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Abstract

Accurate detection of outliers is crucial in the field of statistical analysis. Using classical sta-
tistical models without considering the presence of outliers in the data can lead to misleading
outcomes. There exist a myriad of procedures to detect outliers in statistics. We concentrate
on the statistical techniques that can robustly identify outliers in data sets. To this end, we
pursue two aims. First, we give an extensive overview of robust statistical methods which
are still popular in recent years for outlier detection. We provide the definitions, algorithms
and also discuss some important properties for these methods. Second, two real examples
are presented to make a comparison between several techniques. Three prevalent methods
are selected to illustrate their practical use for outlier detection in both low-dimensional and

high-dimensional data.
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Chapter 1

Introduction

1.1 Overview of Outlier Detection

In classical statistics, estimation procedures heavily rely on a number of assumptions. The
most widely used model assumption is that the observed data are normally distributed.
This assumption has existed in statistics for two centuries. Clearly, it has several reasonable
reasons. Many natural phenomena and processes can be presented approximately by normal
distribution. And it is also theoretically quite convenient because it allows one to derive
explicit formulae for optimal statistical methods such as maximum likelihood and likelihood
ratio tests, as well as the sampling distribution of inference quantities such as t-statistics
(Maronna et al., |2019). But these explicit or implicit assumptions do not always hold.
Since the middle of the 20th century, one has become increasingly aware that some of the
most common statistical procedures are excessively sensitive to seemingly minor deviations
from the assumptions (Ronchetti and Huber| 2009). It often happens in practice that some
observations deviate from the bulk of the data. An assumed normal distributed model can
present the large part of the data well, but some data points exhibit a different pattern or no
pattern at all. Such data points are called outliers. when there are some outlying observations
in the data, classical methods often give quite poor performance. Even the presence of only
one outlier can significantly distort the outcomes of a classical statistical method which
are optimal with the assumption of normality or linearity. Therefore, alternative robust
procedures were developed in the past few decades aiming to deal with deviations from the
model and contamination in the data.

The robust approach to classical statistics focuses on deriving methods that produce



reliable parameter estimates, associated tests and confidence intervals. For example, sample
median is considered as a good robust alternative to the sample mean when we identify some
outliers in the data. In high-dimensional statistics, a major problem is to obtain the robust
estimation of multivariate location and scatter. The classical estimators of handling this are
the empirical average and the empirical covariance matrix, but they are highly susceptible
to even very few anomalous observations. Estimation of covariance matrices is essential in a
number of areas of statistical analysis, including dimension reduction by principal component
analysis (PCA), classification by linear or quadratic discriminant analysis (LDA and QDA),
establishing independence and conditional independence relations in the context of graphical
models, and setting confidence intervals on linear functions of the means of the components
(Bickel and Levinal [2008]).

Robust approaches reduce or remove the effect of outlying observations and allow the
“good” data points to primarily determine the result. A standard method to delve into
whether a multivariate data set forms a homogeneous group or contains abnormal observa-

tions is to calculate the Mahalanobis distances for the data, given by

MD(x;) = \/(z; — 2)'S~(x; — ), i=1,...,n. (1.1)

where x; is the ith row of X, data matrix,  the sample mean vector, S the sample covari-
ance matrix of the data and (-)" the transpose of a matrix. Then the squared Mahalanobis
distances approximately follow a chi-squared distribution with v degree of freedom, where v is
the number of variables (Campbell, [1980). The usual cutoff value for Mahalanobis distances
is \/X50975- Lo illustrate the classical Mahalanobis distance is not reliable when the data
involve some outliers, we consider the wine data set (Hettich and Bay}, [1999). It contains, for
each of 59 wines grown in the same region in Italy, the quantities of 13 constituents. We will
use two methods — classical and robust — to investigate whether the method of Mahalanobis
distance with classical estimation can detect some outlying observations.

The left column of Figure presents the plots for the squared distances versus the
number of the observations. The horizontal line is the threshold value equal to y/x35 975 =
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Figure 1.1: Mahalanobis distances versus index number for classical and robust estimators

(left), and QQ plots of distances (right).

24.7356. It is evident that classical method fails to identify outliers in wine data set. The
reason is that outliers may “mask” one another. As stated by Rousseeuw and Hubert| (2011]),
classical methods can be affected by outliers so strongly that the resulting analysis does not
allow to detect the deviating observations. This is called the masking effect. But when it
comes to robust method, as the bottom-left figure shows, seven outliers stand out clearly.
The second column of Figure represents the QQ plots with respect to the Xf, distribution.
In classical QQ plot, no clear outliers stand out. But we can immediately see that the data
do not form a homogeneous cloud in robust QQ plot. There are some observations which
deviate from the shape of the majority of the data. Therefore, in order to reliably estimate
the center and scatter of the data set, robust estimators of location and scatter are needed,

which is what we will mainly focus on in next chapter.



1.2 Masking and Swamping Effects

Classical approaches like Mahalanobis distance can be significantly influenced by outlying
observations, leading to fail to detect outliers in data sets. Masking and swamping are
two main effects which can affect traditional techniques. The following definitions do not
include mathematical rigor, but they provide an intuitive understanding of these effects ( See
Hawkins (1980); [glewicz and Martinez (1982)); Davies and Gather| (1993)) for more definitions

about masking and swamping ).

Definition 1. An outlier masks a second one that is close by if the latter can be considered

an outlier by itself, but not if it is considered along with the first one (Ben-Gal, |2005).

That is to say, as a result of deleting the first outlier, the second instance appears to be an
outlier. Generally, masking effect occurs when clusters of discordant points skew the mean
and covariance estimates in its direction, resulting in a close distance between the outlying

point and the mean.

Definition 2. An outlier swamps another observation if the latter can be considered outlier

only under the presence of the first one (Ben-Gal, 2005).

Thus, one outlier may behave normal like the large part of data after we delete another
outlier. Swamping occurs when a group of outliers skews the mean and covariance matrix
in its direction, which leads to a large distance between them and the mean, making them
look like outliers.

It is important to note that masking and swamping affect the effectiveness of Mahalanobis
distance as an criterion of outliers. Accordingly, the utilization of masking effects could
potentially reduce the Mahalanobis distance assigned to an anomalous observation. One
possible scenario is that the presence of a few uncommon data points pulls the sample mean
and skews the variance in their direction. On the other hand, swamping effect has the
potential to augment the Mahalanobis distance of non-outlying observations. This effect

occurs when a small group of anomalies draws the sample mean and generates a deviation
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Figure 1.2: Masking effect. Mahalanobis distances for the original data (left) and the data

deleting six outliers (right).

in the covariance estimate, thereby diverging from the pattern exhibited by the majority
of the data (Penny and Jolliffe] 2001). Figure describes masking effect. As is shown
on the left of Figure [I.2] there are six outliers whose Mahalanobis distances are above the
threshold which is marked by the red line. Upon the elimination of six initial outliers, it
is evident that four data points, denoted by green triangles, which were previously deemed
non-outliers, have been identified as outlying observations. This can be seen in the picture
on the right in Figure[1.2] In this case, we can say four observations with green triangles are
masked by the six previous outliers. Figure displays swamping effect. two data points
with green are swamped by the other two outliers, since the two outliers in green only exist
under the presence of the two outliers.

Chiang et al. (2007) documented that the masking and swamping effects are still un-
avoidable in linear models based on the OLS method and showed that the locations of

outliers, their signs of residuals, permutations, and the sum of deviations of all outliers are
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Figure 1.3: Swamping effect. Mahalanobis distances for the original data (left) and the data

deleting two outliers (right).

the main factors for the two effects using the planted mean-shift outliers models. Kannan
and Manoj (2015)) provided an example of masking effect using Grubbs test under the case of
outlier detection. Bendre and Kale| (1985]) compared the performances between the modified
Dixon-type test and the Cochran test for exponential samples. They found that Cochran
and modified Dixon-type tests do not suffer from the masking effect in the presence of two

outliers.

1.3 Research Objectives

Robust statistics have become widespread since Tukey| (1960)), [Hampel (1971)), and Huber
(1992) fundamental works. There are several methods for outlier detection are based on
robust statistics. Like Minimum Covariance Determinant (MCD) estimator, the robust

estimator of location and scatter needs to be obtained before the process of identifying



anomalous observations. Therefore, we provided some background of robust statistics. This
thesis pursues two aims. One is to offer a broad overview of robust statistical approaches
in the field of outlier detection. And the other intends to find a technique with higher
efficiency of identifying anomalous data on two scenarios — low-dimensional setting and
high-dimensional setting.

This work is organized as follows. The present Chapter 1 describes the background of
outlier detection and explores the two significant impacts that render conventional statistical
methods insufficient. In Chapter 2, we talk about three types of techniques for outlier
detection with details. The end of Chapter 2 is dedicated to the discussion of the several
properties of robust estimators. The application for low-dimensional data set is conducted in
Chapter 3. Three comparable methods are chosen to compare their performances. Chapter
4 presents the application on high-dimensional data set. Another three methods appropriate
for dealing with high-dimensional data set are selected to draw comparisons. And finally,

the findings are summarized in Chapter 5.



Chapter 2

Robust Statistical Methods for

Location and Scatter

The sample mean and the sample covariance matrix are the cornerstone of the classical
multivariate analysis. But they are extremely sensitive to small perturbations in data. In
this chapter, we will survey some important robust estimates of multivariate location and

scatter. Some of them will be utilized in the following application part.

2.1 Distance-Based Methods

M-Estimators

Affine equivariant M-estimates of multivariate location and scatter were proposed by Maronna
in 1976. Maronna/ (1976) defined multivariate M-estimators as the solutions of the system

of estimating equations:
=S (- ST (@ 1)*] (20— ) =0, 2.1)

=S W@ - @) (- )| (- ) (@i - ) = (2.2

where Wy, W, are weight functions satisfying some general assumptions. For normal dis-
tribution W = 1, which yields the sample mean and sample covariance matrix for fi and

3. Affine equivariant M-estimators are a generalization of the maximum likelihood estima-



tors and can be considered as weighted mean and weighted covariance matrix. A primary
weakness of these is that the breakdown point is at most 1/(p + 1), which is relatively low
for even a moderately large number of variables (Huber, 1977). Furthermore, Devlin et al.
(1981) found that M-estimators in practice could tolerate even fewer outliers than indicated

by this upper bound.

GM-Estimators

Generalized M-estimators (GM-estimators) are referred to “bounded influence estimators”
which were proposed to overcome the xr—outlier problem of M-estimators and, therefore,
improve the breakdown point. These methods mainly intend to bound the influence of
outlying @; through some weights w; that assign full influence to observations assumed to
come from the majority of the data, but reduced influence to aberrant observations. Using
a sensible estimate the iterative technique will continue until the sequence of estimates
has converged to within the desired accuracy. The breakdown point of all GM-estimators
in general can be no larger than 30%, which is a decreasing function of the dimension p
(Maronna et al., 2006). A number of weights have been developed, for example Tukey’s
biweight (Beaton and Tukey, |1974; [Huber, 1992, 1973; Andrews and Hampel, 2015) and
Andrew’s wave (Campbell, [1980). These weights are not limited to GM-estimators and can

be used for all kinds of estimates requiring a weight function.

MVT Estimator

Ellipsoidal multivariate trimming (MVT) was formally proposed by |Gnanadesikan and Ket-
tenring| (1972). The squared Mahalanobis distance of the observation vector «; from the
current robust estimate of location &* and scatter matrix C* are measured for each step of
the iterative process. A specified percentage (the trimming percentage) of the most extreme

observations (i.e., objects with the largest squared Mahalanobis distance) is temporarily se-



lected (at most 50% of the data) and the remaining observations will be used to calculate
x* and C* for next iterative step exactly as @ and C, the sample mean and covariance
matrix. The iterative procedure will not terminate until both of the sequences of x* and
C” converge. Empirically, MVT has been found to converge quickly, usually in two or three
steps (Walczak and Massart, 1995). Devlin et al.| (1981) claimed that the breakdown point
of MVT was the same as its trimming percentage (at most 50%), and does not decrease with
the number of variables. However, Donoho| (1982) argued that the breakdown point of MVT
is at most about 1/p, thus causing this method less attractive due to its low breakdown

point.

MVE Estimator

Another affine equivariant estimator of multivariate location and scatter with high break-
down value is the minimum volume ellipsoid estimator (MVE), which was first introduced by
Rousseeuw| (1985). The MVE is often used thanks to its high resistance to outliers, making
it a reliable tool for outlier detection. It is defined as the smallest ellipsoid covering at least h
observations of the dataset X = {@1,®s,...,x,} C RP. The MVE location estimator is the
midpoint of the ellipsoid and the MVE scatter estimator is the covariance matrix of all the

data points in the ellipsoid. Equivalently, we consider the following optimization problem.

(m,,%,) = argrgin{det(Eﬂf(i, @, ) > hi, (2.3)
Fli, 1, 2) = {m(0); (25 — ) B (@ — p) < ) (2.4)

where 7(i) is the number of is which satisfies the inequality (z; — pu)'S '(xz; — p) < 2
And the parameter ¢ is a constant that determines the magnitude of 3,. Usually, ¢ is
selected such that ¥, is a consistent estimator for data coming from a multivariate normal
distribution, i.e., ¢ = \/%, where o = h/n. The parameter h determines the robustness
of MVE estimators. & is often set at h = |“2*| ~ 2 (Lopuhai and Rousseeuw, [1991).

The main drawback of MVE is the computational time. |[Rousseeuw| (1985) proposed an

10



algorithm based on subsampling, called the (p + 1)-subset algorithm. But this algorithm
suffers from inefficiency and high computational complexity, which makes it impractical for
use with high-dimensional data sets (Ammann, 1993). In the last few decades, there are
a large number of papers working on improved algorithms. (Croux and Haesbroeck (1997)
proposed an adaption of the (p 4+ 1)— subset algorithm whose main difference is to average
over several trial values instead of just picking out the optimal one, making a larger finite-
sample efficiency. (Croux et al.| (2002) applied L; location adjustment to the MVE, yielding
a new estimator which is cheap in computation time, has a low bias curve, and gives more

efficient estimates of the multivariate location parameter in the normal case.

MCD Estimator

The minimum covariance determinant (MCD) estimator is one of the most popular proce-
dures to estimate the location and scatter matrix of a multivariate data set. These estimators
build a cornerstone in other multivariate statistical methods, such as principal component
analysis (Croux and Haesbroeck, 2000), discriminant analysis (Hawkins and McLachlan),
1997)), multivariate regression (Rousseeuw et al., 2004), canonical correlations (Taskinen
et al., [2006)), among others ( see Hubert et al.| (2008) for a more comprehensive overview).
The objective of MCD estimator is to find h observations whose covariance matrix has the
smallest determinant, where n/2 < h < n. The parameter h determines the robustness of
the MCD estimator. When h is equal to [(n + p + 1)/2], the MCD estimator reaches its
highest possible breakdown point (Lopuhaa and Rousseeuw, 1991). In definition, it is simple
and intuitively attractive, while it has some desirable properties (Butler et al., [1993).

This estimator, however, has a combinatorial optimization problem. Since FASTMCD
algorithm was proposed by Rousseeuw and Driessen| (1999), the MCD estimator has been
widely used and is showing a tendency to replace the MVE estimator. The main feature
of FASTMCD algorithm is the C-step which is based on Mahalanobis distance and order

statistics. Rousseeuw and Driessen| (1999) showed for a fixed numbers of dimension p, the

11



C-step takes only O(n) time and it must converge within finite steps of iteration. Pokojovy
and Jobe| (2022) proved the fixed points of C-step iteration are the local minimizers of
the covariance determinant instead of some artificial attractor sets, which resolved a long-
standing problem in C-step algorithm. In the last decade, a large number of extensions of
MCD estimator have emerged. The minimum weighted covariance determinant (MWCD)
estimator was introduced by [Roelant et al.| (2009), which assigns a particular weight to each
observation, improving the efficiency of the MCD estimator. [Hubert et al. (2012) provided
a new algorithm for MCD estimator which is called DetMCD algorithm. In this algorithm,
MCD estimator becomes deterministic but not affine equivariant. And it is faster than
FASTMCD in practice. The MCD algorithm is not appropriate for high-dimensional data
sets. [Boudt et al.| (2020) regularized the scatter matrix of the MCD estimator such that the
covariance matrix of h data points is no longer non-singular when the number of columns of

data exceeds the number of rows.

OGK Estimator

Orthogonalized Gnanadesikan-Kettenring (OGK) estimator introduced by Maronna and Za-
mar| (2002), is a robust statistical method used for estimation and analysis of multivariate
data. It is a variation of the principal component analysis (PCA) that involves the extrac-
tion of orthogonalized components. Unlike the traditional PCA method, OGK estimator
reduces the impact of outliers and noisy data in the estimation process. The estimate, first

introduced by |Gnanadesikan and Kettenring (1972)), is mainly based on the equation
1
Cov(X,Y) = Z(a(X +Y)? —0o(X -Y)?). (2.5)

where X,Y are random variables and ¢ stands for the standard deviation. They applied
a robust scale o to define a “robust covariance matrix”. But this covariance matrix is not
necessarily positive definite. [Maronna and Zamar| (2002) modified it and provided a general
method to obtain positive-definite and approximately affine-equivariant robust scatter ma-

trix in OGK estimator. And they also demonstrated that the lack of equivariance of OGK

12



estimator will not cause serious problem. The OGK estimator is composed of two steps. The
first step involves the normalization of the data and the calculation of the principal com-
ponents. In the second step, the principal components are transformed to orthogonalized
components using the Gnanadesikan-Kettenring technique. These orthogonalized compo-
nents are able to resistant to outlying observations compared to the principal components.
The OGK estimator is widely used in various disciplines such as finance, economics, and

engineering, where multivariate data analysis is critical.

Ledoit-Wolf Estimator

The Ledoit-Wolf estimator is a popular method used in robust statistics for estimating the
covariance matrix of a set of variables. It was proposed by |Ledoit and Wolf (2004)) as an
improvement over existing methods such as the Maximum Likelihood Estimator (MLE),
which can often be unstable in the presence of outliers. It is not only suitable for small
sample size n and large numbers of variables p but at the same time is also completely
inexpensive to compute. The Ledoit-Wolf estimator is a shrinkage estimator, which means
that it is designed to shrink the estimated covariance matrix towards a more structured target
matrix. The target matrix used in this method is the diagonal matrix, which assumes that
the variables are uncorrelated. This estimator achieves shrinkage by adapting the sample
covariance matrix based on the data. Specifically, it applies a linear transformation to the
sample covariance matrix to make it closer to the target matrix. The amount of shrinkage
applied is determined by a parameter called the shrinkage intensity which guarantees the
estimator has minimum of expected quadratic loss function (Schafer and Strimmer, |2005).
One of the major advantages of the Ledoit-Wolf estimator is that it can improve the
accuracy of covariance matrix estimation in the presence of outliers, by reducing the im-
pact of extreme values. This makes it a popular choice for applications such as portfolio

optimization, where accurate covariance matrix estimation is critical.

13



2.2 Projection-Based Methods

Stahel-Donoho Method

The Stahel-Donoho estimator or “outlyingness-weighted median” was the first location and
scatter estimator in high dimension that can integrate affine equivariance with high break-
down points (Donohol |1982). In Stahel-Donho method, we look for a one-dimensional pro-

jection where x; is most outlying in the way defined as

' —med; (z;u
v; = sup @i’ = medi(@0)| : (2.6)
llulj=1 Mmedy [xpu’ — med;(z;u)|

where med;(x;u’) is the median of projections of all observations x; on the direction of
the vector w. The location and scatter are then estimated by the weighted mean and the

weighted covariance matrix with weights of the form w(v):

o= Zw(ul)wl/ Zw(ui), (2.7)

n
A

£ = 3wl - @) — )/ Y ww,). 23

i=1
Stahel (1981)) considered the asymptotic breakdown point of the estimators. Donoho| (1982))

derived the finite sample breakdown point for being median (med) and median absolute devi-
ation (MAD), for x in a general position, and for suitable weight function w. The asymptotic
behavior of the Stahel-Donoho estimator, however, was a long-standing problem. This ham-
pered this estimator from becoming more popular in reality. |[Maronna and Yohai (1995))
first proved the y/n—consistency. Establishing the limiting distributions, however, turned
out to be extremely challenging. The breakdown properties of the MAD (i.e., the denomina-
tor in Equation basically determine the breakdown of the Stahel-Donoho method and
corresponding modifications have been suggested to obtained further improvements in this

respect (Zuo, 2000} 2004).

14



Kurtosis Method

Pena and Prieto| (2001)) proposed a method in which kurtosis coefficients are used to obtain
directions. The sample points are projected on to a set of 2p directions, where p is the
dimension of the data. These directions are determined through minimizing and maximizing
the kurtosis coefficients of projected points. To decide the outlyingness of observations on
any of these 2p directions, the maximum distance of observations from the median exceeds
a suitable cutoff value. These estimates are then used to compute Mahalanobis distance for
entire data and the observations are labeled as outliers whose distances exceed the desired
quantile of y? distribution with p degrees of freedom. The performance of kurtosis coefficient
directions was not satisfactory for large contamination levels.

Pena and Prieto (2001) examines the influence of outliers on kurtosis values and the
effective utilization of this moment coefficient for their detection. They found that in the
situation where the outlier model is constructed using a contaminated distribution that be-
longs to the same family as the original distribution or has heavier tails, it can be anticipated
that the kurtosis coefficient of the observed data will exceed that of the original distribution.
However, in the context of asymmetry, a significant level of contamination will result in a
very small value of the kurtosis coefficient, while a low level of contamination will yield a
relatively high value of the coefficient. Hence, it is justifiable to utilize projection directions

which either maximize or minimize the kurtosis coefficient of the projected data.

Projection Pursuit MCD Method

Projection Pursuit (PP) MCD algothrim was introduced by Pokojovy and Jobe| (2022) un-
der the motivation of Pena and Prieto (2001)’s work. Projection Pursuit MCD method aims
to find one “warm start” pair using projection pursuit approach and then continuously im-
prove it with C-step iteration. This method is distinguished from current prominent MCD
methods due to its properties. Since PP MCD method does not utilize randomization and

it solely relies on summation for statistical measurements, the location and scatter estima-
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tors are deterministic and permutation invariant as well. But also the projection pursuit
approach in this algorithm is performed in an affine equivariant fashion, which guarantees
the nature of affine equivariance for the estimators coming from the PP MCD algorithm.
As discussed in the last section, there are two other MCD algorithms which are FASTMCD
algorithm and DetMCD algorithm. Now we briefly compare these three algorithms in a
general way. FASTMCD uses subsampling method to find a large number of “warm starts”,
which shows its estimator is affine equivariant. However, DetMCD does not sample to get
“warm stars”, instead it has six predetermined “warm starts” in which some methods are not
affine equivariant. Next we will discuss the core of the PP MCD methodology—projection
indices.

The method of Pena and Prieto (2001) was based on large-sample theory. Therefore,
their method might be broken in practice for small sample size n and/or large dimension p.
Pokojovy and Jobe (2022)) in their PP MCD method provided two new projection indices
which are not based on large-sample assumptions. The first projection index is related to

the ratio of sample variance and raw MCD scatter estimator.

Quar(Z) = log(j2 ) (2.9)

OMeD

with s = L= 3" | (2; — Z) sample variance and 63, raw MCD scatter estimator in uni-
variate situation. The larger the value of Q.. (Z), the bigger difference between the sample
variance and MCD scatter estimator, which shows the direction the data are projected on
is more likely to distinguish “good” observations and outliers. That is the reason why the
PP step part of the PP MCD algorithm needs to find local maximum of Q.. (-) using the
projected gradient method to improve the “potential” direction. And of course, the level of
information provided by this measure decreases when the variable Z includes a significant
proportion of tightly clustered outlying observations.

The second projection index is obtained from a Gaussian bimodality test.
i.id. i.id.
HO AR N(MQ,O‘S), Hl LRy (1—8)/\/(#1,0‘%)"‘&/\/(,&2,0’%). (210)

where € € (0,1) and (p1,0%) # (u2,03). Then two variances are computed under Hy and
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Var(z;|Hy) = oo, Var(z|Hy) = (1 —¢)%0] + %05 +e(1 — &) (1 — po)* (2.11)

The test statistic is defined as follows

2

s
@pimoa(Z) = - R ~ — . (2.12)

" (1- 6ML>2‘71,ML + 5§4L‘73,ML + énn (1 — éuw) (A mr — foun)?
where s is again the sample variance and (éyr,, fi1 ML, flo. ML, 61 ML, F2,m1.) denotes the max-

imum likelihood estimators of (e, 1, o, 01, 02). Larger value of Qpimoa(Z) provides strong
evidence to reject Hy in favor of Hy, i.e., bimodality, while smaller value tends to accept the
null hypothesis, i.e., unimodality.

Even though the test looks simple, the challenging part of this test lies in the max-
imum likelihood estimators. Finding the parameter vector (&, fi1 ML, fi2. ML, 01,ML; O2.ML)
is a non-convex optimization problem. And no closed-form solution exists. Hence, numer-
ical method needs to be used to find the test statistic. In order to increase the speed of
the numerical method, Pokojovy and Jobe (2022)) decided to apply Newton’s method to
maximize the problem instead of the normally used Expectation Maximization approach.
Qrimod(Z) appears to be a sufficient measure for projecting both uni- and bimodal data
configurations. The efficacy of Q..:(Z) is generally reliable across various configurations,
however, its functionality is susceptible to possible failure in instances where the bimodal
mixture components exhibit almost equal sizes but possess highly distinct variances. Under
this particular instance, Q..(Z) displays a tendency to become exponentially large when
certain unfavourable projections are employed. Therefore, these two projection indices are
jointly used to filter outliers until only h observations are left which is the data set of getting

the “warm start” for the following C-steps.

PCOut Method

PCOut algorithm was proposed by [Filzmoser et al. (2008), which exhibits remarkable ef-

ficiency in situations characterized by a large number of dimensions. The first two letters
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with upper case mean principal components decomposition. |Filzmoser et al.| (2008) employed
basic properties of principal components to detect anomalous data points within reduced di-
mension, thereby resulting in notable computational benefits for data sets with a high degree
of dimensions. The PCOut method showed very competitive performance when compared
to existing outlier detection methods under high dimensional data sets of gene expression
data and geochemical data. The key advantage of this algorithm is its computational speed.
As Filzmoser et al|(2008) presented, even though the data have 2000 observations and 2000
variables, it only cost around 2 minutes to identify the outliers. However, other methods
displayed an exponential increase in magnitude.

The PCOut algorithm is comprised of two basic parts: one is to identify location outliers
and the other is to identify scatter outliers. The method computes the two weights obtained
from these two steps, and combines the two weights as the outlyingness measure. If the
measure is less than a particular cutoff value, the data point will be classified as outlier.
Firstly, each component of the data are scaled using the median and the MAD based on

« xij — med(xlj, s ,San> .
. =1, .p. 2.13
xz] MAD(%’U, . ’xnj) ] p ( )

The scaled data zj; can be used to calculate the covariance matrix from which a principal
component decomposition is conducted. And next we find the eigenvectors which contribute
to at least 99% of the total variance. These eigenvectors consist of the new p* x p* matrix

V. Thus we obtain the principal components of the data by
Z=X"V. (2.14)

We rescale again the principal components based on the median and the MAD by

Z?k- _ Zij — med(le, ey an)
* MAD(le, .. ,an) ’

j=1,...,p" (2.15)

Store the rescaled principal components Z* for the second part of the method. Then calculate
a robust kurtosis measure for each component of Z* according to

kurt _ l . (Z;(‘_med(zfja"wz;:j))[l

b |n4 MAD(z5;,- -5 20) |

i=1,...,p" (2.16)
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We assign the relative weights wf*/ 3" w to each components in Z* relying on the
kurtosis measure described in Equation (2.16). Then, we find the Mahalanobis distances of

the matrix Z* from the median. And the Mahalanobis distances will be transformed by

/2
Xp*,0.5 .

med(RDy,...,RD,,)’

According to Filzmoser et al.| (2008), the transformed robust distances have the same median
as the theoretical distances and bring them closer to X;Q,* distribution. Lastly, calculate the

weights for all the observations utilizing the translated biweight function.

0, dl >c
wi = (1 - (Z=M)22 0 M <d <e (2.18)
1, d; <M

where i = 1,...,n, ¢ = med(dy,...,d,) +2.5- MAD(dy, . ..,d,), and M is the 1/3 quantile
of the distance {dy, ...,d,}. The starting point of the second part of PCOut method comes
from the principal components space Z* from the first part. We do not assign the kurtosis
weights to the principal components, instead Mahalanobis distances are computed directly
from Z*. Given that the kurtosis weighting scheme did not modify the distribution of these
distances and assuming that non-outliers are normally distributed, by applying Equation
to the robust distances the resulting distribution closely approximates Xz*' Again we
use the translated biweight function to obtain the second weight ws;. But the difference is
that M? = X2, g95 and ¢ = X2. (g9, Where X2, o5 is the 25th percentile of x* distribution
from the left. Finally, we can combine the two weights wq; and we; by using the following

equation.
(wh« + S)(’u)gi + S)
w; = )
(L+s)?

In general, the value assigned to the scaling constant s is often 0.25. Sometimes, there are

i=1,...,n (2.19)

instances where numerous non-outliers are given a weight of 0 in just one of the two phases.

The purpose of introducing s is to alleviate this issue by setting it not to be 0, which ensures
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that the final weight w; will only be 0 if both phases have a low weight. Points with a weight

of less than 0.25 are categorized as outliers.

2.3 Other Methods

Juan and Prieto (2001)) introduced a technique for identifying outliers that relies on estimated
angles to classify the clustered outliers. The authors explicated that the relationship between
the distribution of uncontaminated data, conforming to a uniform distribution, and the
reference direction can be modeled as a function of the Beta distribution. Upon obtaining
the angles, it was recommended to construct a ) — @) plot in order to assess the presence
of outliers utilizing the lack of fit method. Pyke (1965) conducted research on the spacing
test as a measure of goodness-of-fit. Subsequently, the distribution of the intervals between
each sequentially arranged observation is ascertained. The cutoff value for identifying outliers
was computed by utilizing the largest normalized spacing interval obtained from distribution
analysis.

A subjective procedure utilizing eigenvalues and eigenvectors was established by|Gao et al.
(2005)), known as the Max-Eigen Difference (MED) technique. The first step of this approach
involves identifying the eigenvalues and eigenvectors of the scatter matrix for the initial set
of data. The eigenvalues and eigenvectors are determined for the covariance matrices of each
dataset after removing the ith observation. (Gao et al.|(2005) indicated that observations with
higher MED values are identified as outliers. Kirschstein et al. (2013) introduced pruning
Minimum Spanning Tree (pMST) technique which considers the whole dataset as a network.
The pMST methodology initiates by creating a sphere encompassing each observation, which
is delineated by a specific radius. The subsample of good observations can be determined for
robust estimation purposes by using the count of spheres in the biggest grouping of connected

spheres.
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2.4 Measures of Robustness

Various concepts of robustness have been taken into consideration for multivariate location
and scatter estimators. Hodges Jr| (1967) proposed the concept of breakdown point, which
is a universal metric for robustness. An attractive and straightforward limited-sample itera-
tion of this concept was presented by |Donoho and Huber| (1983). Roughly, this finite-sample
replacement breakdown point measures the minimum fraction of outliers which will spoil the
estimate completely (Lopuhaa and Rousseeuw, |1991). If one estimator is zero breakdown
point, it will be treated as non-robust. Equivariance under affine transformations is a fun-
damental requirement for multivariate estimators in their natural state. The integration of
affine equivariance and a high breakdown point is a non-trivial task. Donoho| (1982) analyzed
several affine equivariant techniques for multivariate estimators, showing that their break-
down point approaches to 0 as the dimension p increases. |Stahel (1981) and Donoho (1982)
proposed the first estimator of multivariate location and scatter with both affine equivariance
and high breakdown value, independently. In this section, we will discuss several measures
of robustness of estimators for multivariate location and scatter, such as, affine equivariance

breakdown point and influence function.

2.4.1 Affine Equivariance

Affine equivariance is an important property of a robust estimator. This property suggests
the estimator will transform well under any affine transformation in the space where the x;’s
live. Therefore, even if the data points are subject to rotation, translation, or scaling, it will
not impact the outlier detection diagnostic results. Specifically, one estimator of location and
scatter is affine equivariant, which means that for any column vector @ € R? and nonsingular

p X p matrix A the following system holds that

(XA +a)=(X)A+a, (2.20)
B(XA+a)=A3(X)A. (2.21)
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where X is n x p matrix of data, A’ is the transpose of matrix A. We take MCD estimator
as an example. In order to obtain MCD estimator of location and scatter, we need to iterate
the C-steps which guarantee the property of affine equivariance. This is based on the fact

that the determinant of the scatter matrix for the transformed data is equal to
IS(XnA)| =|A'S(Xn)A| = |AP|S(X 1)l (2.22)

where S(X p) is the covariance matrix of data X g, subset H is any subset of {1,2,---  n}
of size h, X g is the corresponding data set for H.

Hence, by transforming a subset of X 5 with the smallest determinant, we can obtain a
corresponding subset X gy A with the smallest determinant out of all subsets of the trans-
formed dataset. Additionally, the covariance matrix of this subset X g A is appropriately
transformed. The affine equivariance of the raw Minimum Covariance Determinant (MCD)
location estimator can be established by the equivariance of the sample mean. Therefore,
the MCD estimator of location and scatter from FASTMCD algorithm is affine equivariant.
However, DetMCD method does not have this property. The reason is that DetMCD method
relies on six initial scatter matrices, which explains its rationale. The optimal data set X g
derived from the transformed data may not be identical to the one obtained from the original
data set. Possibly, allowing for some leeway in this property could result in more reliable
estimates being accessible or could be applicable to a non-affine equivariant estimator that
exhibits superior performance. Nevertheless, the property of being affine equivariant is still

beneficial for the estimation of location and scatter in multivariate analysis.

2.4.2 Breakdown Point

The breakdown point is the smallest fraction of data points that can be contaminated by
arbitrary values to make the estimate arbitrarily large (Hampel, [1971). Mathematical def-
inition of breakdown value for multivariate location and scatter has been introduced by

Lopuhad and Rousseeuw| (1991). Consider a data set matrix X, «,, the breakdown point
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€*(f1, X) for the location estimator fi is defined as:

€1, X) = min { ™ supl[A(X.,) — (X0 = o0 . (2.23)
where 1 < m < n and data set X,, is derived from the original data set X in which
any m observations are replaced by arbitrary values. From another angle, the definition of
the breakdown point aims to find the point where the distance between the contaminated
sample mean and the clean sample mean approaches to infinity. Even though it may seem
like €*(fr, X) relies on X, this is not true for the majority of situations. However, the
breakdown point of location estimator p depending on X do exist ( see Huber| (1984))). The

definition of breakdown value of scatter matrix 3 can be given similarly:

(2, X) = min {% ; supm?XMi(f](Xm)) —XN(E(X)| = oo} (2.24)
where )\; is the eigenvalue of 3 and all eigenvalues are sorted as 0 < A, (2) < -+ < A\ ().
From this definition, when the maximum of eigenvalues \; becomes arbitrarily large or the
minimum of eigenvalues A, becomes arbitrarily close to 0, a scatter estimator will be broken.
These two cases are called explosion and implosion respectively. When both or any of them
occur, the scatter matrix will be no longer robust. Lopuhaa and Rousseeuw| (1991)) showed
that the breakdown point of any affine equivariant estimator is itself invariant under affine
transformations, which can simplify the process of computing the breakdown point of an

estimator.

Theorem 1. Let X be nx p data matriz, and let fr € R? and 3 € RP*? be affine equivariant

location and covariance estimates based on X. Then
1. €(p, XA +v) =€, X)
2. (2, XA+v)=e(2X)

where v is any n X p constant matrix and A is any nonsingular p X p matrix.
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The proof of this theorem can be found in |Lopuhaé and Rousseeuw| (1991)). This theorem
shows that, with affine transformation to the data the breakdown point of affine equivariant
estimator will be the same as the one computed from the original data. Davies| (1987)) showed
that when the data matrix X is in general position, i.e., no p+1 points are contained in some
hyperplane of dimension smaller than p, and if n > p + 1, the breakdown value of any affine
equivariant covariance estimator 3 is at most [ (n —p+1)/2]/n. This means the covariance
part might be broken when one substitute for |(n —p + 1)/2] points or more by any other
values, no matter what happens to the location estimator. But Rousseeuw (2005)) found that
for affine equivariant location estimators the upper bound on the breakdown point is also
|(n—p+1)/2]/n under natural regularity conditions. Note that the limit nh_}rgo ¢ = .5 which
reveals that the maximal breakdown point is 1/2 for affine equivariant estimators.

Rousseeuw| (1985) proposed the minimum volume ellipsoid (MVE) estimator and proved
it to be affine equivariant with breakdown point (|n/2] —p+1)/n which is smaller than the
upper bound |(n —p+1)/2]/n. We will use a theorem about the breakdown point of MVE

estimator to end this section. The detailed proof can be found in |Lopuhaa and Rousseeuw

(1991).

Theorem 2. Let X be n x p data matriz in general position, and let f1 and 3 be the MVE

estimates of location and scatter. Then
1. ifp=1, then e (1, X) = |(n +1)/2]/n and (X, X) = |n/2]/n.

2. if p>2, then € (1, X) = (X, X) = [(n —p+1)/2] /n.

2.4.3 Influence Function

The influence function serves as a crucial tool for assessing the robustness of an estimator.
It is also used to calculate estimator’s asymptotic variances and efficiencies. Hampel| (1968,
1974)) created the influence function as a means of examining the infinitesimal behavior of a

robust estimator. Hampel et al.| (1986) provided a description and analysis of it. The defined
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standardized effect of an outlier on the estimator was based on its location at the point .
Hampel et al.| (1986) discussed the minuscule level of steadiness of an estimator. In an ideal
situation, a robust estimator should have a bounded influence function.

We take MCD estimator as an example to briefly discuss how to compute influence

function for an estimator. First consider the distribution with contamination.
F.o=(1—¢)F +cA,. (2.25)

where F' is any distribution of clean data, £ contamination rate usually set 0 < e < .5, A, is
the cdf of a Dirac measure putting all its mass at & € RP. Then we can define the influence

function for one parameter of a distribution at point a.

IF(z, K, F) = lim K(Fea) = K(F) _ OKea| (2.26)
e—0 € e |._,

where function K (F') is to obtain the parameter of the distribution F'. As is shown by the
definition, the influence function measures the sensitivity of the parameters to tiny amounts
of contamination in the distribution.

Now we focus on the elliptically symmetric distribution F' with parameters g and 3.

frs(@) =121 ((@ ~ 'S @ - ). (2.27)
where &, p € R, ¥ € RP*P is any positive definite matrix, (-)" is the transpose of a matrix,
| -] is the determinant of a matrix and the derivative of function g is strictly negative and it
is assumed to be known.

The MCD estimator can be obtained by the following ellipsoid.
A(Fus) ={z€R|(z—pu)E 7 (z — p) < ¢} (2.28)

where « is the significance level, g, = M~'(1 — o) and M(t) = Pr, ,(2'z < t). The location

estimator p and scatter estimator 3 can be equal to:
/ 2 dF, 5 (x)
JA

(2.29)
/

[ @ = malFus) @~ a(Fs)) dFs()
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The X part of Equation ([2.29) can be simplified as

/:13:1:’ dF, »(x)
24(Fuz) = eof P malFushua(Fus) (2.30)
As the preceding section discussed, the MCD estimator is affine equivariant. Therefore, we
only need to illustrate the process of obtaining the influence function based on the model

distribution Fpy,. So from now, we drop the subscripts for simplicity. Therefore, p and 3

can be written in the same way.

/ xdF(x)
H’A(F) = La EA(F) = Cq

1l -«

A(F) wa' dF (=) | (2.31)

11—«

Now consider the contaminated distribution F;, at point xy € R, we rewrite Equation

E) as
Fozy =1 —e)F +eA,,. (2.32)

For the distribution F. ., the parameters p and ¥ will equal:

/ 2 dF, 4 ()

I‘I’A(FE,:B()) =4 1— o )
(2.33)
/mm’ dF; ()
YaFeao) = Ca{ 4 I— o - MA(FE,wo)NA(Fs,wo),}-

Due to Equation (2.26)), the influence function of scatter estimator X at point x is as follows.

S (Fw) = 5(F)

ITF(x, %, Feny) = 11_1;% . (2.34)
0% 2,

= — . 2.35

oe |, (2.35)

The expression X, ;, can be simplified further using Equation (2.32)). Let py(F z)) = 1.

25@0 = EA(FE,:Eo)

xx' dF, ,,(x)

:Ca
l—«

{ /A(Fe,mo)

_ uA<FE,mO>uA<F5,mO>'} (2.36)
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1 —
= ca{ © / xx' dF (x) + %I (:130 € A(ngm0)>zcow6 — ,u,Ep,’E}.
—a

11—«
A(F,zy)

Hence, we plug the last equation into Equation (2.35]) to calculate the derivative of X, ..

azew
IF(xg, %, Feny) = 387 0

e=0

1 1 0
= Ca{ - /a:a:' dF(x) + —/ xx' dF(x)
11—« e 1—aoe A(Ferny)

1 /
+ - al(azo € A(F))azoazo}.

Due to the Fisher consistency of 3, we find ¢, = %. And using the fact that
Z=qu

(2.37)

e=0

A(F) = {z € R?|2'z < q,} together, we have

B Co O ,
IF(xg, %, F.py) = —1 + T ade / xx' dF (x)

A(Peay) = (2.38)

Ca
1 _
After that, for the second term of right hand side of Equation (2.38)), We make a transforma-

(o <)o),

—-1/2

tion. zx is transformed to y = X_

(x —t.). Now the domain of the integral becomes a ball
under the center at the origin and radius ,/q,. For convenience, we use polar coordinates
to compute the integral part. We omit some lengthy computations and give the final result
here. The detailed process of how to calculate the second and third term on the right side

of Equation (2.38]) can be found in |Croux and Haesbroeck| (1999).

1 c b c
IF (2, %, F.p) = — ® 2%1(||2?]| < g, « 21(|2?]| < qq
(@ 50 Fr) bil_a%umn_q>+m_p%1_Jmnumu_q>
bl Ca (a 2 (239)
Qo) -1 <qg))—1|%, &
by | o - e < ) ]}
IF(x, %, F. ;) = —T;I(HmQH < qa), if 1 7.

where the constants by, b, ¢, c3, ¢4 are given below.

P/2 Ve . )
€y = —— r?tg’ (r*) dr,
2 T(p/2 + 1) /0 g(r?)
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/2 Vi pE3 1(,.2 .
m . T g(T )d?“, if p22
C3 =

0, otherwise,
Vo
37rP/2 /
cq = rPH3g’ (r?) dr,
(p+2)L(p/2+1) J )

by = Ca(C3 - 04)
11—«

1 Co, Qo l—a
by = = _— )
2 2*1_04[03 p(02+ 5 )}

Finally, for location part of MCD estimator, it is simplier. Following the same way of getting

IF(x, %, F, ), we get

2 oz
IF(x,pu, F. ;) = (— m/ z2'q (2'z) dz) 1TI(H:I;H2 < ). (2.40)

2'<qa @
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Chapter 3

Application for a Multivariate Dataset

3.1 Data Set seeds

In this chapter, a multivariate data set is applied to compare the performances of DetMCD,
PP MCD and FASTMCD methodologies. The data set is obtained from |(Charytanowicz et al.
(2010). It consists of three different groups of grains. The examined group comprised kernels
belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements
each, randomly selected for the experiment (Charytanowicz et al., [2010). A high-quality
visualization of the internal kernel structure was observed through the utilization of a soft
X-ray methodology. The data was gathered by taking measurements of seven geometric
parameters of 210 wheat kernel samples, including area, perimeter, compactness, length
and width of the kernel, asymmetry coefficient, and length of the kernel groove. All of the
aforementioned parameters were continuous and real-valued.

The last attribute in the original data set explains the type of wheat planting. In this
application, the last two types of wheats are selected to perform outlier detection. In order to
show how different all the measurements between the two varieties are, we list the summary
statistics of all the variables for two varieties in Table As is shown, there exists a marked
distinction within the two corresponding variables in the two groups. Upon integrating
observations from one group to another, the newly amalgamated data set may indicate the
presence of outliers, which serves as the foundation for conducting subsequent analyses and

evaluations of various methodologies.
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3.2 Comparisons and Discussion

As previously stated, the data set seeds contains two distinct groups. We consider the first
group which are the first 70 observations as "pure” data. The remaining observations in our
data set is then outliers. To make comparisons, we initially select bulk purity as a key feature
to focus on. In simple terms, bulk purity can be described as the proportion of non-outliers
found in the optimal set of the raw estimator. The higher the degree of purity, the better
the estimator’s quality. The bulk size h is commonly set at [ (n+p+1)/2]. In a systematic
manner, | incorporate the observations of Group 2 into "pure” data set, creating a total of
70 distinct samples with varying sizes ranging from n = 71 to 140. Each sample had 70
uncontaminated data points in addition to a number of outliers, with the total amount of
outliers being m equivalent to n — 70. Since DetMCD method lacks of affine equivance, all

the data points are scaled under sphering transformation (Pokojovy and Jobe, [2022).
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Figure 3.1: Bulk Purity (left), True positive rate (TPR) (middle) and False positive rate (FPR)
(right) plots for three methods
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Figure illustrates the relationship between the purity percentages and the number
of outliers m present in the sample. It indicates that the FASTMCD method exhibits
comparable or better performance than the other two approaches in terms of purity level
for each of the 70 samples. The superiority of the FASTMCD method based on purity
percentages becomes apparent when the number of outliers reaches 65 or above, surpassing
the efficacy of the two alternative methods. DetMCD displays the poorest performance
among the methods, as its bulk purity significantly declines in the presence of over 47 outliers
within the sample. And the number of outliers making PP MCD not very robust is at least
55.

Figures [3.2] and illustrate significant changes of the accuracy of detecting outliers
for three methods based on true positive rate (TPR) and false positive rate (FPR) as the
number of outliers varies in datasets containing 47, 54, and 65 outliers. Before this, the

threshold of Mahalanobis distances d? for three methods to distinguish outliers and non-
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Figure 3.4: Logarithmic Mahalanobis distance plots for n = 65 (top) and n = 66 (bottom)
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outliers should be determined. We performed a simulation to find the cutoff value. In the
simulation, significance level 0.05 was chosen and for each method, 5,000 sets of n d? were
generated under the setting of N7(0, I) distribution. We proceeded to choose a singular d?
randomly and considered the 95th percentile from these 5,000 sets as our critical value.
Combing Figures and [3.2] we find that the TPR values remain constant across all
methods when the sample size contains 47 or fewer outliers. However, it is observed that if
the count of outliers exceeds 47, the true positive rate (TPR) of DetMCD exhibits a decline.
On the other hand, PP MCD and FASTMCD still shows a consistent TPR even under such
circumstances. Figures and demonstrate that TPR of the FASTMCD remains on
par with that of the PP MCD, but surpasses that of the DetMCD until the value of m is
more than 54. If there are 55 outliers in the sample, FASTMCD will have a significantly
higher TPR compared to DetMCD and PP MCD. Figures and present that TPR of
FASTMCD outperforms the other two techniques. Nonetheless, the FASTMCD technique
fails to operate as soon as the number of anomalies exceeds 65. To put it briefly, after
considering the level of bulk purity and the ability to detect outliers, it can be concluded
that the FASTMCD approach is superior to both PP MCD and DetMCD methods when

identifying anomalies in a multivariate dataset such as seeds.
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Chapter 4

Application for a High-Dimensional

Dataset

4.1 Data Set characterA

In the previous chapter, we examined various techniques for identifying outliers within a
multivariate data set. Specifically, the data set we previously utilized is low-dimensional.
Here a high-dimensional data set is characterized by having a large number of variables (p),
that are equivalent to or exceed the number of observations (n). Although traditional statis-
tical methods exhibit strong performance in data sets with low dimensions, they encounter
major obstacles when p exceeds n. The analysis of high-dimensional data poses various chal-
lenges for traditional statistical methods. One significant issue is that the scatter matrix is
found to be non-invertible. Classical statistical methods do not allow the determination of
the inverse of the scatter matrix. Another challenge is computation time. The increase in
computation time is more pronounced as p increases compared to n . The magnitude of this
increment is significant enough to question the viability of conventional statistical methods
when employed on high-dimensional data. Therefore, three robust methods applicable to
high dimensions are chosen to evaluate their effectiveness on a high-dimensional data set.
The data set used for this chapter is from R package mrfDepth. characterA consists
of trajectories of the tip of a pen while writing the letter a. All samples are from the
same writer. This collection of data consists of 100 instances, each with 171 values in two
distinct dimensions. These three dimensions refer to time, the count of observations, and the

coordinates in the X and Y axes, correspondingly. We divide the data into two sets, namely
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Figure 4.1: X trajectory (left) and Y trajectory (right) of the pen when writing letter a

X and Y. They are made up of X and Y coordinates, separately. For simplicity, We only
select the initial 50 entries from both the X and Y datasets. To ensure that each observation
is independent, the two data matrices are transposed and then combined. Therefore, we now
have a dataset with 100 entries representing different paths of writing the letter a, and 100
separate columns indicating the time of writing process.

Figure separately illustrates the shape of X and Y coordinates for the first and last 50
observations of the data matrix. As demonstrated it depicts a noticeable disparity between
the X and Y coordinates at a specific time point, indicating a shared characteristic of the
data presented in Chapter 3. To carry out the comparisons, the initial 50 observations are
regarded as “clean” data whereas the left observations are recognized as anomalies. Hence,
when we gradually inject anomalies into “clean” data, the resulting data set always maintains

a high-dimensional nature.
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4.2 Comparisons and Discussion

For comparisons of high-dimensional data, we choose three methods OGK, PCOut and
MRCD. Both PCOut and MRCD techniques were proposed in the last decade and are
quite new robust statistical methods for outlier detection. As previously stated, we adopt
three measurements of bulk purity, true positive rate and false positive rate to evaluate the
efficiencies for three methods in the high-dimensional context. Likewise, we initially create
50 sets of various sizes n = 51,...,100 from the available pool of 100 observations. Every
single sample comprises of 50 “clean” data points and extra anomalies of amount m = n—50.
For almost all of the samples, the dimensionality p = 100 is always larger than the sample
size n increasing from 51 to 100. Figure displays three plots of bulk purity, TPR and FPR
for three methods. It is evident that the OGK technique begins to experience a significant

reduction in its purity level in the very early time. Two other techniques are capable of wit-
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Figure 4.2: Bulk Purity (left), True positive rate (TPR) (middle) and False positive rate
(FPR) (right) plots for three methods
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hstanding the presence of up to even around 45 outliers in the sample. The performances
of PCOut and MRCD methods are strikingly similar. Their “breakthrough” points making
methods less effective are close, which were found to be 44 and 45, respectively.

Next, we analyze outlier detection performances of the three methods on important
status-changing points. The similar simulation methods in Chapter 3 are utilized to deter-
mine the cutoff values. The results are presented in Figures and [1.5 The threshold
is represented by the horizontal line in each of the figures. Any data points exceeding the
threshold will be identified as outliers. The vertical line is used to separate the “clean” data
and the outliers added from outside. Figures and depict as long as there are 18 or
fewer outliers in the sample, all three techniques exhibit identical true positive rates (TPR).
If one more outliers are being included, the OGK technique will no longer be able to identify
the actual outliers. Figures and [4.4] show that when the number of outliers being added
increase to 45, The TPR decreases to .5. Prior to the occurrence of 44 outliers within the
sample, it can be observed that the TPR of the PCOut method began to diminish. This sug-
gested the reason that the TPR was at only approximately 88% before the status changed.
In the scenario of 46 outliers being added, MRCD method breaks down as is illustrated in
Figure 4.5 To sum up, the MRCD method shows the most reliable performance in contrast
to the PCOut and OGK methodologies. The OGK technique displays a limited ability to

handle even small numbers of outliers present in the data.
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Chapter 5

Conclusions

We provided a overview of current robust statistical methods for outlier detection. Two ap-
plication examples were presented with the purpose of comparing various methods. Assessing
the effectiveness of FASTMCD, PP MCD, and DetMCD techniques on a low-dimensional
data set, FASTMCD exhibited the best results out of the three methods. The application of
DetMCD to the seeds data set yielded the least favorable performance. In a high-dimensional
scenario, we conducted a comparison of MRCD, OGK, and PCOut methodologies. The re-
sults demonstrated that MRCD outperformed both OGK and PCOut. But the difference
between MRCD and PCOut approaches was almost negligible. The OGK method was not as
robust as we expected. It suffered a breakdown when confronted with a data set containing

a mere 19 outliers.
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