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Abstract

A time series may be analyzed either in the time or in the frequency domain. When

working in the frequency domain, the main objective is to estimate the underlying spectrum.

Various approaches have been proposed to this end, but most are based on smoothing the

periodogram using a single smoothing parameter across all Fourier frequencies. Such a

global smoothing parameter may result in a biased estimate. To improve the estimation, in

this paper, we smooth the log periodogram by placing a dynamic shrinkage prior, such that

varying degrees of smoothing may be applied to different regions of the Fourier frequencies,

resulting in a less biased estimate of the spectrum.
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Chapter 1

Introduction

A time series is a sequence of data points that occur in successive order over some

period of time. This type of data is prevalent in numerous areas. For example, stock

prices, rainfall measurements, annual retail sales, and monthly subscribers to Netflix. The

Southern Oscillation Index (SOI) is a standardized index based on the observed sea level

pressure (SLP) differences between Tahiti and Darwin, Australia. Figure 1.1 displays the

Southern Oscillation Index (SOI) for a period of 453 months ranging over the years 1950-

1987. This dataset is also analyzed in Rosen et al. (2012).

Figure 1.1: Southern Oscillation Index (SOI).

By analyzing a time series, we can identify trends or systemic patterns over time and
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predict future values. If a time series is analyzed in the frequency domain, then estimating

its spectrum is usually the main objective. Estimating the spectrum helps understand the

cyclical nature of the time series. In this dissertation, we propose a new method that can

improve the estimation of the spectral density of a time series.

The following definitions are taken from Shumway and Stoffer (2017).

Definition 1 A time series is a sequence of data points being recorded at specific times.

Usually, these time points are equally spaced, in which case the time series is denoted by

{xt, t = 0,±1,±2, . . .}.

Definition 2 The mean function of a time series {xt, t = 0,±1,±2, . . .} is defined as

µxt = E(xt),

where E denotes the expectation operator. When no confusion exists about which time

series we are referring to, we will drop a subscript and write µxt as µt.

Definition 3 The auto-covariance function of a time series {xt, t = 0,±1,±2, . . .} is

defined as

γx(s, t) = cov(xs, xt) = E((xs − µs)(xt − µt))

for all s and t. When no possible confusion exists about which time series we are referring

to, we will drop the subscript and write γx(s, t) as γ(s, t).

Definition 4 A weakly stationary time series is a finite variance process where

1. the mean value function, µt, is constant and does not depend on time t, and

2. the auto-covariance function, γ(s, t), depends on s and t only through their difference

|s− t|.

Since the mean function, E(xt) = µt, of a stationary time series is independent of time

t, we will write µt = µ. Also, because the auto-covariance function, γ(s, t), of a stationary
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time series, xt, depends on s and t only through their difference |s − t|, we may simplify

the notation. Let s = t+ h, where h represents the time shift or lag. Then

γx(t+ h, t) = cov(xt+h, xt) = cov(xt, x0) = γ(h, 0)

because the time difference between times t + h and t is the same as the time difference

between times h and 0. Thus, the auto-covariance function of a stationary time series does

not depend on the time argument t. Henceforth, for convenience, we will drop the second

argument of γ(h, 0).

Definition 5 The auto-covariance function of a stationary time series will be writ-

ten as

γ(h) = cov(xt+h, xt) = E((xt+h − µ)(xt − µ)).

Definition 6 A strictly stationary time series is one for which the probabilistic behavior

of every collection of values and shifted values

{xt1 , xt2 , . . . , xtk} and {xt1+h, xt2+h, . . . , xtk+h}

are identical, for all k = 1, 2, . . . , all time points t1, t2, . . . , tk, and all time shifts h =

0,±1,±2, . . ..

Definition 7 A time series {xt, t = 0,±1,±2, . . .} is ARMA(p, q) if it is stationary and

xt = ϕ1xt−1 + · · ·+ ϕpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q

with ϕp ̸= 0, θq ̸= 0, and σ2
w > 0. The parameters p and q are called the autoregressive

and the moving average orders, respectively. We assume that wt is a Gaussian white noise

series with mean zero and variance σ2
w.

Definition 8 An autoregressive model of order p, abbreviated AR(p), is of the form

xt = ϕ1xt−1 + · · ·+ ϕpxt−p + wt,

where xt is stationary, and ϕ1, ϕ2, . . . , ϕp are constants, such that ϕp ̸= 0. We assume that

wt is a Gaussian white noise series with mean zero and variance σ2
w.
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Example. xt = xt−1 − 0.9xt−2 + wt is an AR(2) model, where wt is white Gaussian noise

with σ2
w.

Definition 9 The moving average model of order q, or MA(q), is defined to be

xt = wt + θ1wt−1 + · · ·+ θqwt−q,

where xt is stationary, and ϕ1, ϕ2, . . . , ϕp are constants such that ϕp ̸= 0. We assume that

wt is a Gaussian white noise series with mean zero and variance σ2
w.

Example. xt = wt + θwt−1 is an MA(1) model, where wt is white Gaussian noise with σ2
w,

θ ̸= 0.

Definition 10 If the auto-covariance function, γ(h), of a stationary process satisfies

∞∑
h=−∞

|γ(h)| <∞,

then it has the representation

γ(h) =

∫ 1
2

− 1
2

e2πiωhf(ω)dω, h = 0,±1,±2, . . . , (1.1)

where f(ω) is the spectral density. The latter has the representation

f(ω) =
∞∑

h=−∞

γ(h)e−2πiωh, −1

2
≤ ω ≤ 1

2
.

Properties of the spectral density function:

1. f(ω) ≥ 0 for all ω.

2. f(−ω) = f(ω),i.e., it is an even function.

3. f(ω + 1) = f(ω), i.e., It is a periodic function.

In addition, putting h = 0 in (1.1) yields

γ(0) = Var(xt) =

∫ 1
2

− 1
2

f(ω)dω,

which expresses the total variance as the integrated spectral density over all frequencies.
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Definition 11 Given data x1, . . . , xn, we define the discrete Fourier transform (DFT)

to be

d(ωj) = n− 1
2

n∑
t=1

xte
−2πiωjt

for j = 0, 1, . . . , n − 1, where the frequencies wj = j/n are called the Fourier or funda-

mental frequencies and i =
√
−1.

Definition 12 Given data x1, . . . , xn, we define the periodogram to be

I(ωj) = |d(ωj)|2

for j = 0, 1, 2, . . . , n− 1.

When the sample size n is large, I(ωj)
ind∼ Exponential(f(ωj)), approximately.

Definition 13 Given data x1, . . . , xn, we define the cosine transform

dc(ωj) = n− 1
2

n∑
t=1

xt cos(2πωjt)

and the sine transform

ds(ωj) = n− 1
2

n∑
t=1

xt sin(2πωjt),

where wj = j/n, for j = 0, 1, 2, . . . , n− 1.

We can see that d(ωj) = dc(ωj)− ids(ωj) and

I(ωj) = |d(ωj)|2 = d2c(ωj) + d2s(ωj).

Definition 14 Let z = z1 + iz2, where i =
√
−1 and z1, z1

iid∼ N(0, σ
2

2
). Then

f(z1, z2) ∝
1

σ
exp

(
− z21
σ2

)
× 1

σ
exp

(
− z22
σ2

)
=

1

σ2
exp

(
−z

2
1 + z22
σ2

)
.

We say that z has a complex normal distribution with mean 0 and variance σ2 and

denote it as z ∼ CN(0, σ2). The pdf of z is given by

f(z) ∝ 1

σ2
exp

(
−z

∗z

σ2

)
,

where z∗ is the complex conjugate.
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Definition 15 A random variable X has a Z distribution with parameters a, b, µ, σ,

denoted X ∼ Z(a, b, µ, σ), if its pdf is given by

f(x) =
1

σ ∗ Beta(a, b)
exp

{(x− µ)

σ

}a[
1 + exp

{(x− µ)

σ

}]−(a+b)

,

where Beta(a, b) is the beta function with parameters a and b.

Definition 16 A random variableX has a Pólya-Gamma distribution with parameters

b > 0 and c ∈ R, denoted X ∼ PG(b, c), if

X =
1

2π2

∞∑
k=1

gk

(k − 1
2
)2 + c2

4π2

,

where the gk ∼ Ga(b, 1) are independent gamma random variables.
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Chapter 2

Estimation of Spectral Densities

Consider a weakly stationary time series, x1, . . . , xn, with mean zero, where we assume

n is even. Apply to it the DFT (Definition 11) to obtain

d(ωj) = n− 1
2

n∑
t=1

xte
−2πiωjt,

for j = 0, 1, 2, . . . , n− 1. The periodogram (Definition 12) of this time series at frequency

ωj is I(ωj) = |d(ωj)|2.

Details of the Periodogram

The following explanations are taken from Shumway and Stoffer (2017).

Let x1, . . . , xn be an observed time series of size n. For simplicity, we assume that n is

odd, then

xt = a0 +
m∑
j=1

[
aj cos(2πωjt+ bj sin(2πωjt))

]
, (2.1)

where m = (n− 1)/2, a0 = (
∑n

j=1 xj)/n = x̄ and

aj =
2

n

n∑
t=1

xt cos(2πωjt) =
2√
n
dc(ωj),

bj =
2

n

n∑
t=1

xt sin(2πωjt) =
2√
n
ds(ωj),

is exact for t = 1, 2, . . . , n. For the definition of dc(ωj) and dc(ωj), see Definition 13 in

Chapter 1.
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From Equation (2.1), we have

(xt − x̄) =
2

n

m∑
j=1

[
dc(ωj) cos(2πωjt) + ds(ωj) sin(2πωjt)

]
. (2.2)

Recall that if j ̸= 0 or j ̸= n/2,

n∑
t=1

cos2(2πωj) =
n∑
t=1

sin2(2πωj) =
n

2
,

then squaring both sides of the Equation (2.1) and summing results in

n∑
t=1

(xt − x̄)2 = 2
m∑
j=1

[
d2c(ωj) + d2s(ωj)

]
= 2

m∑
j=1

I(ωj).

Thus, we have turned the sum of squares,
∑n

t=1(xt − x̄)2, from the time domain to the

frequency domain. Now we can split the sum of squares by the frequency ωj and obtain

Table 2.1.

Table 2.1: ANOVA Table

Source df Error Sum of Squares Mean Square Error

ω1 2 2I(ω1) I(ω1)

ω2 2 2I(ω2) I(ω2)
...

...
...

...

ωm 2 2I(ωm) I(ωm)

Total n− 1
∑n

t=1(xt − x̄)2

If the time series data contain some strong periodic components, then the periodogram

values corresponding to those frequencies (or near those frequencies) will be large. Oth-

erwise, the periodograms will be small. This explains why periodograms are important in

spectral analysis.
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Traditional Methods

Traditional methods for estimating the spectral density are described in Shumway and

Stoffer (2017).

The Averaged Periodogram: let D be a band of L << n contiguous frequencies

centered around frequency ωj = j/n, i.e.,

D =
{
ωj +

k

n
: k = 0,±1,±2, . . . ,±m

}
,

where L = 2m+ 1 is an odd number. The values of the spectral density in D are

f(ωj +
k

n
), k = 0,±1,±2, . . . ,±m,

which are approximately equal to f(ωj). Let

f̄(ωj) =
1

L

m∑
k=−m

I(ωj +
k

n
),

then E[f̄(ωj)] ≈ f(ωj) and Var[f̄(ωj)] ≈ f2(ωj)

L . Letting L → ∞ with L << n, Var[f̄(ωj)] →

0. Key to the success of this method is finding an appropriate value of L. Also, this method

may not be able to provide a satisfactory estimate of a peak in the spectral density, since

averaging may flatten the peak.

Whittle Likelihood

For a weakly stationary zero-mean time series x1, . . . , xn, where n is even, let V be

an n × n matrix with elements Vt,j = 1√
n
exp

{
−2πi(t − 1)ωj

}
for t = 1, 2, . . . , n and

j = 1, 2, . . . , n. Here i =
√
−1. Whittle (1962) proved that for large n, the likelihood of

x1, . . . , xn can be approximated by

P (xxx | f) = 1
(2π)1/2

det(R)1/2 exp
{
−1

2
xxxTV RV ∗xxx

}
, (2.3)

where xxx = (x1, . . . , xn)
T , R = diag( 1

f(ω1)
, . . . , 1

f(ωn)
) and V ∗ is the conjugate transpose of V .

Since V is unitary, i.e., V ∗V = V V ∗ = I, it follows that V Txxx = (d(ω1), d(ω2), . . . , d(ωn))
T .

9



We then have det(R)1/2 =
∏n

j=1
1

f(ωj)1/2
and xxxTV RV ∗xxx =

∑n
j=1

I(ωj)

f(ωj)
. It follows that the

likelihood is given by

P (xxx | f) = 1
(2π)1/2

det(R)1/2 exp
{
−1

2
xxxTV RV ∗xxx

}
= 1

(2π)1/2

∏n
j=1

1
f(ωj)1/2

exp
{
−1

2

I(ωj)

f(ωj)

}
.

(2.4)

One motivation for this approximation is that for large n, d(ωj)
ind∼ CN(0, f(ωj)) (Defini-

tion 14), approximately. This implies

g(d(ωj)) ∝
1

f(ωj)
exp

{
−|d(ωj)2|

f(ωj)

}
=

1

f(ωj)
exp

{
− I(ωj)
f(ωj)

}
, (2.5)

where g(d(ωj)) is the pdf of d(ωj), and I(ωj) is the periodogram. From Formula (2.5) we

see that I(ωj) ∼ Exponential
(
f(ωj)

)
approximately, where Exponential

(
f(ωj)

)
denotes

the exponential distribution with mean f(ωj). Let ϵj =
I(ωj)

f(ωj)
, then ϵj ∼ Exponential(1). It

follows that I(ωj) = ϵjf(ωj). Taking logs of both sides leads to the log-linear model

log(I(ωj)) = log(f(ωj)) + ηj, for j = 1, . . . , n, (2.6)

where ηj = log ϵj ∼ log(Exponential(1)) = log(1
2
χ2
2). Model (2.6) was used by Wahba

(1980) to estimate the spectral density by smoothing splines.

Contreras-Cristán et al. (2006) found that the Whittle approximation may be unreli-

able in the non-Gaussian case, even for moderate sample sizes. For small samples, if the

autocorrelation of the process is high, Whittle’s approximation is not efficient even in the

Gaussian case. Sykulski et al. (2019) propose a method to de-bias Whittle’s estimates for

second-order stationary stochastic processes without increasing the computational cost.

A Mixture Approximation to the log Exponential Distribution

Carter and Kohn (1997), use a Bayesian approach where the distribution of the error

term ηj (Equation (2.6)) is approximated by a mixture of five normal distributions with

10



fixed parameters. The weights, means, and variances of the components are listed in

Table 2.2.

Table 2.2: Table of the 5-component Gaussian mixture

Weight Mean Variance

p5,1 = 0.19 µ5,1 = −2.20 σ2
5,1 = 1.93

p5,2 = 0.11 µ5,2 = −0.80 σ2
5,2 = 1.01

p5,3 = 0.27 µ5,3 = −0.55 σ2
5,3 = 0.69

p5,4 = 0.25 µ5,4 = −0.035 σ2
5,4 = 0.60

p5,5 = 0.18 µ5,5 = 0.48 σ2
5,5 = 0.29

Generally speaking, estimating a spectral density can be done parametrically or non-

parametrically. A parametric approach assumes knowledge of the functional form of the

spectral density as a function of frequency. If the functional form is correctly specified,

this method will be powerful and highly efficient. Our approach in this dissertation is

nonparametric.

2.1 Nonparametric Regression

In nonparametric regression, the form of the relationship between the independent vari-

ables and the response variable is estimated based on observed data without assuming a

pre-determined regression function such as a linear function. There are various approaches

to nonparametric regression. One such approach uses a set of basis functions, whose linear

combination estimates the regression function. In this dissertation, we use B-splines.

B-Splines

There are two requirements in order to define a family of B-spline functions of order p+ 1

uniquely.

11



1. A polynomial of degree p (the order of a B-spline function equals the polynomial

degree p plus 1).

2. A non-decreasing sequence of knots, t1, . . . , , tq.

The ith member of a family of B-splines of order 1 is then defined as

Pi,1(x) :=

 1 if ti ≤ x < ti+1

0 otherwise.

B-splines of higher order k are defined recursively as follows,

Pi,k(x) := δi,kPi,k−1(x) + (1− δi+1,k)Pi+1,k−1(x),

where

δi,k :=

 x−ti
ti+k−1−ti

if ti ̸= ti+k−1

0 otherwise.

Here are some general properties of a B-spline of order p+ 1, see Eilers and Marx (1996).

1. It consists of p+ 1 polynomial pieces, each of degree p.

2. The polynomial pieces join at p inner knots.

3. At the joining points, derivatives up to order p− 1 are continuous.

4. The B-spline is positive on a domain spanned by p + 2 knots; everywhere else it is

zero.

5. Except at the boundaries, it overlaps with 2p polynomial pieces of its neighbors.

6. At a given x, p+ 1 B-splines are non-zero.

12



Figure 2.1: B-spline example.

Due to these good properties, B-splines are ideal basis functions for nonparametric

modeling.

Following the definition above and using (0, 1, 2, . . . , 7, 8) as knots to construct a family

of order 4 B-spline functions, Figure 2.1 shows that on the interval [0,1], only P1,4 is

non-zero, and on the interval [1,2], only P1,4 and P2,4 are non-zero. But on the intervals

[2,3],[3,4], [4,5], [5,6], each interval has three non-zero B-spline functions.
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Periodic B-Splines

As described in Chapter 1 under Definition 10, spectral densities are even and periodic.

Periodicity means that in each period, the curve of the spectral density on the left end of

the period should connect smoothly to the right side. Periodicity can be accommodated

by periodic B-splines proposed, for example, in Eilers and Marx (2020).

Given a non-decreasing sequence of knots, t1, . . . , tq, the interval [t1, tq] can be extended

by attaching the two endpoints t1 and tq together and defining t1 = tq and ti+q−1 = ti

for i = ±1, 2, 3, . . ., just like using a paper strip to make a ring. The new family of

B-spline functions has the same behavior on the interval [t1+i∗T , t1+(i+1)∗T ] for any i =

±1, 2, . . ., where T is the period. The new B-spline functions are “wrapped” at the boundary

knots. This can be seen in Figure 2.2, where the knots (0, 1, 2, . . . , 7, 8) are the same as in

Figure 2.1, but now the interval [0,8] is completely covered by the periodic B-splines, i.e.,

at any point in this interval, there are three non-zero B-spline functions.

2.1.1 Regularization of the Basis Function Coefficients

Consider the following model

YYY = Bβββ + ϵϵϵ, (2.7)

where B is an n×L matrix of B-spline basis functions with elements Bi,j = Pj,4(ωi), Pj,4(ωi)

is the j-th member of a family of B-splines of order 4 evaluated at frequency ωi, and L

denotes the number of B-spline basis functions. In the sequel, we only consider order 4 B-

spline basis functions, and so Pj,4 will be abbreviated to Pj. The vector βββ = (β1, β2, . . . , βL)
T

consists of the coefficients of the B-splines, and ϵϵϵ = (ϵ1, ϵ2, . . . , ϵn)
T with ϵi

iid∼ N(0, σϵ).

Merely estimating βββ without imposing any constraints on these coefficients, will usually

result in overfitting, see Figure 2.3. Overfitting happens when the model has too many

basis functions with non-zero coefficients. In practice, Frequentists apply a penalty to βββ,

while Bayesians use prior distributions in order to shrink these coefficients towards zero,
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Figure 2.2: Periodic B-spline example.

such that the resulting estimated regression function will provide a good fit to the data.

P-splines

B-splines are ideal for nonparametric estimation but require some care in deciding on the

number and placements of knots. Marx and Eilers (1999) proposed the P-splines approach.

P-splines consist of a combination of B-splines and a second-order difference penalty placed

on the coefficients of these B-splines to control the smoothness of the fitted curve. It is a

flexible tool for smoothing where knots can be placed equally spaced, and as long as the
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Figure 2.3: Nonparametric regression without constraints on the coefficient vector βββ.

number of basis functions is large enough, there is no need to use an “optimal” number of

basis functions. The level of smoothness is tuned by the prior on βββ.

Bayesian Variable Selection

P-splines are one way to prevent over-fitting. Another approach is to start with a

relatively large number of basis functions and to allow some of the coefficients to be equal

to zero. This approach is common in Bayesian variable selection for regression models

(George and McCulloch, 1997).

Below is a review of some possible priors on βββ.

Random-Walk Prior

Lang and Brezger (2004) developed a Bayesian version of P-splines, in which a random
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walk prior is placed on the B-spline coefficients. A first-order random-walk prior is given

by ∆βρ = βρ − βρ−1 = υρ, where υρ ∼ N(0, τ 2), i.e.,

βρ = βρ−1 + υρ. (2.8)

Similarly, a second-order random-walk prior is obtained by ∆2βρ = ∆(∆βρ) = ∆(βρ −

βρ−1) = βρ− 2βρ−1 + βρ−2 = υρ, i.e.,

βρ = 2βρ−1 − βρ−2 + υρ.

Diffuse priors are placed on β1 (for a first-order random-walk) or β1 and β2 (for a second-

order random-walk prior). The diffuse (improper) prior is p(βi) ∝ 1, i = 1, 2. (p(βi) means

the prior on βi). The amount of smoothness is controlled by the smoothing parameter τ 2,

which is a global smoothing parameter. In other words, the same amount of smoothing is

applied at different covariate values (frequency in our case).

Spike and Slab Prior

One of the earliest priors on regression coefficients used in Bayesian variable selection

was the spike and slab prior (George and McCulloch, 1997). It is often written as a two-

component mixture of Gaussians

βi | ρi, c ∼ ρiN(0, c2) + (1− ρi)N(0, ϵ2), ρi ∼ Ber(π), (2.9)

where ρi ∼ Ber(π) means that ρi has a Bernoulli distribution with sucess probability π.

The parameter c is called the slab width.

In Equation (2.9), the first term on the right-hand side is called a slab. The variance

c2 is relatively large so N(0, c2) has its support over a wide range of plausible values of βi.

The second component is the spike with ϵ2 << c2. If we set ϵ = 0, then the spike is called

the Dirac delta function with

17



δ0(x) :=

 1 if x = 0

0 otherwise.

The Horseshoe Prior

The setting of the horseshoe prior is as follows.

βi | λi, τ ∼ N(0, λ2i τ
2), λi | σ ∼ C+(0, σ), τ | η ∼ C+(0, η). (2.10)

In Equation (2.10), C+(0, a) denotes the half-Cauchy distribution with scale parameter

a. We can see that the level of shrinkage of βi is controlled by two parameters, λ2i (the local

smoothing parameter) and τ 2 (the global smoothing parameter). Thus, the horseshoe prior

can shrink globally (via τ 2) and yet act locally (via λ2i ). The global parameter τ 2 pulls all

the weights globally towards zero, while the thick half-Cauchy tails for the local scales λj

allow some of the weights to escape the shrinkage, see Carvalho et al. (2010).

The density function of the horseshoe prior (Figure 2.4) has an infinitely tall spike at

the origin and flat, Cauchy-like tails. These two features allow βis with large values to

remain large and force small βis to shrink to values close to zero.

In Equation (2.10), set τ = σ = 1 and let κi =
1

1+λ2i
, then we obtain

E(βi | yi, λ2i ) =
( λ2i
1 + λ2i

)
yi +

( 1

1 + λ2i

)
0 = (1− κi)yi, (2.11)

where yi is the observed data.

Under the setting τ = σ = 1, λi ∼ C+(0, 1), κi =
1

1+λ2i
∼ B(1

2
, 1
2
), where B(a, b) denotes

the Beta distribution with parameters a and b. Figure 2.5 shows the density curve of κi,

which looks like a horseshoe. Most of the mass is concentrated at κi = 0 and κi = 1.

In Equation (2.11), if κi = 0, then E(βi | yi, λ2i ) = yi, which means there is no shrinkage.

If κi = 1, then E(βi | yi, λ2i ) = 0, which means total shrinkage, see Piironen and Vehtari

(2017).
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Figure 2.4: Different prior on βi.

In Bayesian linear regression, we usually assume that regression coefficients βis are

independently normally distributed. In this case, the spike and slab prior can be rewritten

as

βi ∼ ρN(0, c2) + (1− ρ)δ0(βi),
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Figure 2.5: The density of κi.

where

δ0(βi) :=

 1 if βi = 0

0 otherwise,

which concentrates all its mass at zero and makes those βi corresponding to unimportant

covariates shrink to zero.

If the value of βi is not close to zero, then by the slab component, βi ∼ N(0, c2), and

E(βi | yi) =
c2

1 + c2
yi =

(
1− 1

1 + c2

)
yi,

so the shrinkage factor is κi =
1

1+c2
, which has the same form as κi =

1
1+λ2i

. If we set λi = c,

then both priors will be the identical, which means under this setting, both the horseshoe

prior and the spike and slab prior will assign the same amount of shrinkage to nonzero βis.

If the value of βi is close to zero, then by the spike component, it will be shrunk to zero,
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which means total shrinkage (κi = 1). Thus, the horseshoe prior can closely mimic the

spike and slab prior.

The performance of the spike and slab prior mainly depends on the choice of slab width

c and ρ. A spike and slab prior is often considered as the ‘gold standard’ for variable

selection. The horseshoe prior often performs better than the spike and slab prior in terms

of the mixing of the MCMC (Markov chain Monte Carlo) algorithm. For more details about

the spike and slab prior and the horseshoe prior, see Piironen and Vehtari (2017), who also

proposed the regularized horseshoe prior as an improvement of the horseshoe prior.
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Chapter 3

The Dynamic Shrinkage Prior and

Periodic B-splines Basis

To motivate the dynamic shrinkage prior (DSP), proposed by Kowal et al. (2019), con-

sider figures 3.1 and 3.2 which display on their left panels true spatially inhomogeneous

signals. These were used by Donoho and Johnstone (1994) as examples of spatially in-

homogeneous signals. The right panels display data generated by adding noise to these

signals, along with two types of fitted curves. For each signal, there are 128 equally spaced

sample points, in the time interval [0, 1]. The red lines are based on smoothing splines

while the green ones were fit using nonparametric regression with the DSP, implemented in

the R package dsp (Kowal (2020)). The DSP is explained later in this chapter. As evident

from these plots, smoothing splines which are not spatially adaptive, miss some important

features of the signals. Nonparametric regression with the DSP does a good job due to

its spatial adaptivity. This method allows for different amounts of smoothing in different

intervals. This property is advantageous when fitting data from spatially inhomogeneous

signals like the ones shown in these plots.

The Dynamic Shrinkage Prior (DSP)

Priors such as smoothing splines are controlled by a single smoothing parameter which

in turn results in a uniform amount of smoothing across the covariate space. Kowal et al.

(2019) proposed the dynamic shrinkage prior (DSP), which introduces dependence between

local scale parameters. This new prior inherits the desirable shrinkage behavior of popular

global–local priors, such as the horseshoe prior (see Section 2.1.1), but has additional
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Figure 3.1: Left: Doppler and Bumps signals. Right: Data along with fitted curves. The red

lines are based on smoothing splines while the green ones were fit using the nonparametric

regression with the DSP.

localized adaptivity, which is important for modeling time series data or regression functions

with local features. This prior is placed on the second-order differences of the coefficients

of the B-splines, as in Eilers and Marx (2020)

∆2βi+1 = υi, υi | τ, λi
ind∼ N(0, τ 2λ2i ). (3.1)

Just as in the Horseshoe prior, the λ2i ’s are the local shrinkage parameters while τ 2 is the

global shrinkage parameter. Kowal et al. (2019) then let hi = log(τ 2λ2i ) and define
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Figure 3.2: Left: Blocks and Heavisine signals. Right: Data along with fitted curves. The

red lines are based on smoothing splines while the green ones were fit using the single-

component nonparametric regression with the DSP.

hi+1 = ι+ ϕ(hi − µ) + ηi,

ηi
iid∼ Z(1

2
, 1
2
, 0, 1),

(3.2)

where ι = log(τ 2) and ϕ(hi−1 − ι) + ηi−1 = log(λ2i ). Equation (3.2) induces dependence

between λi and λi+1. If ϕ = 0, then log(λ2i ) = ηi−1 and hi = ι + ηi = log(τ 2) + log(λ2i ).

Since ηi
iid∼ Z(α, β, 0, 1), the hi are i.i.d, which is the usual global-local prior, i.e., there is

no extra spatial adaptivity. When ϕ > 0, it follows from the first equation of (3.2) that the

{hi} follow an AR(1) process, and the dependence between λi and λi+1 is controlled by the

AR(1) coefficient ϕ. Because ϕ is positive, the correlation between λi and λi+1 is positive.
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The larger ϕ, the stronger the relation between λi and λi+1. The amount of smoothing in

adjacent intervals will thus not change a lot.

The prior on τ is τ ∼ C+(0, γ), where γ = σϵ√
M

is constant, and C+ is the half-Cauchy

distribution with pdf P (τ) = 2
π·γ · 1

1+( τ
γ
)2
. The evolution equation (3.2) defines hi+1 for

i = 1, 2, 3, . . . ,M−1. Thus when implementing the DSP, one works with ι = log(τ 2) rather

than with τ 2. For this reason, we derive below the distribution of ι. Since τ ∼ C+(0, 1), it

follows that the density function of A = τ 2 is

P (A) =
2

π · γ
· 1

1 + A
γ2

· 1
2

1√
A

=
1

πγ
· γ2

γ2 + A
· 1√

A

=
γ

π
√
A(A2 + γ2)

.

Now, letting ι = log(A) = log(τ 2) =⇒ A = exp(ι), we obtain

P (ι) =
1

π

e
1
2
ι−log(γ)

1 + eι−2 log(γ)
=

1

π
· e

1
2
(ι−2 log(γ))

1 + eι−2 log(γ)
.

By Theorem 1 of Polson et al. (2013), let p(ξι) denote the pdf of the Pólya-Gamma

random variable ξι ∼ PG(b; 0), b > 0. Then the following integral identity holds for all

a ∈ R.

(eψ)a

(1 + eψ)b
= 2−beζψ

∫ ∞

0

e−ξι
ψ2

2 p(ξι)dξι,

where ζ = a− b
2
. Letting ψ = ι− 2 log(γ), we see that

P (ψ) =
1

π
· e

1
2
(ι−2 log(γ))

1 + eι−2 log(γ)
=

1

π
· (eψ)

1
2

(1 + eψ)1

=
1

2π
e(

1
2
− 1

2
)ψ

∫ ∞

0

e−ξι
ψ2

2 p(ξι)dξι

=
1

2π

∫ ∞

0

e−ξι
ψ2

2 p(ξι)dξι.

Thus, given ξι ∼ PG(b, 0), ψ | ξι ∼ N(0, ξ−1
ι ). Also, the conditional distribution

ξι | ψ ∼ PG(b, ψ).
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If we let ψ = ι − 2 ln(γ), a = 1
2
and b = 1, then ζ = 1

2
− 1

2
= 0. It follows that

P (ι) = 1
2π

∫∞
0
e−

(ι−2 log(γ))2ξι
2 p(ξι)dξι. Thus (ι | ξι, σϵ) ∼ N(2 log(γ), ξ−1

ι ) = N(log(σ
2
ϵ

M
), ξ−1

ι )

and ξι ∼ PG(1, 0).

Since υi = ∆2βi+1 and υi ∼ N(0, τ 2λ2i ) = N(0, exp(hi)), we see that υi

exp(
hi
2
)
∼ N(0, 1)

and
υ2i

exp(hi)
∼ χ2

1. Taking the log, we obtain log(υ2i ) − hi ∼ log(χ2
1) ⇐⇒ log(υ2i ) =

hi + log(χ2
1). Kastner and Frühwirth-Schnatter (2014) use this expression to write the

joint distribution of the hi. The distribution of log(ϵ2i ) can be approximated by the 10-

component mixture of normal distributions proposed in Omori et al. (2007). Conditional

on the mixture component indicators s10,i, [log(ϵ
2
i ) | s10,i] ∼ N(µs10,i , σ

2
s10,i

), where µ10,j,

p10,j and σ
2
10,j, j = 1, . . . , 10, are the pre-specified means, weights and variances of the 10-

component Gaussian mixture provided in Omori et al. (2007). These values are provided

in Table A.1. Thus, log(υ2i ) = hi + log(ϵ2i ) | si implies log(υ2i ) ∼ N(hi + µs10,i , σ
2
s10,i

). In

practice, to avoid numerical problems when υ2i is too small, we add a small offset c = 10−4

to υ2i , resulting in log(υ2i + c) ∼ N(hi + µs10,i , σ
2
s10,i

).

A random variable from ηi ∼ Z(1
2
, 1
2
, 0, 1), can be generated by drawing from ηi | ξi ∼

N(0, ξ−1
i ) where ξi ∼ PG(1, 0).

As for ϕ, Kowal et al. (2019) set ϕ+1
2

∼ B(10, 2), which places most of the mass of the

density of ϕ on (0, 1), so that ϕ has a prior mean of 2/3 and a prior mode of 4/5. For σϵ,

these authors apply Jeffreys’ prior, i.e., p(σϵ) ∝ 1
σϵ
.

The setting of the DSP is summarized as follows.

∆2βi+1 = wi, wi | τ, λi
ind∼ N(0, τ 2λ2i ), for 1 ≤ i ≤M,

τ ∼ C+(0, σϵ√
M
), ι = log(τ 2) =⇒ (ι | σϵ, ξ−1

ι ) ∼ N(log(σ
2
ϵ

M
), ξ−1

ι ),

ξι ∼ PG(1, 0),

ηi | ξi ∼ N(0, ξ−1
i ), ξi

iid∼ PG(1, 0), i = 1, 2, . . . ,M,

ϕ+1
2

∼ B(10, 2), p(σϵ) ∝ 1
σ2
ϵ
.

(3.3)

As mentioned earlier, in the DSP, the local parameters λi depend on the AR(1) coeffi-

cient ϕ, and so the shrinkage parameter κi introduced in Section 2.1.1 also depends on ϕ.
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Figure 3.3: Blue line: density of κt of the horseshoe prior. Histograms: densities of κt for

the DSP. (a) ϕ = 0.25, (b) ϕ = 0.5, (c) ϕ = 0.75, (d) ϕ = 0.99. The plot is from Kowal

et al. (2019).

Figure 3.3 displays simulation-based estimates of the stationary distribution of κi for vari-

ous AR(1) coefficients ϕ. The blue line represents the density of the shrinkage parameter

κi of the horseshoe prior, i.e., κi ∼ B(1
2
, 1
2
). The histograms show the densities of κi in the

DSP for different values of ϕ: (a) ϕ = 0.25, (b) ϕ = 0.5, (c) ϕ = 0.75, (d) ϕ = 0.99. We

see that when ϕ is close to 0, which means weak dependence between λi and λi+1, the DSP

and the horseshoe prior are similar. But when ϕ is close to 1, compared with the horseshoe

prior, the density of κi for the DSP gives more mass to values near 0 (no shrinkage) and 1

(maximum shrinkage).
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Periodic Basis Functions

For curves with a circular or periodic domain, such as spectral densities, conventional B-

splines with the usual prior placed on the second-order differences are not able to provide

a periodic fit. To achieve periodic behavior, Eilers and Marx (2020) proposed one way

of obtaining periodic smoothing. Specifically, periodic B-splines are used as the basis

functions, and instead of the second-order differences of the coefficients, ∆2βρ = βρ −

2βρ−1 + βρ−2, the prior is placed on βρ − 2 cos(2π
L
)βρ−1 + βρ−2, where L is the number of

periodic B-spline basis functions.

Dynamic Shrinkage for Spectral Estimation (DSSE)

The method we propose in this dissertation is Dynamic Shrinkage for Spectral Esti-

mation (DSSE), which combines the DSP, the mixture of Gaussians approximation to the

log(Exp(1)) distribution, and periodic smoothing. Thus, our proposed method is spatially

adaptive, it provides a periodic fit, and the computation retains its relative simplicity.

To implement our proposed method, some modifications need to be made to the original

setting.

1. Since the spectral density is even and periodic, we usually only estimate it on the

positive half of the Fourier frequencies, [0, 1
2
]. However, since we want to apply

periodic smoothing, we will estimate the spectral density on the full domain [−1
2
, 1
2
].

We let yi = log I(ωi) for i = 1, 2, . . . , n, where n is the length of the time series.

2. We use periodic B-spines as the basis functions. The number of basis functions is

L = min(n
4
, 40), as in Ruppert (2002). This is widely used as a rule of thumb for

choosing the number of basis functions in the P-spline literature.

3. Recall Model (2.7), which for convenience is repeated here

YYY = Bβββ + ϵϵϵ.
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In the context of spectral estimation, the vector YYY = (y1, . . . , yn)
T consists of the

log I(ωi), and B is the matrix of the basis functions, as described in Section 2.1.1.

As in Carter and Kohn (1997), ϵi
iid∼ log(

χ2
2

2
). These authors approximate the log(

χ2
2

2
)

distribution by the five-component approximation described in Chapter 2. We intro-

duce latent mixture indicators s5,i, such that

• P (s5,i = q) = p5,q for q = 1, 2, . . . , 5.

• s5,i = q =⇒ ϵi ∼ N(µ5,q, σ
2
5,q).

4. In the DSP, the prior is placed on the second-order differences of the coefficients of

the B-splines, where the difference matrix is

D2 =



1 0 0 0 · · · 0 0 0

0 1 0 0 · · · 0 0 0

1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 −2 1


.

In our case, to allow periodic smoothing, the difference matrix is changed to

D2 =



1 0 0 0 · · · 0 1 −2 cos(2π
n
)

−2 cos(2π
n
) 1 0 0 · · · 0 0 1

1 −2 cos(2π
n
) 1 0 · · · 0 0 0

0 1 −2 cos(2π
n
) 1 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1 −2 cos(2π
n
) 1


.
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Prior Specification

The Priors on βββ

The prior placed on βββ is

υ1 = β1 − 2βL + βL−1; υ2 = β2 − 2β1 + βL;

υi = βi − 2βi−1 + βi−2, for 3 ≤ i ≤ L,

and υi | τ 2, λi
ind∼ N(0, τ 2λ2i ) for i = 1, 2, . . . , L. This can be written in the matrix form as

D2βββ ∼ NL(000,Συ),

where 000 is a zero vector of length L, and Συ = diag({τ 2λ2i }Li=1), so that

P (D2βββ | Συ) = (2π)−
L
2 det(Συ)

− 1
2 exp

{
− 1

2
(D2βββ)

TΣ−1
υ (D2βββ)

}
.

The Prior on ι = log(τ 2)

The prior placed on τ is half Cauchy, i.e., τ ∼ C+(0, Aτ ), where Aτ =
π√
6
. Thus,

P (τ) =
2

π · Aτ
· 1

1 + ( τ
Aτ

)2
.

It follows that the density function of G = τ 2 is

P (G) =
2

π · Aτ
· 1

1 + G
A2
τ

· 1
2

1√
G

=
1

πAτ
· A2

τ

A2
τ +G

· 1√
G

=
Aτ
π

1

A2
τ +G

· 1√
G
.

Let ι = log(G) = log(τ 2) =⇒ G = exp(ι), the density function of ι is
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P (ι) =
Aτ
π

1

A2
τ + eι

· 1

e
1
2
ι
· eι.

We express 1
A2
τ
= e−2 ln(Aτ ) to rewrite the above equation as

P (ι) =
1

πAτ

1

1 + eι−2 ln(Aτ )
· e

1
2
ι

=
1

π
· e

1
2
(ι−2 log(Aτ ))

1 + eι−2 log(Aτ )
.

From Polson et al. (2013), if we let p(ξι) denote the density of the random variable

ξι ∼ PG(b, 0), b > 0, then the following integral identity holds for all a ∈ R:

(eρ)a

(1 + eρ)b
= 2−bekρ

∫ ∞

0

e−ξι
ρ2

2 p(ξι)dξι,

where k = a− b
2
. Letting ρ = ι− 2 log(Aτ ), we see that

P (ι) =
1

π
· e

1
2
(ι−2 log(Aτ ))

1 + eι−2 log(Aτ )

=
1

π
· (eρ)

1
2

(1 + eρ)1

=
1

2π
e(

1
2
− 1

2
)ρ

∫ ∞

0

e−ξι
ρ2

2 p(ξι)dξι

=
1

2π

∫ ∞

0

e−ξι
ρ2

2 p(ξι)dξι.

Plugging in ρ = ι− 2 ln(Aτ ), we obtain

P (ι) =
1

2π

∫ ∞

0

e
− (ι−2 log(Aτ ))

2

2ξ−1
ι p(ξι)dξι.

Theorem 1 of Polson et al. (2013) can now be applied to yield [ι | ξ−1
ι ] ∼ N

(
log(A2

τ ), ξ
−1
ι

)
,

where ξι ∼ PG(1, 0).

The Prior on hi = log(τ 2λ2i )

As in the DSP, Equation (3.2) can be rewritten as
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ηi = (hi+1 − ι)− ϕ(hi − ι).

Since ηi ∼ Z(α, β, 0, 1), if α = β = 1
2
we can draw samples ηi ∼ Z(α, β, 0, 1) by [ηi | ξi]

ind∼

N(0, ξ−1
i ) for [ξi]

iid∼ PG(1, 0).

Let h̃hh = (h1 − ι, h2 − ι, . . . , hL − ι)′, ηηη = (η0, η1, . . . , ηL−1)
′ and

Dϕ =



1 0 0 0 · · · 0 0

−ϕ 1 0 0 · · · 0 0

0 −ϕ 1 0 · · · 0 0

0 0 −ϕ 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −ϕ 1


L×L

.

Then ηηη = Dϕh̃hh ∼ N(0,Σξ), where Σξ = diag{(ξ−1
i )L−1

i=0 }.

The Prior on ϕ

The prior placed on ϕ is as in the DSP, i.e.,ϕ+1
2

∼ B(10, 2).

The Posterior Distribution

Combining the likelihood with the prior distributions yields the posterior distribution

needed for Bayesian inference, i.e.

posterior ∝ prior× likelihood. (3.4)

The Conditional Posterior Distribution of βββ

The Augmented likelihood can be expressed as

N∏
i=1

[
p5,s5,i ·

1√
2πσ2

s5,i

exp
{
− 1

2σ2
s5,i

(yi −BBBiβββ − µs5,i)
2
}]
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or

P (ϵϵϵ | sss5) = (2π)−Ndet(Σsss5)
− 1

2 exp
{
−1

2
(YYY −Bβββ − µµµsss5)

T (Σsss5)
−1(YYY −Bβββ − µµµsss5)

}
,

where BBBi is the i-th row of the matrix B, and ϵϵϵ = (ϵ1, . . . , ϵL)
T with ϵi

iid∼ log(
χ2
2

2
). sss5 =

(s5,1, s5,2, . . . , s5,n)
T , µµµsss5 = (µs5,1 , µs5,2 , . . . , µs5,n)

T and Σsss5 = diag{(σs25,i)
n
i=1}.

The conditional posterior distribution is proportional to

exp
{
−1

2
(YYY −Bβββ − µµµsss5)

T (Σsss5)
−1(YYY −Bβββ − µµµsss5)

}
× exp

{
−1

2
(D2βββ)

TΣ−1
υ (D2βββ)

}
∝ exp

{
−1

2
[βββTBT (Σsss5)

−1Bβββ − βββTBT (Σsss5)
−1(YYY − µµµsss5)

−(YYY − µµµsss5)
T (Σsss5)

−1Bβββ + βββTDT
2 Σ

−1
υ D2βββ]

}
= exp

{
−1

2
[βββT (BT (Σsss5)

−1B +DT
2 Σ

−1
υ D2)βββ]

−βββTBT (Σsss5)
−1(YYY − µµµsss5)− (YYY − µµµsss5)

T (Σsss5)
−1Bβββ]

}
∝ exp

{
−1

2
[(βββ − (BT (Σsss5)

−1B +DT
2 Σ

−1
υ D2)

−1BT (Σsss5)
−1(YYY − µµµsss5))

T

(BTΣ−1
sss5B +DT

2 Σ
−1
υ D2)(βββ − (BT (Σsss5)

−1B +DT
2 Σ

−1
υ D2)

−1BΣ−1
sss5 (YYY − µµµsss5))]

}
.

From the above derivation,

βββ ∼ Nn

(
(BT (Σsss5)

−1B+DT
2 Σ

−1
υ D2)

−1XXXT (Σsss5)
−1(YYY −µµµsss5), (B

T (Σsss5)
−1B+DT

2 Σ
−1
υ D2)

−1
)
.

(3.5)

Let (BT (Σsss5)
−1B + DT

2 Σ
−1
υ D2)

−1 = Q−1
β and BT (Σsss5)

−1(YYY − µµµsss5) = lβ. Equation (3.5)

can now be rewritten as

βββ ∼ Nn(Q
−1
β lllβ, Q

−1
β ).

The vector βββ is sampled as follows.

1. Compute the Cholesky decomposition Qβ = LLT , where L is lower triangular.

2. solve Lααα = lllβ for ααα.

3. Solve LTβββ = ααα+ eee, where eee ∼ N(000, I).
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The Conditional Posterior Distribution of ι = log(τ 2)

The prior placed on ι = log(τ 2) is [ι | ξ−1
ι ] ∼ N(log(A2

τ ), ξ
−1
ι ) with ξι ∼ PG(1, 0).

Therefore

P (ι | Aτ , ξ−1
ι ) =

1√
2πξ−1

ι

exp
{
−1

2

(ι− log(A2
τ ))

2

ξ−1
ι

}
∝ exp

{
−1

2

(ι− log(A2
τ ))

2

ξ−1
ι

}
.

From

hi+1 = ι+ ϕ(hi − ι) + ηi, ηi
iid∼ Z(α, β, 0, 1) for i = 0, 1, . . . , L− 1,

.

and h1

ι+ η0 = h1 ∼ N(ι, ξ−1
0 ), ξ0 ∼ PG(1, 0)

we have

P (h1 | ι, ξ0) =
1√

2πξ−1
0

exp
{
−(h1 − ι)2

2ξ−1
0

}
∝ exp

{
−(h1 − ι)2

2ξ−1
0

}
.

For hi, i = 1, 2, . . . , L− 1, we have hi+1 = ι+ ϕ(hi − ι) + ηi, ηi
iid∼ Z(α, β, 0, 1) implies

that hi+1 = ϕhi + (1 − ϕ)ι + ηi, so hi+1 ∼ N(ϕhi + (1 − ϕ)ι, ξ−1
i ), ξi ∼ PG(1, 0) for

i = 1, 2, . . . , L− 1. Then

p(hi+1 | ι, ϕ, ξi) =
1√

2πξ−1
i

exp
{
−(hi+1 − ϕhi − (1− ϕ)ι)2

2ξ−1
i

}
∝ exp

{
−(hi+1 − ϕhi − (1− ϕ)ι)2

2ξ−1
i

}
for i = 1, 2, . . . , L− 1.
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The likelihood is proportional to

exp
{
−(h1 − ι)2

2ξ−1
0

}
×

L−1∏
i=1

exp
{
−(hi+1 − ϕhi − (1− ϕ)ι)2

2ξ−1
i

}
.

We now compute the conditional posterior distribution of ι as follows

exp
{
−1

2

(ι− log(A2
τ ))

2

ξ−1
ι

}
× exp

{
−(h1 − ι)2

2ξ−1
0

}
×

L−1∏
i=1

exp
{
−(hi+1 − ϕhi − (1− ϕ)ι)2

2ξ−1
i

}
∝ exp

{
−1

2
[(ξι + ξ0 + (1− ϕ)2

L−1∑
i=1

ξi)ι
2 − 2(log(A2

τ )ξι + h1ξ0

+(1− ϕ)
L−1∑
i=1

(hi+1 − ϕhi)ξi)]
}
,

which implies that ι has a normal distribution with mean

ξι + ξ0 + (1− ϕ)2
L−1∑
i=1

ξi)
−1(log(A2

τ )ξι + h1ξ0 + (1− ϕ)
L−1∑
i=1

(hi+1 − ϕhi)ξi

and variance

ξι + ξ0 + (1− ϕ)2
L−1∑
i=1

ξi)
−1.

The Conditional Posterior Distribution of hi = log(τ 2λ2i )

The prior placed on hi is Dϕh̃hh ∼ N(0,Σξ), where Σξ = diag{(ξ−1
i )Li=1}, and h̃hh = (h1 −

ι, h2 − ι, . . . , hL − ι)T , ηηη = (η0, η1, . . . , ηL−1)
T .

It follows that

P (Dϕ | Σξ) = (2π)−
L
2 det(Σξ)

− 1
2 exp

{
−1

2
(Dϕh̃̃h̃h)

TΣ−1
ξ (Dϕh̃̃h̃h)

}
. (3.6)

Denoting Σ−1
3 = DT

ϕΣ
−1
ξ Dϕ, Equation (3.6) can be rewritten as

P (Dϕ | Σξ) = (2π)−
L
2 det(Σξ)

− 1
2 exp

{
−1

2
h̃̃h̃h
T
Σ−1

3 h̃̃h̃h
}
.
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As mentioned in Chapter 2, υi ∼ N(0, τ 2λ2i ) = N(0, exp(hi)), from which υi/ exp(
hi
2
) ∼

N(0, 1) and υ2i / exp(hi) ∼ χ2
1. Taking logs, we obtain log(υ2i )−hi ∼ log(χ2

1) ⇐⇒ log(υ2i ) =

hi + log(χ2
1). Omori et al. (2007) approximate this χ2

1 distribution with a ten-component

mixture of normal distributions, whose pre-specified means, weights and variances are given

in Table A.1. We introduce another indicator variable s10,i, where

• for fixed i, s10,i is a random variable with pmf P (s10,i = q) = p10,q for q = 1, 2, . . . , 10.

• if s10,i = q =⇒ (log(υ2i )− hi) ∼ N(µ10,q, σ
2
10,q).

Let ỹi = log(υ2i ), sss10 = (s10,1, s10,2, . . . , s10,L)
T , and ỹ̃ỹy = (ỹ1, ỹ2, . . . , ỹL)

T . Then from

ỹi | (s10,i = q)
ind∼ N(hi + µ10,q, σ

2
10,q) we have

ỹ̃ỹy | sss10 ∼ N(µµµsss10 + h̃̃h̃h+ ι̃̃ι̃ι,Σsss10),

where µµµsss10 = (µs10,1 , µs10,2 , . . . , µs10,L)
T , ι̃̃ι̃ι = (ι, ι, ι, . . . , ι)T , which is an L×1 vector. The

matrix Σsss10 = diag{(σ2
s10,i

)Li=1}. We denote ỹ̃ỹy − µµµsss10 − ι̃̃ι̃ι by c̃̃c̃c, which leads to

P (ỹ̃ỹy | µs10,1 ,Σsss10 = (2π)−
L
2 det(Σsss10)

− 1
2 exp

{
−1

2
(−h̃̃h̃h+ c̃̃c̃c)TΣ−1

sss10(−h̃̃h̃h+ c̃̃c̃c)
}
.

The conditional posterior is

(2π)−
L
2 det(Σξ)

− 1
2 exp

{
−1

2
(Dϕh̃̃h̃h)

TΣ−1
ξ (Dϕh̃̃h̃h)

}
×(2π)−

L
2 det(Σsss10)

− 1
2 exp

{
−1

2
(ỹ̃ỹy − µµµsss10 − h̃̃h̃h− ι̃̃ι̃ι)TΣ−1

sss10(ỹ̃ỹy − µµµsss10 − h̃̃h̃h− ι̃̃ι̃ι)
}

∝ exp
{
−1

2
h̃̃h̃h
T
Σ−1

3 h̃̃h̃h
}
× exp

{
−1

2
(−h̃̃h̃h+ c̃̃c̃c)TΣ−1

sss10(−h̃̃h̃h+ c̃̃c̃c)
}

∝ exp
{
−1

2
[h̃̃h̃h
T
Σ−1

3 h̃̃h̃h+ h̃̃h̃h
T
Σ−1
sss10 h̃̃h̃h− h̃̃h̃h

T
Σ−1
sss10 c̃̃c̃c− c̃̃c̃cTΣ−1

sss10 h̃̃h̃h]
}

= exp
{
−1

2
[h̃̃h̃h
T
(Σ−1

3 + Σ−1
sss10)h̃̃h̃h− h̃̃h̃h

T
Σ−1
sss10 c̃̃c̃c− c̃̃c̃cTΣ−1

sss10 h̃̃h̃h]
}

∝ exp
{
−1

2

[(
h̃̃h̃h− (Σ−1

3 + Σ−1
sss10)

−1Σ−1
sss10 c̃̃c̃c

)T
(Σ−1

3 + Σ−1
sss10)

(
h̃̃h̃h− (Σ−1

3 + Σ−1
sss10)Σ

−1
s c̃̃c̃c

)]}
.

It follows that the conditional posterior distribution of h̃̃h̃h is N
(
(Σ−1

3 +Σ−1
sss10)

−1Σ−1
sss10 c̃̃c̃c, (Σ

−1
3 +

Σ−1
sss10)

−1
)
or N

(
(DT

ϕΣ
−1
ξ Dϕ + Σ−1

sss10)Σ
−1
sss10(ỹ̃ỹy − µµµsss10 − ι̃̃ι̃ι), (DT

ϕΣ
−1
ξ Dϕ + Σ−1

sss10)
−1
)
.
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The Conditional Posterior Distribution of ϕ

The prior placed on ϕ is ϕ+1
2

∼ B
(
10, 2

)
, from which

p
(1 + ϕ

2

)
=

(
1+ϕ
2

)9(
1− 1+ϕ

2

)1
B(10, 2)

=

(
1+ϕ
2

)9(
1− 1+ϕ

2

)1
1

110

= 110
(1 + ϕ

2

)9(1− ϕ

2

)
.

It follows that

p(ϕ) =
110

2

(1 + ϕ

2

)9(1− ϕ

2

)
∝ (1 + ϕ)9(1− ϕ).

From

hi+1 = ι+ ϕ(hi − ι) + ηi, ηi
iid∼ Z(α, β, 0, 1) for i = 0, 1, . . . , L− 1,

which implies that hi+1 = ϕhi+(1−ϕ)ι+ ηi, we see that hi+1 ∼ N(ϕhi+(1−ϕ)ι, ξ−1
i ) and

ξi ∼ PG(1, 0) for i = 0, 1, . . . , L− 1. Thus,

p(hi+1 | ι, ϕ, ξi) =
1√

2πξ−1
i

exp
{
−
(
hi+1 − ϕhi − (1− ϕ)ι

)2
2ξ−1
i

}
,

from which the likelihood is

L−1∏
i=1

1√
2πξ−1

i

exp
{
−
(
hi+1 − ϕhi − (1− ϕ)ι

)2
2ξ−1
i

}
∝ exp

{
−1

2

L−1∑
i=1

[(hi+1 − ι)− ϕ(hi − ι)]2ξi

}
∝ exp

{
−1

2
[ϕ2

L−1∑
i=1

(hi − ι)2ξi − 2ϕ
L−1∑
i=1

(hi+1 − ι)(hi − ι)ξi]
}
.

The conditional posterior distribution is proportional to

(1 + ϕ)9(1− ϕ)× exp
{
−1

2
[ϕ2

L−1∑
i=0

(hi − ι)2ξi − 2ϕ
L−1∑
i=1

(hi+1 − ι)(hi − ι)ξi]
}
,
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where

exp
{
−1

2
[ϕ2

L−1∑
i=0

(hi − ι)2ξi − 2ϕ
L−1∑
i=1

(hi+1 − ι)(hi − ι)ξi]
}

is the kernel of the normal distribution, N
(∑N−1

i=1 (hi+1−µ)(hi−µ)ξi∑N−1
i=1 (hi−µ)2ξi

, 1∑N−1
i=1 (hi−µ)2ξi

)
.
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Chapter 4

Simulation Study

Simulated Data

The setup of our simulation study follows that of Maturana-Russel and Meyer (2021).

We generate 300 autoregressive time series of orders 1, 2, and 4 with unit variance Gaussian

innovations of lengths n = 128, 256, and 512.

For the AR(1) process, we fix the first-order autocorrelation atϕ = 0.9. For this process,

the log spectral density has no peak or abrupt change as shown in Figure 4.1.

Figure 4.1: Log spectral density of an AR(1) process.

For the AR(2) process, we let ϕ1 = 0.9 and ϕ2 = −0.9. The corresponding log spectral

density has a single peak, see Figure 4.2.
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Figure 4.2: Log spectral density of an AR(2) process.

For the AR(4) process, ϕ1 = 0.9, ϕ2 = −0.9, ϕ3 = 0.9 and ϕ4 = −0.9. The log-spectral

density corresponding to this process has two abrupt peaks, which makes the estimation of

this spectrum more challenging. Figure 4.3 depicts the log spectrum of this process.

As in Maturana-Russel and Meyer (2021), the accuracy of our estimates is evaluated

using the integrated absolute error (IAE) or L1 error. Specifically,

IAE = ||f̂ − f ||1 = 2π
∫ 1

2

0
|f̂(ω)− f(ω)|dω, (4.1)

where f(ω) is the spectral density evaluated at frequency ω, and f̂(ω) is its estimate.

To fit our model, we run our proposed MCMC procedure for a total of 10000 iterations,

the first 2000 of which are used for warm-up and then discarded.

To fit the model proposed by Maturana-Russel and Meyer (2021), we use these authors’

R package, psplinePsd.

In the simulation setting of Maturana-Russel and Meyer (2021) the total number of

iterations is 100000. The first 20000 iterations are the pilot run. The warm-up period for
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Figure 4.3: Log spectral density of an AR(4) process.

this pilot run is 5000 iterations with a thinning factor of 10. The rest 80000 iterations

are called the final sample, which contains a warm-up period of 5000 iterations and a

thinning factor of 10. This results in 7500 samples used for posterior inferences. In order

to make this setting comparable to ours, we made the following changes: the total number

of iterations is set to 10000, the number of iterations for the pilot run is 2000, with 500

iterations as warm-up, and the thinning factor is changed to 1. The number of iterations

for the final sample is 8000, with 500 iterations as warm-up and thinning factor of 1. Thus,

7500 samples are used for posterior inferences.

We draw 300 realizations from each combination of process and length and fit our

proposed model, as well as the method of Maturana-Russel and Meyer (2021). The IAE is

computed for each realization. Tables 4.1, 4.2 and 4.3 display the median IAE we obtain

from DSSE, P-spline, and the median IAE shown in Maturana-Russel and Meyer (2021).

In the tables, row DSSE shows the medians of the IAES for each time series based on

fitting our proposed model. Row P-spline displays the medians of the IAES for each time
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series based on fitting the P-spline model with equidistant knots and penalty order equal

to 2. Row P-spline in MRM shows the medians of the IAES for each time series shown in

Maturana-Russel and Meyer (2021) with equidistant knots and penalty order equal to 2.

In Maturana-Russel and Meyer (2021) no result is reported for AR(2) time series. For this

reason, Table 4.2 does not include a line for P-spline in MRM.

Table 4.1: Results for AR(1) time series

n = 128 n = 256 n = 512

DSSE 0.8589954 0.6894644 0.5315180

P-spline 0.7656965 0.6130747 0.6416707

P-spline in MRM 0.6980000 0.6090000 0.6290000

Table 4.2: Results for AR(2) time series

n = 128 n = 256 n = 512

DSSE 1.796634 1.344991 1.0139690

P-spline 2.073324 1.6904200 1.3731590

Table 4.3: Results for AR(4) time series

n = 128 n = 256 n = 512

DSSE 3.022248 2.254752 2.0105980

P-spline 3.172541 2.594320 2.4018260

P-spline in MRM 3.149000 2.566000 2.3870000

Tables 4.1, 4.2, 4.3 display the median of the IAE based on our method as well as the

P-spline model for different time series. Figures 4.4, 4.5 and 4.6 display the distribution

of the IAE. It can be seen that, for the AR(2) and AR(4) processes, which are the more

complicated cases, our model exhibits better results. For the AR(1) process, time series
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Figure 4.4: Side by side box plots of IAE for the AR(1).

lengths 128 and 256, our model does not perform as well as the P-spline model, but the

performance of our model improves with the length of the time series, and outperforms the

P-spline model for the length of 512.
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Figure 4.5: Side by side box plots of IAE for the AR(2).

Application: Ethernet Traffic Data

The Ethernet traffic data set is available in the longmemo R package. It contains a time

series of length n = 4000, which records the number of packages passing through a local

area network (LAN) at the Bellcore Morristown Research and Engineering Center (MRE)
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Figure 4.6: Side by side box plots of IAE for the AR(4).

per time unit. This dataset is used in Leland et al. (1993) and Chopin et al. (2013). As

in Chopin et al. (2013), we divide all data values by 1000. Figure 4.7 shows the estimated

posterior median of the log-spectral density (black line), 90% pointwise credible intervals

(blue dashed lines), as well as the log-periodogram (gray line). The estimated log-spectral
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density based on the DSSE has peaks at the frequencies ω =0, ω =0.21, and ω =0.4.

Figure 4.7: Log periodogram for the Ethernet Data along with the fitted log spectral density

and 90% pointwise credible intervals.
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Appendix A

Appendix

A.1 Mixture Component Indicators {s10,i}

In Omori et al. (2007) , the P(s10,i = k), µ10,k and σ
2
10,k for k = 1, 2, 3, . . . , 10 are shown

in the following table.

Table A.1: Table of the 10-component Gaussian mixture

k P(s10,i = k) µ10,k σ2
10,k

1 0.00609 1.92677 0.11265

2 0.04775 1.34744 0.17788

3 0.13057 0.73504 0.26768

4 0.20674 0.02266 0.40611

5 0.22715 -0.85173 0.62699

6 0.18842 -1.97278 0.98583

7 0.12047 -3.46788 1.57469

8 0.05591 -5.55246 2.54498

9 0.01575 -8.68384 4.16591

10 0.00115 -14.65000 7.33342

A.2 R Codes
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## library needed

library(beyondWhittle); # For psd_arma() function

library(bsplinePsd);

library(psplinePsd); ## for gibbs_pspline

library(JOPS); ##for cdiff

library(BayesBD); ##for uni.slice

library(BayesLogit); ## for rpg function

library(Matrix); ## for bandSparse

##########################

#### user-defined functions

### calculate the IAE

calIAE = function(estimatedpsd,truepsd){

selestimatedpsd = estimatedpsd[-c(1,length(estimatedpsd))];

len1 = length(selestimatedpsd);

len2 = length(truepsd);

if (len1 == len2) {

IAE = sum(abs(selestimatedpsd - truepsd))*pi/(len2+1);

}

else{

stop("the length is not the same");
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};

IAE;

};

## calculate the logperiodogram for my method

callogperiodogram = function(timeseriesdata,N){

n <- length(data);

pdgrm.mid = (abs(stats::fft(data))^2/(2 * pi * n))[1:N];

pdgrm.mid2 = pdgrm.mid[-1];

logperiodogram = log(c(rev(pdgrm.mid2),pdgrm.mid2));

logperiodogram;

};

## sample the index of mixture of components

ncind = function(y,mu,sig,q){

sample(1:length(q),

size = 1,

prob = q*dnorm(y,mu,sig))

}

52



samplefivecompoindicators = function(Y,beta_times_tX){

Y = as.matrix(Y);

beta_times_tX = as.matrix(beta_times_tX);

# make sure they are in matrix form

n = nrow(Y); p = ncol(Y);

# Carter & Kohn 5-component mixture:

m_st = c(-2.20,-0.8,-0.55,-0.035,0.48);

v_st2 = c(1.93,1.01,0.69,0.60,0.29);

q = c(0.19,0.11,0.27,0.25,0.18);

# Sample the mixture components

z = sapply(Y - beta_times_tX, ncind, m_st, sqrt(v_st2), q);

# Subset mean and variances to the sampled mixture components;

##(n x p) matrices

m_st_all = matrix(m_st[z], nr=n);

v_st2_all = matrix(v_st2[z], nr=n);

# Return the (uncentered) log-vols

list(fiveindicators = z, fivemus = m_st_all,

fivevariance = v_st2_all);

}

initDHSparameters = function(omega){
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# "Local" number of time points

omega = as.matrix(omega)

n = nrow(omega); p = ncol(omega)

# Initialize the log-volatilities:

ht = log(omega^2 + 0.0001)

## Initialize the AR(1) model to obtain unconditional mean

## and AR(1) coefficient

arCoefs = apply(ht, 2, function(x){

params = try(arima(x, c(1,0,0))$coef, silent = TRUE);

if(class(params) == "try-error")

params = c(0.8, mean(x)/(1 - 0.8))

params

})

# the mu in evolution equation

dhs_mean = arCoefs[2,];

# the phi in evolution equation

dhs_phi = arCoefs[1,]; dhs_mean0 = mean(dhs_mean)

# Initialize the SD of log-vol innovations

# simply using the expectation:

sigma_eta_t = matrix(pi, nr = n-1, nc = p)

sigma_eta_0 = rep(pi, p) # Initial value

# Evolution error SD:

sigma_wt = exp(ht/2)
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list(sigma_wt = sigma_wt, ht = ht, dhs_mean = dhs_mean,

dhs_phi = dhs_phi, sigma_eta_t = sigma_eta_t,

sigma_eta_0 = sigma_eta_0, dhs_mean0 = dhs_mean0)

}

samplehtandindicators =

function(omega, ht, mu, phi, sigma_eta_t, sigma_eta_0){

# Compute dimensions:

omega = as.matrix(omega);

ht = as.matrix(ht); # Just to be sure (T x p)

n = nrow(ht); p = ncol(ht);

# Omori, Chib, Shephard, Nakajima (2007) 10-component mixture:

m_st = c(1.92677, 1.34744, 0.73504, 0.02266, -0.85173,

-1.97278, -3.46788, -5.55246, -8.68384, -14.65000);

v_st2 = c(0.11265, 0.17788, 0.26768, 0.40611, 0.62699,

0.98583, 1.57469, 2.54498, 4.16591, 7.33342);

q = c(0.00609, 0.04775, 0.13057, 0.20674, 0.22715,

0.18842, 0.12047, 0.05591, 0.01575, 0.00115);

# Add an offset: common for all times,

# but distinct for each j=1,...,p

yoffset = tcrossprod(rep(1,n),

apply(as.matrix(omega), 2,

function(x) any(x^2 < 10^-16)*max(10^-8, mad(x)/10^6)));
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# This is the response in our DLM, log(y^2)

ytilda = log(omega^2 + yoffset);

# Sample the mixture components

z = sapply(ytilda-ht, ncind, m_st, sqrt(v_st2), q);

# Subset mean and variances to the

# sampled mixture components; (n x p) matrices

m_st_all = matrix(m_st[z], nr=n);

v_st2_all = matrix(v_st2[z], nr=n);

# Joint AWOL sampler for j=1,...,p:

# Constant (but j-specific) mean

mu_all = tcrossprod(rep(1,n), mu);

# Constant (but j-specific) AR(1) coef

phi_all = tcrossprod(rep(1,n), phi);

# Linear term:

linht = matrix((ytilda - m_st_all - mu_all)/v_st2_all);

# Evolution precision matrix (n x p)

evol_prec_mat = matrix(0, nr = n, nc = p);

evol_prec_mat[1,] = 1/sigma_eta_0^2;

evol_prec_mat[-1,] = 1/sigma_eta_t^2;

# Lagged version, with zeros as appropriate (needed below)
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evol_prec_lag_mat = matrix(0, nr = n, nc = p);

evol_prec_lag_mat[1:(n-1),] = evol_prec_mat[-1,];

# Diagonal of quadratic term:

Q_diag = matrix(1/v_st2_all +

evol_prec_mat + phi_all^2*evol_prec_lag_mat);

# Off-diagonal of quadratic term:

Q_off = matrix(-phi_all*evol_prec_lag_mat)[-(n*p)];

# Quadratic term:

QHt_Matrix = bandSparse(n*p,

k = c(0,1), diag = list(Q_diag, Q_off), symm = TRUE)

# Cholesky:

chQht_Matrix = Matrix::chol(QHt_Matrix)

# Sample the log-vols:

htp1 = mu_all +

matrix(Matrix::solve(chQht_Matrix,

Matrix::solve(Matrix::t(chQht_Matrix),

linht) + rnorm(length(linht))), nr = n);

htp1tilde = htp1 - mu_all;

# Return the (uncentered) log-vols

list(indicators = z, htp1tilde = htp1tilde, htp1 = htp1);

}
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samplephi = function(h_tilda, phi, sigma_eta_t, prior_dhs_phi){

# Compute dimensions:

n = nrow(h_tilda); p = ncol(h_tilda)

# Loop over the j=1:p

for(j in 1:p){

# Compute "regression" terms for dhs_phi_j:

y_ar = h_tilda[-1,j]/sigma_eta_t[,j]

# Standardized "response"

x_ar = h_tilda[-n,j]/sigma_eta_t[,j]

# Standardized "predictor"

# Using Beta distribution:

# Check to make sure the prior params make sense

if(length(prior_dhs_phi) != 2)

stop(’prior_dhs_phi must be a numeric vector of length 2’)

dhs_phi01 = (phi[j] + 1)/2;

# ~ Beta(prior_dhs_phi[1], prior_dhs_phi[2])

# Slice sampler when using Beta prior:

dhs_phi01 = uni.slice(dhs_phi01, g = function(x){

-0.5*sum((y_ar - (2*x - 1)*x_ar)^2) +

dbeta(x, shape1 = prior_dhs_phi[1],

shape2 = prior_dhs_phi[2], log = TRUE)
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}, lower = 0, upper = 1)[1]#},

lower = 0.005, upper = 0.995)[1] #

phi[j] = 2*dhs_phi01 - 1;

}

phi;

}

sampleMu = function(h, mu, phi, sigma_eta_t,

sigma_eta_0, log_scale = 0){

# Compute "local" dimensions:

h = as.matrix(h);

n = nrow(h); p = ncol(h)

# Sample the precision term(s)

dhs_mean_prec_j = rpg(num = p, h = 1,

z = mu - log_scale) ##xi_mu in my code

# Now, form the "y" and "x" terms in the (auto)regression

y_mu = (h[-1,] - tcrossprod(rep(1,n-1),

phi)*h[-n,])/sigma_eta_t;

x_mu = tcrossprod(rep(1,n-1), 1 - phi)/sigma_eta_t

# Include the initial sd?

y_mu = rbind(h[1,]/sigma_eta_0, y_mu);
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x_mu = rbind(1/sigma_eta_0, x_mu)

# Posterior SD and mean:

postSD = 1/sqrt(colSums(x_mu^2) + dhs_mean_prec_j)

postMean = (colSums(x_mu*y_mu) +

log_scale*dhs_mean_prec_j)*postSD^2

dhs_mean = rnorm(n = p, mean = postMean, sd = postSD)

list(dhs_mean = dhs_mean, dhs_mean_prec_j = dhs_mean_prec_j)

}

createbandsparse = function(diagvector,Kconstant){

Numofdim = length(diagvector);

repdiag = c(diagvector,diagvector);

outputmartrix = bandSparse(Numofdim,

k = c(0,1,2,(Numofdim-2),(Numofdim-1)),

diag = list(4*(diagvector)*Kconstant^2 +

repdiag[2:(Numofdim+1)] +

repdiag[Numofdim:(2*Numofdim-1)],

-2*Kconstant*(repdiag[1:(Numofdim-1)]

+ repdiag[2:Numofdim]),

repdiag[2:(Numofdim-1)],

repdiag[Numofdim:(Numofdim+1)],

-2*Kconstant*(diagvector[1] + diagvector[Numofdim])),

symm = TRUE);
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outputmartrix

}

## global setting

nsave = 20;

nstart = 1000;

ndatasets = 300; ## run 5 time series datasets

nlength = 512; ## length of the time series dataset

## niter is the number of iterations.

niter = 10000;

## warmup is the number of warmup iterations.

warmup = 0.25*niter;

thin = 1;

# prior_dhs_phi = c(10,2);

alphaPlusBeta = 1;

###half cauchy c+(0,A)
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A = 1;

### dimension of beta

P = 1;

## number of knots

# num_knots = max(20, min(ceiling(N/4), 150));

## generate the true psd which will be used for calculate the IAE

freq = 2 * pi / nlength *

(1:(nlength / 2 + 1) - 1)[-c(1, nlength / 2 + 1)];

# Remove first and last frequency

psd.true = psd_arma(freq, ar = c(0.9),

ma = numeric(0), sigma2 = 1); # True PSD

## create matrices to store the results from

## the gibbs_pspline function

estilogspd = matrix(data = NA, nrow = ndatasets,

ncol = nlength / 2); ## row for each data set

estimedianlogspd = matrix(data = NA, nrow = ndatasets,

ncol = nlength / 2); ## row for each data set
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thinedestilogspd = matrix(data = NA, nrow = ndatasets,

ncol = nlength / 2); ## row for each data set

thinedestimedianlogspd = matrix(data = NA,

nrow = ndatasets, ncol = nlength / 2); ## row for each data set

estilogspdupper = matrix(data = NA, nrow = ndatasets,

ncol = nlength / 2); ## row for each data set

estilogspdlower = matrix(data = NA, nrow = ndatasets,

ncol = nlength / 2); ## row for each data set

IAEVectormymethod = rep(NA,ndatasets);

thinedIAEVectormymethod = rep(NA,ndatasets);

IAEVectormymethodmedian = rep(NA,ndatasets);

thinedIAEVectormymethodmedian = rep(NA,ndatasets);

for (iter in 1:ndatasets) {

set.seed(nstart + iter);

##creat pdf file to store the plots

if (iter%%nsave == 1) {

63



pdf(paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/Plots/Plots ",

nstart + iter - 1000,

" to ", nstart - 1000 + nsave + iter -1,

"my method AR 1 length 512.pdf"));

par(mfrow = c(2,1));

}

## generate the random seed and the time series dataset

data = arima.sim(nlength, model = list(ar = c(0.9)));

data = data - mean(data);

############################### My method

Y = callogperiodogram(data,nlength/2+1);

num_knots = min(round(nlength/4),40);

N = nlength;

################ Matrices and vectors to store values.

## beta is a N by niter matrix to store

## the betas in each iteration, the ith column is the value of

## the beta in ith iteration.

beta = matrix(data = rep(NA,niter*num_knots),
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ncol = niter, nrow = num_knots);

## phi is a vector to store the phi in each iteration

phi = c(rep(NA,niter));

## sigma_omegas is a matrix to store the sigma_omegas

## in each iteration, the ith column is the value of

## the sigma_omegas in ith iteration, corresponding

## to the evol_sigma_t2 in DSP package.

sigma_omegas = matrix(data = rep(NA,niter*num_knots),

ncol = niter, nrow = num_knots);

## indicators is a N by niter matrix to store

## the indicators in each iteration, the ith

## column is the value of the indicators in ith iteration.

indicators = matrix(data = rep(NA,niter*num_knots),

ncol = niter, nrow = num_knots);

## fivecompoindicators is a N by niter matrix to store

## the five component indicators in each iteration, the

## ith column is the value of the indicators in ith iteration.

fivecompoindicators = matrix(data = rep(NA,niter*N),

ncol = niter, nrow = N);
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## mu is a vector to store the mu in each iteration

mu = c(rep(NA,niter));

## h is a N by niter matrix to store the h in each

## iteration, the ith column is the value of

## the h in ith iteration.

h = matrix(data = rep(NA,niter*num_knots),

ncol = niter, nrow = num_knots);

## mega is a N by niter matrix to store the omega

## in each iteration, the ith column is the value

## of the omega in ith iteration.

omega = matrix(data = rep(NA,niter*num_knots),

ncol = niter, nrow = num_knots);

## beta%*%t(X) vector beta_times_tX

beta_times_tX = matrix(data =c(rep(NA,niter*N)),

ncol = niter, nrow = N);

## beta%*%t(X) vector beta_times_tX

beta_times_tX_plus_fivemean = matrix(data =c(rep(NA,niter*N)),

ncol = niter, nrow = N);
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####################################

x = seq(from = -0.5, to = 0.5, length.out = N);

X = cbase(x, -0.5, 0.5, num_knots, 3);

DM = cdiff(num_knots);

sigma_epsilon = sd(Y, na.rm=TRUE);

tDD = t(DM)%*%DM;

Xty = crossprod(X,Y);

n = length(h[,1]);

##### The initial guess for beta,

## phi, sigma_epsilons etc.

########## initial guess for beta

beta[,1] = rnorm(n = num_knots,

mean = 0,sd = sigma_epsilon);

beta_times_tX[,1] = as.numeric(X%*%beta[,1]);

fivemixture = samplefivecompoindicators(Y,beta_times_tX[,1]);
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fivecompoindicators[,1] = fivemixture$fiveindicators;

###############

tXinv = t(X)%*%diag(x = 1/as.vector(fivemixture$fivevariance));

omega[,1] = DM%*%beta[,1];

evolParams = initDHSparameters(omega[,1]);

Qbeta = tXinv%*%X +

t(DM)%*%diag(1/as.vector(evolParams$sigma_wt^2))%*%DM;

# Qbeta = tXinv%*%X +

createbandsparse(diagvector =

1/as.vector(evolParams$sigma_wt^2),

Kconstant = cos(2*pi/num_knots));

lbeta = tXinv%*%(Y-fivemixture$fivemus);

beta_times_tX_plus_fivemean[,1] =

beta_times_tX[,1] + fivemixture$fivemus;

start_time <- Sys.time()

for (i in 2:niter) {
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##update beta

L = chol(Qbeta);

meanbeta = solve(L,solve(t(L),lbeta));

beta[,i] = as.vector(meanbeta +

solve(t(L),rnorm(num_knots,0,1)));

beta_times_tX[,i] = as.numeric(X%*%beta[,i]);

## update the zi

fivemixture = samplefivecompoindicators(Y,beta_times_tX[,i]);

fivecompoindicators[,i] = fivemixture$fiveindicators;

beta_times_tX_plus_fivemean[,i] =

beta_times_tX[,i] + fivemixture$fivemus;

omega[,i] = DM%*%beta[,i];

### sample ht and h_tilda

ht_htilda_indicator =

samplehtandindicators(omega = omega[,i],

ht = evolParams$ht,

mu = evolParams$dhs_mean, phi = evolParams$dhs_phi,
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sigma_eta_t = evolParams$sigma_eta_t,

sigma_eta_0 = evolParams$sigma_eta_0);

h[,i] = evolParams$ht = ht_htilda_indicator$htp1;

indicators[,i] = ht_htilda_indicator$indicators;

h_tilde = as.matrix(ht_htilda_indicator$htp1tilde);

## sample phi

if(!all(evolParams$dhs_phi == 0)

&& !all(evolParams$dhs_phi == 1)){

phi[i] = evolParams$dhs_phi =

samplephi(h_tilda = h_tilde,

phi = evolParams$dhs_phi,

sigma_eta_t = evolParams$sigma_eta_t,

prior_dhs_phi = c(10,2));

}

eta_t = h_tilde[-1,] - tcrossprod(rep(1,n-1),

evolParams$dhs_phi)*h_tilde[-n, ]; # Residuals

evolParams$sigma_eta_t = matrix(1/sqrt(rpg(num = (n-1)*P,

h = alphaPlusBeta, z = eta_t)), nc = P); # Sample

evolParams$sigma_eta_0 = 1/sqrt(rpg(num = P,

h = 1, z = h_tilde[1,])); # Sample the inital

muSample = sampleMu(h = h[,i], mu = evolParams$dhs_mean,
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phi = evolParams$dhs_phi,

sigma_eta_t = evolParams$sigma_eta_t,

sigma_eta_0 = evolParams$sigma_eta_0,

log_scale = log((pi/sqrt(6*1))^2));

mu[i] = evolParams$dhs_mean = evolParams$dhs_mean0

= muSample$dhs_mean;

sigma_omegas[,i] = evolParams$sigma_wt = exp(h[,i]/2);

### prepare for sampling next beta

tXinv = t(X)%*%diag(x

= 1/as.vector(fivemixture$fivevariance));

Qbeta = tXinv%*%X +

createbandsparse(diagvector =

1/as.vector(evolParams$sigma_wt^2),

Kconstant = cos(2*pi/num_knots));

lbeta = tXinv%*%(Y-fivemixture$fivemus);

}

### calculate the posterior means and thinned posterior means

rowmeans = rowMeans(beta_times_tX[,warmup:niter])

[1:(nlength/2)];
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rowmeans = rev(rowmeans);

keep <- seq(from = warmup + 1, to = niter, by = thin);

thinedrowmeans = rowMeans(beta_times_tX[,keep])[1:(nlength/2)];

thinedrowmeans = rev(thinedrowmeans);

### calculate the posterior medians and

## thined posterior medians

rowmedians = apply(beta_times_tX[,warmup:niter],

MARGIN = 1, median)[1:(nlength/2)];

rowmedians = rev(rowmedians);

thinedrowmedians = apply(beta_times_tX[,keep],

MARGIN = 1,median)[1:(nlength/2)];

thinedrowmedians = rev(thinedrowmedians);

#######################################

percentiles = apply(X = beta_times_tX[,warmup:niter],

MARGIN = 1,FUN = quantile,

probs = c(0.05,0.95))[,1:(nlength/2)];

percentiles[1,] = rev(percentiles[1,]);
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percentiles[2,] = rev(percentiles[2,]);

plot(freq,Y[nlength/2+(1:(nlength/2-1))],

type = "l", col = "grey", xlab = "Frequency",

ylab = "log PSD",

main = paste0("pspline of dataset ", iter));

lines(freq,rowmeans[-nlength/2],col = ’black’,lwd = 2);

lines(freq,percentiles[1,-nlength/2],

lwd = 2, lty = 2, col = 4);

lines(freq,percentiles[2,-nlength/2],

lwd = 2, lty = 2, col = 4);

lines(freq, log(psd.true), col = 2,

lty = 3, lwd = 2); # Overlay true PSD

legend("topright", legend = c("periodogram",

"posterior mean", "90% credible region",

"theoretical logspd"),

col = c("grey", "black", "blue","red"),

lwd = c(1, 2, 2, 2), lty = c(1, 1, 2, 3));

######## calc and store IAE with posterior mean

IAEmymethod = calIAE(c(0,exp(rowmeans)),psd.true);

73



IAEVectormymethod[iter] = IAEmymethod;

thinedIAEmymethod = calIAE(c(0,exp(thinedrowmeans)),psd.true);

thinedIAEVectormymethod[iter] = thinedIAEmymethod;

######## calc and store IAE with posterior median

IAEmymethodmedian = calIAE(c(0,exp(rowmedians)),psd.true);

IAEVectormymethodmedian[iter] = IAEmymethodmedian;

thinedIAEmymethodmedian = calIAE(c(0,

exp(thinedrowmedians)),psd.true);

thinedIAEVectormymethodmedian[iter] = thinedIAEmymethodmedian;

###############################

estilogspd[iter,] = rowmeans;

thinedestilogspd[iter,] = thinedrowmeans;

estimedianlogspd[iter,] = rowmedians;

thinedestimedianlogspd[iter,] = thinedrowmedians;

74



estilogspdupper[iter,] = percentiles[2,];

estilogspdlower[iter,] = percentiles[1,];

## close the pdf file

if (iter%%nsave == 0) {

dev.off()

}

print(iter);

}

end_time <- Sys.time()

runningtime = end_time - start_time

write.csv(estilogspd,

paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/

saved results/estilogspd ",

nstart + 1 - 1000, " to ",

nstart + 1 - 1000 + ndatasets - 1,

"AR 1 length 512.csv"), row.names = FALSE);

write.csv(thinedestilogspd,

paste0("C:/Users/Yi Xie/Dropbox/yiexie/
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Samplingscheme/2022/Sep 10 2022/

saved results/thinedestilogspd ",

nstart + 1 - 1000, " to ",

nstart + 1 - 1000 + ndatasets - 1,

"AR 1 length 512.csv"),

row.names = FALSE);

write.csv(estimedianlogspd,

paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/

saved results/estimedianlogspd ",

nstart + 1 - 1000, " to ",

nstart + 1 - 1000 + ndatasets - 1,

"AR 1 length 512.csv"),

row.names = FALSE);

write.csv(thinedestimedianlogspd,

paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/

saved results/thinedestimedianlogspd ",

nstart + 1 - 1000, " to ",

nstart + 1 - 1000 + ndatasets - 1,

"AR 1 length 512.csv"),

row.names = FALSE);

write.csv(IAEVectormymethod,
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paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/

saved results/IAEVectormymethod ",

nstart + 1 - 1000, " to ",

nstart + 1 - 1000 + ndatasets - 1,

" AR 1 length 512.csv"),

row.names = FALSE);

write.csv(thinedIAEVectormymethod,

paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/

saved results/thinedIAEVectormymethod ",

nstart + 1 - 1000, " to ",

nstart + 1 - 1000 + ndatasets - 1,

" AR 1 length 512.csv"),

row.names = FALSE)

write.csv(IAEVectormymethodmedian,

paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/

saved results/IAEVectormymethodmedian ",

nstart + 1 - 1000,

" to ", nstart + 1 - 1000 + ndatasets - 1,

" AR 1 length 512.csv"),

row.names = FALSE)

write.csv(thinedIAEVectormymethodmedian,
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paste0("C:/Users/Yi Xie/Dropbox/yiexie/

Samplingscheme/2022/Sep 10 2022/

saved results/thinedIAEVectormymethodmedian ",

nstart + 1 - 1000,

" to ", nstart + 1 - 1000 + ndatasets - 1,

" AR 1 length 512.csv"),

row.names = FALSE)
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