip irrigation in an apple orchard. The drip irrigation sites evaluated 

in this study did have comparable unproductive water to that reported by Yunusa et al., (2004) 

with soil evaporation comprising up to 64 % of the total water inputs (i.e. rainfall + irrigation) in 

vineyards. Because the observation sites in our study are equipped with subsurface drip irrigation, 

we expected that the soil evaporation would be minor; however, the data shows high values of soil 

evaporation. These evaporation values could be attributed to deficiencies in the schedule of 

irrigation as well as in the total amounts of irrigation delivered. Water delivered at site D-1 was up 

to ~1,110 mm, and D-2 ~1,158 mm (grounwater plus rainfall), while the the total nonproductive 

water in site D-1 was 470 mm, and site D-2 was 294 mm. During the early season, the daily 

nonproductive water ranged from 0.08 to 3.51 mm day-1, similar to  Kerridge et al., (2013) values 
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ranging from 0.69 and 2.52 mm day-1 of soil evaporation from inter rows (bare soil) in a grapevine 

field using drip irrigation. Soil evaporation in drip irrigation systems can yield the same values as 

surface irrigation techniques when large irrigation amounts are applied (Guo et al., 2022). In other 

words, the amounts of water deliveries are important to maximize the water use efficiency; when 

the irrigation water amounts increase the water use efficiency decreases (Yang et al., 2020). 

Careful management of subsurface drip irrigation can reduce the net water amount of water 

delivered and minimize the nonproductive water and drainage (Lamm et al., 1995). However, an 

excessive regime of high irrigation can cause wet soil surface, resulting in water loss (Meshkat et 

al., 2000). One of the main purposes of irrigation technification is improving the water delivery to 

the crops for the maximization of yield and water savings, and in the process reducing the 

nonproductive water use (evaporation). However, studies by Zhou et al., (2021) show that in some 

instances, new irrigation techniques reduce the nonproductive water, but increase the return flow 

(recoverable and unrecoverable water) more than the accumulated soil evaporation, when some 

water management deficiencies occur at the plot scale.  

Sprinkler irrigation is the other technique the farmers implemented in the agricultural 

valley. However, due to the nature of the system, the canopy and bare soil are the key components 

to increasing the nonproductive water (evaporation Losses) (Mattar et al., 2022); in our observation 

sites, soil evaporation occurs during the early of the growing season particularly when the crops 

do not completely cover the soil, and large portions of bare ground are exposed to the elements. 

When the soil is finally covered by the canopy, in crops irrigated by sprinklers, a percentage of the 

water irrigated is intercepted by the canopy and evaporated directly there (Uddin et al., 2013). In 

site S-1, nonproductive water during the agricultural cycle was recorded at 40 % from soil 

evaporation and 10 % from water intercepted by the canopy. During the early season, the amount 
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of nonproductive water was 215 mm, and 173 mm  at the end of the season. In site S-2, the 

nonproductive water from soil evaporation was 34% and 12 % from intercepted water from 

irrigation; the evaporation water amount during the early season was 240 mm and at the end of the 

season was 172 mm. 

 

Furrow irrigation is both the theoretically least efficient system and the most used method 

to deliver water to the parcels due to the low cost, and low technical knowledge required for 

operating it. On site F-1 26 % of the water delivered to the observation was nonproductive water 

turned into evaporation, while for F-2 that number was 20 %. For these two sites, evaporation was 

significantly lower relative to the sites with drip and sprinkler systems. However, the portion of 

nonproductive water lost as deep percolation was significantly higher than on the drip and sprinkler 

sites. Water lost as deep percolation or runoff is not used by the crop. For these two sites, the 

increased percolation or runoff for site F-1 the runoff or percolation was recorded at 25 %, and for 

F-2 site was 32 %. Also, the evaporation from canopy intercepted rainfall was 4% and 6% for F-1 

and F-2 respectively. Taking the contribution from all components of the water balance, 

nonproductive water for the F-1 was 55%, and 58% for F-2. Seeda & El-Nour EAA (2020) 

reviewed furrow irrigation in Egypt and documented similar (~50%) amounts of unproductive 

water on wheat crops under furrow irrigation. This water loss is due to deficient irrigation 

management.  

The six observation sites in this study showed a pattern of systematic pre-sowing irrigation with 

high water amounts delivered at the parcel. The cost of water delivered in the study region equates 

to the cost of pumping, and for that reason economic incentives to improve irrigation to conserve 

water are relatively low. Because the majority of the unproductive water that is lost to evaporation 
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is delivered early in the growing season, and because all of that water is pumped from the already 

overexploited aquifer, the best opportunities to improve irrigation efficiencies, minimize 

production costs and conserve water are to reduce irrigation during pre-sowing season. That could 

be achieved by reducing the time between the first irrigation and the planting date. Currently, the 

average time interval between pre-sowing irrigation and planting is 25.5 days. During this time the 

nonproductive water is up to 40 % of the water delivered at the parcel. Because planting date 

depends on the pre-sowing time, as well as on the amount of water irrigated and the soil texture 

and drainage of the cultivated area, planning for reducing the time interval between pre-sowing 

irrigation and planting date should take into account the variables described above as well as the 

cycle of the crop type (e.g. in this case hybrid late, medium, or short maize). 

 

3.4.4 Impact of agricultural practices on water use at the basin-scale 

(potential savings) 

Water supply problems for regions where agriculture and urban areas compete for water 

resources have intensified due to population growth, higher demands of food, the overexploitation 

of limited water resources and the impending effects of climate change driving higher water 

consumptions. This problem is particularly acute in regions where population centers and 

agricultural areas are located in desert or semi-desert environments (Hargrove et al., 2013). The 

repercussions of those phenomena are already surfacing; for example, Flörke et al., (2018) in a 

study conducted in 482 cities around the world, starting from a baseline of 1971 to 2000, found 

that 46% of the cities studied will experience a deficit of surface water, and in 41% of river basins, 

agricultural water user needs will be in conflict with cities due to water shortages to meet urban 
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and agricultural needs. Likewise, Molle and Berkoff, (2009), identified wasteful irrigation and 

bureaucratic inefficiency favoring water scarcity in urban areas. This situation is currently 

occurring in our study site (Laguna de Bustillos Basin), where water is supplied for urban use 

through 17 deep wells from which 12 Mm3 year-1 are extracted. Concurrently, water extractions to 

supply the agricultural fields on which the economy of the region depend are carried out amid 

severe problems for the supply of drinking water caused by the depletion of the aquifer and the 

marked decrease in static levels once the irrigation of crops adjacent to the city of Cuauhtémoc, 

Chihuahua start (Díaz et al., 2014). The situation described above represents a significant 

challenge for maintaining the current intensive agricultural economy of the region.  A solution to 

this problem requires a more efficient use of water and to keep urban and agricultural water 

consumption as balanced as possible.  

 

To evaluate the effect of the irrigation efficiencies on the total annual water consumption 

from the aquifer, we projected the total water use from agriculture by extrapolating the water use 

efficiencies estimated in the observation plots to the total area occupied by each irrigation systems 

in the agricultural valley, using three scenarios: 1) current observed efficiencies, 2) theoretical 

efficiencies, and 3) current observed efficiencies with a shortened time interval between pre-

sowing irrigation and planting. Figure 3.12 shows three scenarios; bar a) represent the water 

volume in hm3 to the current water management in the three different irrigation systems used to 

produce corn. Total water use by transpiration was 247.3 hm3, 9.71 hm3, and 6.9 hm3 for furrow, 

sprinkler and drip irrigation, respectively; the large differences between these amounts is due to 

the fact that furrow irrigation occupies by far the largest area in the valley. The water use by 

evaporation was 136.2 hm3 7.63 hm3, and 5.06 hm3 for furrow, sprinkler and drip irrigation, 
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respectively. Finally, the excess water for each scenario were 157.9 hm3. Bar b) shows water 

management using theoretical efficiency. The main changes with respect to the evaporation 

component in the previous scenario were; furrow irrigation keeps the same values of 136.2 hm3, 

Sprinkler irrigation reduces the evaporation to 2.43 hm3, and drip irrigation reduces the 

evaporation close to zero; this resulted in water excess decreases of 66.26 hm3, 41% less than with 

the current management. Finally, considering current efficiencies and the reduction between the 

time of the first irrigation and planting date, water excess is significantly reduced to up to 14.25 

hm3. In this instance, we have a decrease of water excess of 85.7 %. Considering the water 

requirement by urban consumers of Cuauhtemoc city, the second scenario using the irrigation 

system at maximum efficiency can save 91 hm3. This hypothetical water savings is equivalent to 

the total water use by the city of Cuauhtemoc  for ~ seven years. However, reducing the time of 

the pre-sowing irrigation to planting date would yield water savings of 143 hm3, equivalent to ~ 

ten years of water demand for urban use. 
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Figure 3.12 Water management scenarios at the basin scale; a) average of current water 

management; b) potential savings with irrigation systems operating at theoretical efficiencies; c) 

potential savings by reducing time intervals between pre-sowing irrigation and planting date. 

3.5 Conclusion 

In this study, we evaluated the productive water use efficiency of six observation plots with 

different irrigation systems and calendarization and assessed through the estimation of their 

productive and unproductive water use how those factors affected the water balance on each 

observation site. All sites displayed low productive water use efficiencies with more than half of 

the water applied is not used by the crop. These low productive water efficiencies sustain a level 

of stress on the water resources of a continuously declining and overexploited aquifer. Analyses 

of the times and magnitudes of productive and unproductive water use by the crops and the periods 

in which it occurs allows us to pay attention and implement water-saving alternatives as mentioned 

in the 3.5 section the maximum unproductive water occurs during the beginning of the agricultural 

cycle due to the systematic pre-sowing irrigation and the delay for the planting date. some 
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alternatives that can help us to increase the productive water can be reducing the time between the 

pre-sowing irrigation and planting date, and the other fact is the development campaign of 

extension related to activities on water management and schedule irrigation to increase the 

beneficial of modern irrigation system installed in the agricultural valley. 
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4 Chapter 4. Quantifying productive vs. unproductive water use in a pecan 

orchard under flood irrigation and different soil textures 

4.1 Introduction 

Surface water is a limited resource in arid and semiarid regions. For that reason, irrigated 

crops in drylands use groundwater to supplement or in some cases supply most crops’ water needs. 

However, groundwater can be a non-renewable resource at a human time-scale. Hence water 

availability and the finite nature of most groundwater reservoirs becomes one of the most pressing 

issues for sustainable food production systems in drylands. Furthermore, with the advent of rising 

temperature trends from global warming and the continuously shrinking and more uncertain water 

supplies, agricultural production in semi-arid regions is becoming more vulnerable to high 

temperatures and limited surface water supplies. Consequently, improving irrigation management 

and planning is essential for agriculture’s efficient water use and its continued viability (Nazari et 

al., 20018). However, despite dwindling water supplies and the looming threat of more frequent 

and intense droughts, low water-use-efficient irrigation (e.g., furrow) continues to be the most 

widely used method for water delivery into agricultural parcels (Sketch et al., 2019).  

 

As climate change adds pressure to agricultural production and socioeconomic activities 

world wide (Jin et al., 2018), upward trends in global water scarcity pose an immediate risk to food 

production systems of drylands (Mekonnen & Hoekstra, 2016). Considering that agriculture 

consumes around 70 % of the freshwater globally (AQUASTAT-FAO, 2021), and that the slow 

pace in the implementation of technological innovations promoting water conservation in 

agriculture maintains a large proportion of irrigated drylands with irrigation efficiencies of ~29 % 
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on average at a global scale (Jägermeyr et al., 2015), there is ample opportunity to improve water 

management efforts on a global scale. For example, irrigation efficiencies reported in the Rio 

Grande Valley of the US Southwest, range from 20 to 95 % in pecan orchards (Ahadi et al., 2013), 

their methodology is based on evapotranspiration estimates that count soil evaporation as part of 

the water demand by the crops. In this study, we explore a different definition of water efficiency 

based on the productive water use of the crops as the transpiration ratio relative to the total water 

delivered in the plot.  

 

In the Rio Grande Valley of southern New Mexico and west Texas, pecan producers use 

surface water and groundwater to satisfy the water demand of their crops. However, in the last 20 

years, surface water in the river has experienced reduced flows (Mokari et al., 2022); Under this 

scenario, farmers need to improve their irrigation practices to maintain their yields and profits 

despite growing uncertainties in surface water availability. Confronting this situation requires 

managing water more efficiently. For this reason, identifying the conditions leading to and the 

periods when productive and unproductive water occurs, will decrease the vulnerability of crops 

to limited water availability. In rows of crops, the unproductive water (evaporation) occurs early 

in the season due to the low vegetation cover (Kang et al., 2003), particularly in between tree lines 

in orchards (Phogat et al., 2016). Knowing the water demand of the crops during the agricultural 

cycle can help adjust irrigation amounts and timing and increase water use efficiency. Also, 

knowing the spatial distribution of tree water use due to canopy cover, soil texture and albedo, and 

how that affects direct soil evaporation of irrigated water can help in better planning and 

distribution of resources (Kerridge et al., 2013). However, systematic irrigation at the plot scale 

assumes uniform irrigation distribution without considering the tree development differences and 
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soil texture variability and its effects on crop water demand (Jiménez et al., 2022). Various 

techniques are available to quantify crop water demands and usage with high accuracy but with 

limitations on spatial representation. For example, sap flow provides a direct measurement of tree 

water use that is punctual in nature and its generalizability depends on the homogeneity of the 

orchard; spatial changes in soil properties, tree development and water irrigation conditions would 

limit their representativeness. Eddy Covariance, and lysimeters are two of the most accurate 

methods to quantify crop water use, but their highly technical operation, maintenance, and cost 

render them impractical for adoption by most farmers (Nassar et al., 2020; Liu et al., 2012; Sánchez 

et al., 2019; Fang et al., 2020). In the last decade, remote sensing has been a helpful tool for 

monitoring croplands with high and moderate spatial and temporal resolutions (10-30 m and <16 

days of revisiting time) (Drusch et al., 2012; Roy et al., 2014). Currently, satellite images can be 

used to monitor the agricultural dynamics both at the plot and regional scale in near real-time (i.e. 

every other day). These non-invasive techniques for monitoring the biophysical and biochemical 

variables of the crops (Dimitrov et al., 2019) are becoming more ubiquitous and accessible through 

a series of application programing interfaces in mobile devices (Melton et al., 2021; Wen et al., 

2022). These tools can be used to characterize vegetation activity, stress, soil health and moisture 

and evapotranspiration fluxes at low cost using widely available public datasets and algorithms 

that have been extensively validated (Folhes et al., 2009).  

 

Among the various remote sensing datasets publicly available, multispectral imagery from 

Sentinel-2 and Landsat missions can be used to provide indirect measurements of vegetation health 

through vegetation indices (VI). VIs are useful for monitoring the seasonal development of crops 

with high spatial and temporal resolution using empirical relationship between their values and 
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various plant traits (Bush & Neale, 1987; Neale et al., 1989). For example, Campos et al., (2010) 

documented the calculation of the basal crop coefficient (Kcb) using the Normalized Difference 

Vegetation Index (NDVI), through a linear relationship between NDVI and Kcb. Other studies 

verified the strong relationship between various forms of vegetation indices and Kcb (Sánchez et 

al., 2012; Pôças et al., 2020), even under non-optimal vegetation conditions (Hunsaker et al., 

2007). VIs can also be used to estimate and monitor changes in  canopy cover (CC) and crop 

growth to parameterize and calibrate hydrological models (Tenreiro et al., 2021). This is because 

VIs can closely track the changes in phenology associated with agronomic management on 

agricultural lands (Nagler et al., 2009), and because they are also associated with the dynamics of 

evapotranspiration (Nagler et al., 2005). In this work we use the “Partitioning of 

Evapotranspiration through Vegetation Indices” (PETVI) approach to investigate the spatial and 

temporal dynamics of water use by a flood irrigated pecan orchard with significant changes in soil 

texture. Hence, the study has two main objectives: the first is to analyze the dynamics of productive 

and unproductive water use of an annual crop (i.e. pecan orchard) in an arid region facing uncertain 

water availability for irrigation; the second objective is to evaluate the effects of differences in soil 

texture and tree development on the productive and unproductive water of a pecan orchard with 

flood irrigation (i.e. homogeneous water deliveries). 
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4.2 Materials and Methods 

4.2.1 Study site 

The study site is located in Tornillo, Texas, ~36 miles southeast from El Paso City (Figure 

4.1). The site is a mature pecan orchard, with an area of 25.4 ha and a planting density of ~64 trees 

ha-1. The experimental site is close to the Rio Grande River (~900 m) and has a shallow water table 

of ~ 2.10 m depth. The climate in the area is arid, with an average annual rainfall of 203-250 mm 

(Assadian et al., 1999; Mokari et al., 2021). Water is delivered to the orchard by flood irrigation 

during the agricultural cycle. In the year 2018, we recorded 11 irrigation events of ~127 mm each. 

The irrigation was systematically performed in time intervals of about ~3 to 4 weeks. The first 

irrigation is applied to leach salts from the soil profile that had accumulated from the previous 

cycle. Depending on the availability of surface water from the local irrigation district, the orchard 

can receive surface water from the canals in the area, or in the event of surface water unavailability, 

groundwater is pumped from the deep aquifer (>21 m deep) to fully supply or complement the 

crop water needs. When groundwater is used, it comes from two wells that withdraw water from 

the deep aquifer (Sheng et al., 2001). A peculiarity of the study site is the existence of two distinct 

soil textured regions that are spatially visible in the field and from aerial imagery. One of the soil 

textures is composed of soils with high contents of clays (hereafter referred to as Pecan Fine (PF), 

where pecan trees show precarious growth; the other soil texture is composed of coarser soil 

particles (hereafter referred to as Pecan Coarse (PC)) where the trees have grown healthy (Ortiz & 

Jin, 2021). We have obtained LiDAR cloud point data from the USGS in the area to calculate the 

canopy height model (CHM) and evaluate the effect of soil textures in the areas within the orchard 

where the trees show differential growth.  The LiDAR point clouds were generated with an 
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airborne laser scanning (ALS) (Davison et al., 2020). The acquired ALS LiDAR point clouds (LAZ) 

were classified according to metadata, and used to evaluate the tree's growth. More details on the 

LiDAR data processing are provided in the data section below. 

 
Figure 4.1 General location of the experimental site; a) Texas State highlighting the Rio Grande 

(blue line) and the experimental site (red dot); b) experimental plot (red square) and location of a 

piezometer (yellow dot) and two sample areas representative of fine soil textures (PF; orange 

square) and coarse soil textures (PC; green square). The blue line shows the location of the Rio 

Grande River 900 m south of the center of the orchard. 



 

137 
 

4.2.2 Data 

4.2.3 Remote sensing data 

The free online platform Google Earth Engine (GEE) has wide pre-processing images and 

is ready to use efficiently. Their catalogs contain a public database and various satellite images, 

and products with environmental variables. Landsat and Sentinel images are the most used 

(Gorelick et al., 2017). The NDVI 10 m spatial resolution, five days temporal resolution from S-2, 

and actual evapotranspiration (ET) come from METRIC algorithms using Landsat images 30 m 

spatial resolution and 16 days temporal resolution. Using these satellite products, we calculated 

transpiration (Tr) and ET. 

4.2.4 METRIC data: 

We downloaded ETa images from https://eeflux-level1.appspot.com from January 2018 to 

March 2019. The quality control was made manually by image to avoid spurious data. Afterward, 

the images were uploaded to the GEE, each ETa image with its metadata through the GEEassets. 

Subsequently, we made the ETa images collection. Using the loaded shapefile in GEEassets, once 

we have ready the image collection with instantaneous ETa. However, we need to get the daily ETa 

values. Nevertheless, interpolating the ETa data is impossible because ETa depends on 

meteorological conditions. We need to get the crop coefficient (Kc) using the following 

relationship Kc=ETa/ET0 (Allen et al., 2007).  



 

138 
 

4.2.5 Sentinel-2 (S-2) images 

We used S-2 images to calculate the NDVI for each image available during the study period. 

We loaded the shape file with the geometric characteristics of the interest area; after that, we made 

a filter date from January 1, 2018, to March 31, 2019. We processed all available images on GEE. 

Later, we generated the NDVI time series. Afterward, we selected good data through the 

elimination of spurious data. Once we have the clean data, we calculate the vegetation fraction (Vf) 

using a linear model (Montandon & Small, 2008; Qi et al., 2000) and the basal crop coefficient 

(Kcb).  

4.2.6 Reference evapotranspiration ET0 from (gridMET). 

The gridMET dataset is a reanalysis product where a model fed with ground-based and 

remotely sensed data, outputs gridded values of meteorological variables for the continental United 

States (CONUS). The dataset is produced and updated by the University of Idaho and is available 

in GEE (Abatzoglou, 2013). The variable we used for this work was reference evapotranspiration 

(ET0) calculated with the Penman-Monteith equation; the time series data we used during 2018 

was a daily scale. gridMET is reported in the literature as a reliable source for estimating reference 

evapotranspiration (Allen et al., 2015; Niyogi et al., 2020). 

4.2.7 Lidar cloud points 

We obtained the lidar data for the study site through the Open topography data gateway; the 

id survey was USGS LPC TX RioGrand FTWhit 2014 LAS 2016. After downloading the data, we 

decompressed and processed it to cover only the orchard and to classify each point as vegetation 

or bare ground using the free LAStool program (https://rapidlasso.com/lastools/). Class statistics 
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values contained in the metadata were used in the classification process through visualization using 

lasview. Once a first classification has been performed, class types are confirmed, and overlapping 

data points are removed to have a clearer image. Using these classified  datasets we created both 

a digital surface model (DSM) and a digital terrain model (DTM), and used them both to generate 

a canopy height model (CHM) by substracting the DTM from the DSM (Mielcarek et al., 2018). 

4.3 Methods 

The crop coefficient is composed of two elements; an evaporation coefficient (Ke) and a 

basal crop coefficient (Kcb). In orchards, trees are planted in successive rows with bare ground 

interspaces at a regular distance, and depending on tree type, density and age of the orchard, the 

fraction of vegetation cover even at maximum canopy development does not completely cover the 

ground. Therefore, Ke can maintain a significant contribution to the Kc during the growing cycle. 

Usually, Ke has higher values at the beginning of the crop cycle, especially if the soil is wetted by 

irrigation or rain. However, it decreases gradually as the soil dries or is covered by vegetation. In 

any case, for this type of crop, foliage does not entirely cover the ground in between tree rows. Kcb 

values of orchards are low at the beginning of the season when trees are devoid of foliage, but once 

the growing season starts and trees begin the process of budding Kcb values start increasing (Figure 

4.2). Kcb continues to increase with crop development reaching its maximum value when the crop 

reaches its full development. In the field, Kc is usually estimated by using a lysimeter, high-

precision equipment, or by relating crop heights and meteorological variables (Sánchez et al., 

2019; Fang et al., 2020). However, these measurements are frequently not available or recorded in 

the field, but it is possible to estimate them using the widely known relationship of Kc with the 

ETa/ET0 ratio. In this way, if we have punctual values in time, we can linearly interpolate to 
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construct the Kc curve. In the same way, the calculation of Kcb represents the proportion of the 

vegetation. For this reason, Kcb can be rescaled from vegetation indices due to its close relationship 

with the phenological development of the crop. Based on this fact, and if we have the punctual 

values in time, it is possible to make a linear interpolation to construct the Kcb curve for a particular 

agricultural cycle. 

 
Figure 4.2 General shape of the crop coefficient (Kc) in a pecan orchard represented by a black 

line; the orange dashed line shows the hypothetical trajectory of the evaporation coefficient (Ke), 

and the green line characterizes the basal crop coefficient (Kcb). The vertical dashed lines delimit 

the main crop growth stages. 

 

4.3.1 Vegetation fraction (Fv) 

Here we used the fraction of vegetation through normalized difference vegetation index 

(NDVI) to adjust the transpiration values the images used to make the Fv calculation came from 

S-2. The Fv is easily obtained from remote sensing. Fv was computing using NDVI values 

following linear relationship using equation 1. 
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𝐹N =
#$%&	'#$%&!"#

#$%&!$%'#$%&!"#
                    Eq. (1), 

where NDVI corresponds to the index value, NDVImin corresponds to the absolute minimum 

values of NDVI that correspond to soil values, NDVImax is the absolute maximum values that 

usually correspond to the maximum vegetation development. The values we used to calculate were 

NDVI min 0.10 and NDVI max 0.75. the minimum and maximum values were obtained from the 

study site. 

4.3.2 Transpiration using Basal crop Coefficient (Kcb) 

We used a method that combines energy balance-based ETa from remotely sensed data 

estimate the basal crop coefficient (Kcb), using a vegetation index (VI) based on the empirical 

relationship between VI and crop development during the growing cycle and their relationship with 

plant transpiration (Allen et al., 2011; Glenn et al., 2008). This method uses satellite products to 

monitor vegetation growth dynamics and water use. A detailed graphical representation of the 

process is shown in Figure 3, where the inputs to obtain the vegetation index are denoted using the 

images captured by the S-2 satellite (yellow boxes) with a temporal resolution of 5 days and spatial 

resolution of 10 m. The images were processed entirely in the GEE platform. The calculation was 

made through the normalized difference function between two spectral bands, band 8 (near-

infrared) and band 4 (red). Before the analysis, the shapefile with geographical characteristics of 

the interest area was uploaded to GEE's online platform using the assets tool to delimit the specific 

calculation area for the study site. For the calculation of NDVI, we used all available images within 

the study period. daily Kcb values were calculated from the NDVI time series by rescaling the 

NDVI values to the maximum possible Kc reported for that particular crop using the equation for 

the vegetation cover fraction following (Schüttemeyer et al., (2007); Allen et al., (1998); Hunsaker 
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et al., (2005)). That is, the vegetation fraction from NDVI was multiplied by the maximum value 

of Kc as follows:  

𝐾!" 	= 	1.05 ∗ #$%&	'	#$%&!"#
#$%&!$%'#$%&!"#

                                                                               Eq. (2), 

the 1.05 corresponds to the maximum value of the pecans basal crop coefficient (Kcb) reported by 

Allen et al., (1998). Before interpolating the daily Kcb values, visual analysis was carried out on 

the time series of the instantaneous Kcb values. Quality control was carried out manually, removing 

the spurious data. Subsequently, linearly interpolates the daily Kcb values, creating a time series at 

a daily scale. 

The transpiration was calculated as follows: 

𝑇) 	= 𝐸𝑇* ∗ 𝐾!" ∗ 𝐹! 	= 𝐸𝑇* 	 ∗ 1.05 ∗ +
#$%&	'	#$%&!"#

#$%&!$%'#$%&!"#
,
+
                 Eq. (3), 

 

4.3.3 Evapotranspiration from METRIC. 

In the diagram of Figure 3, the Evapotranspiration (ETa) images in [mm day-1] are 

represented in yellow color. These images are available on the Earth Engine Evapotranspiration 

Flux (EEFLux) website https://eeflux-level1.appspot.com/, (Allen et al., 2007; Allen et al., 2015; 

Allen et al., 2011; Wan et al., 2021). For our study period, the ET images from Landsat 7 and 8 

missions corresponding to path 034 and row 041 with a spatial resolution of 30 m and temporal 

resolution of 16 days were used. The images were inspected manually to select those free of 

cloudiness on the study parcel. The images were uploaded to the GEE platform by creating a 

collection of images with the assets tool; the selected images were added with metadata. Once the 
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collection of images is created, a scene cut is made based on the shapefile of the study area. Given 

the characteristics of the study. It is necessary to have daily ET values. However, linear 

interpolation of ET images is impossible due to daily changes in local weather conditions. The way 

to extrapolate these data is through interpolating crop coefficient values (Kc), (Allen et al., 2007; 

de Oliveira Costa et al., 2020; Reyes-González et al., 2019). Kc was calculated with the relationship 

between the daily ET for each pixel of the image, and the reference Evapotranspiration (ET0) was 

calculated from local weather data. Equation 4. 

 𝐾! =
,-$
,-&

                                                                                                                       Eq.   (4), 

Where Kc is the crop coefficient, ETa is the instantaneous evapotranspiration, and ET0 is 

the reference evapotranspiration. Once the instantaneous Kc values were obtained, linear 

interpolation was performed to obtain a daily scale time series of Kc. 

The maximum basal crop coefficient for pecan is 1.05 (Allen et al., 1998). Using equation 5, we 

obtained the Kc instantaneous values. However, using this approach, some dates with low ETa can 

yield Kc values lower than the expected Kc according to the phenological stage of the crop. 

Therefore, ETa images obtained from the energy balance algorithm (i.e. METRIC) need to be 

calibrated by adjusting the Kc using the tabulated values and observations of the crop in the 

experimental site based on its phenological stage. 
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Figure 4.3 Diagram to estimate the variables needed in the PETVI method. This workflow diagram 

shows the input variables from left to right with yellow squares. Here are the required S-2 images, 

meteorological data, and ETa images from Landsat using METRIC algorithms. In the center of the 

flow diagram are the basic calculations and procedures. Finally, in the green boxes are 

represented the results at the daily scale of Tr, ETa, and last but not less significantly, the 

evaporation as residual from the subtraction of the Tr of ETa. 

 

4.3.4 Partitioning Evapotranspiration 

To partitioning the (transpiration) and unproductive (evaporation) evapotranspiration in a 

cropland can support decision making for improved water management practices. Once the daily 

values of Kc, Kcb, and ET0 were obtained, the multiplication between ET0 and Kcb was carried out 

as shown in Figure 4.3 in the green box. In this way, it is possible to obtain the transpiration of the 

vegetation (Tr). The estimate Tr is based on the Kc's transpiration portion of the vegetation. In the 

same way, to calculate the daily ETa, the procedure shown in Fgure 4.3 is followed in the green 

box where the multiplication between ET0 and Kc is shown. Both procedures are based on the 
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methodologies proposed by (Hargreaves & Samani, 1991; Allen et al., 1998). Thus, with the daily 

time series of ETa and Tr. Evaporation was determined as the residual between ET and Tr. That is 

the fraction of productive water use (Tr) and unproductive water evaporation from the soil (Ev) 

during the growing season for the wheat crop.  

4.4 Results 

4.4.1 Evapotranspiration dynamics during the agricultural cycle 

Studying the dynamics of evapotranspiration in croplands of semiarid regions is helpful 

because it permits us to understand how the water moves in agricultural systems. In this work, we 

show the dynamics of actual ETa and its partition into evaporation (Ev; unproductive water) and 

transpiration (Trwith a time series beginning on January 1, 2018, and ending in March 31, 2019 to 

observe the behavior of the pre-budding irrigation (Figure 4.4). The water consumed through 

evapotranspiration (ETa) in the orchard during the growing season was 1,297 mm. The majority 

of the ETa in the early season of the agricultural cycle, was unproductive water (Evaporation [(Ev]), 

directly evaporated from the soil, at a time when the pecan trees are inactive and water is delivered 

primarily to leach the salts accumulated in the soil profile during the previous growing cycle. 

Transpiration (Tr) begins in April with the bud breaking of the Pecan trees, reaching its maximum 

value in June, when the crop attained its highest leaf development with a Tr rate of 7.8 mm day-1, 

and the Ev decreased its magnitude to close to zero. In September, Ev values appear because 

vegetation activity decreases and trees start senescing. Ev continues beyond the end of the growing 

cycle when moisture becomes available and atmospheric demand for evapotranspiration continues. 

Figure 4.4.a,b and c, display the time series of the average and standard variation of ETa, Ev and 

Tr for the whole pecan orchard (WP) and for two sample areas representative of coarse (PC) and 
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fine (PF) soil textures respectively. Variability in Tr for the WP is higher than that of PC and PF 

reflecting the contribution of both soil textures on tree water use. Generally and throughout the 

growing season, Tr variability in PC remains low, reflecting the homogeneous signal of the 

vegetation indices from the healthy trees, while Tr from PF show larger variability. Also, trees 

from the PF area are significantly smaller than those in the PC area, yielding lower Tr values than 

the trees in the PC all along the growing season. The cumulative Ev averaged over the entire 

orchard (WP) was 758 mm, while the cumulative average of Tr was 541 mm. The cumulative 

averaged Ev on PC was smaller than that of WP (661 mm) and the cumulative averaged Tr was 

higher than in WP (~640 mm). 3g). The smaller cumulative water fluxes occurred in the PF area, 

where Ev totaled 920 mm, and Tr accounted for only 377 mm, which compared to Tr from PC it 

represents ~58 % of its total.  

 

For the purpose of this analysis, the surface water balance (input-output) of the orchard 

begins at 0 mm before the first irrigation in early March and ends in mid-November where it ends 

with a surplus of 309 mm of water content stored in the soil profile after the last irrigation event. 

During the last stretch of the season in October, significant rainfall events (> 66 mm) contributed 

to the surplus of water in the orchard. This surplus starts to recede past November and into the new 

year until a new irrigation event in March of 2019 starts a new cycle. This analysis shows that the 

orchard ends its cycle with more water than needed for the season. Figure 3.i shows the proportion 

of irrigation water and rainfall as water inputs to the orchard, with 88 % and 12 % coming from 

irrigation and rainfall, respectively. Figure 4.4 j) are the water output represented in percentage of 

the total water entering to the plot by the condition of the average fluxes of the plot is 35 % 

corresponds to transpiration (productive water use), 49 % corresponds to unproductive water use, 



 

147 
 

and 16 % corresponds to change in the storage. Figure 4.4 k) on the trees within the pecan-coarse 

area, the Tr increase relative to the plot average is 43 % Ev 41 %, and the change in the storage 

continues to show the same value of 16 %. Finally, panel l) shows the water output on the pecan-

fine area; the Tr was 24 %, Ev was 59 %, and 16 % of the change in storage. 
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Figure 4.4 a), b), and c) time series of the mean evapotranspiration (ETa), transpiration (Tr) and 

soil evaporation (Ev) for the orchard (WP), the coarse grained soil area (PC) and the fine grained 

soil area (PF) respectively; shaded red and blue lines show the variability of the ETa and Tr 

respectively with +/- one standard deviation; d) shows the water inputs to the orchard from 

irrigation events (blue bars) and rainfall events (red bars); e, f, g) show the cumulative Ev (red) 
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and cumulative Tr (blue) for WP, PC and PF respectively; h) time series of the surface water 

balance (SWC); i) proportion of water inputs as percentage of irrigation (blue) and rainfall (red); 

and j, k, l)  proportion of water output components (Tr in blue, Storage in yellow and Ev in red) in 

percentage for the WP, PC and PF respectively. 

 

4.4.2 Evolution of the water balance components in the orchard during the 

growing season.  

Assessment of the times and relative magnitudes of productive (Tr) and unproductive (Ev) 

water use in agriculture of semi-arid environments can provide insights into the evolution of the 

crop water demand. In this study, we tracked the behavior of both fluxes after each irrigation event 

in a pecan orchard under flood irrigation. Figure 4.5 shows the water balance components in the 

study site for the 11 periods in between irrigation events. The amount of water delivered to the 

orchard in all irrigation events was constant, with a total of 127 mm per event, while rainfall 

contributed a total of 153 mm during the entire growing cycle, and was irregularly distributed in 

time, although the majority came in October at the end of the cycle. In total water input was 1,550 

mm. Figure 4.5.b, c and d, show how the orchard used this water. After the first irrigation event to 

leach salts below the root system in early March, the majority of the water was consumed as Ev 

and about ~10% was stored in the soil column. From the beginning to the end of the Tree’s 

activities, the cumulative Tr for the entire orchard averaged 541mm. During the same period, 

cumulative Tr in the PC and PF areas averaged 661 mm and 377 mm respectively, while 

cumulative Ev values from the average plot were 758 mm, for the PC area was 640 mm, and the 

Ev values from the PF site were 920 mm. The change in moisture storage (𝚫S) in the soils of the 
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whole orchard averaged 251 mm, while the average for the PC area was 149 mm, and for the PF 

area was 253 mm. 

Except for the first irrigation event, Tr has a rising trend until the 7th irrigation in mid-July; 

after that, Tr reverses the trend, constantly decreasing until the end of the season in mid-November. 

On the other hand, Ev behavior is opposite to Tr, showing a decreasing trend at the beginning of 

the season until the seventh irrigation event, and then reverting to an increasing trend until the end 

of the season. After the first irrigation, 𝚫S shows a gain in water content in the second irrigate the 

soil water content appear seem to contribute to ET water fluxes. The third irrigation again has a 

positive 𝚫S, in fourth irrigation the 𝚫S shoes the negative values reveal the soil water contribution 

to the ET fluxes.  from the fifth irrigation to the end of the agricultural cycle the 𝚫S shows positive 

values that is mean the soil profile gain water with great 𝚫S in the eleventh irrigation due last 

irrigation and rainfall contribution. 
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Figure 4.5 Water balance components in between irrigation events; a) water inputs from irrigation 

(blue bars), and rainfall (red bars); b), c) and d) show the averages of transpiration (Tr) 

evaporation (Ev) and (∆S) respectively, for the whole orchard (WP; dark green), the Pecan Coarse 

area (PC; light green), and the Pecan Fine area (PF; yellow). 
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4.4.3 Analysis of canopy height and soil texture distribution. 

The spatial distribution of canopy height (CH) can be used to show the effect of different 

soil textures on tree growth as a proxy for expected vegetation activity and water use. Figure 4.6 

a) shows the spatial distribution of CH for the trees in the orchard. Clear contrasts between PF and 

PC CH are visible in that image. Trees on PF areas are consistently lower than the trees within the 

PC areas; on average, the height at the middle of the canopy was 3.5 m in the PF areas, while on 

the PC areas was 5 m. The development of vegetation had effects on the rate of transpiration. As 

described above, vegetative growth is attenuated mainly where the PF area is located. The trees 

show a much-limited canopy development in this area compared to PC areas. To confirm this 

assumption, we analyzed the CH profiles across the PF and PC areas (Figure 4.6 b). We observe 

the variability of larger CH values reveals a good tree development (~ 9 m). In some distances, the 

CH values decrease until ~3 m or less, indicating a deficient tree development. This behavior is 

dominated by the PC and PF areas. In this finding, we motivate to analyze Tr and Ev for both 

texture locations to evaluate how tree growth changes affect ET fluxes (Section 3.3). 
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Figure 4.6 Spatial distribution of LiDAR-derived canopy height (CH) for each tree in the Pecan 

Orchard; black arrows depict the transects of the profiles showing the variability in CH from P1 

to P5 in (b); areas of fine texture soil are shown in gray color; CH varies from 0 (white) to 11.3 

m (green); b) Canopy height distribution across each profile (P1 to P5) increasing in distance 

from north to south; c) box plots showing the distribution of CH values for each profile and 

separated by soil texture where PF is fine texture soil, and PC is coarse texture soil. 
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4.4.4 Effect of soil texture on transpiration dynamics during the agricultural 

cycle. 

The presence of high clay content in soils of agricultural lands can create anoxic conditions 

in the soil profile after large irrigation events by restricting the downward movement of water 

(Keiluweit et al., 2018), thereby favoring the accumulation and concentration of solutes and salts 

and restricting root development, vegetation activity including photosynthesis and transpiration 

and consequently tree growth. In our study site, this is evidenced by significantly lower height and 

size of the canopies sitting on fine-grained soils with high clay contents. Our study site has two 

main soil textures PC (sandy soil) and PF (clayey soil), and their spatial distribution is visible 

through aerial images. The fine texture soil is located in the middle of the parcel in an irregular 

shape. In these areas, Pecan trees show uneven development with shorter and irregular canopies 

relative to those of the average trees located on coarse textured soil. Figure 4.7 shows both the 

spatial patterns (contrasts) between Tr in areas with fine grained and coarse grained soils and the 

distribution of their Tr values with probability distribution functions (PDF) for the entire orchard 

in between irrigation events during the 2018 growing season. After the first irrigation on March 

10, there was no Tr anywhere on the orchard. An incipient amount of Tr was detected after the 

second irrigation event (1.5 mm mode for PF and 18 mm mode for PC), and the separation in the 

distribution of Tr values between the different soil texture areas continued as Tr increased together 

with the phenological development of the pecan trees. After the fourth irrigation event, the 

difference in modes of the Tr distribution between the areas with coarse and fine grained soils grew 

to >40 mm. Then after the fifth irrigation event on June 16, the distribution of Tr values for PF and 

PC soil textures got closer, with PF showing a 60 mm mode and PC a 78 mm mode. Maximum Tr 

modes were reached during July and August, at the peak of the crop development, with Tr modes 
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of 70 mm for PF and 95 mm for PC on July 1th, and 90 mm for PF and 105 mm for PC in August. 

After that, Tr significantly decreased and with it the average separation of the two soil types 

distributions. In the last irrigation period the Tr mode was 20 mm for the PF and 55 mm for the 

PC. The distribution of Tr values for both soil types shows clearly the effect of soil texture and 

tree development on the productive and unproductive use of water for these orchards.  
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Figure 4.7 Transpiration (Tr) spatial patterns in the orchard for periods in between irrigation 

events and their probability density functions (PDF) for the coarse textured (PC; pink shaded), 

and fine textured (PF; blue shaded) soils. 
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4.4.5 Effect of soil texture on evaporation dynamics during the agricultural 

cycle. 

Soil evaporation (Ev) in the two sampled areas, PC and PF, showed the opposite behavior 

to Tr. Figure 4.8 shows the spatial distribution of Ev and its PDF for each irrigation period in both 

areas. In our study site during the study period, the first irrigation was delivered on March 10; PC 

and PF areas show the same Ev distribution of values for that date with a mode of 45 mm; for 

subsequent irrigations, the Ev values continue to increase, with a separation in the distribution of 

Ev. Mode of 25 mm, this trend continues until the fourth irrigation on May 26. For the June and 

July irrigations, the Ev was significantly reduced with a separation of the Ev values based on the 

mode was 15 mm, with the trend of higher Ev in the PF area. After this period, the Ev values 

gradually increase, with the pattern of separation between both areas (PC and PF) consistent. At 

the end of the season, there were rain events followed by the last irrigation, given this condition 

for the irrigation of October 8, which shows greater evaporation. As we can see, the textures are a 

key factor in the crop's development with interference in Ev's flows. 
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Figure 4.8 Evaporation (Ev) spatial pattern in the orchard for periods in between irrigation events 

and their probability density functions (PDF) for the coarse textured (PC; pink shaded), and fine 

textured (PF; blue shaded) soils. 
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4.5 Discussion 

4.5.1 Dynamics of evapotranspiration during the agricultural cycle. 

In agricultural production, consumptive water use is determined from evapotranspiration 

(ETa), and which is commonly thought of as the equivalent of the crop's water footprint. This water 

footprint in crops of economic importance is generally supplemented by irrigation. In our study 

orchard, ETa flows started in early March, after the first irrigation event and before bud break, as 

part of soil preparation to leach salts beyond the root zone (Jin et al., 2018; Palmate et al., 2022). 

Most of the water inputs into the orchard during the senescence period returns to the atmosphere 

as evaporation (Ev) and become unproductive water because the vegetation is inactive. The daily 

values of ETa fluctuated from close to zero in the early season to maximum values of 10 mm day-

1 during the season of maximum vegetation development; this occurred from July to August. From 

March 10 [first irrigation] to November 15, a total ETa of 1,297 mm was calculated during the 

observation period. These values are comparable to recent findings by Mokari et al., (2022) in a 

pecan orchard in New Mexico, where ETa was obtained using thermal imaging and reported a 

range of 1200 – 1300 mm of water. Other work conducted in the pecan producing region of New 

Mexico (Miyamoto, 1983) reported an total ETa of 1,310 mm during the growing season, also 

similar to the water footprint found in our study site. Differences between the reported values and 

our findings can be attributed to the particularities of the study site because of soil textures and 

vegetation development and slight differences in weather conditions from the natural climatic 

variability in the area. The most salient feature of our analysis, is the finding that most of the 

unproductive water consumed in the orchard occurs at the beginning of the year, early in the 
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growing season and it represents 28 % of the annual amount of water delivered and 30 % of the 

total ET. 

4.5.2 Productive and unproductive water use during different stages of the 

agricultural cycle. 

The change in water use in a crop follows the development of different phenological stages, 

as mentioned in sections 3.1.1 and 4.1. As such, most of the unproductive water use occurs at the 

early stage and at the end of the agricultural cycle. Our findings are consistent with previous studies 

by Sammis et al., (2004) on flood irrigated pecan orchards, who reported that the highest 

contribution of Ev (unproductive water) to the ET occurs from January to March, just before the 

pecan trees reach 50 % of budbreak. Other authors refer that high rates of soil evaporation occur 

right after water is delivered by flood irrigation, and particularly when the crops are in their early 

stages of development and only partially covering the soil (Er-Raki et al., 2009; Ibraimo et al., 

2016). The average Ev on the orchard in this study was 41% of the total ETa, which is 6% higher 

than that reported by Er-Raki et al., (2014) in an olive orchard in Morocco under similar flood 

irrigation and climatic conditions. Typically, flood irrigation favors potential evaporation for a few 

days immediately after the water is delivered, which translates into high Ev rates from standing 

water or fully saturated shallow soils from irrigation or rainfall events. As shown in Figure 3.a) a 

peak in evaporation occurs after each irrigation event with higher Ev rates at the beginning of the 

agricultural cycle. However, when canopy cover increased, Ev continued but at a lower rate, 

reflecting the fact that evaporation rates of soils under canopies decrease relative to bare soil Ev 

due to decreases in energy loads from shade effects (Deb et al., 2011). Unproductive water can be 

seen at the end of the agricultural cycle when water from the last irrigation and from rainfall events 
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maintain high soil moisture conditions at a time trees start senescing. Although the productive 

water use period occurs from April to November, when the pecan trees have already gone through 

the process of resprouting, developing a full canopy and filled their nuts, the most productive water 

use stage occurs during mid-season, when Kcb had reached its maximum (Paço et al., 2006). Hence, 

greater transpiration (productive water) occurs in July-August. On the other hand, low 

transpiration rates occur at the beginning and the end of the agricultural cycle when Kcb starts to 

grow and once it starts decreasing respectively (Puig-Sirera et al., 2021).  

4.5.3 Effect of soil texture on partitioning ET fluxes of a pecan orchard. 

Ideal crop development depends on a variety of factors, but particularly on soil conditions. 

For example, vegetation growth (e.g. leaf area index) and evapotranspiration response is strongly 

associated with soil texture (el Maayar & Chen, 2006), where slight variations in soil properties 

can significantly alter the water use efficiency (WUE) of crops. For instance, Yu et al., (2021) 

reported that vegetation in medium textured soils display large differences in WUE compared to 

plants in fine textured soils. Our study site has two main soil textures (i.e., fine grained [PF] and 

coarse grained [PC]) that have largely influenced the development of the trees, affecting their 

canopy sizes and influencing the spatial variability of the ET partitioning in the orchard. In the PC 

areas, 41% of the water inputs corresponds to Ev, while in PF that number rises to 59% 

significatively altering the irrigation water use efficiency of the orchard. Those high Ev values (59 

% of water inputs) occur in areas where most of the soil is directly exposed to the elements because 

the trees have small canopies. This is comparable to results from a study reported by Wang and 

Wang (2017), who found 52 % of water inputs as soil evaporation in an orchard with small trees. 

Similarly, Odi-Lara et al., (2016), found a high Ev rate after rainfall and irrigation events in areas 
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with low vegetation cover. Also, it is consistent with the report by Gong et al., (2007) that the Ev 

is dominant in areas with low leaf area index and low canopy development (Ritchie, 1972; Testi 

et al., 2004; Villalobos et al., 2000). Furthermore, if the exposed soils have high clay contents, 

such as in the PF areas in the study orchard, soil cracking during the desiccation of the shallow 

soil enhances further soil moisture evaporation from deeper in the profile (Whitmore & Whalley, 

2009). Soil texture, as noted above, is an important factor that govern the water movement and 

availability of nutrients, both of which can decrease the capability of roots to take water and 

minerals and in the end affecting trees’ growth (Clark et al., 2003). The PF patch in the middle of 

the study plot shows physical evidence of those characteristics already described: soil cracking, 

unhealthy and smaller than average trees with irregular canopy development. This is consistent 

with a work conducted by Khalil et al., (2020) who reported low vegetation development in clayey 

soils. When compared to PF Ev, PC Ev values are 18 % less than the Ev in the PF area.  

In the studied orchard, soil evaporation will always occur to some extent due to planting 

arrangement and the bare soil between the tree rows (Agam et al., 2012), and soil textures, 

irrigation regime and plant canopy development (Kool et al., 2014). In general terms, evaporation 

occurs due to the bare soil exposed between tree lines and high soil water contents due to the flood 

irrigation. Because of the nature of flood irrigation, it is difficult to variably adjust irrigation 

amounts to reduce unproductive water use based on the spatial distribution of soil texture. 
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4.5.4 Implications of the information on the productive and unproductive use 

of water for sustainable management of an orchard with two water 

sources. 

In this work, we found that unproductive water occurs during the early season of the crop 

cycle. In some places, with perennial crops, due to fertilization practices or poor quality water, 

irrigation from complementary water sources favors the soil salt concentration. This condition 

needs to be reduced to avoid significant decreases in crop yield for many sensible crops. To 

alleviate soil salinization, farmers apply irrigation to leach salts below the root zone to reduce soil 

salinization. Systematically, these watering events are placed during the dormant period 

(Miyamoto, 2006). This supports why the unproductive water occurs just at the beginning of the 

agricultural cycle. The soil salt phenomena have more effect in clay textures areas due to their low 

permeability, that increase with high soil compaction and low vegetation development due to the 

pass agricultural implements to do the agronomic practices (Miyamoto & Cruz, 1986). In some 

years, surface water is scarce, reflecting the low river flow (Sheng & Liu, 2015); when that occurs 

is a need to use the groundwater to leach salt. However, these practices increase groundwater’s 

unsustainability because some water delivered in the plot is returned to the atmosphere as soil 

evaporation (unproductive water). Moreover, it can increase the problem because, in some areas, 

the groundwater has elevated salinity (Miyamoto, 2006). Other issues that faced the agricultural 

plots were the soil texture variability. We found a high evaporation rate in the PF textures area. 

Similar behavior was found by Li et al., (2022) in their work related to soil evaporation in different 

soil textures. This information can be used to improve irrigation schedules by identifying the 

optimal periods to do this practice and reduce the effect of unproductive water on the efficiency of 

water use, especially in semiarid environments. However, soil texture variabilities make it difficult 
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to spatially-modify water deliveries within orchards with flood irrigation systems where the 

irrigation water depth is delivered uniformly. From empirical knowledge, some farmers guess that 

the excess water delivered by flood irrigation could recharge the aquifer. However, that does not 

occur, especially in soil with fine particles that inhibit irrigation recharge (Scanlon et al., 2010). 

Knowledge of the areas where the unproductive water occurs can be used to differentially manage 

water deliveries if the plot is equipped with spot irrigation. When possible adequate operation of 

irrigation systems can help decrease the excess water that plants are not using and with it the 

reduction of Ev from the annual water footprint through the irrigation season. 

4.6 Conclusion  

In this work, we found that the soil texture influenced the variability of the productive and 

unproductive water in the orchard. We observed that a large portion of the unproductive water use 

occurs early in the season due to soil preparation for the following agricultural cycle. Applying the 

PETVI methodology to separate the ET fluxes using moderate spatial (30 m from Landsat and 10 

m from S-2) and temporal (16 days from Landsat and 3-5 days from S-2) resolution allowed us to 

observe the spatiotemporal variability of the productive and unproductive water use in the orchard. 

Our data indicates supports the hypothesis that soil texture driven changes in ETa partitioning 

constrain water use by trees limiting or enhancing their growth and canopy development. In our 

findings, most of the unproductive water occurs in the irregular PF patches, while the most 

productive water use occurs in the PC areas. The cumulative unproductive water use is higher in 

the PF than in the PC in each irrigation period, mainly due to the low vegetation fraction within 

the PF area. Based on these findings, the best time to reduce the unproductive water use in the 

orchard is at the beginning of the agricultural cycle, pushing the first water deliveries closer to the 
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budbreak time. By modifying the calendarization of the first irrigations, the farmers could help 

reduce salt concentrations in the soil profile and reduce unproductive water in the early season.  
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Chapter 5. Conclusion 

Epilogue 

 

In this thesis, a novel approach to partition evapotranspiration fluxes, adapted from the dual 

crop coefficient method and improved to provide daily values of the productive and unproductive 

water use of crops, was tested and applied in both annual and perennial crops of arid and semi-arid 

regions. The “Partitioning Evapotranspiration through Vegetation Indices” (PETVI) method can 

provide a viable alternative for estimating a crop’s water-use trajectory during the growing cycle, 

yielding information on plants' water use in near-real-time (every 3 or 5 days). In combination 

with satellite-derived energy-balance-based ETa, PETVI can produce images to detect when a 

crop's productive and unproductive water occurs. PETVI estimates of Tr and Ev showed good 

agreement in an annual crop, with those obtained through other methods using ground-based data, 

providing confidence in the method. PETVI’s proposed approach can aid in continuously 

monitoring evaporation (Ev) and transpiration (Tr) at different scales, depending on the spatial and 

temporal resolutions of the input variables, as exemplified with the use of high-resolution UAV 

imagery and moderate resolution (10m pixel) S-2 scenes. The use of two different spatial 

resolutions (10m vs 5cm pixels) did not show significan differences between Tr estimates, although 

Ev did show larger values for lower-resolution data at the edges of the crop than those obtained 

with higher-resolution images.  

 

The PETVI method was applied in corn fields of an intensive agricultural valley with an 

overexploited aquifer, to detect the productive and unproductive water use in plots equipped with 

three irrigation systems: furrow irrigated, sprinkler irrigated, and drip irrigated. We estimated the 

partitioning of productive and unproductive water and calculated the productive water use 
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efficiency as the ratio of transpiration over total water delivered in the plot. The results of the 

analyses obtained showed that the three irrigation systems had essentially the same water use 

efficiencies (varying < 4% among them). These low efficiencies are a result of deficient operation 

of the irrigation systems and well below the optimal efficiencies allowed by each system. A 

projection of the observed efficiencies at the basin scale, considering the areas cultivated and 

irrigated by each different system, indicated that by cutting the time intervals between pre-sowing 

irrigation events and sowing by 10 days, will relieve about ¼ of the total water usage in the basin 

in a year. That adjustment would decrease about 85.7% the excess water on the cultivated area and 

would be equivalent to close to 10 years of water usage by the people in the urban communities of 

the basin.  

 

As exemplified previously, understanding productive and unproductive water and the 

periods in which it occurs allows us to identify water-saving alternatives under water scarcity and 

highly uncertain scenarios. In the third study case, the productive and unproductive water use in a 

pecan orchard with two soil textures, was evaluated. We found that the soil texture did have a large 

effect on the variability of the productive and unproductive water use of the trees. Moreover, and 

similar to observations in other sites, we found that most of the unproductive water use in the 

orchard occurs early in the season due to large irrigations for soil preparation for the following 

agricultural cycle. Applying the PETVI methodology to partition the ETa fluxes using moderate 

spatial and temporal resolution (e.g.,10 m pixels and 3 to 5 days intervals between images) satellite 

data, we were able to estimate the productive and unproductive water use and its spatiotemporal 

variability within the orchard. Our estimates provide evidence that the soil texture induces changes 

in the dynamics of evaporation and transpiration due to their direct effect on tree growth and 
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canopy development during the growing cycle. Our analyses show that most of the unproductive 

water occurs in the irregular patches of fine-grained (i.e., clayr-rich) soil textures (PF) while in the 

areas with coarse-grained soils (PC) transpiration was a larger fraction of the total ETa, and soil 

evaporation was considerably lower than in the PF soils. The cumulative unproductive water use 

after each irrigation period was larger in PF than in PC due to the low vegetation fraction within 

the PF area. Considering these findings, potential water savings to reduce the unproductive water 

use in the orchard can be obtained by reducing the irrigation amounts and or postponing irrigation 

to the beginning of the agricultural cycle (i.e., trees’ resprouting) delivering the water close to the 

budbreak. Doing this has the additional advantage of reducing the salt concentrations from the 

evaporation of the first irrigation and reduced unproductive water in the early season. 

 

Future work 

 

To better understand the water balance dynamics at the plot scale, analyses made with 

PETVI can be complemented with field measurements of runoff, in the drainage channels of the 

plots using flumes equipped with pressure transducers to measure runoff at temporal high-

frequency. Percolation of water past the root zone would also complement these analyses by 

providing a better estimate of the excess water from irrigation that does not become transferred 

into the atmosphere. This parameter can be monitored in the field using soil moisture sensors 

throughout the plot to detect the percolation patterns at different depths that exceed the root zone 

to detect the time and extent of percolation to better quantify irrigation water excesses. In areas 

with climatic conditions where crops are susceptible to hail damage, such as in the case of the 

Cuauhtémoc agricultural valley, where annual (corn fields) and a perennial crops (apple orchards) 
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grown are frequently hit by hail, farmers place anti-hail nets above the canopy of the trees to protect 

the crops. This represents a limitation for the PETVI method because the vegetation indices on 

which the method is based will yield erroneous data on vegetation activity due to the interference 

of the nets with the spectral reflectance of the canopies. This limitation, however, is not exclusive 

of satellite imagery, but also for high-resolution images obtained with UAVs since they will also 

capture an attenuated signal from the vegetation that will underestimate the Kcb. Therefore, this 

will produce lower values of Tr and an incorrect partition of the ETa. Field observations with 

spectrometer data can be used to assess the effect of the hail mesh on the vegetation index, and a 

table with values for different types of nets and materials could be used to develop empirical 

coefficients to correct for those attenuations of the vegetation indices data. 

 

Another potentially fruitful avenue of investigation with PETVI could be to assess the 

spatial and temporal Tr variability in response to vegetation stress. PETVI can provide near-daily 

Tr data, which can be combined with canopy temperature-derived indices of vegetation stress. In 

places like the pecan orchard in Tornillo, Texas, with shallow water tables, fluctuations in the 

levels of the shallow aquifer can be used to infer the water use by trees at sub-daily scale, which 

can indicate periods when trees can access groundwater. This information, together with field 

measurements of water balance that take percolation amounts into account, can shed light on the 

effects of shallow groundwater contribution to crop water use in arid riparian zones. Studies on 

soil evaporation using micro lysimeters in areas with different soil textures would also be 

advantageous to quantify Ev rates in the bare soil and soil under the shade of the canopy of trees. 

Additionally, to reduce the problem of edge effects in the estimation of Tr and Ev from using PETVI 

with moderate resolution scenes, high-resolution thermal and multispectral imagery from UAVs 
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can be complementary used; that high degree of detail that such information can produce will also 

allow to partition ETa with sufficient definition to study changes in Tr at the tree canopy level for 

high precision agriculture. 

 

PETVI has shown that it is able to capture the spatial variability of ETa partitioning using 

remotely sensed imagery. However, to correctly estimate the required VIs and Kcb, expert 

evaluation of data quality needs to be performed to eliminate spurious data from clouds and shade 

effects. Automatization of these processes using machine learning algorithms that can detect and 

eliminate problematic data can help in processing large datasets for regional-scale analyses and 

reduce the need and cost of those analyses by reducing the time spent on visual verification by a 

person. Along this avenue of work, the implementation of the PETVI algorithm into application 

programming interfaces (APIs) using cloud computing and their evaluation and adoption by 

farmers and producers could open further areas of research on the use of these techniques to 

improve irrigation management at different scales (e.g. plot, districts and basins), and make this 

technology widely available to farmers and decision-makers in water irrigation districts. 
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5 Appendix 

 
Figure 5.1 Transpiration (Tr) time series obtained with the underlying water use efficiency method 

(uWUE; blue line); red line represent the Tr calculated using NDVI, transpiration calculated using 

EVI, and the Tr using MSAVI; b) Scatter plot of the transpiration calculated with the uWUE 

method (x-axis) and Tr NDVI, Tr EVI and Tr MSAVI (y-axis); c) Taylor diagram displaying the 

correlation coefficient, standard deviation and root means square difference between the modeled 

transpirations (Tr NDVI (blue diamond), Tr EVI (red circle) and Tr MSAVI (green square)) and the 

reference transpiration (Tr uWUE (black circle)); green dashed lines represent the root mean square 

difference (RMSD) in mm. 
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