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Abstract

Early detection is crucial to mitigate the impact of emerging threats. This work proposes

four innovative frameworks that build machine learning and deterministic epidemiological

models using multiple domain-specific datasets to detect the onset of emerging threats in

two domains: infectious diseases and cybersecurity. Our models are designed to detect

infectious disease outbreaks, model their spread, detect malware activity, and analyze the

relationship between software/hardware weaknesses and attack techniques.

First, we present a novel framework to detect multiple infectious disease outbreaks by

integrating standardized disease-specific domain knowledge and public search trend data.

Our framework showed high performance in identifying infectious disease outbreaks —

diseases that are among the leading causes of illness and death in the United States— using

people’s search data. In addition to detecting outbreaks, studying their spread within a

region is equally important. Therefore, we present the SEIRD+m model, which integrates

human mobility data into the classical deterministic SEIR epidemiological model to provide

a more accurate approach to modeling epidemics. We demonstrated its efficacy using

COVID-19 as a case study, showing that restricting mobility only in COVID-19 hotspots

can effectively reduce predicted infections and deaths among at-risk populations, including

those based on race, income, and age.

Both infectious diseases and computer malware require timely and accurate detection to

minimize their impact. Therefore, we extended our disease outbreak detection framework

to detect malware activity over a geographic region. We use natural language processing

(NLP) approaches to connect disparate cybersecurity datasets, enabling the development of

a machine learning model for detecting malware activities based on people’s search trends

in a specific location. Our model has proven effective in identifying malware activity in

four real-world attack case studies. Aside from detecting malware activities, it is nec-

essary to investigate the properties of software vulnerabilities and how these properties
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are used to compromise systems, in order to prevent cyberattacks and mitigate their im-

pacts. Thus, we propose a framework that leverages NLP techniques to find connections

between attack techniques and software vulnerabilities. The effectiveness of our frame-

work is demonstrated through three case studies, highlighting its potential in identifying

potential security/software vulnerability exploitation of multiple software weaknesses.

The approaches presented in this work provide evidence that the integration of domain-

specific datasets and user-generated dynamic data can enable the development of highly

effective computational models for detecting emerging threats. By leveraging these models,

decision-makers can rapidly identify and respond to potential threats, leading to a more

efficient allocation of resources. Our work opens up exciting opportunities for further

research in this area.
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Chapter 1

Introduction

Recent global events have emphasized the urgent need for advanced technological tools to

address the numerous and complex challenges faced by the world today. Threats such as

disease outbreaks, cyber-attacks, and pandemics have significant risks to humanity, with

profound and long-lasting consequences.

Disease outbreaks can spread rapidly across borders and continents, leading to widespread

illness and death [1]. Similarly, cyber-attacks can compromise critical infrastructure and

disrupt essential services, such as healthcare and energy infrastructure [2]. These challenges

require the use of interdisciplinary knowledge and the implementation of technological tools

to mitigate their impacts.

To address these threats, computer science techniques (i.e., machine learning and big

data analytics) used in conjunction with epidemiology models (i.e., compartmental models)

can play a critical role. For instance, AI-enabled early warning systems can analyze real-

time data to detect and track disease outbreaks or malware activity, providing crucial

insights into the spread and nature of the threat [3]. Moreover, the use of big data analytics

can help policymakers understand the economic and social consequences of these challenges,

enabling them to make well-informed decisions regarding global or local interventions.

The primary objective of this study is to develop tools to detect and predict emerging

threats using disparate data, with a particular focus on infectious diseases and cybersecu-

rity. Furthermore, this research aims to integrate the fields of epidemiology, cybersecurity,

and Artificial Intelligence to improve our comprehension of how threats emerge and to

minimize their negative impact on society.

In the following sections, we present the motivation behind our work and define the

1



research questions that we address in each chapter of this dissertation. Additionally, Table

1.1 provides a summary of our research and contributions.

Table 1.1: Guzdial chart summarizing our research and contributions.

Topic Research Questions Data Methods Evaluation Contributions

Multi-disease Outbreak Detection RQ1: What is the effect of using

HSDN disease-specific symptoms in

detecting the outbreaks of infectious

diseases?

RQ2: How does different weighting of

symptoms affect the detection of infec-

tious disease outbreaks?

RQ3: What effect does the number

of symptoms have on the detection of

outbreaks?

D1: Human Symptom-Disease Net-

work

D2: National Notifiable Diseases

Surveillance System

D3: Google Trends Scores

M1: Logistic Regression, Gaus-

sian Naive Bayes, Decision Trees,

K-Nearest Neighbor, Gaussian Pro-

cess Classifier, Stochastic Gradient

Descent, Linear Discriminant Analy-

sis, XGBoost, Support Vector Ma-

chine, Random Forest, Multi-Layer

Perceptron-Neural Network

M2: TF-IDF

E1: Precision

E2: Recall

E3: Accuracy

E4: F1-Score

E5: Cross-Entropy Loss

C1: A method to detect infectious dis-

ease outbreaks by using standardized

disease symptoms in conjunction with

Google trends data

C2: A robust and scalable frame-

work for detecting multiple disease

outbreaks

Human Mobility Driven Modeling of

an Infectious Disease

RQ4: What is the effect of human

mobility on the number of infections

and deaths caused by highly conta-

gious diseases?

RQ5: What is the effect of human mo-

bility on the number of infections and

deaths caused by COVID-19 based on

race, income, and age?

D4: COVID-19 data

D5: SafeGraph Open Census Data

D6: US CB TIGER

D7: HUD-USPS

D8: SafeGraph Mobility Data

M2: SEIRD+m

M3: COVID-19 hotspost method

E6: Quantitative comparison to the

baseline (actual COVID-19 data)

C3: A SEIRD+m model to simulate

the dynamics of Coronavirus-like dis-

eases

C4: Integration of human mobility

into the Ordinary Differential Equa-

tions of the SEIR model

C5: A new approach to detect

COVID-19 hotspots based on factors

such as race, income, and age

Detecting Malware Activity Using

Public Search Data

RQ6: How can we detect malware ac-

tivities with little or no dependency on

intrusion detection systems?

D9: Common Vulnerabilities and Ex-

posures

D10: MITRE ATT&CK

D11: CISSM

D12: CIRA

D13: DMA

D14: Google Trends Scores

M4: K-Nearest Neighbors algorithm

M5: Moving Average Algorithm

M6: Outliers using Standard Devia-

tion

E7: The KNN class probabilities of

the input samples

C6: A novel approach to linking

knowledge from heterogeneous and

specialized datasets (CVE, MITRE

ATT&CK) using a sentence embed-

ding approach

C7: An novel approach to detect mal-

ware activity over a regional area using

standardized and specialized datasets

and people’s search interest data.

C8: We provide study cases for the

Conti and Ryuk malware using data

from real attacks.

1.1 Multi-disease Outbreak Detection

In the last century, infectious diseases have caused 15 out of 57 million annual deaths

worldwide [4]. To address the emergence and re-emergence of infectious diseases, it is

crucial to develop new outbreak detection systems that guide public health policies and

implement timely mitigation strategies. Researchers have developed various systems over

the past two decades using different methods to detect outbreaks of infectious diseases.

Recently, researchers have focused on using data from web search engines, such as Google

Trends, to detect disease outbreaks. However, the use of non-standardized disease-related

terms in Google Trends poses a limitation, as different researchers may use different terms

to refer to the same disease.
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Moreover, most of the proposed outbreak detection models are designed to detect a

single disease, which limits their usefulness in detecting other infectious diseases. Detecting

outbreaks using web search data with non-standardized terms is also challenging, as it

requires epidemiology expertise to select the most appropriate search terms relevant to a

specific disease.

In Chapter 3, we propose a single framework to simultaneously detect multiple infectious

disease outbreaks. Our approach combines standardized disease symptoms, derived from

the Human Symptoms-Disease Network (HSDN), with Google Trends scores. The novelty

of our study is the integration of static and standardized medical terms, such as symptoms,

with dynamic Google Trends data to detect outbreaks of infectious diseases.

We address the following research questions in Chapter 3:

• What is the effect of using HSDN disease-specific symptoms in detecting outbreaks

of infectious diseases?

• How do different weighting of symptoms affect the detection of infectious disease

outbreaks?

• What effect does the number of symptoms have on the detection of outbreaks?

In chapter 3, we also present the results of our framework’s performance using 11 infec-

tious diseases reported by the Centers for Disease Control and Prevention (CDC). Our ex-

perimental results show that the proposed framework achieves good results. We also found

that using HSDN symptoms significantly enhances the framework’s performance compared

to only using Google Trends data, indicating the critical role of integrating static HSDN

data with dynamic Google Trends data in detecting outbreaks. Furthermore, our study

suggests that diseases with a higher number of symptoms are more easily detected than

those with fewer symptoms. Finally, using TF-IDF scoring of HSDN symptoms improves

the detection of outbreaks. Our findings suggest that standardized disease symptoms and

user search data are excellent indicators for detecting outbreaks of infectious diseases.
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1.2 Human Mobility Driven Modeling of an Infectious

Disease

Human mobility is an integral part of daily life but can increase the risk of contracting

infectious diseases like COVID-19. Mortality rates due to COVID-19 in the United States

vary among different ethnic groups, with disparities observed across populations [5]. The

death rate is higher for individuals over the age of 80, with mortality rates reaching as high

as 20Despite the established links between COVID-19 and age and race factors, research on

the relationship between poverty levels and infectious diseases has been relatively scarce.

However, recent studies have shown that income inequality is directly linked to a 4% in-

crease in COVID-19 cases per million and a 5% increase in COVID-19 deaths per million

for every 1% increase in the Gini coefficient, which measures inequality in a population [6].

In Chapter 4, we introduce our model, SEIRD+m, which adds a new compartment, D

(Deaths), to the Susceptible-Exposed-Infected-Recovered (SEIR) model and incorporates

human mobility aspects into all its components. Our model can be used to investigate the

impact of mobility restrictions on COVID-19 hotspots based on demographic factors such

as income, age, and race.

In Chapter 4, we address the following research questions:

• What is the effect of human mobility on the number of infections and deaths caused

by highly contagious diseases?

• What is the impact of human mobility on the number of COVID-19 infections and

deaths based on race, income, and age?

In chapter 4, we demonstrate the use of our model to investigate the spread of COVID-

19 when human mobility is restricted only in COVID-19 hotspots at various intensities and

time periods. Our experiments show that reducing mobility in COVID-19 hotspots can

significantly reduce infections and deaths, rather than implementing mobility restrictions

across an entire region. Moreover, we found that restricting mobility in COVID-19 hotspots
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positively affects infection and death rates at both the regional and local (within hotspots)

levels, making it a valuable strategy to protect vulnerable areas based on income, race, or

age.

1.3 Detecting Malware Activity Using Public Search Data

Malware, a type of intrusive software developed by cyber criminals and commonly trans-

mitted through computer networks, poses a significant threat to several critical sectors

of the global economy, including finance, healthcare, and energy. Recent reports indicate

that the cost of cybercrime has surged to $6 trillion, causing significant harm to the world

economy1.

On May 7, 2021, the Colonial Pipeline system suffered a ransomware attack, resulting

in a six-day shutdown2. This pipeline, which has a length of 5,500 miles and a daily

transportation capacity of 2.5 million barrels of fuel, supplies 45% of the fuel consumed

in the Southeast and East Coast regions. The attack was executed by DarkSide, a group

of hackers who operate using a "ransomware as a service" business model. They targeted

the company’s billing infrastructure and obtained nearly 100 gigabytes of data within two

hours. The FBI intervened to identify the source of the attack, and the company had to

halt all pipeline operations.

The identification of malware activities can be a crucial factor in preventing attacks, such

as the attack that occurred on the Colonial Pipeline system. In this context, public search

data patterns represent a valuable resource for the early detection of malware activity, with

the potential to significantly reduce the severity of their impact. It is important to note

that while traditional approaches for malware detection usually rely on intrusion detection

tools or techniques, people often search online to identify symptoms of malware infection.

In Chapter 5, we propose a novel method to detect malware activities that combine
1https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
2https://www.colpipe.com/news/press-releases/media-statement-colonial-pipeline-system-disruption
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publicly available databases with web search data. Our approach involves creating Attack-

specific Vulnerability ExposuRe Terms (AVERT) datasets by utilizing the Common Vul-

nerabilities and Exposures (CVE) and the MITRE ATT&CK databases and public search

data obtained from the Google Trends API. These datasets are used to train a machine-

learning model. Our results demonstrate that it is possible to detect abnormal malware

activity using malware-related search terms.

Chapter 5 aims to investigate how to detect malware activity through public

search data. Our findings indicate that user web searches tend to increase approximately

seven days before and after an attack. When the time series of search queries exhibit the

highest values with the presence of outliers, it is highly probable that an ongoing mal-

ware attack is occurring. These results provide evidence for the potential utility of public

search data patterns in detecting malware activities and identifying potential cybersecurity

threats.

1.4 Uncovering Threat Vectors through Attack Analysis

The rapid advancement of technology has led to an increased need for secure software and

Industrial Control Systems (ICS). Cyberattacks and data breaches have become significant

threats to individuals and organizations, causing extensive damage. Researchers and indus-

try professionals have focused on developing techniques to identify and mitigate software

vulnerabilities to improve cybersecurity.

One technique that has gained significant attention is the automatic linkage between

Common Vulnerabilities and Exposures (CVEs), CommonWeakness Enumeration (CWEs),

and Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) techniques.

CVE provides a standardized method of identifying and tracking vulnerabilities in soft-

ware systems, while CWE is a classification system for software weaknesses that can lead

to vulnerabilities. The ATT&CK framework is a knowledge base of adversarial tactics,

techniques, and procedures that can be used to test and evaluate the security of software
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systems.

However, linking CVEs, CWEs, and ATT&CK techniques automatically poses signif-

icant challenges, and some researchers have focused on manually linking these datasets,

which is time-consuming. Automatic linkage techniques have the potential to improve the

speed and efficiency of the vulnerability identification and mitigation process, as well as

provide valuable insights into the tactics and techniques used by attackers, enabling better

defense against cyber threats.

In Chapter 6, we propose a novel approach to automatically link weaknesses and tech-

niques for improved cybersecurity in ICS. We aim to investigate the role of software vul-

nerabilities and weaknesses in ICS attacks.
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Chapter 2

Related work

2.1 Detecting infectious diseases outbreaks

Several studies for detecting outbreaks have been conducted in the last two decades A

variety of approaches were used in these studies to detect outbreaks, including regression

analysis, time series analysis, multivariate methods, and, more recently, web search data.

The following subsections briefly present some of the works in these areas.

2.1.0.1 Regression analysis

Regression models have been used in surveillance systems to detect and notify outbreaks.

Pelat et al. [7] proposed an online tool based on a regression model for detecting and

quantifying outbreaks within a seasonal period. Wieland et al. [8] developed an outbreak

detection method using a generalized additive model to obtain a stable specificity. In these

studies, an observation is classified as atypical based on a threshold. In contrast, Frisén

et al. [9] proposed parametric and semi-parametric regression models to identify epidemic

onset.

2.1.0.2 Time series analysis

The Auto-Regressive Integrated Moving Average model (ARIMA) is one of the most com-

monly used time series analysis models to detect epidemics of infectious diseases. Miller et

al. [10] present an ARIMA-based model to predict the enrollment of patients with influenza-

like symptoms at ambulatory care centers. Using hierarchical time series models, Heis-

terkamp et al. [11] investigate the possibility of detecting deviations (i.e., outbreaks) from
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an expected incidence. Since these count data are noisy, these models are suitable for

detecting signals from noise and accounting for possible auto-correlation.

2.1.0.3 Multivariate methods

Multivariate analysis is a set of statistical methods to analyze patterns in multidimensional

datasets. These methods consider more than two variables, which allows the analysis of

more complex problems. As an example, in the United Kingdom, Marshall et al. [12] have

explored the possibility of monitoring disease outcomes across multiple units. Kulldorff et

al. [13] examine the simultaneous incorporation of several data sets into a single likelihood

function in order to generate an outbreak signal if it appears in only one or several datasets.

2.1.0.4 Web search query data

In recent years, Google Trends (GT) data has been widely used in outbreak detection sys-

tems [14], [15]. Gianfredi et al. [16] presented the results of a study related to Pertussis

outbreaks. In this work, GT was mined in different European countries for nine years. To

find cases of Pertussis, they employed the ‘search topic’ strategy. Data on Pertussis cases

and deaths obtained from the European Centre for Disease Analysis and Control database

was correlated with GT results related to Pertussis. A strong correlation between Pertus-

sis cases and GT-based search volumes was observed among European countries (ranging

between 0.94 and 0.97). In [17], GT was used to investigate Internet activity related to loss

of smell in eight countries. Spearman rank correlation coefficients were analyzed to observe

the correlation between loss-of-smell relative search volumes (RSVs) and the increase in

daily confirmed cases of COVID-19. The authors found a close correlation (ranging from

0.63 to 0.95) between RSVs related to loss of smell and the number of COVID-19 cases and

death rates across all eight countries.
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2.2 Using epidemiological models to study the impact of

human mobility on the spread of infectious diseases.

Human mobility is an integral part of everyday life that enables humans to fulfill their basic

needs, such as attending work, participating in recreational activities, and purchasing food.

However, mobility can expose individuals to a variety of health risks, including infections

from contagious diseases such as COVID-19.

Additionally, social factors such as race, income, and age are essential determinants

of the number of infections and deaths related to infectious diseases (e.g., COVID-19).

In the U.S.A, for example, the mortality statistics related to COVID-19 show that per

100,000 inhabitants, 256 were among Indigenous Americans, 180 among Black Americans,

177 among Pacific Islander Americans, 150 among White Americans, 147 among Latino

Americans, and 96 among Asian Americans [5]. In terms of income inequality, an increase

of 1% in the Gini coefficient (a measure of inequality in a population) is directly related to

a 4% increase in COVID-19 cases per million and a 5% increase in COVID-19 deaths per

million [6]. A significant factor influencing COVID-19 mortality rates is age. For example,

the mortality rate varies significantly between countries but may reach 10% on average [18].

However, mortality rates may reach 20% in people over 80 years of age [19], with or without

multi-morbidity [20].

2.2.1 Epidemiological models and COVID-19

Epidemiological models, including the classic SIR and SEIR models, have been extensively

applied to analyze the COVID-19 pandemic. Researchers have explored public health inter-

ventions (e.g., social distancing) using the SIR and SEIR models. Researchers from various

disciplines have studied the COVID-19 pandemic. Specifically, the numerical simulation of

COVID-19 using mathematical models based on the SIR and SEIR models has been widely

used.
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A study that utilized the SIR model found that when the number of active infections in

the general population exceeds 1% and 10%, the health system is seriously challenged, and

severe staffing shortages occur. [21]. An extended SEIR model was used to study the role

of testing and case-dependent quarantine, finding that testing at a high rate combined with

targeted quarantine policies mitigated the economic effects of COVID-19 [22]. A study ana-

lyzed the impact of human mobility restrictions in Shenzhen, China, using the SEIR model.

The authors found that the city experienced a significant reduction in the peak of cases

between 33-66% by reducing mobility between 20-60% [23]. In another study, researchers

analyzed the mobility of small groups of active individuals and gathering venues. They

found that the total number of infections was reduced by applying mobility interventions

focused on these individuals and venues [24].

2.2.2 Epidemiological models and human mobility to predict the

spread of COVID-19

Researchers from various disciplines have studied the COVID-19 pandemic. Specifically,

numerical simulation of COVID-19 using mathematical models based on the SIR and SEIR

models augmented with mobility data have been used (See table 2.1). [25] estimate the

transmission rates as a function of the population mobility. They found a stable association

between mobility and transmission rates that is conserved across several significant counties,

and it outperforms non-mobility models when forecasting future deaths. [26] incorporate

human mobility in the Susceptible and Exposed compartments of the SEIR model. Their

findings suggest that the heterogeneity of race and age are essential factors in the spread

of COVID-19, meaning that policymakers will need to consider these heterogeneities when

designing policies for mitigating COVID-19’s spread. Similarly, [27] uses mobility in the

transition between the Susceptible and Exposed compartments finding that a small minority

of super spreader points of interest account for a large majority of the infections and that

restricting the maximum occupancy at each point of interest is more effective than uniformly
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reducing mobility.

Table 2.1: Comparison between approaches using epidemiological models and human mo-

bility

Mobility

Author Model
Mobility

data
Resolution Incorporation

[25] SEIR SafeGraph County
Estimates transmission rate as a function of the population

mobility.

[26]
Stochastic

SEIR
SafeGraph Regions

Mobility is incorporated only in the Susceptible and Exposed

compartments.

[27] SEIR Safegraph Metro areas
Mobility is incorporated only in the transicion between the

Susceptible and Exposed compartments.

[28] SEIR
Baidu migra-

tion data
Provinces

Mobility (m) is used to compute the effective size of the popu-

lations at risk (q=m/N). Then q is used to compute the initial

susceptible people (S0=qN).

[23] SEIR
Unicom mobil-

ity data
Districts

Mobility is used to compute the force of the infection in the

Susceptible and Exposed compartments.

[29] SIRD
Google mobil-

ity
US States

Human mobility is used to estimate the infection rate (beta) in

the Susceptible and Infected compartments during the initial,

lockdown, and riot periods.

[30]
SEIR + Deep

Learning

Google and

Unacast mobil-

ity data

US Counties
The susceptible to infectious transition rate (β) is modeled as

a function of mobility and social behavior.

In another work, [28] uses mobility data to compute the adequate size of the populations

at risk (q). Then q is used to compute the initial Susceptible people. They found that the

value of q has a linear relationship with human mobility data. [23] uses human mobility to

compute the force of the infection in the Susceptible and Exposed compartments. According

to their findings, a decrease in mobility of 20-60% within a city significantly impacted

the COVID-19 spread by more than 33% (95% for UI 21-42). The effects of mobility

restrictions were enhanced when combined with reductions in virus transmissibility of 25%

or 50%. [29] examined human mobility during periods of lockdown, riot, and the initial

period of infection to estimate the rate of infection. They found a strong correlation between

the number of COVID-19 cases and the number of people visiting parks. As a result of the

riots, residents began to use parks more frequently, which increased the infection rate of
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the epidemic, thereby postponing the turning points in the USA as a whole and specifically

in certain states. Similarly, [30] found that policies regarding working from home had a

significant effect on reducing reproduction rates. Moreover, their analysis revealed a delay

between changes in mobility, social behavior, and reproduction numbers. Variations in

reproduction numbers observed on a particular day are influenced primarily by behaviors

that occurred 17 to 21 days ago.

2.3 Cyber epidemics modeling

The term malware refers to malicious software or code that allows an attacker to cause

significant damage to computers, mobile devices, and networks or allow unauthorized access

to personal information. In addition to worms and Trojan horses, malicious actors generally

use viruses, rootkits, spyware, and ransomware as their primary malware. This section will

review previous work on malware detection approaches.

2.3.1 Malware detection approaches

The number of research works on malware detection has increased rapidly in recent years.

One of the first and most popular methods was the signature-based detection method.

Despite its effectiveness against known malware, this method is ineffective in detecting zero-

day malware [31]. Over time, it became necessary to develop new strategies for malware

detection such as behavior-based [32] [33] [34] [35] [36] [37], heuristic-based [38] [39] [40] [41],

model checking-based [42] [43] [44] [45] [46] [47], deep learning-based [48] [49] [50] [51] [52]

[53], cloud-based [54] [55] [56], mobile-based [57] [58] [59], and IoT-based [60] [61] [62], [63]

[64].

2.3.1.1 Detecting malware using web data

Recently, some malware detection techniques have been using web-based data. In [65],

the authors propose a Markov model for studying the effect of restricting infected web
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pages from appearing in search results and decreasing their ranking on search engines.

Another research [66] presents a method for identifying landing pages that lead to drive-by

downloads. They collect malicious content from landing pages by querying the webpage

cache of a commercial search engine to determine landing pages containing similar or the

same content. In the same way, ShoposLabs [67] conducted research on how attackers

are using blackhat Search Engine Optimization techniques to flood legitimate websites

with content that will rank highly in search engine results and direct users to malicious

websites.

In order to understand how malware spreads on websites, it is necessary to investigate

the method of distribution. In [68], the author built web honeypots containing vulnerable

applications to investigate malware distribution on websites. The authors found that anti-

virus software frequently fails to detect malware files and that web honeypot traffic patterns

help to detect malware on websites. A similar scheme is proposed in [69], where the

destination URLs of attacks based on web application vulnerabilities can be corrected by

seeing the path structure of honeypots.

Other researchers have focused their efforts on detecting malicious web pages. In [70],

the authors present a method to search the web for malicious pages more efficiently. The

initial seed is a collection of known malicious pages in this method. The method then

generates search engine queries to identify other malicious pages similar to or related to

the initial seed. Similarly, in [71], the authors used a collection of web users to track

their interactions with websites, including the redirections they used to reach their final

destinations. Lastly, they aggregate the redirection chains leading to a specific web page

and analyze the characteristics of the resulting redirection graph to detect malicious web

pages.

Recently, researchers have used web search results to explore and study malware attacks.

In [72], the authors present a study examining the effects of mining Bing search query

logs on gaining insights about ransomware attacks. First, they extract queries related to

ransomware, and then they build a machine-learning algorithm to identify queries where
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users seek assistance regarding ransomware attacks. Their results suggest that ransomware

attacks are associated with user search behavior.

2.3.2 Uncovering Threat Vectors through Attack Analysis

In recent years, a limited number of studies have been conducted on the automatic linkage

between Common Vulnerabilities and Exposures (CVEs), Common Weakness Enumeration

(CWEs), and Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) tech-

niques. This section reviews some of these works to understand the approaches used and

some of their limitations.

An approach presented in [73] proposes a Multi-Head Joint Embedding Neural Network

model that leverages a knowledge base of 50 mitigation strategies to map Common Vul-

nerabilities and Exposures (CVEs) to MITRE ATT&CK techniques. The authors evaluate

their proposed model on a dataset of over 62,000 CVE records, demonstrating promising

performance. However, the authors also recognize some limitations, such as the incomplete-

ness of the knowledge base and the need for additional data sources to improve mapping

accuracy.

In [74], the authors focus their research on linking CVEs to Common Attack Pattern

Enumeration and Classification (CAPEC) IDs. They propose a method using three similar-

ity measures (TF-IDF, Universal Sentence Encoder, and Sentence-BERT) to trace related

CAPEC-IDs from CVE-IDs. The authors report high accuracy using TF-IDF but also note

that their method does not currently take vulnerability severity into account and requires

verification of its adaptability to other repositories.

The work in [75] presents a dataset of 1813 CVEs annotated with MITRE ATT&CK

techniques and proposes models for automatic linkage between the two based on CVE

metadata text descriptions. The best model achieved an F1-score of 47.84%. The authors

are aware of the limitations of their training set and suggest future work involving Few-Shot

Learning and Semi-supervised learning methods.

In [76], the authors analyze CVE data to identify 94 concepts related to 11 logical
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groups and use graph theoretical techniques to analyze the data. They also identify brands

and technologies that are more prone to vulnerabilities and suggest prioritizing these when

designing security measures. Additionally, the authors suggest using the CVE concepts to

examine the coverage of security products and to identify recent hacker community trends.

In [77], the authors describe BRON, an aggregate data graph that links various sources

of cybersecurity information, including MITRE ATT&CK MATRIX, Common Weakness

Enumerations, CVEs, and CAPEC. The authors demonstrate the utility of BRON in en-

hancing the analysis of alerts, threats, and vulnerabilities.

In [78], the authors propose a system that uses Natural Language Processing techniques

to classify and prioritize CVEs based on their relevance to a particular organization. The

authors use a dataset of over 9,000 CVEs and demonstrate the efficacy of their approach

in accurately predicting the relevance of a CVE to a given institution. The authors also

suggest future work to improve the system’s scalability and to address limitations such as

the incompleteness of the CVE metadata.
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Chapter 3

Integrating Heterogeneous Data for a

Multi-disease Outbreak Detection

Framework1

3.1 Introduction

According to [4], 15 of 57 million annual deaths worldwide are directly attributable to in-

fectious diseases. In response to the emergence and re-emergence of infectious diseases, new

outbreak detection systems are needed to help guide public health policies and implement

timely mitigation strategies. Over the past two decades, researchers have developed sys-

tems using regression models [7], time-series analyses [11], and multivariate methods [13]

for detecting outbreaks of infectious diseases. Most recently, researchers concentrated their

efforts on detecting disease outbreaks using data compiled from web search engines (e.g.,

Google Trends) [14]. One limitation of these studies is that Google Trends is used with

disease-related terms that are not standardized. In other words, different researchers can

use different terms to refer to the same disease. Furthermore, most proposed models are

developed specifically for a single disease, hence limiting their use for detecting other infec-

tious diseases. Additionally, using web search data with non-standardized terms to detect

outbreaks is challenging as it requires expertise in epidemiology to select the most appro-

priate search terms relevant to a specific disease.

In this work, we introduce one single framework to detect multiple infectious disease
1https://doi.ieeecomputersociety.org/10.1109/BigData52589.2021.9671841
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outbreaks simultaneously. Our study combines a set of standardized disease symptoms

(derived from the Human Symptoms-Disease Network – HSDN [79]) with Google Trends

scores. The novelty of this study lies in the integration of static and standardized

medical terms (e.g., symptoms) with dynamic Google Trends data to detect outbreaks of

infectious diseases. The framework’s performance was assessed using 11 infectious diseases

reported by the Centers for Disease Control and Prevention(CDC)2.

Experimental results show that our proposed framework achieves an average accuracy of

greater than 95%. We also observed that the HSDN symptoms improve the performance of

the proposed framework compared to only using Google trends data —indicating that the

integration of static HSDN data and dynamic Google trends data is critical for detecting

outbreaks. Experiments also showed that outbreaks of diseases with a higher number of

symptoms are more easily detected than diseases with a lower number of symptoms. Lastly,

we found that using TF-IDF [79] scoring of HSDN symptoms improves the detection of

outbreaks. As a result of these findings, standardized disease symptoms and user search

data appear to be excellent indicators for detecting outbreaks of infectious diseases.

Please note that the goal of the paper is to detect the outbreaks of multiple infectious

diseases, not to predict the onset of these diseases. The key contributions of this paper

include:

1. An innovative method to detect infectious disease outbreaks by using standardized

disease symptoms in conjunction with Google trends data.

2. A robust and scalable framework for detecting multiple disease outbreaks.

The rest of this paper is structured as follows: Section 2.1 presents a brief survey of

related work. Section 3.2 describes the problem. We present the methodology in Section

6.2 and results in Section 6.3. We conclude the paper in Section 6.4.
2https://wwwn.cdc.gov/nndss/infectious-tables.html
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3.2 Proposed Approach

Given a set of N diseases D = {d1, d2, ..., dN}, each disease di has a set S = {s1, s2, ..., sK}

of K symptoms and their corresponding weight W = {w1, w2, ..., wK}. The weight W of

each symptom of a disease is computed from the HSDN disease-symptom dataset using the

TF-IDF approach. A TF-IDF score indicates the level of association between a symptom

and a disease. A symptom may be strongly linked to one disease but weakly connected to

another. A higher TF-IDF score indicates a stronger disease-symptom connection.

Let G be a two-dimensional dataset for a given disease di. The columns are the symp-

toms of di. Note that the number of columns varies depending on the disease di as different

diseases have different numbers of symptoms. The rows indicate the data for a disease di in

a given week of the year, in a given U.S.A. state (there are 50 states in total). Hence, every

row of G is a set R = {F1, ..., FK , label} that represents a U.S.A. state during a given week

of a year. The columns indicate features F1,..,K = Google_trends_scores(sK)*W(sK) which

are computed using the Google trends scores (ranging from 0 to 100), for every symptom

sK of di (obtained from HSDN for a specific disease di) multiplied with the weight wk

(TF-IDF) of sK (as computed from HSDN). The label ∈ {1, 0} indicates whether or not

the CDC confirmed and reported the outbreak of di in the given U.S.A state at that given

week.

We propose a multi-disease outbreak detection framework ODF , such that, given N

datasetsDtrain1,...,N
andDobs1,...,N , the modelODFtrain(Dtrain1,...,N

) 7−→ ODFclassify(Dobs1,...,N )

can identify which instances in Dobs1,...,N are outbreaks.

3.3 Methodology

In this Section, we describe the methodology used to design, implement, and test the multi-

disease outbreak detection framework. To build and test our framework, we selected 11

infectious diseases that are among the leading causes of illness and death in the United
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Figure 3.1: Overview of the proposed framework. We construct a dataset for each disease

using the symptom retriever, Google Trends retriever, and dataset constructor modules.

Symptoms, TF-IDF scores, Google Trends scores, and official CDC reports are incorporated

into each dataset. All datasets are pre-processed to reduce skewness, generate Gaussian-

like distributions, and balance datasets. The final datasets are used to train and evaluate

the proposed framework.

States [80]: COVID-19, Tularemia, Salmonella, E. Coli, Brucellosis, Influenza, Hepatitis

A, Hepatitis B, Hepatitis C, Dengue, and Meningitis. The main causative agents of these

diseases are either bacteria or viruses, as illustrated in Table 3.1. Some diseases are emerg-

Table 3.1: Diseases, causes, type, and No. of cases reported by CDC in 2019. The number

of cases for COVID-19 was retrieved for the period between 01-11-2020 to 07-08-2020.

Disease Caused by Emerging Re-emerging No. of Cases

Tularemia Bacteria X X 48
Salmonella Bacteria X 1029
E. Coli Bacteria X 900
Brucellosis Bacteria X 37

COVID-19 Virus X ≈ 12 Million
Influenza Virus X 110
Hepatitis C Virus X 322
Hepatitis B Virus X 325
Hepatitis A Virus X 811
Dengue Virus X 57

Meningitis Virus/Bacteria X 109
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ing (e.g., COVID-19), whereas others are re-emerging (e.g., Salmonella). We selected the

data from the entire year of 2019 (i.e., 52 weeks) for 10 out of the 11 diseases. At the time

we started working on this framework, COVID-19 was emerging. Hence, we selected six

months of data (from 01-11-2021 to 07-08-2020) for COVID-19. The number of cases for

each disease in the selected timeline varies widely, ranging anywhere from 37 cases in a

year (e.g., Brucellosis) to 12 million cases in four months (e.g., COVID-19).

Our work leverages the HSDN dataset. HSDN uses large-scale medical bibliographic

records and the related Medical Subject Headings (MeSH) terms from PubMed [81], to

generate a symptom-based network of human diseases. We, however, do not use the network

structure of the dataset; we only extract the symptoms related to a disease. Figure 3.1

shows the overview of our framework. The framework consists of four modules: a module

for dataset construction (Section 3.3.1), a module for pre-processing the dataset (Section

3.3.2), a module for building the multi-disease outbreak detection models (Section 3.3.3),

and lastly, an evaluation module (Section 3.3.4). The following subsections describe these

modules in more detail.

3.3.1 Datasets Construction

We integrated disparate data from two different sources to generate the dataset that builds

the core of this work: 1) static data of standardized medical terms (i.e., symptoms of

the diseases), and 2) dynamic data (i.e., Google trends scores) to indicate the interest in

those symptoms at a given time, in a given location. The resultant dataset is then used

to detect possible outbreaks of infectious diseases at a given time and in a given state

(i.e., U.S.A. states). The static symptoms data were obtained from the Human Symptoms-

Disease Network (HSDN) [79]. Instead of using the raw frequency of symptoms in HSDN,

we used the TF-IDF scores of the symptoms to reflect the strength of the association

between symptoms and diseases. We incorporated dynamic data into our dataset by using

symptoms as search terms in Google Trends (GT). We utilized the GT scores to consider

people’s interest in various diseases and their symptoms across all the U.S.A states and
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selected time periods. The integrated data (HSDN+GT) formed the core of the dataset

that is used later in our framework.

Each one of the selected 11 diseases has its own dataset composed of weekly data as

rows and symptoms (i.e., features) as columns. We developed three sub-modules that aid in

the construction of these datasets (See Fig. 3.1): 1) symptoms retriever, 2) Google Trends

retriever, and 3) dataset constructor.

3.3.1.1 Symptoms Retriever Module

The primary task of this module is to retrieve all the symptoms for each disease from

HSDN. The secondary task is to compute the TF-IDF score of the symptoms for a specific

disease (from PubMed) and share the output with two other modules. The symptoms data

is sent to the Google Trends Retriever module for retrieving the GT score of that symptom

in the given timeline at the 50 states. The Dataset Constructor module receives the disease

name, associated symptoms, and the corresponding TF-IDF scores for each symptom of

the disease.

3.3.1.2 Google Trends Retriever Module

This module receives a set of symptoms from the symptoms retriever module for a given

disease. In addition, the module uses the dates and geographical regions files to determine

the timeline and states for retrieving the GT scores. The dates file consists of all the weekly

dates of interest (e.g., 52 weeks from 2019 for ten diseases, and 25 weeks of 2020 for COVID-

19). The geographical regions file contains a list of the 50 U.S.A states. Although we use

a state-level resolution, Google Trends allows other resolutions (e.g., subregion, metro, or

city) as well.

Given the disease, symptoms, dates, and regional data, this module retrieves the GT

score through the official Google Trends API 3. The GT score is returned as a list of lists
3https://trends.google.com/
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Figure 3.2: The diseases datasets d1,...,N contain 2600 rows (52 weeks for each of the 50

states) R, with k columns. Each column F1, ..., k contains the multiplication of normalized

GT scores of a symptom for disease di (in a given week, at a given state) with the TF-IDF

score of the symptom in regard to di (from HSDN). The label represents if the instance is

reported as an outbreak by the NNDSS from CDC (e.g., 1 is outbreak).

(one row per week, per state). This list is then sent to the Dataset Constructor Module for

further processing.

3.3.1.3 Dataset Constructor Module

This module performs the last step in the creation of the datasets. It retrieves the unique

identifier (UI) of one disease at a time along with TF-IDF values of the disease-specific

symptoms from the Symptoms Retriever Module. This module also receives the GT scores

from the Google Trends Retriever Module. The official CDC reports are retrieved from the
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Figure 3.3: (Left) Brucellosis and COVID-19 raw datasets with imbalanced classes (A and

C), (Right) Pre-processed datasets with reduced class imbalance after using SMOTE +

ENN (B and D).

National Notifiable Diseases Surveillance System (NNDSS)4.

For each disease di, the module constructs a bidimensional dataset. The datasets consist

of instances (i.e., rows) R = {F1, ..., FK , label}, where F1,..,K are the features (i.e., columns)

represented by the Google Trends score for each symptom of di (in a given week, in a given

state) multiplied by the TF-IDF score of that symptom of di (retrieved from HSDN). We

used TF-IDF scores since, although diseases share some symptoms, some symptoms are

strongly associated with certain diseases, whereas that same symptoms may be weakly as-

sociated with another disease.TF-IDF score can detect this strength of the disease-symptom

connection. Lastly, the label column in each row indicates whether or not the CDC has

officially recognized an outbreak of that disease, in that week, in that state. Figure 5.3

shows a visual representation of this dataset.
4https://www.cdc.gov/nndss/index.html
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3.3.2 Preprocessing Datasets

The disease-specific datasets generated in Section 3.3.1, presented several challenges in-

cluding, imbalanced datasets, overlapping classes, and skewed datasets. We addressed the

challenges of imbalanced datasets and overlapping classes using oversampling and under-

sampling methods. These two methods are highly effective when used in combination [82]

to address dataset imbalance. We tested two combinations, the Synthetic Minority Over-

sampling TEchnique (SMOTE) [83] + the Edited Nearest Neighbors (ENN) and SMOTE

+ TOMEK-Links [84]. The combination of SMOTE + ENN produced better results.

Figures 3.3(A) and 3.3(C) show the original imbalanced datasets for the COVID-19

and Brucellosis diseases. Figures 3.3(B) and 3.3(D) show the new balanced datasets using

SMOTE + ENN. The blue dots represent instances labeled as no outbreak, and the orange

dots are instances labeled as an outbreak. We also applied a log-transformation to reduce

the skewness of the original datasets. The log-transformation method is widely used to

reduce the skewness and consequently transform the data to a Gaussian-like distribution

[85].

3.3.3 Building the models

We conducted a 10-fold cross-validation during the modeling process. The cross-validation

(CV) technique is used for testing the effectiveness of machine learning models and also

for improving models with limited data. We split our datasets with a ratio of 80% training

and 20% testing. We followed the scaling law for the validation-set training-set size ratio

proposed by Guyon [86].

We built and tested the disease models using several machine learning (ML) algorithms.

Our goal was to develop one framework that can detect the outbreaks of multiple infectious

diseases. This can be rephrased as an ML problem for binary classification. A number of

ML algorithms exist to address such problems. We selected 11 algorithms for further study,

based on the following factors:
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1. Size of the training data: While it is essential to collect as much data as possible to

develop reliable models, there are no well-defined rules on how much data is sufficient

to make such models [87], [88]. The raw datasets used in this study contain 2600

instances (i.e., 52 weeks of data for 50 states) for 10 out of the 11 diseases, and 1250

instances for COVID-19 (i.e., 25 weeks of data for 50 states). Note that the number of

features (i.e., symptoms) is different for each disease - ranging from 14 for Tularemia

to 109 for Human Influenza. Considering the size of our datasets, we decided to

use low bias/high variance algorithms, such as K-Nearest Neighbor (KNN ), Support

Vector Machines (SVM ), and Decision Trees (DT ).

2. Accuracy and interpretability: The difference between accuracy and interpretabil-

ity is that accuracy measures the correctness of classification, while interpretability

explains why a classification was made [89].

The proposed framework is designed to be used by both experts and non-experts in

computer science. Hence, it is important that the framework produces results that

are both accurate and explainable. Therefore, we selected the following 11 algorithms

which are likely to be accurate yet easy to interpret, for further study:

• Low Accuracy-High Interpretability: Logistic Regression (LR) [90].

• Medium Accuracy-Medium Interpretability: Gaussian Naive Bayes (GNB) [91],

Decision Trees (DT ) [92], K-Nearest Neighbor (KNN ) [93], Gaussian Process

Classifier (GPC ) [94], Stochastic Gradient Descent (SGD) [93], Linear Discrim-

inant Analysis (LDA) [95].

• High Accuracy-Medium Interpretability: XGBoost [93], Support Vector Machine

(SVM ) [93].

• High Accuracy-High Interpretability: Random Forest (RF ) [93].

• High Accuracy-Low Interpretability: Multi-Layer Perceptron-Neural Network

(MLP-NN ) [93].
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3.3.4 Evaluation Metrics

There are a variety of performance metrics used to evaluate the quality of learning methods

and generated disease models. As part of our interest in minimizing the number of classi-

fication errors, we used precision, recall, F1-measure, and accuracy, which are categorized

as threshold metrics by Ferri, et al. [96]. Additionally, we used the cross-entropy loss (e.g.,

probability metrics) to analyze the detected class probabilities. A cross-entropy value of 0.0

indicates a perfect detection and probably overfitting [97]. In our analysis, we considered

any cross-entropy score greater than 0.0 and less than 0.3 as good classification perfor-

mance. We also used the Pearson correlation coefficient to investigate possible correlations

between these metrics and some properties of the diseases.

3.4 Results and Discussion

Our work focuses on developing a single framework for detecting multiple infectious disease

outbreaks using standardized medical terms (e.g., symptoms) coupled with their Google

Trends scores. Disease-specific standard symptoms play a key role in this framework. Hence

it is important to check if the symptoms are indeed important for detecting outbreaks or if

we can achieve similar performance with disease names only. We ran a test to check how

the proposed approach compares to a baseline approach where only disease names and their

Google Trend scores are used for outbreak detection. We compared these results with our

proposed system that utilizes HSDN disease-specific symptoms, the TF-IDF scores of each

symptom, and the Google Trend scores of those symptoms. Table 3.5 shows the F1-score of

various algorithms when using the baseline approach (i.e., only disease name, no symptoms)

and the proposed approach. The table shows the best F1-score of any of the 11 algorithms

used. Results show that the proposed framework outperforms the baseline approach for

detecting outbreaks for all diseases. This table clearly shows that disease-specific symptoms

are better indicators of outbreaks than only disease names.

To better understand different aspects of the proposed framework, we seek to answer
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Table 3.2: A comparison of the three best-performing algorithms for each disease using

datasets constructed with HSDN symptoms vs. related queries. We report the accuracy,

F1-score, and binary cross-entropy scores. The results indicate that the proposed framework

performs better when using HSDN symptoms as primary indicators of outbreaks.

Disease
HSDN Symptoms Related Queries HSDN Symptoms Related Queries HSDN Symptoms Related Queries
Algorithm Accuracy Algorithm Algorithm F1-Score Algorithm Algorithm Cross-Entropy Algorithm

COVID-19
MLP-NN 99.4 98.1 MLP-NN MLP-NN 99.5 98.2 MLP-NN MLP-NN 0.02 0.06 MLP-NN

SVM 99.2 97.9 XGBoost SVM 99.3 98.1 XGBoost SVM 0.03 0.06 XGBoost
RF 99.0 97.8 SVM RF 99.1 98.0 SVM RF 0.11 0.07 SVM

Tularemia
MLP-NN 99.2 99.7 MLP-NN MLP-NN 99.2 99.7 MLP-NN MLP-NN 0.03 0.02 MLP-NN

GP 98.2 99.0 RF GP 98.4 99.0 RF GP 0.31 0.08 RF
RF 98.1 97.8 KNN RF 98.3 98.0 KNN RF 0.10 0.15 KNN

Salmonella
GP 87.2 89.3 GP GP 92.2 93.5 GP GP 0.44 0.59 GP

SVM 87.2 87.2 KNN SVM 92.1 92.3 KNN SVM 0.34 1.26 KNN
KNN 87.0 85.5 MLP-NN KNN 91.9 91.1 MLP-NN KNN 0.87 0.35 MLP-NN

Meningitis
SVM 99.3 97.6 MLP-NN SVM 99.5 97.9 MLP-NN SVM 0.01 0.07 MLP-NN

MLP-NN 98.5 97.0 GP MLP-NN 98.9 97.4 GP MLP-NN 0.06 0.38 GP
RF 97.7 96.2 RF RF 98.3 96.70 RF RF 0.12 0.18 RF

Influenza
SVM 99.4 99.0 SVM SVM 99.6 99.1 SVM SVM 0.01 0.03 SVM

MLP-NN 99.0 99.0 MLP-NN MLP-NN 99.3 99.1 MLP-NN MLP-NN 0.04 0.04 MLP-NN
XGBoost 98.4 98.5 RF XGBoost 98.87 98.7 RF XGBoost 0.07 0.09 RF

Hepatitis C
MLP-NN 95.3 95.5 GP MLP-NN 97.1 96.3 GP MLP-NN 0.14 0.43 GP

SVM 95.2 94.9 MLP-NN SVM 97.0 95.9 MLP-NN SVM 0.11 0.17 MLP-NN
RF 93.5 91.3 KNN RF 95.9 93.2 KNN RF 0.30 0.33 KNN

Hepatitis B
MLP-NN 95.9 93.7 MLP-NN MLP-NN 97.4 95.1 MLP-NN MLP-NN 0.18 0.20 MLP-NN

SVM 94.0 93.1 GP SVM 96.3 94.7 GP SVM 0.11 0.44 GP
RF 93.4 90.9 RF RF 95.9 92.8 RF RF 0.21 0.30 RF

Hepatitis A
GP 97.2 93.1 GP GP 98.4 95.1 GP GP 0.64 0.52 GP

MLP-NN 96.9 90.6 MLP-NN MLP-NN 98.2 93.2 MLP-NN MLP-NN 0.14 0.30 MLP-NN
SVM 96.5 89.4 KNN SVM 98.0 92.5 KNN SVM 0.09 0.83 KNN

E. Coli
GP 95.5 87.9 GP GP 97.6 92.6 GP GP 0.65 0.43 GP

SVM 94.7 87.9 KNN SVM 97.2 92.4 KNN SVM 0.16 1.06 KNN
MLP-NN 94.7 86.3 RF MLP-NN 97.1 91.6 RF MLP-NN 0.23 0.78 RF

Dengue
RF 99.4 99.3 RF RF 99.5 99.3 RF RF 0.07 0.06 RF

SVM 99.3 99.2 KNN SVM 99.4 99.2 KNN SVM 0.00 0.09 KNN
MLP-NN 98.7 99.0 MLP-NN MLP-NN 98.9 99.0 MLP-NN MLP-NN 0.03 0.05 MLP-NN

Brucellosis
SVM 100.0 97.6 RF SVM 100.0 97.8 RF SVM 0.00 0.15 RF

MLP-NN 99.3 96.9 KNN MLP-NN 99.4 97.2 KNN MLP-NN 0.02 0.24 KNN
RF 98.9 90.4 XGBoost RF 99.1 91.4 XGBoost RF 0.05 0.26 XGBoost

MLP-NN: Multilayer Perceptron Neural Network. GP = Gaussian Process. RF = Random Forest.
SVM = Support Vector Machine. kNN = K-Nearest Neighbors

the following questions in this section:

1. What is the effect of using HSDN disease-specific symptoms in detecting outbreaks

of infectious diseases?

2. How do different weighting of symptoms affect the detection of infectious disease

outbreaks?

3. What effect does the number of symptoms have on the detection of outbreaks?
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3.4.1 The role of HSDN symptoms in detecting outbreaks of in-

fectious diseases

The first question we seek to answer is: what is the effect of using HSDN disease-specific

symptoms in detecting the outbreaks of infectious diseases? To answer this question, we

tested our framework with 1) the original HSDN datasets that include disease-specific

symptoms, and 2) a different disease dataset for each infectious disease that is built using

related queries (instead of the HSDN disease-specific symptoms). For the second version

of the dataset, we obtained an average of 20 related queries for each disease from the

Google Trends API with the disease name as the input. For example, “covid 19” and “covid

symptoms” are examples of related queries for the COVID-19 disease.

Table 3.2 presents the results of this analysis. We list three evaluation metrics for each

infectious disease to test the two approaches: accuracy, F1-score, and cross-entropy. We

list the performance of the two versions we tested for each of the metrics: the proposed

HSDN-symptoms-based framework and the related-query-based framework. For simplicity,

we list the three best-performing algorithms for both versions. The best score of the three

algorithms is highlighted with bold text.

In terms of accuracy, when using HSDN symptoms, the accuracy was higher (>95%)

for 8 out of 11 diseases compared to the related-query-based approach. We observed a

similar trend while analyzing the F1 scores, where the results were higher (>97%) with

HSDN symptoms for 9 out of the 11 diseases. Note that even though we processed our

datasets to reduce the data imbalance, the final datasets still exhibit a slight imbalance

(see Figure 3.3). The higher F1 scores indicate that the proposed framework has low false

positives, i.e., events that are mistakenly detected as outbreaks, and low false negatives, i.e.,

outbreaks that are not detected as outbreaks. This indicates that the proposed framework

is effective in detecting outbreaks even with slightly imbalanced datasets.

For both accuracy and F1-score, when we check the performance of all the 11 algo-

rithms, Support Vector Machine (SVM), Multi-Layer Perceptron Neural Network (MLP-
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NN), Gaussian Process (GP), and Random Forest (RF) algorithms are consistently ranked

among the top three algorithms. The MLP-NN algorithm had more than 95% accuracy

in detecting outbreaks of COVID-19 (99.4%), Tularemia (99.2%), Hepatitis C (95.5%),

and Hepatitis B (95.9%). The GP algorithm achieved maximum accuracy in detecting

outbreaks of Salmonella (89.7%), Hepatitis A (97.2%), and E. Coli (95.6%). The SVM al-

gorithm was best in detecting Meningitis, Influenza, and Brucellosis outbreaks with 99.3%,

99.4%, and 100% accuracy, respectively. The RF and SVM algorithms were more accu-

rate than the other algorithms in detecting Dengue outbreaks, with an accuracy of 99.4%.

The last metric in the table shows the cross-entropy value. Cross-entropy is a measure

of the performance of a classification model whose output is a probability value between 0

and 1. The cross-entropy increases as the predicted probability diverges from the actual la-

bel. Therefore, a cross-entropy value close to 0 suggests that all predicted probabilities are

closer to the target labels. In our experiments with the HSDN symptoms, the cross-entropy

scores were lower (<0.34) than the similar query-based approach for 10 out of 11 diseases.

As we notice in the cross-entropy values, the SVM algorithm has better performance at

detecting outbreaks.

In the exceptional case of Salmonella, we achieved 89.3% accuracy (GP) with related

queries compared to 87.2% (SVM) using HSDN symptoms. It represents a difference of

2.1%. Likewise, the F1-Score exhibited similar behavior, scoring 93.5% (GP) for related

queries and 92.1% (SVM) for HSDN symptoms. It is a difference of 1.3%. However,

as evidenced by the cross-entropy score, the HSDN symptom-based approach performed

slightly better with the SVM algorithm. In particular, the SVM algorithm obtained a cross-

entropy score of 0.34 when using symptoms, as opposed to 0.59 with GP - even though

GP achieved the best performance in accuracy and F1-score. In other words, the SVM

algorithm with HSDN symptoms is more reliable but less accurate in identifying outbreaks

caused by Salmonella compared to the GP algorithm with related queries. Note that,

while the MLP-NN algorithm has the lowest cross-entropy (0.35) using related queries, the

accuracy of MLP-NN was lower (85.5%) than GP (89.3%). While MLP-NN is less accurate
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Table 3.3: Accuray, F1-Score, and Cross-Entropy using datasets with the TF-IDF (weighted

symptoms) and without TF-IDF (unweighted symptoms).

Disease
Using TF-IDF Without TF-IDF Using TF-IDF Without TF-IDF Using TF-IDF Without TF-IDF

Algorithm Accuracy Algorithm Algorithm F1-Score Algorithm Algorithm Cross-Entropy Algorithm

COVID-19
MLP-NN 99.4 99.1 MLP-NN MLP-NN 99.5 99.2 MLP-NN MLP-NN 0.02 0.03 MLP-NN

SVM 99.2 98.4 SVM SVM 99.3 98.7 SVM SVM 0.03 0.04 SVM
RF 99.0 98.4 RF RF 99.1 98.6 RF RF 0.11 0.11 RF

Tularemia
MLP-NN 99.2 98.8 MLP-NN MLP-NN 99.2 98.9 MLP-NN MLP-NN 0.03 0.04 MLP-NN

GP 98.2 98.8 RF GP 98.4 98.8 RF GP 0.31 0.09 RF
RF 98.1 98.7 GP RF 98.3 98.8 GP RF 0.10 0.29 GP

Salmonella
GP 87.2 89.7 KNN GP 92.1 93.5 KNN GP 0.44 1.02 KNN

SVM 87.2 89.0 GP SVM 92.1 93.0 GP SVM 0.34 0.39 GP
KNN 86.9 85.5 XGBoost KNN 91.8 90.9 XGBoost KNN 0.87 0.33 XGBoost

Meningitis
SVM 99.3 99.1 MLP-NN SVM 99.5 99.3 MLP-NN SVM 0.01 0.03 MLP-NN

MLP-NN 98.5 98.5 SVM MLP-NN 98.9 98.8 SVM MLP-NN 0.06 0.01 SVM
RF 97.7 98.5 RF RF 98.2 98.8 RF RF 0.12 0.11 RF

Influenza
SVM 99.4 98.2 SVM SVM 99.6 98.7 SVM SVM 0.01 0.01 SVM

MLP-NN 99.0 98.2 MLP-NN MLP-NN 99.3 98.7 MLP-NN MLP-NN 0.04 0.05 MLP-NN
XGBoost 98.4 98.2 RF XGBoost 98.9 98.6 RF XGBoost 0.07 0.10 RF

Hepatitis C
MLP-NN 95.3 95.5 MLP-NN MLP-NN 97.1 97.0 MLP-NN MLP-NN 0.14 0.19 MLP-NN

SVM 95.2 94.9 SVM SVM 97.0 96.6 SVM SVM 0.11 0.13 SVM
RF 93.4 94.5 GP RF 95.9 96.4 GP RF 0.30 0.54 GP

Hepatitis B
MLP-NN 95.9 95.9 MLP-NN MLP-NN 97.4 97.3 MLP-NN MLP-NN 0.18 0.15 MLP-NN

SVM 94.0 95.1 GP SVM 96.3 96.8 GP SVM 0.11 0.53 GP
RF 93.4 94.8 SVM RF 95.9 96.6 SVM RF 0.21 0.11 SVM

Hepatitis A
GP 97.2 93.9 GP GP 98.4 96.4 GP GP 0.64 0.63 GP

MLP-NN 96.9 93.0 MLP-NN MLP-NN 98.2 95.8 MLP-NN MLP-NN 0.14 0.25 MLP-NN
SVM 96.5 92.1 XGBoost SVM 97.9 95.3 XGBoost SVM 0.09 0.21 XGBoost

E. Coli
GP 95.5 95.6 GP GP 97.6 97.4 GP GP 0.65 0.64 GP

SVM 94.7 92.7 XGBoost SVM 97.2 95.6 XGBoost SVM 0.16 0.22 XGBoost
MLP-NN 94.7 92.7 MLP-NN MLP-NN 97.1 95.6 MLP-NN MLP-NN 0.23 0.27 MLP-NN

Dengue
RF 99.4 99.4 SVM RF 99.5 99.5 SVM RF 0.07 0.00 SVM

SVM 99.3 99.0 RF SVM 99.4 99.1 RF SVM 0.00 0.06 RF
MLP-NN 98.7 98.9 MLP-NN MLP-NN 98.9 99.0 MLP-NN MLP-NN 0.03 0.02 MLP-NN

Brucellosis
SVM 100.0 99.8 SVM SVM 100.0 99.8 SVM SVM 0.00 0.00 SVM

MLP-NN 99.3 99.3 MLP-NN MLP-NN 99.4 99.4 MLP-NN MLP-NN 0.02 0.02 MLP-NN
RF 98.9 99.2 RF RF 99.1 99.3 RF RF 0.05 0.05 RF

MLP-NN=Multilayer Perceptron Neural Network. GP=Gaussian Process. RF=Random Forest.
SVM=Support Vector Machine. KNN= K-Nearest Neighbors

than GP, it is more reliable.

We achieve the best performance in detecting Hepatitis using HSDN symptoms. The

proposed approach can detect and differentiate between three types of Hepatitis outbreaks:

Hepatitis A, Hepatitis B, and Hepatitis C. These three variants of Hepatitis share 34 symp-

toms, including fever, fatigue, and diarrhea. Despite the overlap in symptoms, the proposed

approach achieved better accuracies (>95%) and better F1 scores (>97%) than the related

query-based approach.

Emerging diseases often share some similarities with previous diseases as seen in the
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case of COVID-19. The COVID-19 and Influenza (A, B, C, and D) diseases are caused by

similar RNA viruses (e.g., Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus,

and Deltainfluenzavirus). This group of viruses affects the respiratory tract, exhibits similar

symptoms, and uses surface proteins to infect the host [98]. Based on the similarity of

symptoms, we investigated which Influenza symptoms could be used to detect COVID-19

outbreaks. As a result of a literature search, we determined that 51 Influenza symptoms are

also symptoms of COVID-19. Some of which include, delirium [99], hallucinations [100],

nausea [101], catatonia [102], seizures [103], and arthralgia [104]. We used these symptoms

and related queries to detect COVID-19 outbreaks. The results are shown in the first

row of Table 3.2. Using HSDN symptoms as the primary indicators of outbreaks, the

symptom-based approach outperformed the related queries approach, reaching maximum

accuracy (99.4%) and F1-score (99.5%) with the lowest cross-entropy score (0.02). Overall,

the HSDN symptoms performed better than the related queries in:

• 8 of 11 diseases using accuracy,

• 9 of 11 diseases using F1-score,

• 10 of 11 diseases using cross-entropy.

In conclusion, the proposed approach of using HSDN disease-specific symptoms with cor-

responding GT scores for outbreak detection has a better performance compared to the

related queries-based approach.

3.4.2 The effect of weighted and unweighted symptoms in out-

break detection

The connections between the symptoms and disease play a crucial role in our approach.

We use TF-IDF weighting to reflect the strength of the connection between a symptom and

a disease. The TF-IDF score of a symptom of a disease is multiplied by the GT score of

that symptom (in a given week, in a given state). To understand the effects of the TF-IDF
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scoring in the proposed framework, in this section, we seek to answer the question: how do

different weighting of symptoms affect the detection of infectious disease outbreaks?

As noted earlier, each disease has a set of symptoms, and a symptom can appear in

multiple diseases. However, a symptom may have a strong connection with one disease

but a weaker connection with another. In order to quantify the strength of the connection

between a symptom and a disease, we utilize TF-IDF weighting, retrieved from HSDN.

TF-IDF scores reflect how often a given symptom appears with a particular disease (in

PubMed, as used by HSDN) compared to how frequently the symptom appears in all the

diseases. A symptom that is frequently associated with a particular disease will have a

high TF-IDF score. To examine the effects of the TF-IDF weighting, we compared the

performance of the proposed framework with and without the TF-IDF weighting of the

HSDN symptoms. We constructed 11 datasets (one for each disease) without TF-IDF

scores (unweighted symptoms) and 11 datasets with TF-IDF scores (weighted symptoms)

(see section 3.3.1). Table 3.3 summarizes the results using accuracy, F1-score, and cross-

entropy scores of the three best-performing algorithms for both the TF-IDF weighing and

unweighted symptoms.

As seen in this table, the proposed TF-IDF weighing reached the highest accuracy of

95% or more for eight of the 11 diseases (i.e., COVID-19, Tularemia, Meningitis, Influenza,

Hepatitis B, Hepatitis A, Dengue, and Brucellosis). On the other hand, five of the 11

diseases (i.e., Salmonella, Hepatitis C, Hepatitis B, E. Coli, and Dengue) reached the

highest accuracy (89% or more) using unweighted symptoms. Note that both weighting

approaches have similar accuracy for Dengue and Hepatitis B.

In terms of F1 scores, we observed better results with TF-IDF weighting, which achieved

the highest F1 scores (97% or more) for 10 out of 11 diseases (i.e., except for Salmonella).

Only for Salmonella, the unweighted symptoms-based approach achieved a higher F1 score

(93.5% using KNN). Both weighting approaches had the same F1 score for Dengue.

According to cross-entropy, TF-IDF weighting performs equally well or better than the

unweighted symptoms in 10 out of the 11 diseases. Only in the case of Salmonella, the
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Table 3.4: A comparison of the three best-performing algorithms for each disease using

datasets constructed with symptoms. We report the No. of symptoms, algorithms, preci-

sion, recall, accuracy, F1-score, and cross-entropy scores.

Disease Symptoms

No. of

Algorithm Precision Recall Accuracy F1-Score Cross-Entropy

Influenza
SVM 99.2 100.0 99.4 99.6 0.01

109 MLP-NN 98.6 100.0 99.0 99.3 0.04
XGBoost 98.1 99.6 98.4 98.9 0.07

E. Coli
GP 95.3 100.0 95.5 97.6 0.65

82 SVM 94.7 99.7 94.7 97.2 0.16
MLP-NN 95.2 99.1 94.7 97.1 0.23

Brucellosis
SVM 100.0 100.0 100.0 100.0 0.00

79 MLP-NN 98.8 100.0 99.3 99.4 0.02
RF 98.8 99.4 98.9 99.1 0.05

Hepatitis A
GP 97.0 99.7 97.2 98.4 0.64

75 MLP-NN 97.3 99.2 96.9 98.2 0.14
SVM 96.8 99.2 96.5 98.0 0.09

Hepatitis C
MLP-NN 95.0 99.3 95.3 97.1 0.14

72 SVM 94.8 99.3 95.2 97.0 0.11
RF 95.0 96.7 93.5 95.9 0.30

Meningitis
SVM 99.0 100.0 99.3 99.5 0.01

69 MLP-NN 97.8 100.0 98.5 98.9 0.06
RF 97.4 99.2 97.7 98.3 0.12

Hepatitis B
MLP-NN 95.0 100.0 95.9 97.4 0.18

64 SVM 92.8 100.0 94.0 96.3 0.11
RF 93.7 98.2 93.4 95.9 0.21

Dengue
RF 99.4 99.6 99.4 99.5 0.07

53 SVM 98.8 100.0 99.3 99.4 0.01
MLP-NN 97.8 100.0 98.7 98.9 0.04

SARS-CoV-2
MLP-NN 99.0 100.0 99.4 99.5 0.02

51 SVM 98.7 99.7 99.1 99.3 0.03
RF 99.3 99.0 99.0 99.1 0.11

Tularemia
MLP-NN 98.5 100.0 99.2 99.2 0.03

22 GP 96.8 100.0 98.2 98.4 0.31
RF 97.7 98.9 98.1 98.3 0.10

Salmonella
GP 87.4 97.4 87.2 92.2 0.44

14 SVM 87.8 96.8 87.2 92.1 0.34
KNN 88.7 95.2 87.0 91.8 0.88

Correlations 0.48 0.57 0.51 0.55 -0.02

MLP-NN=Multilayer Perceptron Neural Network. GP=Gaussian Process. RF=Random Forest.
SVM=Support Vector Machine. KNN= K-Nearest Neighbors

unweighted symptom approach had better cross-entropy than the TF-IDF weighting. While

the performance of both weighted (i.e., TF-IDF) and unweighted symptoms are similar,
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weighted symptoms resulted in a higher score in accuracy and F1 measure. Results indicate

that the inclusion of TF-IDF will ensure better detection of infectious disease when used

with the GT score. However, if symptoms are not well-measured, the proposed approach

still can be used to detect the outbreak of infectious diseases – with lesser accuracy.

3.4.3 The effect of the number of symptoms in outbreak detection

In our study, the symptoms are used as the primary indicator for detecting infectious disease

outbreaks. However, it is important to note that different disease has different types and

numbers of symptoms. Among the 11 diseases we studied, the number of symptoms varied

from 14 for Salmonella to 109 for Human Influenza. In an effort to understand if there is any

relation between the number of symptoms and the performance of the proposed detection

approach, we carried out further tests. In this section, we seek to answer the question: what

effect does the number of symptoms have on the detection of infectious disease outbreaks?

Table 3.4, sorted based on the number of symptoms, shows the result of the analyses.

The table presents the disease, the number of symptoms, and three of the best-performing

algorithms (out of the 11 algorithms). We present the precision, recall, accuracy, F1-score,

and cross-entropy data for each of the three algorithms. A gray highlight indicates the best

performance in any metric. Among the 11 infectious diseases we studied, Salmonella has

the lowest number of symptoms (i.e., 14). We notice that the algorithms had the worst

performance for Salmonella with the lowest F1-score and accuracy scores. The best cross-

entropy value for Salmonella is 0.34, which is the worst best cross-entropy value for any

disease studied. Note that, E. Coli has a cross-entropy value of 0.65 (using GP), however,

the best cross-entropy score for E. Coli is 0.16 (using SVM). Salmonella also had the lowest

precision and lowest recall scores among all the diseases.

On the other side, diseases with a higher number of symptoms are showing better

performances. Human Influenza has the highest number of symptoms (i.e., 109) and obtains

the second-best F1-score of 99.6% using the SVM algorithm. The precision and recall

for Influenza ranged from 99 to 100%. The disease with the second-highest number of
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symptoms (E. Coli with 82 symptoms) also strongly performs in all metrics. However, with

E. Coli, we notice that the best-performing algorithm in terms of F1 score and accuracy

has the worst cross-entropy score (GP). In this case, SVM achieves the best cross-entropy

value (0.16) and has an F1 score similar to GP. We computed Pearson’s correlation to

measure any association between the number of symptoms and the metrics. The results

indicate that there is a moderate positive association between the number of symptoms

and accuracy (0.51), as well as with F1 scores (0.55) (Table 3.4, last row). The correlations

indicate that when the number of symptoms increases, the framework’s performance also

increases.

The correlation data for cross-entropy and the number of symptoms portray a very dif-

ferent picture. In this case, the correlation coefficient is -0.02, which indicates a barely neg-

ative correlation. While the negative correlation was expected (since a lower cross-entropy

value is better, we expected lower cross-entropy with a higher number of symptoms), the

low magnitude raised questions. One reason for the lower magnitude could be the fact that

the algorithm with the best cross-entropy does not necessarily have the best accuracy or

F1 score (e.g., E. Coli, Hepatitis A, Dengue) (Table 3.4). In many cases, the best cross-

entropy comes from the second-best algorithm (e.g., E. Coli, Hepatitis C). This could have

resulted in a comparatively lower correlation coefficient with cross-entropy. In terms of

algorithms, SVM, MLP-NN, and RF repeatedly appeared among the top three algorithms.

However, as pointed out earlier in Table 3.4, any particular metric alone may not be the

most reliable indicator of performance. When cross-entropy is taken into consideration,

we notice that SVM has the best performance in 9 out of the 11 diseases. This indicates

that among all the algorithms tested, SVM is more reliable in detecting outbreaks. Table

3.5 shows the performance of SVM for all the diseases along with the correlation metric.

This shows SVM has a moderate correlation with F1 score (0.6) and a weak correlation

with cross-entropy (-0.4). Note that a negative correlation in cross-entropy indicates that

with a higher number of symptoms we achieve better cross-entropy (lower cross-entropy is

desirable). We also ran a similar test with the MLP-NN algorithm since it also appears
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Table 3.5: Correlations between the number of symptoms and evaluation metrics for the

SVM algorithm.

No. of
Disease symptoms Precision Recall Accuracy F1-Score Cross-Entropy

Influenza 109 99.2 100.0 99.4 99.6 0.010
E. Coli 82 94.7 99.7 94.7 97.2 0.160

Brucellosis 79 100.0 100.0 100.0 100.0 0.000
Hepatitis A 75 96.8 99.2 96.5 98.0 0.090
Hepatitis C 72 94.8 99.3 95.2 97.0 0.110
Meningitis 69 99.0 100.0 99.3 99.5 0.010
Hepatitis B 64 92.8 100.0 94.0 96.3 0.110
Dengue 53 98.8 100.0 99.3 99.4 0.010
COVID 51 98.7 99.7 99.1 99.3 0.030

Tularemia 22 97.4 95.4 100.0 97.7 0.018
Salmonella 14 87.8 96.8 87.2 92.1 0.340

Correlations 0.5 0.8 0.4 0.6 -0.4

frequently in the top three algorithms (Table 3.6). As we see from Table 3.6, the overall

performance of MLP-NN is slightly lower than SVM. Overall, various data show that the

number of symptoms of an infectious disease plays an important role in outbreak detection

– the more symptoms there are, the better the detection. We also observed that of all the

algorithms tested, SVM has the best performance for detecting outbreaks.

Table 3.6: Correlations between the number of symptoms and evaluation metrics for the

MLP-NN algorithm.

No. of
Disease symptoms Precision Recall Accuracy F1-Score Cross-Entropy

Influenza 109 98.6 100.0 99.0 99.3 0.040
E. Coli 82 95.2 99.1 94.7 97.1 0.230

Brucellosis 79 98.8 100.0 99.3 99.4 0.020
Hepatitis A 75 97.3 99.2 96.9 98.2 0.140
Hepatitis C 72 95.0 99.3 95.3 97.1 0.140
Meningitis 69 97.8 100.0 98.5 98.9 0.060
Hepatitis B 64 95.0 100.0 95.9 97.4 0.180
Dengue 53 97.8 100.0 98.7 98.9 0.040
COVID 51 99.0 100.0 99.4 99.5 0.020

Tularemia 22 99.0 100.0 99.4 99.5 0.020
Salmonella 14 84.7 87.5 93.6 90.4 0.364

Correlations 0.5 0.6 0.2 0.5 -0.3
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3.5 Conclusions and Future Work

This paper presents an approach to integrate static and dynamic data to detect outbreaks

of multiple infectious diseases. We investigated if disease-specific symptoms retrieved from

a medical database are useful in detecting the outbreaks of those diseases. We also studied

the effects of weighting the symptoms in an effort to reflect the strength of the connection

between a symptom and a disease. Furthermore, we investigated if the number of symptoms

of a disease affects the accuracy of outbreak detection.

Our study highlighted that disease symptoms are better detectors of outbreaks com-

pared to disease names (Table 3.7). Studies also highlighted that HSDN symptoms are bet-

ter indicators of infectious disease outbreaks than related queries (of a disease) retrieved

from Google Trends. However, in scenarios where disease symptoms may be lacking in

HSDN (e.g., with the emergence of a new infectious disease such as COVID-19), related

queries can be used, as we notice that related query-driven approach is also able to detect

outbreaks with considerable accuracy (Table 3.2). Each infectious disease has multiple

Table 3.7: Baseline vs. the proposed approach. Baseline is computed using disease name

and their Google Trend scores.

F1-Score

Disease Baseline Approach

Proposed

COVID-19 73.8 99.5
Tularemia 69.9 99.2
Salmonella 75.4 99.2
Meningitis 85.8 99.5
Influenza 77.3 99.6

Hepatitis C 71.9 97.1
Hepatitis B 72.2 97.4
Hepatitis A 86.4 98.4

E. Coli 48.7 97.6
Dengue 59.6 99.5

Brucellosis 40.7 100.0

symptoms. However, different diseases can share a number of those symptoms. A symptom
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can be more critical in one disease than another. We studied the effects of disease-symptom

connection strengths using TF-IDF weighting. The TF-IDF score of a symptom for a dis-

ease indicates how frequently the symptom appears only with that disease. As shown

in Table 3.3, TF-IDF-based weighting generated better F1 scores (more than 97%) and

cross-entropy values (less than 0.11), for 10 of 11 diseases. However, the performance of

unweighted symptoms is close to the TF-IDF results. This indicates that while TF-IDF

weighting produces better results, unweighted symptoms can also be used for detecting

outbreaks. Regarding the number of symptoms used to detect outbreaks, we notice that a

higher number of symptoms is usually associated with better accuracy and F1 scores. The

Pearson correlation coefficient also suggests a moderate correlation between the number

of symptoms and the F1 scores, indicating outbreaks of diseases with more symptoms are

easier to detect.

Of the 11 infectious diseases, the lowest outbreak detection performance comes from

Salmonella (F1-score is 92.2%). Other diseases with low to mid-level F1 scores (ranging

from 92% to 98%) include Salmonella, E. Coli, and the Hepatitis disease family. The

proposed framework achieves F1 scores of 95% or higher for most of the diseases. This

indicates that the proposed approach performs well for different types of infectious diseases

(e.g., viral, bacterial) and can be used for detecting outbreaks of these diseases.

Even though the framework used 11 algorithms, this paper reports the top three algo-

rithms for each disease. The SVM and MLP-NN algorithms appear the most among the top

three algorithms (i.e., ten times). Next, the RF algorithm appears seven times. Some of

the other algorithms appearing among the top three include GP, KNN, and XGBoost. Our

analyses suggested SVM has the overall best performance among the algorithms tested.

The proposed approach and corresponding studies strongly suggest that disease-specific

symptoms, coupled with the GT score, can be used to detect outbreaks of a number of

infectious diseases. The proposed approach does not need data collection at the field level

yet integrates dynamic data generated by Google search engine users. Even though we

tested the framework with U.S.A. states, the proposed approach can be used by any other
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region of the world. As for the next step, we are currently extending the framework to

include contextual features (e.g., population, human mobility, race). We also plan to study

the network structure between the symptoms and diseases in building disease models. It is

also in the future plan to implement a web interface of the proposed framework.
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Chapter 4

Human Mobility Driven Modeling of an

Infectious Disease1

4.1 Introduction

Human mobility is an integral part of everyday life. It provides valuable insights into the

movement patterns and behavior of individuals or groups within a specific area or across

various locations. This data encompasses diverse information, such as location data, which

tracks individuals’ geographic coordinates over time, revealing details about where people

reside, work, travel, and spend their time. However, Mobility can expose individuals to

a variety of health risks, including infections from contagious diseases such as COVID-19.

Yet, existing systems to model and predict the spread of infectious diseases do not include

mobility in all aspects of the models. For example, the models described in papers [23,25–30]

rely on the core deterministic epidemic model SEIR (Susceptible, Exposed, Infected, and

Recovered) but include mobility only on a subset of the SEIR components.

In the United States, the mortality statistics related to COVID-19 show that the death

rate differs in different ethnic groups. For example, 256 Indigenous Americans, 180 African

Americans, 177 Pacific Islander Americans, 150 White Americans, 147 Latino Americans,

and 96 Asian Americans per 100,000 inhabitants died due to COVID-19 [5]. Another

significant factor influencing COVID-19 mortality rates is age. For example, mortality

rates may reach 20% among people over the age of 80 [19]. Although there have been

clear links between COVID-19 and age and race factors, research linking poverty levels to
1https://doi.org/10.1109/ICDMW58026.2022.00155
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infectious diseases has been relatively scarce. In terms of income inequality, an increase of

1% in the Gini coefficient (a measure of inequality in a population) is directly related to

a 4% increase in COVID-19 cases per million, and a 5% increase in COVID-19 deaths per

million [6].

This paper presents our model called SEIRD+m, which adds a new compartment D in

the SEIR model and includes human mobility aspects in all its components. Our model can

be used to study how the mobility restriction on COVID-19 hotspots based on demographic

factors such as age, and race, can reduce the number of infections, and death counts due

to COVID. We provide a detailed analysis of the effects of the model on the spread of

COVID-19 at the level of the Census Block Group (CBG). A CBG is one of the smallest

aggregation units for an area – usually containing 600 to 3,000 individuals – for which the

US Census Bureau provides demographic information. The key contributions of this

paper are:

1. We include a human-mobility-driven D compartment in the SEIR model, making it

SEIRD. D describes the dynamics of the transition from Infected (I) to Dead (D)

based on human mobility. While there are efforts to include the D component into

the SEIR model [105, 106], the inclusion of human mobility with D is novel, to the

best of our knowledge.

2. We incorporate human mobility into all the Ordinary Differential Equations (ODEs)

of our SEIRD model’s components.

3. We provide a case study using our SEIRD+m model to restrict human mobility

at detected COVID-19 hotspots using social factors, such as race, age, and income.

4. , Unlike other models, in our model human mobility is restricted in the COVID-19

hotspots rather than the entire region, which will save resources and keep additional

services functioning alongside the essential ones.
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4.2 Methodology

In this section, we present our proposed SEIRD+m model in detail. The following subsec-

tions explain the entire process, from data acquisition to model building.

4.2.1 The Proposed SEIRD+m Model

The SEIR (Susceptible, Exposed, Infected, Removed) model is an extended version of

the SIR (Susceptible, Infected, Removed) model [107] that incorporates the incubation

period E (Exposed) of an infectious disease [108]. However, the SEIR model does not

include human mobility, even though it is associated with the exposure and spreading of

an infectious disease. We enhanced the SEIR model by incorporating human mobility (m)

and deaths (D). This mobility data was extracted from the Safegraph mobility data which

is measured through the collection and analysis of anonymized location data from various

sources, including mobile devices and applications. We start from the premise that people

who die due to COVID-19 will die after they are infected with COVID-19. People can also

recover from the disease once they are infected. Therefore, our model must transition from

I (infection) to D (death) and from I (infection) to R (recovery) (See Fig. 4.2).

In addition, it is necessary to consider a new parameter – ρ, representing how quickly a

person dies – to quantify the period between infection and death. Quantifying the period

between infections and deaths will help estimate a person’s probability of going from the

model’s Infected (I) to the Dead (D) compartment. As an example of the parameter ρ,

if a person takes ten days to move from I to D, then ρ = 1/10. The probability of going

from I to D is equal to the death rate (death cases per unit of time), represented by α.

The complete transition from I to D is shown in Eq. 4.5. Finally, the probability of going

from I to R (recovery) is 1-α. The complete transition is shown in Eq. 4.4. The extended

SEIRD version is represented by Eqs. (4.1) to (4.5).

The total susceptible population is:

dS

dt
= −β · I · S

N
(4.1)
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In this equation, β is the expected number of people an infected person infects per day,

S is the number of people that can be infected, I is the number of infected people, and N

is the size of the population, computed over every timestamp of the data.

The following equation gives the total exposed population over time. The exposed state

refers to the condition when a person is infected, but the virus is incubating; hence, the

person is not yet experiencing symptoms.

dE

dt
= β · I · S

N
− δ · E (4.2)

In this equation, δ is the length of the incubation period, and E is the number of exposed

people.

The following equation gives the total number of infected people over time.

dI

dt
= δ · E − (1− α) · γ · I − α · ρ · I (4.3)

In Eq. 4.3, γ is the proportion of infected people recovering per day.

The following equation provides the total number of recovered people over time.

dR

dt
= (1− α) · γ · I (4.4)

The next equation gives the total number of deaths computed over time.

dD

dt
= α · ρ · I (4.5)

Figure 4.1: An example of incorporating mobility between two CBGs for the I compartment

of the SEIRD model.

The SEIRD model predicts COVID-19 evolution over time in each CBG separately.

The SEIRD model views each CBG as an isolated region even though individuals move
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between them. To incorporate the dynamic aspect of human mobility, we need to consider

the inflow and outflow traffic of each CBG.

We define human mobility (m) as a function that provides information about the move-

ment patterns of individuals within a specific area or across various locations. In this work,

human mobility (m) captures diverse information, including location data (L), which tracks

the geographic coordinates of individuals (C) over time (t), revealing details about their

places of residence (R), work (W), travel (T), and activity locations (A). Mathematically,

we can express it as: m = f(L, C, t, R, W, T, A)

Now, let us consider a region with only two CBGs, J and K (Fig. 4.1). People travel

from J to K without any mobility restrictions and vice versa. During this busy period of

mobility, individuals belong to a group—i.e., Susceptible, Exposed, Infected, or Recovered.

For example, a fraction of individuals infected in J (Ji) travel to K, and a fraction of

individuals infected in K (Ki) travel to J. Now, K has IK + Ji −Ki infections, and J has

IJ +Ki − Ji infections. The same behavior occurs for the other groups (S, E, R).

Let us consider the same region with imposed mobility restrictions. The restriction is

quantified by φ in a range between 0 and 1, where 0 is a total restriction, and 1 means no

restrictions. The COVID-19 dynamics are likely to change with the imposed restrictions.

For example, a fraction of individuals infected in CBG J (Ji) travel to CBG K, and a fraction

of individuals infected in K (Ki) travel to J. Now, K has IK + (Ji −Ki)φ infections and J

has IJ +(Ki− Ji)φ infections. In other words, the number of infected individuals traveling

between CBGs is restricted by φ. The same behavior occurs for the other compartments

of the model (S, E, and R).

We incorporate human mobility into our SEIRD model (Eqs. (4.1) to (4.5)) for a

complex geographical region containing many CBGs. The geographical region in our model

is represented by a QxQ matrix, where Q is the number of CBGs within the region. The

mobility is represented by a TxQxQ Origin-Destination matrix, where T is the number of

timestamps (in units of days).

The following three Eqs. describe the human mobility of Susceptible Ms, Exposed Me,
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and Infected Mi people traveling from the CBG j to the CBG k at a time t.

Ms =

Q∑
k=0

stk,j −
Q∑
k=0

stj,k (4.6)

Me =

Q∑
k=0

etk,j −
Q∑
k=0

etj,k (4.7)

Mi =

Q∑
k=0

itk,j −
Q∑
k=0

itj,k (4.8)

Eq. 4.9 provides the total number of Susceptible individuals, considering human mo-

bility over time.

Sj,t+1 = −β · (I + (Mi) · φt) ·
(S + (Ms) · φt)

N
(4.9)

In Eq. 4.9, Mi and Ms are Infected and Susceptible individuals traveling from the CBG j

to the CBG k at a time t (Eqs. 4.6 and 4.8) and φt is the strength of the mobility restriction

at time t.

The following equation, Eq. 4.10, gives the total Exposed population over time.

Ej,t+1 = β · (I + (Mi) · φt) ·
(S + (Ms) · φt)

N

−δ · (E + (Me) · φt)
(4.10)

Me is the Exposed individuals (Eq. 4.7) traveling from the CBG j to the CBG k at

time t.

The following equation provides the total number of Infected people, considering human

mobility over time.

Ij,t+1 = δ · (E + (Me) · φt)

−(1− α) · γ · (I + (Mi) · φt)− α · ρ · (I + (Mi) · φt)
(4.11)

The following equation provides the total number of Recovered people considering hu-

man mobility over time.

Rj,t+1 = (1− α) · γ · (I + (Mi) · φt) (4.12)
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Figure 4.2: Overview of the SEIRD+m model.

The next equation provides the total number of Dead people when human mobility over

time is considered.

Dj,t+1 = α · ρ · (I + (Mi) · φt) (4.13)

The final version of our extended SEIRD+m model, usingMs, Me, andMi, is expressed

using the Eqs. from 4.9 to 4.13 and an overview of this is showed in Fig. 4.2.

4.2.2 Data Acquisition

We retrieved data from four sources: 1) El Paso Strong website2 (actual COVID-19 data),

2) SafeGraph datasets3 (mobility data), 3) U.S. Census Bureau TIGER/Line Shapefiles

(USCB TIGER)4 to extract El Paso’s CGBs and 4) HUD Aggregated USPS Administrative

Data On Address (HUD-USPS)5 to map the data from the ZIP to CBG level.

We created an origin-destination (OD) baseline matrix for the El Paso region using

SafeGraph data from 2019 (before COVID). We consider that the year 2019 had normal
2https://www.epstrong.org/results.php
3https://www.safegraph.com/
4https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.

html
5https://www.huduser.gov/portal/datasets/usps.html
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mobility patterns. For each month of 2019, we computed the mobility averages for each day

of the week (e.g., the average of all Mondays of each month) for every CBG. The dimensions

of our OD baseline matrix are 12x7x508 (i.e., 12 months, 7 days, and 508 CBGs). All our

predictions later used this OD baseline matrix for the baseline information required for

simulation. We can create new OD matrices using the baseline.

4.2.3 Fitting Data to Identify Model Parameters

We can use our SEIRD+m model in two ways: to study past events or to make predictions.

In this paper, we used it to study a past event – COVID-19 waves in the El Paso, Texas

region. In this case, it is necessary to perform a data fitting process. We performed a

curve fitting process using the first and second COVID-19 waves to find the parameters i0,

β, γ, and δ of our SEIRD+m model. The i0 parameter is the initial number of infected

people reported by the El Paso Strong website, and its value is optimized during the fitting

process. We used values from existing literature for the parameters α and ρ [109]. The

least-squares minimization method [110] was used to quantify the performance of the fitting

process. The results are presented in Table 4.1.

Table 4.1: Parameters utilized in the SEIRD+m model during the simulations.

a) Obtained during the fitting process
Parameter 1st wave 2nd wave

i0 21.658 40.930
γ 0.424 0.378
δ 0.019 1.715
β 2.263 0.528

b) Obtained from the literature
Parameter 1st wave 2nd wave

α 0.030 0.030
ρ 0.054 0.054

Fig. 4.3a shows, in dark black and red lines, the actual COVID-19 infections of the

second wave and the SEIRD+m model’s simulated infections using the final values of the

parameters found during the fitting process. The SEIRD+m model’s final result (in the red
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Figure 4.3: Fitted curves using the first N days of the second wave of actual COVID-19

data. The black line indicates the actual data and the red one indicates the fitted line using

parameters derived from the first 41 days.

line) follows the trend of the actual data (the black line) with the lowest MSE. The figure

also contains many light lines using intermediate values of the parameters while they were

being optimized during the fitting process. SEIRD+m started with a trend line almost

close to the plot’s X-axis and kept improving over the iterations of the error minimization

process. In each iteration, the process includes an additional day of the actual COVID-19

data. Our observation is that the lowest MSE is found when the first 41 days worth of data

were used, as demonstrated in Fig. 4.3b with a vertical line at 41 days. The red line in Fig.

4.3a uses the first 41 days to determine the parameters. That is, the SEIRD+m model can

use initial data of a disease outbreak to simulate the later part; in the case of Fig. 4.3, the

initial 41 days’ worth of data can be used to simulate the last 59 days of infections.
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Figure 4.4: Hotspot detection (a) CDC criteria and (b) proposed criteria.

4.2.4 COVID-19 Hotspots Detection

We studied the effect of mobility restrictions on the spread of COVID-19. Contrary to

works that studied mobility restriction over an entire region, we focused on

mobility restriction in COVID-19 hotspots. In the context of infectious diseases, a

hotspot refers to an area with a high disease load or high transmission efficiency [111].

CDC collaboratively developed a standardized criteria [112] (Fig. 4.4a).

We used the CDC’s criteria (Fig. 4.4a), and our new modified version of the CDC’s

criteria (Fig. 4.4b) to detect hotspots and restrict mobility only on hotspots. Our modified

criteria (for hotspot detection) differ from the standard CDC criteria in the following ways:

(1) County-level resolution (CDC) vs. CBG-level resolution, (2) The number of new cases

(100 for CDC at the county level, 15 for ours at CBG level), and (3) CDC uses a 7-day/30-

day incidence count, limiting the algorithm to wait for 30 days before checking for hotspots;

we reduced the time to 15 days, similar to the incubation period of COVID-19 (i.e., 14-15

days) [113].

4.3 Results and Discussion

This paper proposes a modified SEIR model version named SEIRD+m with human mobility

incorporated into all compartments. We used our model to study the evolution of the

COVID-19 disease in El Paso, Texas. This section presents our study on the effect of
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Figure 4.5: Reduction of new COVID-19 cases during the 2nd wave using a) the CDC

criteria and b) our modified criteria for detecting hotspots.

human mobility on the spread of COVID-19 (4.3.1). Further, we discuss the interaction

between mobility restrictions and demographic factors in the spread of COVID-19 (4.3.2)

and provide a comparative analysis (4.3.3).

4.3.1 The Effect of Restricting Mobility on COVID-19 Hotspots.

This section examines the impact on new infections and death incidence when mobility is

restricted in COVID-19 hotspots. We focused our experiments on the second wave since it

was the most significant wave that affected the El Paso region, causing more than 74,000

infections and more than 1,516 deaths. We used the SEIRD+m model, the CDC’s criteria

(Fig. 4.4a), and our proposed criteria (Fig. 4.4b) to detect COVID-19 hotspots. We

simulate three scenarios where mobility is reduced by 90%, 50%, and 10% over 7 days, 14

days, and 21 days, respectively, for the hotspots detected.

In Fig. 4.5, we used two different visual elements to show our results 1) hotspots

maps (top) and 2) time series charts (bottom). The hotspot maps show the CBGs (yellow

filled with a red borderline) identified as COVID-19 hotspots. Additionally, the number of
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predicted infections in each CBG is filled with a color according to the color bar located on

the right side. The green arrows indicate the main outbound traffic between the hotspots

and other CBGs. The blue arrows indicate the most significant inbound traffic from other

CBGs to the hotspots.

The time series charts at the bottom of Fig. 4.5 present the predicted COVID-19 cases

according to the mobility restriction strength and duration, e.g., 90% mobility restriction

for 7 days is represented by a blue dashed line. In addition, we plotted a red dashed line,

which represents the fitted data to the actual COVID-19 data, and a gray dashed line,

which represents the actual COVID-19 data.

Using the SEIRD+m model and the CDC’s criteria, 19 COVID-19 hotspots were iden-

tified (Fig. 4.5a - top). Under this configuration, we observed significant reductions in

COVID-19 infections. For example, by restricting mobility by 50% for 7, 14, and 21 days,

the number of COVID-19 infections decreased by 46%, 56%, and 61%, respectively (Fig.

4.5a - bottom). The reduction of COVID-19 infections improved (Fig. 4.5b) when we

applied our proposed criteria (Fig. 4.4b) for detecting hotspots. For example, when mo-

bility is restricted by 50% during periods of 7, 14, and 21 days, the number of COVID-19

infections decreased by (Our)83% vs 46%(CDC), (Our)86% vs 56%(CDC), and (Our)87% vs

61%(CDC), respectively (Fig. 4.5b - bottom). This improvement is due to the reduction in

the number of days, i.e, from 30 to 15 days, that our model is required to wait to detect

hotspots (green circles in Fig. 4.5a and 4.5b).

The results of our study demonstrate that by systematically reducing mobility in highly

contagious regions, i.e., hotspots, rather than an entire region, it is possible to significantly

reduce the number of infections and deaths.

In Table 4.2, we present the predicted infections and deaths using the CDC’s criteria and

our modified criteria to detect hotspots. The columns Reduction % present the reductions

in infections and deaths when the mobility restrictions of the column Mobility Restriction

are applied. The columns Reduction % were computed using the actual COVID-19 cases

(74,202) and the number of deaths (9,050) predicted by our model using the parameters
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Table 4.2: Simulations results of the predicted cases and deaths based on the CDC’s criteria

and our modified criteria to detect hotspots. The columns Reduction % show the reduc-

tions of new cases and deaths applying the mobility restrictions of the column Mobility

Restriction.

COVID-19 Wave Mobility Duration Number of Reduction Number of Reduction
& criteria Restrictions (%) Days new cases % deaths %

90 8 29,832 59 3,969 56
2nd wave 90 15 25,293 65 3,599 60.2

CDC hotspots 90 22 24,960 66 3,572 60.5

original criteria 50 8 39,372 46 4,990 44
50 15 32,481 56 4,357 51

New cases: 74,202 50 22 28,798 61 4,086 54

Deaths: 9,050 10 8 66,976 9 9,016 0.37
10 15 65,537 11 8,905 1.6
10 22 65,002 12 8,878 1.9

90 8 6,737 90 873 89
2nd wave 90 15 6,063 91 799 90.7

CDC hotspots 90 22 5,809 92 777 90.9

modified criteria 50 8 12,343 83 1,807 79
50 15 10,353 86 1,575 81

New cases: 74,202 50 22 9,061 87 1,427 83

Deaths: 8,615 10 8 61,634 16 10,408 -20
10 15 61,161 17 10,373 -20
10 22 61,010 17 10,366 -20

53



found during the fitting process. It is important to note that since we used the number

of cases during the fitting process, we then used the predicted number of deaths. This

table shows that our SEIRD+m model could reduce infections better using our proposed

COVID-19 hotspot detection criteria, compared to CDC’s criteria (columns Reduction %

in Table 4.2). Following our proposed criteria, strong (90%) or relaxed (50%) mobility

restrictions for periods of 7, 14, and 21 days can significantly reduce the number of cases

and death counts of COVID-19.

4.3.2 The Effects of Restricting Mobility to COVID-19 Hotspots

Based on Race, Income, and Age.

This section aims to examine the effects of new infections and death incidence when mobility

is restricted based on race, income, and age in COVID-19 hotspots.

4.3.2.1 Race

There are studies that report high mortality rates associated with COVID-19 and race [114].

In this section, we present our experiments and results considering five underrepresented

races: 1) Hispanic or Latino (HL), 2) Black or African-American (BAM), 3) American

Indian and Alaska Native (AIAN), 4) Asian (A), and 5) Native Hawaiian and Other Pacific

Islander (NHOPI). We computed a regional median for each race using its total population

in each CBG. The medians were used as threshold values to identify which races are pre-

dominant in the CBGs. For example, Asian people are considered one of the predominant

races in a CBG when its total population is above its regional median. We used an extended

version of our proposed criteria presented in Fig. 4.4b, but it includes a new condition to

check if the variable of interest (e.g., race) is above or below the threshold.

In Table 4.3, we report the number of deaths in COVID-19 hotspots where each race

is predominant. The table has 12 columns; the first two are for mobility restrictions and

duration. From the third column onwards, the columns must be read in pairs. It is
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important to note that the number of deaths reported on the header of columns 3, 5,

7, 9, and 11 (i.e., 106, 57, 72, 61, and 103) includes all races without applying mobility

restrictions. The dominant race is reported at the top of the header. For example, the

third column for Hispanics or Latinos reported 106 deaths in COVID-19 hotspots where

the Hispanic or Latino race was one of the predominant. The assumption is that if a race

is predominant in a hotspot, as the number of deaths decreases, the number of deaths

associated with that race will also decrease. An additional note is that some results in the

table are negatives (e.g., row 8, column 4). A negative result indicates that the predicted

deaths were higher (overestimated by our model) than the actual COVID-19 deaths. The

Table 4.3: Reductions of new COVID-19 deaths in the CBGs above the race threshold.

Hispanic or Black or American Indian and Native Hawaiian and
Mobility Duration Latino Reduction African-American Reduction Alaska Native Reduction Asian Reduction Other Pacific Islander Reduction

Reduction (%) Days 106 deaths % 57 deaths % 72 deaths % 61 deaths % 103 deaths %

7 4 96 4 93 6 92 4 93 6 94
90 14 3 97 4 93 4 94 3 95 5 95

21 2 98 3 95 4 94 3 95 4 96

7 7 93 13 77 16 78 11 82 15 85
50 14 6 94 10 82 12 83 8 87 11 89

21 5 95 9 84 10 86 6 90 8 92

7 114 -8 53 7 70 3 51 16 92 11
10 14 112 -6 53 7 69 4 50 18 91 12

21 112 -6 53 7 69 4 50 18 91 12

results shown in Table 4.3 demonstrate that a mobility restriction of 90% in COVID-

19 hotspots for any period reduces mortality by more than 92% in all races but can be

considered a strong measure. On the other hand, for scenarios where mobility was restricted

by 50% in COVID-19 hotspots for any period, it was highly effective in reducing mortality

by more than 93% for the Hispanic or Latino race. However, for the other four races, the

same mobility restrictions of 50% for any period were very effective in reducing mortality

but slightly less effective (e.g., between 77–92%) compared with Latino mortality. This

difference can be explained by the fact that the Hispanic population is predominant in the

El Paso, Texas region.

We, therefore, conclude that restricting mobility by 50% (a less restrictive

measure) or 90% (a severe measure) is an effective non-pharmacological mea-

sure to protect vulnerable populations in COVID-19 hotspots based on race.
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Table 4.4: Simulation results when mobility restrictions were applied to CBGs above and

below the poverty threshold.

a) Above Threshold
Mobility Restriction Deaths (163) Cases (65942)
Strength Days # Reduction % # Reduction %

7 8 95 4032 94
90% 14 7 96 3220 95

21 6 96 2795 96

7 23 86 9262 86
50% 14 18 89 7469 89

21 14 91 5962 91

7 166 -2 63899 3
10% 14 164 -1 63227 4

21 163 0 63027 4

b) Below Threshold
Mobility Restriction Deaths (3) Cases (1721)
Strength Days # Reduction % # Reduction %

7 1 67 270 84
90% 14 0 100 227 87

21 0 100 225 87

7 1 67 351 80
50% 14 1 67 303 82

21 1 67 286 83

7 2 33 1102 36
10% 14 2 33 1050 39

21 2 33 1031 40

4.3.2.2 Income

Studies have found that income inequality is strongly connected with a higher incidence of

COVID-19 cases and deaths [115]. In this section, we used the poverty threshold ($26,302

USD) [116] to classify low and high-income COVID-19 hotspots. We demonstrate the

regional results (R) in Tables 4.4-A and 4.4-B and local results (L) (within hotspots) in

Tables 4.4-C and 4.4-D. According to our results, when mobility is restricted by 50% for

7, 14, or 21 days in high-income COVID-19 hotspots (Table 4.4-A Cases), the number of

infections dropped between 80.7–85.1% in the entire region. A stronger mobility restriction

of 90% for 7, 14, or 21 days improved the reduction of the number of new cases between

87.7–89.4%. Compared with a mobility restriction of 50%, there is an average difference of

6% in the reduction of new cases. However, a restriction of 50% is more flexible and can

reduce inconvenience among the population.

The COVID-19 scenario is entirely different when mobility is reduced only in low-income

COVID-19 hotspots (Table 4.4-B Cases). According to our results, the regional number
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of COVID-19 cases was slightly reduced by 5–6%, and the number of deaths was reduced

by less than 1%. This can be explained by the limited number of hotspots detected (only

5). According to these results, the first impression is that reducing mobility in low-income

hotspots is not an adequate measure to stop the spread of COVID-19 in an entire region.

However, we found a drastic drop in the number of deaths when we analyzed the simu-

lation’s results only in the five low-income COVID-19 hotspots – i.e., local results. (Table

4.4-D Cases). For example, if mobility is not restricted, the number of new cases reaches

1,721. However, by restricting mobility by 50% for any period (e.g., 7, 14, or 21 days)

on these five low-income COVID-19 hotspots, the predicted number of cases was reduced

between 79.6–83.4% (Table 4.4-D Cases). Thus, new cases are reduced locally.

Using the same concept, we only analyzed the evolution of COVID-19 in the 39 high-

income COVID-19 hotspots (Table 4.4-C). If mobility is not restricted in these hotspots, our

SEIRD+m model predicts 65,942 infections. This indicates that 51.8% of the population

in these hotspots was infected (the total number of residents in these hotspots is 127,263).

However, for example, when mobility is reduced by 50%, the number of new infections

drops by 93.9% in those hotspots (Table 4.4-C Cases).

We conclude that restricting human mobility is an effective non-pharmaceutical

measure to reduce the number of infections and deaths in low or high-income

COVID-19 hotspots. Our results suggest that restricting mobility has positive

effects at regional and local levels (Tables 4.4-A vs. 4.4-C) or sometimes can

be used to protect vulnerable regions (Tables 4.4-B vs. 4.4-D).

4.3.2.3 Age

Older adults are another vulnerable population highly impacted by COVID-19 [114]. We

simulated two scenarios (i.e., identifying COVID-19 hotspots above and below the threshold

of 65 years of age) using our criteria presented in Section 4.2.4.

We demonstrate the regional results (R) in Tables 4.5-A and 4.5-B and local results

(L) (within hotspots) in Tables 4.5-C and 4.5-D. For example, if mobility is not reduced
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Table 4.5: Reduction in the number of deaths in the CBGs above and below the threshold

of older adults 65 years and over.

a) Above Threshold
Mobility Restriction Deaths (29) Cases (12182)
Strength Days # Reduction % # Reduction %

7 2 93 1057 91
90% 14 2 93 895 93

21 2 93 774 94

7 6 79 2423 80
50% 14 5 83 2145 83

21 4 86 1594 87

7 27 7 10494 14
10% 14 26 10 10258 16

21 26 10 10179 16

b) Below Threshold
Mobility Restriction Deaths (137) Cases (55481)
Strength Days # Reduction % # Reduction %

7 7 95 3244 94
90% 14 5 96 2552 95

21 5 96 2246 96

7 18 87 7189 87
50% 14 14 90 5627 90

21 11 92 4654 92

7 141 -3 54507 2
10% 14 140 -2 54019 3

21 140 -2 53879 3

in COVID-19 hotspots where older adults predominate, the regional number of infections

reaches 71,202. However, by reducing mobility at different strengths by any period, we

obtained slight reductions in the number of infections between 7–19.6% (Table 4.5-A).

These results can be explained by the fact that we identified a reduced number of hotspots.

However, analyzing the COVID-19 hotspots (local results) and where the population of

older adults is predominant, we found interesting results. We observed a dramatic

reduction in the number of deaths related to COVID-19 (Table 4.5-C). For

example, using a relaxed mobility restriction of 50% for any period (e.g., 7, 14, or 22

days) only on hotspots above the threshold (CBGs where the population of older adults

predominates), the predicted number of deaths decreased between 79.3–88.2% (Table 4.5-

C Deaths). Our results show when mobility is restricted to 50% for 7, 14, or 21 days

in COVID-19 hotspots where older adults are not predominant, the number of infections

drops between 69.4–72.8% in the entire region (Table 4.5-B). When a stronger mobility

restriction of 90% is applied for 7, 14, or 21 days, the number of new cases is reduced
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between 74.7–76%. There is a difference of 5% in the number of new cases.

On the other hand, when applying the same mobility restrictions to COVID-19 hotspots

where the population of older adults is below the threshold, the predicted number of deaths

decreased between 87–92% locally (Table 4.5-D Deaths). Thus, comparing Tables 4.5-

A and 4.5-C, we can see that mobility restriction does not necessarily have a

positive impact at the regional level but can help to protect specific sub-regions

– e.g., regions where older adults predominate.

4.3.3 Comparing SEIRD+m With Other Approaches

In this section, we compare our SEIRD+m model with relevant variations (e.g., with and

without mobility and several other combinations of the compartments).

For disease modeling, it is required a simulation performs its best in identifying the peak

of the number of infections. We observe that SEIRD+m has better predictions during the

pandemic’s peak than the other variations, as shown in Fig. 4.6.

In Fig. 4.6, we examined the effects of human mobility on the following three versions of

our SEIRD+m model: 1) not using mobility in the Infected and Recovered compartments

(SED+m)(IR), 2) not using mobility in the Exposed, Infected, and Recovered compart-

ments (SD+m)(EIR), and 3) not using mobility in any compartment (SEIRD). We used

the fitting process described in Section 4.2.3.

The X-axis of Fig. 4.6a is the number of days, k, worth of how much data is used, and

the Y-axis is the median MSE of the error computed for the rest of the days of the second

wave of COVID-19. All the MSE values of the models exhibited a similar pattern of high

MSE values when lesser than 20 days’ worth of data were used. This is expected because

the models require sufficient days’ worth of data to converge to reasonable parameters.

After using 40 days most of the MSE values stabilized.

Earlier, in Fig. 4.3, we demonstrated that our SEIRD+m model needs around the first

41 days of observed COVID-19 data to simulate the later part of the data. The peak of

the second wave of COVID-19 was between the 41st and 50th days. The ability to predict
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Figure 4.6: (a) Days’ worth of data used for the models vs MSE, and (b) Simulation of

infections using different methods.

better during this region is critical for better control of the disease. The yellow box in Fig.

4.6a shows that the MSE is lower for SEIRD+m compared to other models during this

peak region, indicating that SEIRD+m has the more predictive capability for the COVID-

19 peak. The MSE rises when COVID-19 keeps falling after the peak, but the later timeline

is less critical.

Correspondingly, Fig. 4.6b shows the actual infection data (in grey) and the simulations
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of all the models using 41 days’ worth of data. Our model predicts the peak earlier compared

to the other models. The actual peak day was on the 45th day of the second wave. Our

model predicts the peak on the 42nd/43rd day (safer), whereas the other models predict

the peak to be later than the 45th day (likely to cause harm due to reluctant restrictions).

The SEIRD+m model captures human mobility with high fidelity, as can be seen in the

peaks and valleys in the time series (red line in Fig. 4.6b). The other lines are smoother,

sometimes not practical in disease propagation.

4.4 Conclusions and Future Work

This paper presents an epidemiological model named SEIRD+m. One of our main contri-

butions is the incorporation of human mobility into all its differential equations. We used

our model to study how COVID-19 spreads when human mobility is restricted only in

COVID-19 hotspots at different intensities and time periods. Through our experiments,

we demonstrated that it is possible to reduce infections and deaths by systematically re-

ducing mobility in COVID-19 hotspots rather than in the entire region. We also found

that restricting mobility in COVID-19 hotspots positively affects the number of infections

and deaths at regional and local (within hotspots) levels and may be a useful strategy to

protect areas at risk based on income, race, or age. Our future work aims to analyze the

impacts of the co-existence of two or more SARS-CoV-2 variants (e.g., delta and omicron)

in the same region, along with vaccination. An analysis using national and international

regions also remains as future work.
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Chapter 5

Detecting Malware Activity Using

Public Search Data1

The prevalence of malware on the Internet makes malware detection vital as an early

warning system for organizations’ security. This paper presents a novel approach to link-

ing knowledge from heterogeneous and specialized datasets using a sentence embedding

approach. This paper also proposes a novel approach to detect malware activity using

standardized and specialized datasets and people’s search interest data. We demonstrated

the detection capabilities of our approach, assessing our models using four real attack study

cases. We found an increase in Google searches and probabilities of our models seven days

before and after an attack occurred. In addition, the web search volume and model prob-

abilities time series are characterized by an increase in outliers around 14 days before and

after the discovery of the attack. This work should pave the path for integrating domain-

specific datasets and user-generated dynamic data for detecting malware activity.

5.1 Introduction

Malware is specially-written files or programs that typically spread through computer net-

works and carry out malicious activities (e.g., financial transactions). In fact, a recent

report stated that the damage caused by cybercrimes puts it in the third position of the

world economy 2.
1https://doi.org/10.1109/BigData55660.2022.10020883
2https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
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On May 7, 2021, the Colonial Pipeline system went down for six days due to a cyber-

attack [117]. The Colonial Pipeline covers 5,500 miles and transports 2.5 million barrels

of fuel daily for the Southeast and the East Coast (45% of all fuel consumed in this re-

gion). In response to this attack, the company halted all pipeline operations. The main

target of this ransomware attack was the billing infrastructure of the company [118]. The

hackers obtained nearly 100 gigabytes of data from Colonial Pipeline’s network in just two

hours [119].

The attack on Colonial Pipeline is just one high-profile example of a cyber attack’s ef-

fects on critical infrastructure when operations are disrupted or halted. Our society heavily

depends on the energy and communications infrastructure. These are the backbone of na-

tional security and economic development. The adversaries are aware of the importance of

the energy sector and other industries relying on it; hence these sectors are often the target

of adversarial attacks.

The Internet plays an important role in the spread of malware and its early detection

can significantly reduce damages (e.g., data loss). Many approaches have been developed

for detecting intrusions. However, all these measures rely on the tools or techniques related

to intrusion detection. Whether the infected machine has any intrusion detection systems

(IDS) or not, with the abundance of information available online, users’ first response

usually is to look for information on the symptoms they are observing in the infected

machines – slower speed, the abrupt closure of programs, etc. In this paper, we show how

public search data can play a valuable role in the early detection of malware.

Our proposed approach leverages the Common Vulnerabilities and Exposures (CVE)

database and the MITRE ATT&CK database to identify malware features. Google Trends

API is then used to search for these features to determine if people are searching for them.

Experimental results show that it is possible to detect unusual malware activity using the

CVE and MITRE ATT&CK databases and people’s search data.

The key contributions of this paper are:

1. A novel approach to linking knowledge from heterogeneous and specialized datasets
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using a sentence embedding approach.

2. A novel approach to detect malware activity over a regional area using standardized

and specialized datasets and people’s search interest data.

3. We provide case studies for the Conti and Ryuk malware using data from real attacks.

5.2 Approach

We seek to answer how we can detect malware activities with lower to no depen-

dency on any intrusion detection systems. In this work, we assume that people will

search for symptoms and remedies when exposed to malware infections. However, using

raw search data for malware activity detection is unsuitable because people often use gen-

eral search terms that are not standardized. For example, users who are infected with the

same malware may use different terms to search for symptoms associated with it. So, it is

difficult to connect those search terms with the same malware.

We address this problem by creating a link between malware and entries from two

databases: CVE and ATT&CK. This linking generates a dataset of malware-specific terms,

which are later used to extract Google trends data. We call it theAttack-specificVulnerability

ExposuRe Terms (AVERT) dataset. We generate an AVERT dataset for each malware.

This dataset is used to train various classifiers. We carried out a 5-fold cross-validation for

each classifier. A detailed description of the construction process of AVERT is given in the

following subsections.

5.2.1 Dataset Used

5.2.1.1 CVE Database

The MITRE corporation supervises the Common Vulnerabilities and Exposures (CVE)

database3. It is funded by the Cybersecurity and Infrastructure Security Agency (CISA).
3https://www.cve.org/
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The CVE database contains a list of approximately 236,000 publicly known security flaws

without technical information (e.g., about risks, impacts, or fixes). A valuable benefit of the

CVE database is that it helps identify unique vulnerabilities needed to develop tools and

solutions that improve security. To assign CVE identifiers, a CVE Numbering Authority

(CNA) is necessary. A CNA is a major IT vendor, such as IBM, Cisco, Oracle, Microsoft,

etc. New CVE candidates are assigned a CVE ID, described briefly, referenced, and posted

to the CVE website by a CNA. The CNA should, however, ensure that all CVEs can

be fixed independently of any other bug, they negatively impact security and violate the

security policy of the affected system. Additionally, each CVE is assigned a score based on

the Common Vulnerability Scoring System (CVSS) [120]. Higher scores indicate a greater

severity, ranging from 0.0 to 10.0.

5.2.1.2 MITRE ATT&CK Database

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) project4

began in 2013 as part of MITRE’s Fort Meade Experiment (FMX), where researchers emu-

lated adversary and defender behavior to improve post-compromise threat detection. The

tool is a curated knowledge-base and behavioral model for cyber adversaries. Essentially,

it illustrates an adversary’s attack cycle and target platforms. Using the tactics and tech-

niques abstraction in the model, both offensive and defensive sides of cybersecurity can

understand individual adversary actions. Additionally, it categorizes adversary actions and

offers specific ways of defending against them. ATT&CK contains a matrix listing adver-

saries’ techniques to achieve specific objectives. Each of these objectives is categorized as

a tactic. There are 14 adversary tactics, including reconnaissance, initial access, privilege

escalation, etc. In each tactic of the ATT&CK matrix, adversary techniques describe the

activity the adversary has undertaken. In some techniques, some sub-techniques describe

how an adversary performs a particular technique in greater detail.
4https://attack.mitre.org/
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5.2.1.3 CISSM Cyber Events Database

The CISSM (Center for International & Security Studies at Maryland) Cyber Events

Database5 is a database that contains publicly available structured information about cyber

events from 2014 to 2021. CISSM Cyber Events Database data is derived from open news

sites, blogs, and other specialty sites. The data is retrieved using automated techniques

paired with manual review and classification by researchers. Updated monthly, the data

provides information about the threat actor, motive, victim, industry, and attack effects.

5.2.1.4 CIRA Database

The Critical Infrastructure Ransomware Attacks (CIRA)6 database was created in Septem-

ber 2019. Ransomware attacks are collected from publicly published media reports or se-

curity reports. There are 1,293 records in the database gathered from publicly disclosed

incidents between November 2013 and August 31, 2022. The database contains details

about the attacks. For example, the date and name of the organization that identified the

ransomware attack, the type of ransomware used, and how long it took the organization to

pay the ransom and recover.

5.2.1.5 DMA Database

The Designated Market Area (DMA)7, also known as a media market, defines television and

radio markets in the United States. The DMAs cover the entire country and are typically

defined as metropolitan areas, with suburbs often incorporated. Approximately 210 DMAs

are covering the whole country. The Google Trends API uses a DMA code to identify a

city (instead of a city name); thus, it is necessary to map a city’s name to its DMA code.

We retrieve the city-specific DMA code from the DMA database.
5https://cissm.umd.edu/cissm-cyber-events-database
6https://sites.temple.edu/care/cira/
7http://bl.ocks.org/simzou/6459889
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5.2.1.6 Google Trends

The Google Trends8 (GT) service provides access to a large, unfiltered, and anonymous

sample of search requests. The requests are categorized and grouped to determine the

topic for a search query. This methodology allows displaying interest in a particular topic

from around the world or at the local level. Google Trends normalizes search data using

queries’ time and location using the following two steps: 1) The total number of searches

for a geography and time range is divided by the number of data points, and 2) the results

are then scaled from 0 to 100 according to the proportion of searches within each topic.

Figure 5.1: Attack-specific Vulnerability ExposuRe Terms (AVERT) datasets construc-

tion process. The system integrates information from the CVE, ATT&CK, CISSM, and

CIRA databases using a sentence embedding approach.

5.2.2 Malware Selection

Ransomware is malware that encrypts files and demands a ransom to decrypt the files and

restore the system to its original configuration. In this work, we have selected the Ryuk and
8https://trends.google.com/
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Conti ransomware because of their usage in large-scale attacks against U.S. organizations9.

5.2.2.1 Ryuk

Ryuk is a family of ransomware that first appeared in 2018. It is considered one of the most

dangerous ransomware. Numerous government, academic, healthcare, manufacturing, and

technology organizations have suffered attacks by this ransomware version, attributed to

the hacker group WIZARD SPIDER. By the end of 2020, Ryuk generated $150 million in

profits, and the highest ransom demand was USD 12.5 million in 2019. Usually, Ryuk is

installed on a system after being infected by Trojans (e.g., Trickbot) [121].

The first step Ryuk takes when infecting a system is to shut down 180 services and

40 processes that could prevent its attack10. Afterward, Ryuk encrypts photos, videos,

databases, and documents using AES-256 encryption. Following the symmetric encryption

keys, RSA-4096 is used to encrypt them asymmetrically. Ryuk can encrypt remote shares,

including administrative shares, remotely. Additionally, it is capable of waking comput-

ers for encryption using Wake-On-Lan. Due to these abilities, its encryption is effective,

reachable, and can cause considerable harm.

5.2.2.2 Conti

Conti is assumed to be the successor of the Ryuk ransomware. This ransomware family has

carried out several high-profile attacks. Conti operators use double extortion techniques,

publishing stolen data and selling access to victims who refuse to pay the ransom [122].

Conti typically spreads through phishing emails that contain a link to Google Drive that

downloads the ransomware via BazarLoader. As soon as the ransomware is installed,

attackers use batch files to disable security tools, obtain domain administrator credentials,

and dump the domain controller credentials. The data is then synced to cloud storage.

All backups in the victim’s network are deleted and data is encrypted using the AES-256
9https://www.cisa.gov/uscert/ncas/alerts/aa21-265a

10https://www.trendmicro.com/en_us/what-is/ransomware/ryuk-ransomware.html
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algorithm.

5.2.3 Construction of the AVERT Dataset

Malware activity detection using users’ search terms requires a set of standardized terms.

We constructed the AVERT dataset to satisfy this requirement, integrating data from the

CVE, ATT&CK, CISSM, and CIRA databases. In the following subsections, we describe

different aspects of the AVERT construction process as shown in Figure 5.1.

5.2.3.1 Finding CVEs Related to a Malware

The CVE database contains approximately 236,000 cybersecurity vulnerabilities identified,

defined, and cataloged by organizations worldwide. We selected 177,000 officially accepted

CVE entries labeled as Entry for further analyses. We use the document embedding ap-

proach (mapping documents into numerical vector spaces) to construct the AVERT dataset.

We utilized a Siamese neural network architecture [123], with two identical BERT archi-

tectures (e.g., BERTA, BERTB) that share the same parameters and weights (Fig. 5.2).

Note that a pooling operation is added to BERT’s output. The Siamese architecture facil-

itates the extraction of semantically meaningful document embeddings, which can then be

compared using the cosine-similarity method.

Let us say that C1 is the input of BERTA, and M1 is the input of BERTB; where C1 is

the description of a CVE entry extracted from the CVE database, and M1 is the descrip-

tion of a malware extracted from the ATT&CK database. After BERTA and BERTB have

processed C1 and M1, the network uses the mean pooling technique to reduce their dimen-

sion and produce the vectors Vc1 and Vm1 (document embeddings) of 384 dimensions each.

Note that the all-MiniLM-L12-v210 sentence transformer model we used to compute the

sentence embeddings maps the sentences to a 384-dimensional vector space. We also used

the mean pooling technique because it performs better in document embedding tasks [123].

We then compute the semantic similarity between Vc1 and Vm1. A high similarity indicates

69



that Vc1 is related to Vm1. Eventually, we have subsets G1...N of CVE entries C1...K related

to every malware M1...N .

It is important to note that compared to using only BERT, the Siamese neural network

approach performs better in computing document semantic similarities. For example, to

find the pair with the highest similarity in a collection of 10,000 documents, BERT requires

approximately 49 million inference computations; this is about 65 hours on a modern V100

GPU. On the other hand, this same task requires only about 5 seconds using Siamese

networks [123].

Figure 5.2: Siamese Network used to compute sentence similarity.

5.2.3.2 Topic Modeling on Malware-specific CVEs

Now that we know the clusters G1...N of embedded CVE entries (vectors Vc1...N) associ-

ated with each malware M1...N , the next step is to discover the most relevant words in

each cluster. The topic modeling technique was used to accomplish this task. Using this

approach we created T1...N clusters within G so each cluster T1...N has a similar topic.

However, the performance of some clustering algorithms is poor when dealing with high-

dimensionality embeddings [124]. We employed the Uniform Manifold Approximation and

Projection (UMAP) algorithm to reduce dimensionality from 384 to 5 (default value) [125].
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The UMAP algorithm preserves more global details with superior run-time performance

than t-SNE (a popular dimensionality reduction method). As a general-purpose dimen-

sion reduction technique for machine learning, UMAP has no computational restrictions

on embedding dimensions.

Once we reduced the embeddings’ dimension of the CVEs embeddings in each G1...N , we

proceeded to clusterized each G1...N group with at least 15 elements using the HDBSCAN

algorithm. A density-based algorithm such as HDBSCAN is helpful in conjunction with

UMAP since UMAP maintains many details even in a lower-dimensional space. In addition,

HDBSCAN does not group outliers into clusters [126].

We modeled the topics using the documents in each cluster, where each cluster is as-

signed a topic. Also, in our case, each document is the concatenation of the CVEs descrip-

tions. We adopted the TF-IDF formula (Eq. 5.1) proposed in [127] to calculate a term’s

importance to a topic. In this equation, the term tft,c models the frequency of term t in

a cluster C, A is the average number of words per cluster C, tft is the frequency of term

t across all clusters C1...N . The number one is added to the division within the logarithm

to output only positive values. Lastly, we create a topic representation database using the

top 10 non-repeated terms per topic based on their TF-IDF scores (Eq. 5.1).

TF − IDF = tft,c · log(1 +
A

tft
) (5.1)

5.2.3.3 Retrieving Users’ Search Data

The last part of the AVERT construction process was to retrieve users’ search data related

to malware attacks. We extracted the date, city, and duration of cyber attacks involving

Conti and Ryuk malware from the University of Maryland CISSM Cyber Events and CIRA

databases. In addition, we extracted cities’ DMAs from the DMA dataset for use in the

Google Trends API.

The extracted data was parsed and prepared to retrieve the users’ search data using the

Google Trends API. This tool allowed us to obtain the users’ interest for a term quantified
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by a score between 0 and 100. A term with a score close to 100 has a high search volume.

We created a version of our AVERT dataset for each malware (Conti and Ryuk). The data

include all days of a given year, topic words, topic search scores, and labels. The label 1

means that an attack occurred or was within the attack duration range, and 0 means the

attack was not reported in the CISSM and CIRA databases.

5.2.4 Preprocessing the AVERT Dataset

The AVERT datasets must be preprocessed to address their imbalance, overlapping classes,

and skewness. The imbalance and overlap were addressed by undersampling and over-

sampling. Combining these two methods is highly effective in addressing dataset imbal-

ance [128]. We tested two combinations, the Synthetic Minority Over-sampling TEchnique

(SMOTE) [83] + the Edited Nearest Neighbors (ENN) and SMOTE + TOMEK-Links [84].

The combination of SMOTE and ENN produced better results in reducing the class imbal-

ance. Our AVERT datasets were also transformed with a log transformation to reduce their

skewness. The log-transformation method is commonly used to reduce skewness and trans-

form the data into a Gaussian distribution [86]. A representation of our AVERT dataset is

given in Figure 5.3.

5.2.5 Feature Importance

We computed the features’ importance using the SHapley Additive exPlanations (SHAP)

approach. The SHAP approach uses game theory to explain the output of any machine

learning model [129]. A Shapley value is the average marginal contribution of a feature

value across all possible coalitions. In the case of N features, Shapley values will result

from N! different order combinations. In our case, the values represent those features’

importance in determining whether the activity in a row is related to malware. Positive

values will generally lead to a prediction of 1 (i.e., malware activity detected). In contrast,

negative values will lead to an opposite prediction (i.e., no malware activity detected). In
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Figure 5.3: AVERT dataset representation. The columns are the terms (topic words), rows

are the days for a given year, each cell is the Google Trends score, and the Label column

indicates whether an attack was reported in the CISSM and CIRA databases.

our AVERT datasets, SHAP calculates a base value for every row. Each feature’s value

contributes positively or negatively to the base value in a specific row. A simple way to see

our distance from this base value is to sum the contributions across all features.

5.2.6 Building the Models

We conducted a 5-fold cross-validation during the modeling process. The cross-validation

(CV) technique tests the effectiveness of machine learning models. We split our datasets

with a ratio of 80% training and 20% testing. We followed the scaling law for the validation-

set training-set size ratio proposed by Guyon [86]. We built and tested the models using

several machine learning (ML) algorithms. We aim to develop a framework to detect

malware activity over a geographical region. This can be viewed as a machine-learning

problem for binary classification. Several ML algorithms exist to address such problems.

We selected ten algorithms for further study based on their accuracy and interpretability.
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The difference between accuracy and interpretability is that accuracy measures the cor-

rectness of classification. In contrast, interpretability explains why a classification was

made [130]. Our work is intended to be used by experts and non-experts in computer

science. Therefore, the framework must produce results that are both accurate and ex-

plainable. We selected the following ten algorithms:

• Low Accuracy-High Interpretability: Logistic Regression (LR)

• Medium Accuracy-Medium Interpretability: Gaussian Naive Bayes (GNB), Decision

Trees (DT), K-Nearest Neighbor (KNN), Stochastic Gradient Descent (SGD), Linear

Discriminant Analysis (LDA)

• High Accuracy-Medium Interpretability: XGBoost [27], Support Vector Machine

(SVM)

• High Accuracy-High Interpretability: Random Forest (RF)

• High Accuracy-Low Interpretability: Multi-Layer Perceptron-Neural Network (MLP-

NN)

5.2.7 Evaluation Metrics

As part of our interest in minimizing the number of classification errors of the positive class

(malware activity), we only used the recall and F1 measures for the positive class.

Recall calculates how many actual positives a model captures by labeling it as positive

(true positive). We used the recall measure due to the high cost of false negatives in our

malware activity detection problem. For example, suppose our model predicts a malware

activity (actual positive) as a non-malware activity (predicted negative). In that case,

being unable to detect actual malware activity can have severe consequences. The F1

score combines precision and recall into a single score. As we mentioned before, we are

interested in reducing the number of false negatives. However, we also used the F1 score
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to decide which machine learning algorithm has a better trade-off between precision and

recall.

5.3 Results and Discussion

In the following sections, we report the results obtained during the experiments that help

answer the question: how can we detect malware activity in a region, with lower to no

dependency on intrusion detection systems using public search data?

5.3.1 Feature Importance

We computed the features’ importance for each AVERT dataset using the approach de-

scribed in section 5.2.5. The results of the first top 20 features for the Conti and Ryuk

malware are presented in Figure 5.4. The x-axis represents the feature’s score in SHAP

units, and the y-axis the features.

Each feature has many points (observations or rows in the AVERT datasets) colored

according to the bar color located to the right. Each feature’s distribution of points and

values (color) represents how the feature contributes to the model’s prediction. For example,

the impact feature is in the top 20 on both malware. The high values (red points) of the

impact feature in the Conti malware contributes more to the model’s ability to predict the

positive class (malware activity). In the Ryuk malware, higher values of this feature (red

points) significantly contribute to model performance. In these cases, the high values of

the feature impact contribute positively to the model’s prediction. On the other hand, high

tracking feature values in Ryuk malware negatively affect the model’s ability to detect the

positive class (malware activity).

As stated earlier, we use sentence embedding to measure the similarity between malware

and CVEs. The benefit of using sentence embedding is that it retains the context of the

sentence from its words. Observing this property in action is possible when we examine

the Ryuk dataset and its features’ importance. For example, the feature covid, appears
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Figure 5.4: The top 20 features for the a) Conti and b) Ryuk malware.

ranked 19th. The model’s performance is nearly equally affected by its low and high

values. At first glance, the ’covid’ feature seems out of context in the Ryuk dataset.

However, during the COVID-19 pandemic, there has been a significant increase in Ryuk

ransomware attacks [131]. We use this information to demonstrate the benefits of using

sentence embeddings when constructing our AVERT datasets to find semantic similarities

between the CVE and ATT&CK databases.

5.3.2 Model Construction

An algorithm performance comparison was conducted using a 5-fold cross-validation and the

F1 score and recall metrics. We used two different datasets: 1) our Conti and Ryuk AVERTs

datasets and 2) new datasets constructed using terms extracted from Malwarebytes11. The

principal function of Malwarebytes is to scan and remove malicious software, including
11https://www.malwarebytes.com/
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spyware, adware, and rogue security software. We constructed the two new datasets by

extracting all the text related to Conti and Ryuk fromMalwarebytes pages. Each paragraph

was then considered a document to calculate the TF-IDF scores and obtain the most

relevant terms. In the final step, we retrieved the users’ search interests based on these

terms to construct the new datasets.

Figure 5.5: Comparison of performance results for detecting Conti malware activity using

our approach (AVERT dataset) and a generic approach (Malwarebytes data). Our approach

had better F1 score and Recall results.
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Figure 5.6: Comparison of performance results for detecting Ryuk malware activity. A

5-fold cross-validation was performed using our approach (AVERT dataset) and a generic

approach (using Malwarebytes data). Our approach had better F1 score and Recall results.
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Figures 5.5 and 5.6 present our comparison using both datasets (i.e., AVERT and Mal-

warebytes). For each figure, there are four graphs; the first two (a and b) show the F1

scores for the positive class for the AVERT and Malwarebytes datasets, and the last two

(c and d) show the recall scores for both datasets. The x-axis represents the number of

the top K features used during the training phase, incremented by one in each iteration.

The y-axis is the evaluation metric score (F1 score or recall). In each graph, the colored

lines represent the performance of a machine-learning algorithm, while the thick green line

is the best algorithm. The best performance of each algorithm is shown by a small circle

with a red border and the same fill as the line it belongs to.

We can observe that the performance of the algorithms using our AVERTs datasets

was much higher than those constructed using Malwarebytes. For example, the Nearest

Neighbors algorithm achieved an F1 score of 80% for the Conti malware using the first 320

top features of our AVERTs datasets (Figure 5.5a). In comparison, the SVM algorithm

achieved a score of only 30% using the first 31 top features of the Malwarebytes datasets

(Figure 5.5b). We also found that the algorithms performed better considering the recall

metric when applied to the AVERTs dataset, scoring 100% (Figure 5.5c) compared to 80%

for Malwarebytes datasets (Figure 5.5d). We found similar F1 scores (Figures 5.6a and

5.6b) and recall (Figures 5.6c and 5.6d) results for the Ryuk malware.

5.3.2.1 Model Implementation using the Nearest Neighbors algorithm and the

AVERTs datasets

We selected the Nearest Neighbors algorithm to implement the Conti and Ryuk models

since it had the best performance among all the algorithms using AVERTs datasets (Figures

5.5a, 5.5c, 5.6a, and 5.6c). We trained our models using the first 320 most relevant features

(Figures 5.5 and 5.6) that contributed most to improving the performance of the Nearest

Neighbors algorithm in identifying Conti and Ryuk malware activity. The results are shown

in Table 5.1.

The Conti malware activity detection model (Table 5.1a) achieved a recall of 100% (i.e.,
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Table 5.1: Performance of the Nearest Neighbors models trained using the first 320 most

important features of AVERTs datasets for the Conti and Ryuk malware

a) CONTI MALWARE ACTIVITY MODEL SCORES

Precision Recall F1-Score Support

Class
0 (No activity) 1 0.36 0.53 80

1 (Activity) 0.6 1 0.75 76

Accuracy 0.67 156
Macro Avg 0.8 0.68 0.64 156

Weighted Avg 0.8 0.67 0.64 156

b) RYUK MALWARE ACTIVITY MODEL SCORES

Precision Recall F1-Score Support

Class
0 (No activity) 0.95 0.21 0.34 390

1 (Activity) 0.56 0.99 0.71 390

Accuracy 0.6 780
Macro Avg 0.75 0.6 0.53 780

Weighted Avg 0.75 0.6 0.53 780

it detected all the actual positive cases) and an F1 score of 75% (i.e., it has a good balance

between precision and recall). In the case of Ryuk malware activity detection (Table 5.1b),

we obtained almost the same results (99% recall, 71% F1).

5.3.3 Case Studies

To assess the effectiveness of our model in detecting malware activity using new unseen

data, four cases of Conti and Ryuk malware attacks were collected from internet sources

(e.g., webpages, official data breach reports, etc.). These events were classified as complete

(i.e., attack and attack discovery dates were found) and incomplete (i.e., only the attack

discovery date was found). The following is a brief description of each of the four cases.

Conti case - Meyer Corporation (Complete): Cookware distributor Meyer Cor-

poration is based in Vallejo, California, USA. The corporation was a victim of a Conti

attack on October 25, 2021. However, the attack was not discovered until December 01,

2021. The company’s data was targeted during the ransomware attack, including names,
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Figure 5.7: Case study: Conti cases in 2021 with (a) Complete (b) Incomplete data.

addresses, etc.

Conti case - Broward County Public Schools (Incomplete): On March 07,

2021, Florida’s Broward County Public Schools announced that it had been victim to

a ransomware attack, for which hackers demanded $40 million. Broward County Public

Schools shut down their IT systems after discovering the attack.

Ryuk case - Riviera Beach, Florida (Complete): The Riviera Beach city was

attacked on May 29, 2021. The attack disabled the city’s official website, municipal em-

ployees’ emails, voice-over-internet-protocol phones, and the local water utility’s ability to

take online payments. It also forced workers in the city’s 911 dispatch center to record

caller information on paper. Hackers demanded $600K.
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Ryuk case - Lake City, Florida (Incomplete): Lake City’s IT network was infected

with malware on June 10, 2021. A city employee opened an email that contained the Emotet

trojan, which later downloaded TrickBot and Ryuk ransomware. The latter spread to the

city’s entire IT network and encrypted files.

Figure 5.8: Case study: Ryuk cases in 2021 with (a) Complete (b) Incomplete data.

The Google Trends Scores for the four cases were retrieved using the same search terms

that we used to construct the AVERTs datasets. The data was then used to detect malware

activity. We present the results as time series plots in Figures 5.7 and 5.8. We compute

a simple moving average for each time series to show the trends of our models’ results

and the users’ search interests. In red are the probabilities returned by our models (i.e.,

probability of a positive class indicating malware activity), and in black are the sums of

82



the users’ search interest scores.

Additionally, we detected outliers in the time series when their data points values were

greater than the mean of the time series +1 standard deviation to detect unusual activity

in both time series (probabilities and users’ search interests). These outliers are plotted as

blue dots (model probabilities for a positive class) and magenta dots (user search data) in

Figures 5.7 and 5.8.

We also plotted three lines (red, orange, and green) for the complete cases and two lines

(orange and green) for the incomplete cases. The vertical red line indicates the attack’s date,

and the orange vertical line indicates when the attack was first detected. The horizontal

dotted green line is the threshold (computed during the optimization phase) that we used

to identify malware activity.

Analyzing the Conti and Ryuk complete cases (Figures 5.7a and 5.8a), we found that

users’ search interest and our model’s probabilities increased approximately seven days

before and after the attack was publicly disclosed (dotted red line). It is possible to use

these patterns to identify other possible attacks not reported by other organizations. For

example, we examined the yellow areas shown in Figures 5.7a and 5.8a. Both areas were

experiencing unusual activity and exhibited similar patterns to those observed when the

attack was reported. We also noticed that there are outliers appearing simultaneously or

with a slight delay of approximately seven days in both time series. According to this

information, we can assume that possible attacks occurred during the yellow periods.

Furthermore, we analyzed the incomplete cases of Conti and Ryuk, in which the compro-

mised organizations published only the date on which they discovered the attack (Figures

5.7b and 5.8b). Thus, there is no data on when the attacks started. In these scenarios,

we found a recurring pattern. The outliers in the terms search volume (black) and model

probability time series (red) showed an increase 14 days before and after the discovery of

the attack (red areas).

This pattern can help to identify other unusual activities in the time series data. For

example, in Figures 5.7b and 5.8b, the yellow areas show a similar pattern to the red area,
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where outliers constantly increased in both time series. Based on the time series data,

we assume that people’s interest in Conti and Ryuk malware increased due to factors we

cannot directly determine from the data. However, we can infer this interest is probably

related to malware activity.

Moreover, we found a repeating pattern in which the time series declined continuously

from their highest values after discovering the attack (orange line in Figures 5.7 and 5.8).

This provides valuable information that can be used to detect dangerous malware activities.

For example, the first yellow regions (from left to right) in Figures 5.7a, 5.8a, and 5.8b show

that both time series reached their maximum values during that period. This pattern is

similar to the red regions in Figures 5.7 and 5.8. Our analysis led us to conclude that

when both time series are at their highest values and outliers are present, people are likely

searching for information about malware. Our findings suggest that the patterns observed

in the time series data can be used to detect past or ongoing malware activities.

5.4 Conclusions and Future Work

This paper presents an approach to detect malware activity using AVERTs datasets and

people’s web search interests. We constructed the AVERTs datasets using sentence em-

beddings to discover semantic similarities and topics between the CVE and ATT&CK

databases. We evaluated and compared our approach using the AVERTs datasets and

generic datasets (constructed with search terms from web pages). The results showed that

classifier models trained using the AVERTs datasets have better performance in detecting

malware activities in public search data. The Nearest Neighbors algorithm has the best

performance among all the tested algorithms.

Throughout our experiments, we see that it is possible to detect unusual malware activ-

ity using AVERTs datasets and people’s web search interests. We found that the number

of searches performed by users and the probabilities of our model’s detection increased

approximately seven days before and after the announcement of the attack. In addition,
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we observed an increase in outliers in the web search volume and model probability time

series 14 days before and after the discovery of the attack. According to our results, when

both time series are at their highest values and outliers are present, people are likely look-

ing for malware information and a malware attack is likely ongoing. Future work includes

constructing a single version of the AVERT datasets to be used in a multi-class classifier. A

web interface to track various malware activities around the world also remains as a future

work.
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Chapter 6

Uncovering Threat Vectors through

Attack Analysis

6.1 Introduction

As technology continues to evolve, the need for secure software and Industrial control sys-

tems (ICS) becomes increasingly critical. Cyberattacks and data breaches have become sig-

nificant threats to individuals and organizations, resulting in significant damages [132] [133].

In response, researchers and industry professionals have focused on developing techniques to

identify and mitigate software vulnerabilities to improve cybersecurity. One of these tech-

niques is the automatic linkage between Common Vulnerabilities and Exposures (CVEs),

Common Weakness Enumeration (CWEs), and Adversarial Tactics, Techniques, and Com-

mon Knowledge (ATT&CK) techniques.

The CVE system was established in 1999 to provide a standardized method of identi-

fying and tracking vulnerabilities in software systems1. The CWE system was introduced

in 2006 as a classification system for software weaknesses that can lead to vulnerabilities2.

The ATT&CK framework was created in 2015 as a knowledge base of adversarial tactics,

techniques, and procedures that can be used to test and evaluate the security of software

systems3.

There are significant challenges in linking CVEs, CWEs, and ATT&CK techniques
1https://www.cve.org/About/History
2https://cwe.mitre.org/about/history.html
3https://attack.mitre.org/resources/faq/

86



automatically. Some researchers have focused on manually linking these datasets, which is

time-consuming. Automatic linkage techniques have the potential to significantly improve

the speed and efficiency of the vulnerability identification and mitigation process. Also,

linking these systems can provide valuable insights into the tactics and techniques used by

attackers, enabling better defense against cyber threats.

In this chapter, we aim to investigate the impact of software vulnerabilities and weak-

nesses on ICS attacks. These vulnerabilities are often exploited by cyber attackers to gain

unauthorized access to computer systems, steal confidential data, or disrupt operations. By

mapping vulnerabilities and weaknesses to attacker techniques, organizations can prioritize

their remediation efforts and focus on the most critical areas of risk.

6.2 Approach

This section provides an overview of our proposed methodology, focusing on data collec-

tion and exploring the use of sentence embeddings for mapping CWEs to ICS ATT&CK

techniques.

6.2.1 Data Collection

6.2.1.1 Common Weakness Enumeration (CWE)

Common Weakness Enumeration (CWE) is a comprehensive list of software vulnerabili-

ties resulting from common software weaknesses and mistakes4. It is an essential tool for

identifying, understanding, and addressing software security weaknesses. Using CWE, de-

velopers can detect potential security risks and issues early in the software development

process, allowing them to proactively address security vulnerabilities before deployment.

In this work, we use the CWE Research Concepts, which consists of a set of method-

ologies designed to support research into software weaknesses, vulnerabilities, and related
4https://cwe.mitre.org/
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issues5. These concepts focus on abstractions of behaviors, rather than specific detection

methods or development life cycle stages. This allows researchers to analyze and catego-

rize software weaknesses according to their underlying causes and behaviors. The CWE

research concepts include various data elements, such as the description, extended descrip-

tion, modes of intrusion, and applicable platforms.

6.2.1.2 MITRE ATT&CK

This framework provides a comprehensive view of adversarial tactics, techniques, and pro-

cedures utilized by cyber attackers6. It helps security professionals to understand the

attacker’s mindset and techniques during different stages of a cyberattack, and develop

effective security defenses and mitigation strategies to detect and respond to cyberattacks.

In this work, we used the MITRE ATT&CK for Industrial Control Systems

(ICS) Techniques, which form a subset of the broader MITRE ATT&CK framework

with a specific focus on ICS security7. These techniques offer a categorization of the tactics

and methods employed by adversaries to infiltrate ICS environments. With this infor-

mation, security professionals can design effective mitigation strategies and deploy robust

security controls to minimize the risk of successful cyber-attacks on ICS systems. The ICS

techniques include data such as the technique name, description, mitigation strategies, and

detection mechanisms.

6.2.2 Automated Mapping MITRE ATT&CK and CWEs

We analyzed the text information of 1000 CommonWeakness Enumeration (CWE) research

concepts and 79 MITRE ATT&CK Industrial Control System (ICS) techniques using a

document embedding approach. The text information included descriptions, extended de-

scriptions, modes of intrusion, applicable platforms for the CWE, and descriptions for ICS
5https://cwe.mitre.org/data/definitions/1000.html
6https://attack.mitre.org/
7https://attack.mitre.org/techniques/ics/
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techniques.

Figure 6.1: Approach: Text analysis of CWEs and MITRE ATT&CK ICS techniques using

document embedding methods. Similarities between techniques and CWEs computed using

TF-IDF, BERT, and Sentence-BERT approaches. The fp-growth algorithm was used to

compute frequent itemsets and association rules between the datasets, revealing frequent

co-occurrences of CWE research concepts and MITRE ATT&CK ICS techniques.

6.2.2.1 CWE and MITRE ATT&CK ICS Techniques similarities

To compute the similarity between documents, various methods can be employed. In this

work, we tested the TF-IDF, BERT, and Sentence-BERT (SBERT) approaches to compute

similarities (mapping) between MITRE ATT&CK ICS techniques and CWEs.

These methods can be grouped into two categories, word count-based and inference-

based. Word count-based methods (e.g., TF-IDF [134]), are relatively simple and determine

similarity based on the frequency of occurrence of words in a document. While this approach

may be effective in identifying documents that share similar keywords, it may not capture

the underlying meaning of the text. On the other hand, inference-based methods (e.g.,

BERT [135] and SBERT [123]) employ machine learning models to learn the meaning and

context of the text, resulting in a more precise similarity score.
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The main goal of using these three approaches was to evaluate their effectiveness in

identifying similarities between MITRE ATT&CK ICS techniques and CWEs. We aimed

to determine the most effective approach for use in our subsequent experiments. The

efficacy of each approach was assessed by comparing their cosine similarity results.

6.2.2.2 Semantic Similarity

We employed a similar approach used in [136] that uses a Siamese neural network archi-

tecture with two identical BERT models, sharing the same parameters and weights, to

measure the semantic similarity between CWE and ICS techniques. The Siamese neural

network processed the CWE and ICS techniques documents through the BERT models

and utilized a mean pooling technique to reduce their dimension, producing vectors of 768

dimensions each. To compute sentence embeddings, we used the pre-trained msmarco-

distilbert-base-tas-b model8. We then computed the cosine similarity between the CWE

and ICS techniques vectors, using a similarity threshold of 0.8. A similarity score of 0.8 or

higher was considered a strong relationship between a CWE and a technique. The results

were stored in a local database for future use.

6.2.2.2.1 MSMARCO DistilBERT base TAS-B model We used the pre-trained

msmarco-distilbert-base-tas-b model to compute our sentence embeddings. The MSMARCO

DistilBERT base T5-Base model, also known as the MSMARCO DistilBERT base TAS-B

model, is a highly advanced language model designed to perform various natural language

processing tasks such as question answering and text classification. It is based on the Distil-

BERT architecture and has been fine-tuned on a vast dataset of real-world web documents

from the Microsoft MARCO dataset. Specifically, it has been optimized for the MS Marco

Passage Ranking task, which requires the model to retrieve the most relevant passage from

a set of candidate passages given a query. The model’s efficiency is one of its key features,

as it is capable of processing vast amounts of data quickly.
8https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
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6.2.3 Frequent Itemset Mining

Our study aims to analyze the relationships between the Common Weakness Enumeration

(CWE) research concepts and MITRE ATT&CK Industrial Control System (ICS) tech-

niques. To achieve this, we used the fp-growth algorithm to compute frequent itemsets and

association rules between the two datasets.

The fp-growth algorithm is a robust and efficient data mining technique that is com-

monly used to discover patterns in large datasets [137]. It works by building a tree struc-

ture that represents the data, where each branch of the tree corresponds to an item in the

dataset. The algorithm then uses this tree to efficiently generate frequent itemsets and

association rules.

To apply the fp-growth algorithm in our study, we first converted the text information of

the CWE research concepts and MITRE ATT&CK ICS techniques into numerical vectors

using a document embedding approach, as described in Section 6.2.2. We then created a

dataset in which each ICS technique was considered a transaction, with the CWEs similar to

the technique as items of the transaction. The resulting dataset contained 79 transactions

(rows), with each transaction consisting of a variable number of items (CWEs). It is

important to mention that the items in each row were sorted based on their cosine similarity

with the techniques, as shown in Figure 6.2. We then used the fp-growth algorithm to

compute frequent itemsets and association rules using the dataset created.

Figure 6.2: Transactions.
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The frequent itemsets generated by the fp-growth algorithm represent sets of CWE

research concepts and MITRE ATT&CK ICS techniques that frequently occur together.

These frequent itemsets were then used to identify patterns in the data and gain insights

into the relationships between the two sets of data. The association rules generated by the

algorithm describe the relationships between these frequent itemsets and can be used to

make predictions about future occurrences of these patterns.

6.2.3.1 Case Studies Data Extractions

We developed a web scraping tool to collect data from the Industrial Control System

(ICS) techniques page of the MITRE ATT&CK framework with the objective of identifying

the techniques used by attackers to compromise ICS systems and the related CWEs. To

accomplish this, we used Python along with the Requests and BeautifulSoup libraries to

request and parse HTML content from the ICS techniques page.

Our tool works by looping through specific tags within the webpage and identifying

relevant links containing technique ID information. Once a technique is identified, the tool

visits the associated page to extract additional information such as ICS advisories and

Common Weakness Enumeration (CWE) details. To extract ICS advisories, the tool scans

for links containing the substring "ICS-" and follows them to obtain the associated CWE

information. Similarly, for ICS advisories on the US-CERT website, the tool searches for

links containing the substring "ICSA-".

We utilized the data generated by our web scraping tool to create a dataset (See Table

6.4) that contains information on each technique ID, ICS Alert ID, ICS advisory ID, and

the associated CWE(s). It is worth mentioning that the CWEs were extracted from the

ICS advisories. However, in some instances, the techniques lacked advisory information,

and as such, the ICS advisories had to be derived from the ICS Alerts. This data is used

in the analysis of the case studies.

Additionally, we created Table 6.1 which provides definitions for the terms used in the

analysis, including ICS Alerts, ICS Advisories, and CWEs. This table is intended to aid in
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the interpretation of the data presented in Table 6.4.

Table 6.1: ICS Alerts, ICS Advisories, and CWEs found during the web scraping process

Alert Description
ICS-ALERT-14-281-01B Russian spear-phishing targets ICSs.

Advisoy Description
ICSA-14-023-01 GE CIMPLICITY: path traversal vulnerability.
ICSA-14-329-02D Siemens WinCC: unauthenticated remote code execution.
ICSA-18-107-02 Schneider Triconex 3008: arbitrary code execution, system shutdown, or the compromise of safety systems.

CWE Description
CWE-22 Directory traversal allows unauthorized access.
CWE-284 Product lacks proper access control mechanisms.
CWE-119 Unintended memory access leads to vulnerability.

6.3 Results and Discussion

In the following sections, we present the findings of our study on the relationship between

software vulnerabilities and weaknesses in industrial control systems (ICS) attacks.

6.3.1 Effectiveness of NLP in Linking Security Weaknesses and

Attack Techniques in ICS

In this work, we aimed to compute the similarity between MITRE ATT&CK ICS Tech-

niques and CWEs using three different approaches: SBERT, BERT, and TFIDF. The

results are presented in Table 6.2, which includes 11 columns. The first two columns de-

scribe the techniques ID and their description, while the next nine columns are grouped

in threes and show the results for each approach. Specifically, columns 3 to 5 show the

CWEs ID, their descriptions, and the similarity scores obtained using the SBERT ap-

proach, while columns 6 to 8 and 9 to 11 show the same information for the BERT and

TFIDF approaches, respectively. The CWEs identified as top 1 by all three approaches are

highlighted in yellow, while the highest similarity score is denoted in green.

Our results demonstrate that SBERT outperformed BERT and TFIDF in most cases,

with an average similarity score of 0.82 compared to 0.81 and 0.29 for BERT and TFIDF,

respectively. One possible reason for this is that SBERT is designed, using Siamese and
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Table 6.2: Performance of the SBERT and BERT approaches

TECHNIQUE SBERT BERT
ID Description CWE Description Sim CWE Description Sim

T0800 Adversaries can halt device functions. 1351 Inadequate device security when cooled. 0.84 1277 No firmware updates or patches. 0.82
T0801 Adversaries gather process state information. 205 Product reveals sensitive information differences. 0.82 205 Product reveals important internal differences. 0.81
T0802 Adversaries automate collection of information. 1093 Software has complex data structures. 0.79 1093 Software has complex representation structure. 0.79
T0803 Adversaries can block command messages. 1320 Agents can disable signal alerts. 0.86 1320 Agents can disable signal alerts. 0.83
T0804 Adversaries may block reporting messages. 1320 Agents can disable signal alerts. 0.83 1295 Product exposes sensitive system information. 0.80
T0805 Adversaries may block device communication. 5 Network information vulnerable to attack. 0.82 1319 Device vulnerable to electromagnetic attacks. 0.80
T0806 Repeated I/O changes manipulate processes. 334 Low randomness leads to vulnerability. 0.81 123 Arbitrary write exploit via buffer overflow. 0.81
T0807 Adversaries exploit command-line interfaces. 749 API includes dangerous unrestricted function. 0.85 749 Unsafe API poses external threats. 0.82
T0809 Adversaries destroy data, leave malware. 508 Non-replicating malicious code targets one. 0.85 508 Non-replicating code targets one system. 0.84
T0811 ICS data collection by adversaries. 921 Sensitive data stored insecurely. 0.82 540 Web server code sensitive information. 0.80
T0812 Adversaries use default control passwords. 1391 Product has weak credentials for security. 0.84 1392 Default credentials for critical functions. 0.82
T0813 Adversaries may deny process control. 280 Insufficient privileges cause unexpected behavior. 0.83 537 Attacks exploit unhandled exception errors. 0.83
T0814 Denial-of-service attacks disrupt devices. 589 API function inconsistently available, risk. 0.83 589 API function causes portability problems. 0.82
T0815 Denial of view by adversaries. 435 Integration error causes incorrect behavior. 0.82 537 Unhandled exceptions can be exploited. 0.81
T0816 ICS devices can be disrupted. 455 Security errors ignored, affecting integrity. 0.80 1319 Device vulnerable to electromagnetic attacks. 0.78
T0817 Drive-by compromises exploit web browsers. 521 Weak passwords allow easier hacking. 0.81 521 Weak passwords compromise user accounts. 0.80
T0819 Weaknesses in internet-facing software exploited. 637 Complex software may cause weaknesses. 0.85 537 Attacker exploits unhandled exception errors. 0.83
T0820 Exploitable software vulnerabilities enable evasion. 655 Protective software easily disabled. 0.87 396 Broad exceptions increase error complexity. 0.85
T0821 Adversaries modify controller tasking. 279 Software violates user permissions unintentionally. 0.85 114 Untrusted source can be dangerous. 0.82
T0822 External services allow network access. 662 Issues with resource sharing synchronization. 0.81 27 Path traversal vulnerability due to ../. 0.79
T0823 GUI enhances machine execution capabilities. 749 Unrestricted interface contains dangerous function. 0.83 451 Poor UI can enable phishing. 0.81
T0826 Adversaries might disrupt essential components. 511 Malicious code disrupts software operation. 0.85 356 Lack of warning on unsafe actions. 0.82
T0827 Adversaries aim for loss of control. 1320 Agents may disable alerts, response. 0.83 1320 Disable alerts, compromise response mechanism. 0.81
T0828 Adversaries disrupt productivity and revenue. 537 Exceptions allow unauthorized system access. 0.79 537 Unhandled exceptions allow system access. 0.79
T0829 Adversaries cause equipment view loss. 537 Exceptions exploited for unauthorized access. 0.81 537 Unhandled exceptions lead to attacks. 0.81
T0830 Adversaries modify network traffic attacks. 5 Data can be hacked in transit. 0.82 537 Attacker exploits unhandled exceptions. 0.80
T0831 Manipulation of industrial control systems. 214 Sensitive information in process invocation. 0.82 435 Integration errors cause system weaknesses. 0.81
T0832 Manipulation of reported information possible. 202 Statistics can reveal confidential information. 0.83 1118 Inadequate documentation on error handling. 0.81
T0834 Adversaries access OS functions directly. 749 API includes dangerous unrestricted function. 0.88 749 Insecure API for external actors. 0.84
T0835 PLC I/O image manipulation explained. 1278 Hardware information recoverable through imaging. 0.79 1278 Attacker can recover hardware information. 0.79
T0836 Hackers can alter control system parameters. 1112 Incomplete document on program control. 0.83 1112 Incomplete description of program control. 0.81
T0837 Compromised protective systems cause hazards. 655 Protection mechanism encourages disabling. 0.83 655 Protection mechanism too difficult/inconvenient. 0.82
T0838 Adversaries can alter alarm settings. 11 Debugging messages aid system attacks. 0.85 1295 Product exposes sensitive system information. 0.83
T0839 Adversaries target vulnerable firmware devices. 655 Protection mechanism discourages non-malicious users. 0.84 508 Malicious code stays on target. 0.83
T0840 Adversaries can discover device communication patterns. 1293 Limited data source hinders detection. 0.83 1293 Single-source data limits threat detection. 0.80
T0842 Monitoring data with network interface. 294 Software flaw enables network bypass. 0.83 319 Insecure software exposes sensitive data. 0.80
T0843 Adversaries transfer user program to controller. 434 Software enables dangerous file transfers. 0.84 434 Software enables dangerous file uploads. 0.82
T0845 PLC program upload security risks. 434 Software upload enables dangerous files. 0.84 434 Software enables dangerous file transfer. 0.82
T0846 Adversaries gather system information. 1293 Software uses single data source. 0.81 52 Slash input vulnerability in software. 0.80
T0847 Malware on removable media accesses systems. 497 Access control vulnerability in app. 0.82 537 Attacker exploits unhandled exception errors. 0.81
T0848 Rogue masters can cause chaos. 514 Covert channels transfer unintended information. 0.82 301 Reflection attacks exploit simple authentication. 0.81
T0849 Masquerading disguises malicious content’s identity. 646 Software vulnerable to file misclassification. 0.83 646 Software vulnerable to misclassification attacks. 0.81
T0851 Rootkits hide malware on systems. 1061 Lack of data security software. 0.84 1326 Hardware flaw allows boot bypass. 0.82
T0852 Adversaries capture screen of devices. 1278 Hardware information can be recovered. 0.82 1278 Hardware data can be recovered. 0.80
T0853 Adversaries exploit scripting languages, dangers. 211 Errors reveal sensitive system info. 0.84 211 Application triggers external error message. 0.83
T0855 Unauthorized commands pose control system risk. 211 Application triggers external error message. 0.84 204 Product exposes internal state information. 0.82
T0856 Spoofing reporting messages impairs control. 211 App triggers external sensitive error. 0.82 1295 Product inadequately protects sensitive info. 0.80
T0857 Updating firmware for modern devices. 1277 No firmware update available for product. 0.88 1277 No firmware updates or patches. 0.85
T0858 Adversaries exploit controller operating modes. 270 Software mismanages privilege switching. 0.84 270 Software fails to manage privileges. 0.83
T0859 Credential access enables adversary access. 1391 Weak credentials can be guessed. 0.85 537 Attacker exploits errors for access. 0.84
T0860 Wireless compromise for unauthorized access. 5 Network data vulnerable to compromise. 0.83 1279 Input validation essential for cryptography. 0.80
T0861 Adversaries collect points and tags. 214 Sensitive information in process invocation. 0.82 694 Duplicate identifiers in required contexts. 0.79
T0862 Supply chain compromise for access. 1229 Indirect resource creation for attackers. 0.85 1279 Cryptographic risk without input validation. 0.83
T0863 Adversaries use user interaction for malware. 511 Code disrupts software and environment. 0.85 508 Non-replicating malware stays put. 0.83
T0864 Transient assets targeted by adversaries. 1299 Attackers can bypass primary path. 0.82 1299 Attacker can bypass primary protections. 0.79
T0865 Spearphishing with malware attachment explained. 434 Software enables dangerous file uploads. 0.82 434 Software enables dangerous file transfer. 0.80
T0866 Exploiting software for remote access. 511 Malicious code disrupts legitimate software. 0.83 537 Attacker exploits unhandled exceptions errors. 0.82
T0867 Adversaries transfer files for sabotage. 434 Software uploads dangerous files automatically. 0.82 434 Software sends dangerous file types. 0.81
T0868 Adversaries gather PLC information states. 1313 Runtime hardware allows test/debugging. 0.81 88 Command string lacks proper delimiting. 0.80
T0869 Adversaries exploit common protocols for control. 5 Network data can be intercepted. 0.81 301 Authentication vulnerable to reflection attacks. 0.79
T0871 APIs vulnerable to adversary attacks. 749 API allows dangerous function access. 0.90 749 Unrestricted dangerous function in API. 0.86
T0872 Removing evidence of system presence. 1293 Single data source lacks security. 0.83 1295 Product leaks sensitive debugging information. 0.81
T0873 Malware can infect project files. 511 Software disrupts program or environment. 0.84 511 Code designed to disrupt software. 0.81
T0874 API functions vulnerable to attacks. 749 Unsafe API function not restricted properly. 0.84 589 API function causes portability and security issues. 0.82
T0877 PLC input/output table vulnerability. 1278 Hardware data recoverable via microscopy. 0.80 1278 Data recoverable from hardware images. 0.80
T0878 Adversaries target protection function alarms. 11 Debugging reveals system vulnerabilities. 0.84 1320 Risk of disabling signal alerts. 0.82
T0879 Adversaries cause damage to infrastructure. 511 Code disrupts software’s operation intentionally. 0.82 508 Non-replicating code targets one system. 0.80
T0880 Adversaries may compromise safety systems. 267 Privilege can cause unintended danger. 0.84 435 Integration error causes system weaknesses. 0.82
T0881 Adversaries stop services for sabotage. 511 Software contains disruptive code. 0.85 589 API function causes portability issues. 0.82
T0882 Adversaries seek operational information valuable. 205 Product reveals important differences to observers. 0.81 435 Interaction errors cause system weakness. 0.78
T0883 Adversaries infiltrate industrial environments remotely. 537 Attacker exploits unhandled exceptions errors. 0.85 537 Unhandled exceptions allow unauthorized access. 0.84
T0884 Adversaries can use connection proxy. 444 Product acts as intermediary HTTP agent. 0.85 444 HTTP agent with limited interpretation. 0.82
T0885 Adversaries bypass firewalls through ports. 5 Network data vulnerable to attack. 0.83 605 Multiple sockets cause port conflicts. 0.80
T0886 Adversaries exploit remote services. 697 Security software produces incorrect comparisons. 0.81 351 Software allows insecure behavior. 0.80
T0887 Adversaries target RF communication in distributed environments. 514 Information transfer via unintended path. 0.79 326 Weak encryption used for sensitive data. 0.78
T0888 Adversary seeks system information targeting. 385 Covert channels convey information through behavior. 0.83 385 Secret channels convey protected information. 0.81
T0889 Adversaries can modify controller programs. 269 Flaw in software privilege management. 0.83 269 Software lacks proper privilege management. 0.81
T0890 Adversaries exploit software for privileges. 250 Software creates high-level weaknesses. 0.88 250 Software operates at high privilege. 0.86
T0891 Hardcoded credentials provide unauthorized access. 1391 Product has weak credentials vulnerability. 0.84 537 Unhandled exceptions lead to cybersecurity breach. 0.82

SBERT Sim Avg 0.83 BERT Sim Avg 0.81
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triplet networks to learn sentence representations and encode them in high-dimensional vec-

tor spaces [123]. This enables SBERT to capture semantic relationships between sentences,

allowing it to find similarities that may not be evident with other approaches. BERT, on

the other hand, is better suited for capturing syntactic relationships between words, and

its ability to capture semantic relationships is limited [135].

Another reason why SBERT may have performed better than BERT and TFIDF is

due to its training on large amounts of data. This allows SBERT to learn the underlying

meaning of words and phrases, even if they are not explicitly related. In contrast, TFIDF

only considers the frequency of individual words in a document, which can make it less

effective in measuring semantic similarity between documents [134].

Our results suggest that SBERT is the most effective approach for measuring similarity

between MITRE ATT&CK ICS Techniques and CWEs, outperforming both BERT and

TFIDF. Therefore, we used SBERT to conduct further experiments and analysis.

Table 6.3: Case Studies

Case Study Description CWE Description
GE CIMPLICITY Path traversal vulnerability CWE-22 Improper Limitation of a Pathname to a Restricted Directory
Siemens WinCC Unauthenticated remote code execution CWE-284 Improper Access Control
Schneider Triconex 3008 Arbitrary code execution CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

6.3.2 Enhancing SecurityWeakness Identification in ICS with NLP

and Frequent CWE Itemsets: Case Studies

We use the case studies presented in Table 6.3 to evaluate our approach for identifying ICS

Techniques and Common Weakness Enumeration (CWE) that co-occur in the context of

an attack using natural language processing techniques and frequent itemsets.
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Table 6.4: Relationship between the ICS Alerts, ICS Advisories, CWEs, and MITRE

ATT&C ICS Techniques found during the web scraping process

Technique Description Alert Advisory CWE

T0803 Adversaries can block command messages. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0804 Adversaries may block reporting messages. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0807 Adversaries exploit command-line interfaces. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0816 ICS devices can be disrupted. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0819 Weaknesses in internet-facing software exploited. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0820 Exploitable software vulnerabilities enable evasion. ICSA-18-107-02 CWE-119

T0821 Adversaries modify controller tasking. ICSA-18-107-02 CWE-119

T0822 External services allow network access. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0823 GUI enhances machine execution capabilities. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0834 Adversaries access OS functions directly. ICSA-18-107-02 CWE-119

T0843 Adversaries transfer user program to controller. ICSA-18-107-02 CWE-119

T0845 PLC program upload security risks. ICSA-18-107-02 CWE-119

T0846 Adversaries gather system information. ICSA-18-107-02 CWE-119

T0849 Masquerading disguises malicious content’s identity. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284
ICSA-18-107-02 CWE-119

T0853 Adversaries exploit scripting languages, dangers. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284
ICSA-18-107-02 CWE-119

T0855 Unauthorized commands pose control system risk. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0857 Updating firmware for modern devices. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284
ICSA-18-107-02 CWE-119

T0858 Adversaries exploit controller operating modes. ICSA-18-107-02 CWE-119

T0859 Credential access enables adversary access. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0865 Spearphishing with malware attachment explained. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0867 Adversaries transfer files for sabotage. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0868 Adversaries gather PLC information states. ICSA-18-107-02 CWE-119

T0869 Adversaries exploit common protocols for control. ICSA-18-107-02 CWE-119

T0871 APIs vulnerable to adversary attacks. ICSA-18-107-02 CWE-119

T0872 Removing evidence of system presence. ICSA-18-107-02 CWE-119

T0874 API functions vulnerable to attacks. ICSA-18-107-02 CWE-119

T0880 Adversaries may compromise safety systems. ICSA-18-107-02 CWE-119

T0884 Adversaries can use connection proxy. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0885 Adversaries bypass firewalls through ports. ICSA-18-107-02 CWE-119

T0886 Adversaries exploit remote services. ICS-ALERT-14-281-01B
ICSA-14-023-01 CWE-22
ICSA-14-329-02D CWE-284

T0890 Adversaries exploit software for privileges. ICSA-18-107-02 CWE-119
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6.3.2.1 Case Study: General Electric (GE) Proficy human-machine interface/supervisory

control and data acquisition (HMI/SCADA) - CIMPLICITY applica-

tion

Researchers amisto0x07 and Z0mb1E of Zero Day Initiative (ZDI) identified two vulnerabil-

ities in the General Electric (GE) Proficy human-machine interface/supervisory control and

data acquisition (HMI/SCADA) - CIMPLICITY application9. This software is a widely-

used Client/Server-based HMI/SCADA application that allows operators to monitor and

control industrial processes in real-time, across multiple industries. It is commonly used

in critical infrastructure such as power plants, oil and gas refineries, and water treatment

plants. GE released security advisories, GEIP13-05 and GEIP13-06, to inform customers

about these vulnerabilities.

The vulnerabilities identified by the attackers could be exploited remotely and affect

multiple GE Intelligent Platforms products, including Proficy HMI/SCADA - CIMPLIC-

ITY, Version 4.01 to 8.2, and Proficy Process Systems with CIMPLICITY. Specifically,

CIMPLICITY CimWebServer does not check the location of the shell files, which may al-

low an unauthenticated user to load shell code from a remote location instead of the default

local directory. The impact of these vulnerabilities depends on various factors unique to

each organization, such as the operational environment, architecture, and product imple-

mentation.

Based on our data scraped from the MITRE ATT&CK website, it appears that the

weakness in the GE CIMPLICITY application is related to a path traversal attack (CWE-

22). This vulnerability allows an attacker to bypass system restrictions and gain unautho-

rized access to files or directories outside the intended scope of access. The analysis using

our approach indicates similarities between CWE-22 and six techniques, T0803, T0804,

T0807, T0849, T0857, and T0859, which can all be associated with path traversal attacks

and used to conduct them. For instance, attackers may block command messages that
9https://www.cisa.gov/news-events/ics-advisories/icsa-14-023-01
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prevent the traversal of a restricted directory (T0803) and gain access to unauthorized

files. Attackers may also hide their access by blocking reporting messages that indicate a

path traversal has occurred (T0804). Attackers can use command-line interfaces (CLIs)

to execute path traversal attacks (T0807) by changing the current working directory to a

parent directory and specifying a path that traverses into a restricted directory. Moreover,

attackers may use masquerading (T0849) to camouflage a malicious file as a legitimate file

located within a restricted directory. They may also exploit the firmware update feature

to modify the system’s behavior to allow path traversals (T0857) by creating a malicious

firmware update that bypasses directory restrictions and installing it on the system. In the

same way, attackers may steal credentials (T0859) through phishing, keylogging, or brute

force attacks to gain access to files outside the intended directory.

On the other hand, the results of our analysis indicate that while the data scraped

from the MITRE ATT&CK website suggests an association between the T0816, T0819,

T0822, T0823, T0853, T0855, T0865, T0867, T0884, and T0886 techniques and the CWE-

22 vulnerability, our approach did not reveal any similarities between them. For example,

T0816 exploits the built-in functionalities of a device to shut it down, while T0819 exploits

vulnerabilities in internet-facing software to gain initial access to a network. Neither of

these techniques relies on a path traversal vulnerability like CWE-22.

Similarly, T0822 uses remote services like VPNs to gain initial access to a network,

and T0823 aims to gain access to a machine through its GUI interface. Although these

techniques could potentially be used with a path traversal vulnerability, our analysis found

that they do not inherently involve such a vulnerability. T0853 involves using scripting

languages to execute arbitrary code, and T0855 involves sending unauthorized command

messages to control system assets. However, neither technique relies on a path traversal

vulnerability. Also, T0865 uses social engineering tactics to convince targets to open attach-

ments, while T0867 exploits weaknesses in file-sharing protocols to transfer files between

systems. These techniques could also potentially be used with a path traversal vulner-

ability, but they do not inherently involve such a vulnerability. T0884 involves using a
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connection proxy to direct network traffic, while T0886 exploits weaknesses in remote ac-

cess mechanisms such as RDP or SSH. Like the other techniques, neither of these exploits

relies on a path traversal vulnerability. Instead, they exploit weaknesses in the system’s

defenses and access mechanisms.

We assume that the information on the MITRE ATT&CK website was manually linked

by an expert, and our methodology was unable to identify the similarities between the

T0816, T0819, T0822, T0823, T0853, T0855, T0865, T0867, T0884, and T0886 techniques

and the CWE-22 weaknesses using only the textual information provided on the MITRE

websites.

6.3.2.2 Case Study: Siemens SIMATIC WinCC, PCS7, and TIA Portal Vul-

nerabilities

Siemens identified two vulnerabilities in the SIMATIC WinCC application, according to

an updated advisory from the National Cybersecurity and Communications Integration

Center (NCCIC) 10. The affected products include SIMATIC WinCC, SIMATIC PCS 7,

and TIA Portal V13. These vulnerabilities could allow for unauthenticated remote code

execution, which means that an attacker could exploit the vulnerabilities remotely without

authentication.

SIMATIC WinCC is a supervisory control and data acquisition (SCADA) system, while

PCS7 is a distributed control system (DCS) integrating SIMATIC WinCC. TIA Portal is

engineering software for SIMATIC products. These products are used in several sectors,

including chemical, energy, food and agriculture, and water and wastewater systems, and

are primarily used in the United States and Europe with a small percentage in Asia.

Our approach and the data scraped from the MITRE ICS Techniques revealed simi-

larities between the CWE-284 weakness category (Improper Access Control) and several

MITRE ICS Techniques, including T0804, T0807, T0816, T0819, T0822, T0857, T0859,

and T0886. As we mentioned earlier, the vulnerabilities identified in the SIMATIC WinCC
10https://www.cisa.gov/news-events/ics-advisories/icsa-14-329-02d
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application allow attackers to perform unauthenticated remote code execution, meaning

that they can exploit the vulnerabilities remotely without authentication, which is related

to CWE-284.

Attackers can gain unauthorized access to systems and execute commands or actions

without proper authentication or authorization by leveraging weaknesses similar to CWE-

284, as specified in T0807 and T0857. They can also exploit weaknesses in internet-facing

software or remote services to bypass access controls designed to protect against external

and internal threats, gaining initial access to a network or moving between assets and

network segments, as we can read in T0819, T0822, and T0886.

Moreover, attackers may leverage denial-of-service attacks to prevent proper access to

reporting systems or device control systems, as read in T0804 and T0816. They may also

steal credentials using credential access techniques to gain unauthorized access to resources

and systems that rely on those credentials, as read in T0859.

On the other hand, our approach did not initially identify any similarities between

the CWE-284 and the techniques T0803, T0823, T0849, T0853, T0855, T0865, T0867,

and T0884. However, upon analyzing the data scraped from the MITRE ATT&CK ICS

Techniques, we discovered that there were indeed similarities. We found that two distinct

groups of these techniques can be used to conduct an attack using the CWE-284. The

first group includes three techniques: blocking a command message (T0803), accessing a

GUI interface (T0823), and using masquerading to disguise a malicious file (T0849). These

techniques may or may not be specific to exploiting weaknesses in the control system.

The second group includes five techniques: using scripting languages to execute arbitrary

code (T0853), sending unauthorized command messages (T0855), spearphishing (T0865),

transferring files between systems (T0867), and using a connection proxy (T0884). These

techniques are directly related to exploiting a vulnerability in the control system. Our anal-

ysis revealed that sending unauthorized command messages (T0855) is a crucial approach

for an attacker to carry out a successful attack using CWE-284. However, it’s important

to note that the specific techniques used in an attack depend on the attacker’s goals. For
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instance, if the objective is to gain access to credentials, spearphishing (T0865) may be a

more effective technique than blocking a command message (T0803).

Our approach was unable to detect similarities between the CWE-284 and the techniques

T0803, T0823, T0849, T0853, T0855, T0865, T0867, and T0884, which we attribute to the

limited information in the technique descriptions. It is possible that certain details that

could potentially reveal similarities were not included in the descriptions, leading to our

approach’s inability to identify them.

Also, we believe that the data presented on the MITRE website was curated manually

by experts, which could account for the discrepancies in our findings. It is possible that

the experts responsible for collecting the data identified similarities that were not apparent

in the technique descriptions alone.

Despite these limitations, our approach identified similarities for eight techniques (T0804,

T0807, T0816, T0819, T0822, T0857, T0859, and T0886) that could potentially be used to

conduct an attack using the CWE-284. Our approach provides valuable insights into the

techniques used in attacks targeting control systems, which could prove useful for future

research and development of more effective mitigation strategies and security measures.

6.3.2.3 Case Study: Schneider Electric Triconex Tricon. Improper Restriction

of Operations within the Bounds of a Memory Buffer

Schneider Electric is a multinational corporation that specializes in energy management

and automation solutions. One of its products is the Triconex Tricon Model 3008, which is

a safety instrumented system used in industrial control systems (ICS). This system is de-

signed to protect against potentially hazardous situations that may occur during industrial

processes.

Recently, it was discovered that the Triconex Tricon Model 3008 contains vulnerabilities

that could be exploited by attackers. Specifically, the vulnerabilities are related to an

improper restriction of operations within the bounds of a memory buffer11. This could
11https://www.cisa.gov/news-events/ics-advisories/icsa-18-107-02
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allow attackers to remotely access and take control of the system, potentially leading to

arbitrary code execution or system shutdown.

Schneider Electric has released an updated advisory regarding these vulnerabilities.

This advisory is a follow-up to a previous advisory titled ICSA-18-107-02 Schneider Electric

Triconex Tricon (Update A) that was published in 2018. The updated advisory warns that

HatMan malware specifically targets these vulnerabilities and could be used to exploit the

system.

We analyzed the similarities between the CWE-119 vulnerability and the techniques

that attackers could use to exploit it and gain access to sensitive areas of the system (Table

6.4). By employing our approach and analyzing data scraped from the MITRE ATT&CK

ICS Techniques, we identified similarities between CWE-119 and five different techniques:

T0820, T0834, T0857, T0874, and T0890.

Two of the identified techniques, T0820 and T0874, involve exploiting software vulner-

abilities to overwrite buffers with malicious code and execute it with elevated privileges,

closely related to CWE-119. Another technique, T0834, involves bypassing security con-

trols and accessing sensitive areas of a system by directly interacting with the native OS

API. Although the T0857 technique is not directly related to CWE-119, it can exploit other

vulnerabilities, such as outdated or unpatched firmware. Lastly, the T0890 technique also

targets software vulnerabilities to elevate privileges and gain access to systems, making it

closely related to CWE-119. Our results suggest that attackers can use these techniques to

exploit CWE-119 and gain access to ICS systems.

However, there was a discrepancy between our results’ similarities and the data scraped

from the MITRE website. Our approach was not able to identify similarities between the

CWE-119 and the T0821, T0843, T0845, T0846, T0849, T0853, T0858, T0868, T0869,

T0871, T0872, T0880, T0885 techniques. However, we have classified the techniques based

on their potential relevance to CWE-119.

Our findings show that some of the techniques could potentially be used to exploit

a vulnerability in a controller, while others may not be directly related. The techniques
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that could potentially be related to CWE-119 include T0821, T0843, T0845, T0849, T0858,

T0868, T0869, T0871, T0872, and T0880. These techniques involve modifying the behavior

of a controller, exploiting vulnerabilities, or compromising safety systems. Therefore, these

techniques should be considered when designing security measures to prevent CWE-119

attacks. On the other hand, some techniques may not be directly related to CWE-119,

such as T0846 and T0853. These techniques involve gathering information or executing

code, but they do not directly exploit a vulnerability in a controller. Nevertheless, they

could potentially be used in combination with other techniques to exploit a weakness.

It is important to note that our classification of these techniques as potentially related

or not related to CWE-119 does not imply their guaranteed success in exploiting a vulner-

ability. The effectiveness of these techniques will depend on the specific implementation of

the controller and the security measures in place. Our method could not find similarities

between CWE-119 and several techniques (T0821, T0843, T0845, T0846, T0849, T0853,

T0858, T0868, T0869, T0871, T0872, T0880, T0885), possibly due to limited information

in their descriptions. The data on the MITRE website was manually curated by experts,

which could explain the discrepancies in our findings. Despite these limitations, our ap-

proach found similarities in five techniques (T0820, T0834, T0857, T0874, and T0890) that

could potentially be used in an attack with CWE-119. This provides valuable insights into

attack techniques and could aid future research in developing better mitigation strategies

and security measures.

6.3.2.4 Frequent CWE Itemsets

In this work, we aimed to investigate the exploitation of different CWEs using one or

more MITRE ATT&CK ICS Techniques. To achieve this, we employed the FPgrowth

algorithm to compute frequent CWE itemsets, as described in Section 6.2.3. The results

of our analysis are presented in Table 6.5a and Table 6.5b. Table 6.5a displays the support

values and itemsets for two different CWEs (CWE-22 and CWE-284), that were identified

and used in our case studies. The support values in Table 6.5a represent the proportion
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Table 6.5: Frequent Itemsets where CWE-22 and CWE-284 appears in itemsets of length

2

a) Frequent CWE itemsets b) Manual Verification
CWE-22 CWE-284 CWE-284 CWE-22 CWE-119

Support CWEs Support CWEs aCWE-862 CWE-1003 CWE-1003
0.46 (22) 0.47 (284) bCWE-863 CWE-1305 CWE-1305
0.46 (22,23e) 0.34 (284,22) cCWE-732 CWE-1340 CWE-1340
0.41 (24,22) 0.46 (284,23e) dCWE-306 CWE-209 CWE-700
0.36 (26,22) 0.34 (24,284) CWE-286 CWE-79 CWE-252
0.39 (27,22) 0.36 (27,284) CWE-923 eCWE-23 CWE-476
0.38 (28,22) 0.32 (284,28) CWE-1008 CWE-434 CWE-126
0.34 (32,22) 0.39 (284,36f) CWE-1340 dCWE-306 CWE-839
0.33 (33,22) 0.42 (284,39) eCWE-23 CWE-20 CWE-129
0.33 (34,22) 0.30 (284,62) fCWE-36 CWE-125
0.33 (35,22) 0.37 (73,284) gCWE-184 CWE-122
0.42 (36f,22) 0.36 (284,78) CWE-182 CWE-1339
0.45 (22,39) 0.36 (96,284) CWE-602 CWE-190
0.32 (40,22) 0.30 (114,284) CWE-180 CWE-193
0.37 (61,22) 0.41 (116,284) CWE-174 CWE-131
0.45 (73,22) 0.33 (284,117) CWE-59
0.32 (74,22) 0.30 (121,284) CWE-243
0.36 (77,22) 0.43 (250,284) CWE-95
0.37 (78,22) 0.34 (306d,284) CWE-621
0.41 (96,22) 0.37 (384,284) CWE-790
0.36 (114,22) 0.30 (441,284)
0.43 (116,22) 0.41 (284,494)
0.41 (117,22) 0.43 (497,284)
0.33 (121,22) 0.34 (732c,284)
0.32 (138,22) 0.32 (284,807)
0.34 (184g,22) 0.39 (284,828)
0.41 (250,22) 0.33 (841,284)
0.34 (284,22) 0.37 (940,284)
0.34 (306d,22) 0.30 (284,941)
0.38 (384,22) 0.37 (1249,284)
0.34 (444,22) 0.34 (1329,284)
0.45 (22,494)
0.46 (497,22)
0.41 (732c,22)
0.32 (22,807)
0.33 (822,22)
0.41 (828,22)
0.33 (862a,22)
0.34 (22,863b)
0.36 (940,22)
0.36 (1249,22)
0.30 (1259,22)
0.30 (1268,22)
0.30 (1293,22)
0.30 (221,302)
0.32 (1329,22)
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of transactions that contain the corresponding CWEs. For instance, the first row of Table

6.5 shows that the itemset containing only CWE-22 appeared in 46% of transactions. Our

approach identified possible attacks that exploit the weaknesses of CWE-22, CWE-284,

and CWE-119 using the technique T0857 (see Table 6.4).

Table 6.5b shows the CWEs related to the three CWEs we used in our case studies. We

verified this relation manually by checking the official page of the CWE-2212, CWE-11913,

and CWE-28414. Additionally, Table 6.5a and Table 6.5b are connected using colors and

superscripts (a,...,g).

The CWEs that appeared together in the transactions are highlighted in green and

include CWE-22 and CWE-284. Other CWEs were identified using our approach and by

manually checking the official CWEs page. The colors in the table represent these different

CWEs. For instance, CWE-306 appeared in the transactions using our NLP approach, and

we verified that it is related to CWE-284 and CWE-22 on the official CWEs page. This

validation step allowed us to confirm that our approach effectively identified the main and

related weaknesses.

The superscripts used to annotate CWEs in Table 4a indicate that they were discovered

using our frequent CWE itemset approach. Each superscript in Table 6.5a corresponds to

an entry in Table 6.5b. For example, in the CWE itemset (22,23) of Table 6.5a, CWE-23

was identified as an exploit that can occur with CWE-22. Table 6.5b confirms that CWE-

23 is related to CWE-284 and CWE-22. Therefore, we can validate that our approach

identifies new weaknesses by using CWE itemsets. This analysis helps identify which

CWEs can be exploited with specific techniques or sets of techniques. For example, Table

6.4 shows that CWE-22 can be exploited with techniques such as T0803, T0804, T0849, and

T0857. Further analysis of our results in Table 6.5a reveals that our approach identified

frequent occurrences of CWE-22 with other CWEs, including CWE-23, CWE-184, and

CWE-306. Notably, some of these CWEs were derived from our frequent CWE itemset
12https://cwe.mitre.org/data/definitions/22.html
13https://cwe.mitre.org/data/definitions/119.html
14https://cwe.mitre.org/data/definitions/284.html
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mining. Therefore, we can infer that CWE-23, CWE-184, and CWE-306 can also be

exploited with the techniques T0803, T0804, T0849, and T0857.

These results confirm the effectiveness of our approach in detecting possible attack

scenarios involving multiple CWEs and techniques.

It is worth noting that CWE-119 does not appear in Table 6.5 because the minimum

support used in the FPgrowth algorithm was set to 30%, and CWE-119 does not appear

in many transactions. Nevertheless, our results demonstrate the utility of frequent itemset

mining in identifying the co-occurrence of different attacks using CWEs and revealing

potential attack scenarios on ICS.

6.4 Conclusions and Future Work

The three case studies presented in this work demonstrate the importance of identifying

and addressing vulnerabilities in industrial control systems (ICS). Our proposed approach,

which computes the similarity between MITRE ATT&CK ICS Techniques and CWEs using

natural language processing techniques, provides valuable insights into the exploitation of

several CWEs using ICS Techniques, allowing for more effective threat analysis and the

development of more robust security measures.

The use of frequent itemset mining in the case studies further illustrates the approach’s

efficacy in identifying potential attack scenarios involving multiple CWEs. While the

methodology has limitations and requires expert knowledge, it holds significant promise for

enhancing security weakness identification in ICS and improving critical infrastructure’s

protection against cyber attacks.

Future work in this area could benefit from expanding the dataset used for our analysis,

which would provide a more comprehensive understanding of the relationships between

MITRE ATT&CK ICS Techniques and CWEs. A larger dataset could lead to more accurate

and relevant insights into the effectiveness of natural language processing techniques in

identifying similarities between attack techniques and weaknesses.
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In addition, further exploration of other natural language processing techniques beyond

SBERT, BERT, and TFIDF could be valuable. We could evaluate the effectiveness of other

techniques, such as GPT-4, to determine their potential utility in this context.

Another area for future work is incorporating expert knowledge and domain-specific

information to enhance the accuracy and relevance of the results. Expert knowledge could

help refine the selection of relevant techniques and vulnerabilities, as well as provide ad-

ditional context for the analysis. This approach could also involve leveraging additional

sources of data, such as threat intelligence feeds or data from the ICS community, to enrich

our analysis and provide further insights.
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Chapter 7

Concluding Remarks

The primary objective of this dissertation was to examine effective methods of analyzing

and predicting emerging threats. To achieve this, we combined theories and models from

both computer science and epidemiology. This integration enabled us to identify and predict

potential threats.

An important contribution of this research is the development of a framework for de-

tecting infectious disease outbreaks. This approach uses Google Trends data and disease-

specific symptoms to offer a practical and effective way to detect outbreaks of several in-

fectious diseases. In a subsequent project, we found that integrating human mobility data

with the traditional SEIR epidemiological model has significant implications for simulating

disease control strategies.

Another important aspect of our project is the development of an approach to detect

malware activity using our AVERTs datasets and public search data. The results are

promising, indicating that it is possible to identify unusual malware activity by analyzing

public search data.

These findings have significant practical implications. Policymakers, public health offi-

cials, and security experts can use the proposed frameworks and corresponding studies to

make informed decisions and take appropriate measures in response to emerging threats.

Furthermore, the proposed frameworks and corresponding studies lay the foundation for

future research in these areas.
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